
Prepared exclusively for Jose Sierra

Developers the world over talk about

Programming Ruby and the Ruby language. . .

“Ruby is a wonderfully powerful and useful language, and whenever I’m working

with it, this book is at my side.”

Martin Fowler, Chief Scientist, ThoughtWorks

“If your world revolves around Java, as mine did, then you need this outstanding book

to learn all the wonderful things you’re missing. There’s just one catch: you’ll be

spoiled from then on. Indeed, after reading just a few pages of Programming Ruby,

programming in any language other than Ruby will feel like you’re pushing rope.”

Mike Clark, Author and Consultant

“Ruby is smart, elegant, and fun, and it deserves a book that’s smart, elegant, and fun.

The first edition of Programming Ruby was such a book; the second edition is even

better.”

James Britt, Administrator, http://rubydoc.org

“The best reason to learn a new programming language is to learn to think differently.

The best way to learn to think the Ruby way is to read Programming Ruby. Several

years ago, with the first edition of this book, I did just that. Since then, I’ve had a

constant stream of enjoyable Ruby programming experiences. This is due in no

insignificant part to the quality of the source from which I learned the language. I’m

not the only person I’ve heard say that every language should have a book like this.”

Chad Fowler, Codirector, Ruby Central, Inc.

“The PickAxe got me started on Ruby. It is still the first book I turn to.”

Ryan Davis, Founder, Seattle.rb

“This book changed my life. Sounds rather clichéd, but it’s the truth. After six years

and 300,000 lines of Java code, I needed a change. That change occurred upon reading

the first edition of this book. With the support of a solid community and ever-growing

foundation of superb libraries, I founded a company that largely profits from applying

Ruby to solve real-world problems. Ruby is ready for prime time, and this new

version of the PickAxe will show a waiting world what a gem Ruby really is.”

Rich Kilmer, President and CEO, InfoEther LLC

“The first edition of PickAxe has been a desk-side companion for years. The second

edition will be an eagerly awaited replacement.”

Tom Enebo, JRuby Developer

Prepared exclusively for Jose Sierra

http://ruby-doc.org

“The first edition of Programming Ruby brought about no less than the introduction of

Ruby on a large scale outside of Japan, in the process becoming the de facto standard

published language reference and an oft-cited model of clear, effective technical

writing. The appearance of the second, expanded edition is exciting for Ruby

programmers around the world and will no doubt attract a fresh wave of newcomers to

this elegant, versatile language.”

David A. Black, Ph.D., Codirector, Ruby Central, Inc.

“Ruby is my definite choice for all scripting and prototyping issues, and this book will

help you to discover its usefulness as well as its beauty. Apart from that, it’s really fun

to read!”

Robert Klemme

“I bought the first edition of this book the day it was released and had a fantastic time

using it to learn Ruby. I eventually bought a second copy to keep at home. But Ruby

has changed since then. I’m delighted that this second edition of Programming Ruby

is available to help a new round of programmers learn about this fantastic, beautiful

language. And it’s not just good news for Ruby newbies, of course—like me, most

Ruby developers will want a copy (no, make that two) so that all of the details about

today’s Ruby will be close at hand.”

Glenn Vanderburg, Software Architect, Countrywide Financial

“Ruby is one of those great languages that takes an afternoon to start using and years

(maybe a lifetime) to master. In C, I’m always having to work around the limitations

of the language; in Ruby, I’m always discovering a neater, cleaner, more efficient way

to do things. Programming Ruby is the essential reference to the Ruby language. More

than just teaching you the syntax, it teaches you the spirit and the feel of the language.”

Ben Giddings

“Confucius said, “What you hear, you forget.” He also said, “What you do you

understand.” But it’s not easy to actually “do” things unless you’re using a great

language with strength in quick and clean prototyping. In my case, this language is

Ruby! Thank you!”

Michael Neumann

Prepared exclusively for Jose Sierra

Programming Ruby
The Pragmatic Programmers’ Guide

Second Edition

Dave Thomas

with Chad Fowler
and Andy Hunt

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Prepared exclusively for Jose Sierra

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as

trademarks. Where those designations appear in this book, and The Pragmatic Programmers, LLC, was aware

of a trademark claim, the designations have been printed in initial capital letters or in all capitals.

Every precaution was taken in the preparation of this book. However, the publisher assumes no responsibility

for errors or omissions or for damages that may result from the use of information (including program

listings) contained herein.

This book is a heavily revised version of the book Programming Ruby, originally published by Addison

Wesley. This book is printed with their permission.

Our Pragmatic courses, workshops, and other products can help you and your team create better software

and have more fun. For more information, as well as the latest Pragmatic titles, please visit us at

http://www.pragmaticprogrammer.com

Copyright © 2005 The Pragmatic Programmers, LLC. All rights reserved. No part of this publication may be

reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, electronic, mechanical,

photocopying, recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN 0-9745140-5-5

Text printed on acid-free paper.

Tenth Printing, October 2006

Version: 2006-9-20

Prepared exclusively for Jose Sierra

http://www.pragmaticprogrammer.com

Contents

FOREWORD TO THE FIRST EDITION xvii

FOREWORD TO THE SECOND EDITION xix

PREFACE xx

ROAD MAP xxvi

PART I—FACETS OF RUBY

1 GETTING STARTED 2

Installing Ruby . 2

Running Ruby . 4

Ruby Documentation: RDoc and ri . 7

2 RUBY.NEW 9

Ruby Is an Object-Oriented Language 9

Some Basic Ruby . 11

Arrays and Hashes . 14

Control Structures . 16

Regular Expressions . 17

Blocks and Iterators . 19

Reading and ’Riting . 21

Onward and Upward . 22

3 CLASSES, OBJECTS, AND VARIABLES 23

Inheritance and Messages . 25

Objects and Attributes . 27

Class Variables and Class Methods . 31

Access Control . 35

Variables . 37

vPrepared exclusively for Jose Sierra

CONTENTS vi

4 CONTAINERS, BLOCKS, AND ITERATORS 40

Containers . 40

Blocks and Iterators . 46

Containers Everywhere . 54

5 STANDARD TYPES 55

Numbers . 55

Strings . 57

Ranges . 62

Regular Expressions . 64

6 MORE ABOUT METHODS 74

Defining a Method . 74

Calling a Method . 76

7 EXPRESSIONS 81

Operator Expressions . 82

Miscellaneous Expressions . 83

Assignment . 84

Conditional Execution . 87

Case Expressions . 92

Loops . 94

Variable Scope, Loops, and Blocks . 99

8 EXCEPTIONS, CATCH, AND THROW 101

The Exception Class . 101

Handling Exceptions . 102

Raising Exceptions . 106

Catch and Throw . 108

9 MODULES 110

Namespaces . 110

Mixins . 111

Iterators and the Enumerable Module . 113

Composing Modules . 113

Including Other Files . 116

10 BASIC INPUT AND OUTPUT 119

What Is an IO Object? . 119

Opening and Closing Files . 120

Reading and Writing Files . 121

Talking to Networks . 125

Prepared exclusively for Jose Sierra

CONTENTS vii

11 THREADS AND PROCESSES 127

Multithreading . 127

Controlling the Thread Scheduler . 132

Mutual Exclusion . 133

Running Multiple Processes . 139

12 UNIT TESTING 143

Test::Unit Framework . 144

Structuring Tests . 148

Organizing and Running Tests . 151

13 WHEN TROUBLE STRIKES 155

Ruby Debugger . 155

Interactive Ruby . 156

Editor Support . 157

But It Doesn’t Work! . 159

But It’s Too Slow! . 162

PART II—RUBY IN ITS SETTING

14 RUBY AND ITS WORLD 167

Command-Line Arguments . 167

Program Termination . 170

Environment Variables . 171

Where Ruby Finds Its Modules . 172

Build Environment . 173

15 INTERACTIVE RUBY SHELL 174

Command Line . 174

Configuration . 179

Commands . 183

Restrictions . 185

rtags and xmp . 185

16 DOCUMENTING RUBY 187

Adding RDoc to Ruby Code . 187

Adding RDoc to C Extensions . 195

Running RDoc . 199

Displaying Program Usage . 200

Prepared exclusively for Jose Sierra

CONTENTS viii

17 PACKAGE MANAGEMENT WITH RUBYGEMS 203

Installing RubyGems . 204

Installing Application Gems . 204

Installing and Using Gem Libraries . 206

Creating Your Own Gems . 211

18 RUBY AND THE WEB 222

Writing CGI Scripts . 222

Cookies . 231

Improving Performance . 234

Choice of Web Servers . 234

SOAP and Web Services . 236

More Information . 240

19 RUBY TK 241

Simple Tk Application . 241

Widgets . 242

Binding Events . 246

Canvas . 247

Scrolling . 249

Translating from Perl/Tk Documentation 251

20 RUBY AND MICROSOFT WINDOWS 253

Getting Ruby for Windows . 253

Running Ruby Under Windows . 254

Win32API . 254

Windows Automation . 255

21 EXTENDING RUBY 261

Your First Extension . 261

Ruby Objects in C . 264

The Jukebox Extension . 270

Memory Allocation . 279

Ruby Type System . 280

Creating an Extension . 282

Embedding a Ruby Interpreter . 287

Bridging Ruby to Other Languages . 290

Ruby C Language API . 291

Prepared exclusively for Jose Sierra

CONTENTS ix

PART III—RUBY CRYSTALLIZED

22 THE RUBY LANGUAGE 302

Source Layout . 302

The Basic Types . 304

Names . 313

Variables and Constants . 315

Expressions . 323

Method Definition . 330

Invoking a Method . 333

Aliasing . 336

Class Definition . 337

Module Definitions . 339

Access Control . 341

Blocks, Closures, and Proc Objects . 341

Exceptions . 345

Catch and Throw . 347

23 DUCK TYPING 349

Classes Aren’t Types . 350

Coding like a Duck . 354

Standard Protocols and Coercions . 355

Walk the Walk, Talk the Talk . 361

24 CLASSES AND OBJECTS 362

How Classes and Objects Interact . 362

Class and Module Definitions . 370

Top-Level Execution Environment . 376

Inheritance and Visibility . 376

Freezing Objects . 377

25 LOCKING RUBY IN THE SAFE 379

Safe Levels . 380

Tainted Objects . 381

26 REFLECTION, OBJECTSPACE, AND DISTRIBUTED RUBY 384

Looking at Objects . 385

Looking at Classes . 386

Calling Methods Dynamically . 388

System Hooks . 391

Tracing Your Program’s Execution . 393

Marshaling and Distributed Ruby . 395

Compile Time? Runtime? Anytime! . 400

Prepared exclusively for Jose Sierra

CONTENTS x

PART IV—RUBY LIBRARY REFERENCE

27 BUILT-IN CLASSES AND MODULES 402

Alphabetical Listing . 403

Array . 406

Bignum . 420

Binding . 423

Class . 424

Comparable . 426

Continuation . 427

Dir . 428

Enumerable . 433

Errno . 439

Exception . 440

FalseClass . 443

File . 444

File::Stat . 456

FileTest . 462

Fixnum . 463

Float . 466

GC . 470

Hash . 471

Integer . 480

IO . 482

Kernel . 495

Marshal . 514

MatchData . 516

Math . 519

Method . 522

Module . 524

NilClass . 540

Numeric . 541

Object . 546

ObjectSpace . 557

Proc . 559

Process . 562

Process::GID . 568

Process::Status . 570

Process::Sys . 573

Process::UID . 575

Range . 576

Regexp . 579

Prepared exclusively for Jose Sierra

CONTENTS xi

Signal . 583

String . 585

Struct . 605

Struct::Tms . 609

Symbol . 610

Thread . 612

ThreadGroup . 619

Time . 621

TrueClass . 629

UnboundMethod . 630

28 STANDARD LIBRARY 632

Abbrev . 634

Base64 . 635

Benchmark . 636

BigDecimal . 637

CGI . 638

CGI::Session . 640

Complex . 641

CSV . 642

Curses . 643

Date/DateTime . 644

DBM . 645

Delegator . 646

Digest . 647

DL . 648

dRuby . 649

English . 650

Enumerator . 651

erb . 652

Etc . 654

expect . 655

Fcntl . 656

FileUtils . 657

Find . 658

Forwardable . 659

ftools . 660

GDBM . 661

Generator . 662

GetoptLong . 663

GServer . 664

Iconv . 665

IO/Wait . 666

Prepared exclusively for Jose Sierra

CONTENTS xii

IPAddr . 667

jcode . 668

Logger . 669

Mail . 670

mathn . 671

Matrix . 673

Monitor . 674

Mutex . 675

Mutex_m . 676

Net::FTP . 677

Net::HTTP . 678

Net::IMAP . 680

Net::POP . 681

Net::SMTP . 682

Net::Telnet . 683

NKF . 684

Observable . 685

openuri . 686

Open3 . 687

OpenSSL . 688

OpenStruct . 689

OptionParser . 690

ParseDate . 692

Pathname . 693

PP . 694

PrettyPrint . 695

Profile . 696

Profiler_ _ . 697

PStore . 698

PTY . 699

Rational . 700

readbytes . 701

Readline . 702

Resolv . 703

REXML . 704

Rinda . 706

RSS . 707

Scanf . 708

SDBM . 709

Set . 710

Shellwords . 711

Singleton . 712

SOAP . 713

Prepared exclusively for Jose Sierra

CONTENTS xiii

Socket . 714

StringIO . 715

StringScanner . 716

Sync . 717

Syslog . 719

Tempfile . 720

Test::Unit . 721

thread . 722

ThreadsWait . 723

Time . 724

Timeout . 725

Tk . 726

tmpdir . 727

Tracer . 728

TSort . 729

un . 730

URI . 731

WeakRef . 732

WEBrick . 733

Win32API . 734

WIN32OLE . 735

XMLRPC . 736

YAML . 737

Zlib . 738

PART V—APPENDIXES

A SOCKET LIBRARY 740

BasicSocket . 741

Socket . 743

IPSocket . 747

TCPSocket . 748

SOCKSSocket . 749

TCPServer . 750

UDPSocket . 751

UNIXSocket . 753

UNIXServer . 754

Prepared exclusively for Jose Sierra

CONTENTS xiv

B MKMF REFERENCE 755

mkmf . 755

C SUPPORT 758

Web Sites . 758

Download Sites . 759

Usenet Newsgroup . 759

Mailing Lists . 759

D BIBLIOGRAPHY 761

Prepared exclusively for Jose Sierra

List of Tables

2.1 Example variable and class names . 15

5.1 Character class abbreviations . 68

7.1 Common comparison operators . 89

11.1 Two threads in a race condition . 135

13.1 Debugger commands . 165

14.1 Environment variables used by Ruby 172

15.1 irb command-line options . 175

17.1 Version operators . 206

18.1 Command-line options for erb . 230

21.1 C/Ruby data type conversion functions and macros 266

22.1 General delimited input . 303

22.2 Substitutions in double-quoted strings 306

22.3 Reserved words . 314

22.4 Ruby operators (high to low precedence) 324

25.1 Definition of the safe levels . 383

27.1 Class Array: pack directives . 414

27.2 Class File: match-mode constants . 447

27.3 Class File: path separators . 449

27.4 Class File: open-mode constants . 451

27.5 Class File: lock-mode constants . 455

27.6 Class IO: mode strings . 483

27.7 Module Kernel: sprintf flag characters 510

27.8 Module Kernel: sprintf field types 511

27.9 Module Kernel: file tests with a single argument 512

27.10 Module Kernel: file tests with two arguments 512

27.11 Class Numeric: methods and subclasses 543

27.12 Class Numeric: divmod, modulo, and remainder 544

27.13 Class String: backslash sequences in substitution strings 593

27.14 Class String: unpack directives . 603

27.15 Class Time: strftime directives . 627

28.1 Class ERB: inline directives . 653

28.2 Class OptionParser: option definitions 691

xvPrepared exclusively for Jose Sierra

List of Figures

3.1 Variables hold object references. 39

4.1 How arrays are indexed . 42

8.1 Ruby exception hierarchy . 103

12.1 Roman numerals generation (with bugs) 145

12.2 Test::Unit assertions . 154

13.1 Sample irb session . 158

13.2 Comparing variable access costs using benchmark 163

16.1 Browse RDoc output for class counter 188

16.2 Browse RDoc output when source has comments 189

16.3 Using ri to read documentation . 190

16.4 Document for class Proc generated by RDoc/ri 191

16.5 Ruby source file documented with RDoc 196

16.6 C source file documented with RDoc 198

16.7 Sample program using RDoc::usage 201

16.8 Help generated by sample program . 202

17.1 MomLog package structure . 220

18.1 Sample CGI Form . 225

18.2 Erb processing a file with loops . 232

19.1 Drawing on a Tk Canvas . 248

21.1 Wrapping objects around C data types 272

21.2 Building an extension . 283

22.1 State transitions for boolean range . 327

24.1 A basic object, with its class and superclass 363

24.2 Adding a metaclass to Guitar . 364

24.3 Adding a virtual class to an object . 367

24.4 An included module and its proxy class 369

27.1 Standard exception hierarchy . 441

27.2 Method#arity in action . 523

xviPrepared exclusively for Jose Sierra

Foreword to the

First Edition

Man is driven to create; I know I really love to create things. And while I’m not good

at painting, drawing, or music, I can write software.

Shortly after I was introduced to computers, I became interested in programming lan-

guages. I believed that an ideal programming language must be attainable, and I wanted

to be the designer of it. Later, after gaining some experience, I realized that this kind of

ideal, all-purpose language might be more difficult than I had thought. But I was still

hoping to design a language that would work for most of the jobs I did everyday. That

was my dream as a student.

Years later I talked with colleagues about scripting languages, their power and possi-

bility. As an object-oriented fan for more than fifteen years, it seemed to me that OO

programming was very suitable for scripting too. I did some research on the ’net for a

while, but the candidates I found, Perl and Python, were not exactly what I was look-

ing for. I wanted a language more powerful than Perl and more object-oriented than

Python.

Then, I remembered my old dream and decided to design my own language. At first I

was just toying around with it at work. But gradually it grew to be a tool good enough

to replace Perl. I named it Ruby—after the precious red stone—and released it to the

public in 1995.

Since then a lot of people have become interested in Ruby. Believe it or not, Ruby is

actually more popular than Python in Japan right now. I hope that eventually it will be

just as well received all over the world.

I believe that the purpose of life is, at least in part, to be happy. Based on this belief,

Ruby is designed to make programming not only easy but also fun. It allows you to

concentrate on the creative side of programming, with less stress. If you don’t believe

me, read this book and try Ruby. I’m sure you’ll find out for yourself.

I’m very thankful to the people who have joined the Ruby community; they have helped

me a lot. I almost feel like Ruby is one of my children, but in fact, it is the result of the

xviiPrepared exclusively for Jose Sierra

FOREWORD xviii

combined efforts of many people. Without their help, Ruby could never have become

what it is.

I am especially thankful to the authors of this book, Dave Thomas and Andy Hunt.

Ruby has never been a well-documented language. Because I have always preferred

writing programs over writing documents, the Ruby manuals tend to be less thorough

than they should be. You had to read the source to know the exact behavior of the

language. But now Dave and Andy have done the work for you.

They became interested in a lesser-known language from the Far East. They researched

it, read thousands of lines of source code, wrote uncountable test scripts and e-mails,

clarified the ambiguous behavior of the language, found bugs (and even fixed some of

them), and finally compiled this great book. Ruby is certainly well documented now!

Their work on this book has not been trivial. While they were writing it, I was modi-

fying the language itself. But we worked together on the updates, and this book is as

accurate as possible.

It is my hope that both Ruby and this book will serve to make your programming easy

and enjoyable. Have fun!

Yukihiro Matsumoto, a.k.a. “Matz”

Japan, October 2000

Prepared exclusively for Jose Sierra

Foreword to the

Second Edition

No one in 1993 would have believed that an object-oriented language created by a

Japanese amateur language designer would end up being used worldwide and that the

language would become almost as popular as Perl. It was insane. I admit that. I didn’t

believe it either.

But it happened, far exceeding my expectations. It was caused—at least in part—by

the first edition of this book. The famous Pragmatic Programmers chose a dynamic

language that was virtually unknown to anyone outside of Japan and wrote a good

book about it. It was just like a miracle.

That’s now history. The future starts now. We have the second edition of Programming

Ruby, which is better than the first one. It’s no longer a miracle. This time, the grown-

up Ruby community helped to develop the book. I just needed to sit and watch the

community working together.

I really appreciate the Pragmatic Programmers, Dave Thomas and Andy Hunt, and

other people from the community who helped with this book (guys, sorry for not nam-

ing you personally). I love the friendliness of the Ruby community. It’s the best soft-

ware community I have ever seen. I also appreciate every programmer in the world who

uses Ruby.

The stone has started rolling. It will become a great mountain and fill the whole earth.

Yukihiro Matsumoto, a.k.a. “Matz”

Japan, August 2004

xixPrepared exclusively for Jose Sierra

Preface

This book is the second edition of the PickAxe, as Programming Ruby is known to

Rubyists. It is a tutorial and reference for the Ruby programming language. If you have

the first edition, you’ll find that this version is a significant rewrite.

When Andy and I wrote the first edition, we had to explain the background and appeal

of Ruby. Among other things, we wrote “When we discovered Ruby, we realized that

we’d found what we’d been looking for. More than any other language with which we

have worked, Ruby stays out of your way. You can concentrate on solving the problem

at hand, instead of struggling with compiler and language issues. That’s how it can help

you become a better programmer: by giving you the chance to spend your time creating

solutions for your users, not for the compiler.”

That belief is even stronger today. Four years later. Ruby is still our language of choice:

I use it for client applications, I use it to run our publishing business, and I use it for all

those little programming jobs I do just to get things running smoothly.

In those four years, Ruby has progressed nicely. A large number of methods have been

added to the built-in classes and modules, and the size of the standard library (those

libraries included in the Ruby distribution) has grown tremendously. The community

now has a standard documentation system (RDoc), and RubyGems may well become

the system of choice for packaging Ruby code for distribution.

This change has been wonderful, but it left the original PickAxe looking a tad dated.

This book remedies that: like its predecessor, it is written for the very latest version of

Ruby.

Ruby Versions
This version of the PickAxe documents Ruby 1.8 (and in particular covers changes

incorporated into Ruby 1.8.2).1

1. Ruby version numbering follows the same scheme used for many other open-source projects. Releases

with even subversion numbers—1.6, 1.8, and so on—are stable, public releases. These are the releases that

are prepackaged and made available on the various Ruby Web sites. Development versions of the software

xxPrepared exclusively for Jose Sierra

PREFACE xxi

Exactly what version of Ruby did I use to write this book? Let’s ask Ruby.

% ruby v

ruby 1.8.2 (20041230) [powerpcdarwin8.4.0]

This illustrates an important point. Most of the code samples you see in this book

are actually executed each time I format the book. When you see some output from a

program, that output was produced by running the code and inserting the results back

into the book.

Changes in the Book
Apart from the updates to support Ruby 1.8, you’ll find that the book has changed

somewhat from the original edition.

In the first half of the book, I’ve added six new chapters. Getting Started is a more

complete introduction to getting up-and-running with Ruby than we had in the first

book. The second new chapter, Unit Testing, reflects a growing emphasis on using

testing among Rubyists. Three new chapters cover tools for the Ruby programmer: irb

for experimenting with Ruby, RDoc for documenting your code, and RubyGems for

packing code for distribution. Finally, a new chapter covers duck typing, that slightly

slippery philosophy of programming that fits in so well with the ideas behind Ruby.

That’s not all that’s new. You’ll also find that the chapter on threads has been extended

significantly with a discussion on synchronization and that the chapter on writing Ruby

extensions has been largely rewritten. The chapter on Web programming now discusses

alternative templating systems and has a section on SOAP. The language reference

chapter has been significantly extended (particularly when dealing with the new rules

for blocks, procs, breaks, and returns).

The next quarter of the book, which documents the built-in classes and modules, has

more than 250 significant changes. Many of them are new methods, some are depre-

cated old methods, and some are methods with significant new behavior. You’ll also

find a number of new modules and classes documented.

Finally, the book includes a section on the standard library. The library has grown

extensively since Ruby 1.6 and is now so big that I couldn’t document it to any level

of detail without making the book thousands of pages long. At the same time, the

Ruby Documentation project has been busy adding RDoc documentation to the library

source itself. (I explain RDoc in Chapter 16 on page 187.) This means that you will

increasingly be able to get accurate, up-to-date documentation on a library module

have odd subversion numbers, such as 1.7 and 1.9. These you’ll have to download and build for yourself, as

described on page 3.

Prepared exclusively for Jose Sierra

PREFACE xxii

using the ri utility that comes with your Ruby distribution. As a consequence of all

this, I decided to change the style of the library documentation—it is now a road map

to available libraries, showing code samples and describing the overall use. I’ll leave

the lower-level details to RDoc.

Throughout the book I’ve tried to mark changes between 1.6 and 1.8 using a small

symbol in the margin,1.8 like the one here. One change I didn’t make: I decided to continue

to use the word we when talking about the authors in the body of the book. Many of the

words there come from the first edition, and I certainly don’t want to claim any credit

for Andy’s work on that book.

In all, this book is a significant overhaul of the first version. I hope you find it useful.

Resources
Visit the Ruby Web site http://www.rubylang.org to see what’s new. Chat with

other Ruby users on the newsgroup or mailing lists (see Appendix C).

And I’d certainly appreciate hearing from you. Comments, suggestions, errors in the

text, and problems in the examples are all welcome. E-mail us at

rubybook@pragmaticprogrammer.com

If you tell us about errors in the book, I’ll add them to the errata list at

http://www.pragmaticprogrammer.com/titles/ruby/errata.html

You’ll find links to the source code for almost all the book’s example code at

http://www.pragmaticprogrammer.com/titles/ruby

Acknowledgments
For the second edition of the PickAxe, I asked on the Ruby mailing list if anyone would

consider helping review the text. I was overwhelmed with the response: almost one

hundred people volunteered. To keep it manageable, I had to restrict the list on a first-

come basis. Even so, my wonderful reviewers produced more than 1.5Mb of review

text. These folks picked on everything, from misplaced commas to missing methods. I

couldn’t have gotten better help. So a big “thank you” to Richard Amacker, David A.

Black, Tony Bowden, James Britt, Warren Brown, Mike Clark, Ryan Davis (thanks for

the Japanese PDF!), Guy Decoux, Friedrich Dominicus, Thomas Enebo, Chad Fowler,

Hal Fulton, Ben Giddings, Johan Holmberg, Andrew Johnson, Rich Kilmer, Robert

Klemme, Yukihiro Matsumoto, Marcel Molina Jr., Roeland Moors, Michael Neumann,

Prepared exclusively for Jose Sierra

http://www.ruby-lang.org
http://www.pragmaticprogrammer.com/titles/ruby/errata.html
http://www.pragmaticprogrammer.com/titles/ruby

PREFACE xxiii

Paul Rogers, Sean Russell, Hugh Sasse, Gavin Sinclair, Tanaka Akira, Juliet Thomas,

Glenn Vanderburg, Koen Vervloesem, and Austin Ziegler.

Chad Fowler wrote the chapter on RubyGems. In fact, he wrote it twice. The first time,

he was on vacation in Europe. On his way home, his Powerbook was stolen, and he lost

all his work. So, when he got back, he cheerfully sat down and did it all again. I can’t

thank him enough.

Kim Wimpsett had the unenviable job of copyediting the book. She did a tremendous

job (and in record time), which was made even more amazing by both the volume of

jargon in the book and by my inability to string together more than two words without

breaking one or more rules of grammar. Ed Giddens did a great job creating the cover,

which nicely blends the old with the new. Thanks to you both!

Finally, I’m still deeply indebted to Yukihiro “Matz” Matsumoto, the creator of Ruby.

Throughout this period of growth and change, he has remained helpful, cheery, and

dedicated to polishing this gem of a language. The friendly and open spirit of the Ruby

community is a direct reflection of the person at its center.

Thank you all. Domo arigato gozaimasu.

Dave Thomas
THE PRAGMATIC PROGRAMMERS

http://www.pragmaticprogrammer.com

Prepared exclusively for Jose Sierra

http://www.pragmaticprogrammer.com

PREFACE xxiv

Notation Conventions
Throughout this book, we use the following typographic notations.

Literal code examples are shown using a typewriter-like font.

class SampleCode

def run

#...

end

end

Within the text, Fred#do_something is a reference to an instance method (in this case

do_something) of class Fred, Fred.new2 is a class method, and Fred::EOF is a class

constant. The decision to use a hash character to indicate instance methods was a tough

one: it isn’t valid Ruby syntax, but we thought that it was important to differentiate

between the instance and class methods of a particular class. When you see us write

File.read, you know we’re talking about the class method read. When instead we

write File#read, we’re referring to the instance method read.

The book contains many snippets of Ruby code. Where possible, we’ve tried to show

what happens when they run. In simple cases, we show the value of expressions on the

same line as the expression. For example:

a = 1

b = 2

a + b → 3

Here, you can see that the result of evaluating a + b is the value 3, shown to the right

of the arrow. Note that if you simply run this program, you wouldn’t see the value 3

output—you’d need to use a method such as puts to write it out.

At times, we’re also interested in the values of assignment statements, in which case

we’ll show them.

a = 1 → 1

b = 2 → 2

a + b → 3

If the program produces more complex output, we show it below the program code.

3.times { puts "Hello!" }

produces:

Hello!

Hello!

Hello!

2. In some other Ruby documentation, you may see class methods written as Fred::new. This is perfectly

valid Ruby syntax; we just happen to think that Fred.new is less distracting to read.

Prepared exclusively for Jose Sierra

PREFACE xxv

In some of the library documentation, we wanted to show where spaces appear in the

output. You’ll see these spaces as “ ” characters.

Command-line invocations are shown with literal text in a Roman font, and parameters

you supply are shown in an italic font. Optional elements are shown in large square

brackets.

ruby [flags ...] [progname] [arguments ...]

Prepared exclusively for Jose Sierra

Road Map

The main text of this book has four separate parts, each with its own personality, and

each addressing different aspects of the Ruby language.

In Part I, Facets of Ruby, you’ll find a Ruby tutorial. It starts with some notes on getting

Ruby running on your system followed by a short chapter on some of the terminology

and concepts that are unique to Ruby. This chapter also includes enough basic syntax

so that the other chapters will make sense. The rest of the tutorial is a top-down look

at the language. There we talk about classes and objects, types, expressions, and all

the other things that make up the language. We end with chapters on unit testing and

digging yourself out when trouble strikes.

One of the great things about Ruby is how well it integrates with its environment.

Part II, Ruby in Its Setting, investigates this. Here you’ll find practical information on

using Ruby: using the interpreter options, using irb, documenting your Ruby code, and

packaging your Ruby gems so that others can enjoy them. You’ll also find tutorials on

some common Ruby tasks: using Ruby with the Web, creating GUI applications using

Tk, and using Ruby in a Microsoft Windows environment (including wonderful things

such as native API calls, COM integration, and Windows Automation). And you’ll

discover just how easy it is to extend Ruby and to embed Ruby within your own code.

Part III, Ruby Crystallized, contains more advanced material. Here you’ll find all the

gory details about the language, the concept of duck typing, the metaclass model,

tainting, reflection, and marshaling. You could probably speed-read this the first time

through, but we think you’ll come back to it as you start to use Ruby in earnest.

The Ruby Library Reference is Part IV. It’s big. We document more than 950 methods

in more than 48 built-in classes and modules (up from 800 methods in 40 classes and

modules in the previous edition).1.8 On top of that, we now document the library modules

that are included in the standard Ruby distribution (98 of them).

So, how should you read this book? Well, depending on your level of expertise with

programming in general, and OO in particular, you may initially want to read just a few

portions of the book. Here are our recommendations.

If you’re a beginner, you may want to start with the tutorial material in Part I. Keep

the library reference close at hand as you start to write programs. Get familiar with

xxviPrepared exclusively for Jose Sierra

PREFACE xxvii

the basic classes such as Array, Hash, and String. As you become more comfortable

in the environment, you may want to investigate some of the more advanced topics in

Part III.

If you’re already comfortable with Perl, Python, Java, or Smalltalk, then we suggest

reading Chapter 1 on page 2, which talks about installing and running Ruby, followed

by the introduction in Chapter 2. From there, you may want to take the slower approach

and keep going with the tutorial that follows, or you can skip ahead to the gritty details

starting in Part III, followed by the library reference in Part IV.

Experts, gurus, and “I-don’t-need-no-stinking-tutorial” types can dive straight into the

language reference in Chapter 22, which begins on page 302, skim the library reference,

then use the book as a (rather attractive) coffee coaster.

Of course, nothing is wrong with just starting at the beginning and working your way

through page by page.

And don’t forget, if you run into a problem that you can’t figure out, help is available.

See Appendix C, beginning on page 758, for more information.

Prepared exclusively for Jose Sierra

Part I

Facets of Ruby

1Prepared exclusively for Jose Sierra

Chapter 1

Getting Started

Before we start talking about the Ruby language, it’d be useful if we helped you get

Ruby running on your computer. That way you can try sample code and experiment on

your own as you read along. We’ll also show you some different ways to run Ruby.

Installing Ruby
Quite often, you won’t even need to download Ruby. It now comes preinstalled on many

Linux distributions, and Mac OS X includes Ruby (although the version of Ruby pre-

installed on OS X is normally several minor releases behind the current Ruby version).

Try typing ruby -v at a command prompt—you may be pleasantly surprised.

If you don’t already have Ruby on your system, or if you’d like to upgrade to a newer

version, you can install it pretty simply. But first, you have a choice to make: go for a

binary distribution, or build Ruby from source?

Binary Distributions

A binary distribution of Ruby simply works out of the box. You install it, and it runs.

Binary distributions are prebuilt for a particular operating environment and are conve-

nient if you don’t want to mess around with building Ruby from source. The downside

of a binary distribution is that you have to take it as given: it may be a minor release

or two behind the leading edge, and it may not have the optional libraries that you

might want. If you can live with that, you’ll need to find a binary distribution for your

operating system and machine architecture.

For RPM-based Linux systems, you can search on http://www.rpmfind.net for a

suitable Ruby RPM. Enter ruby as a search term, and select from the listed version

numbers, architectures, and distributions. For example, ruby1.8.2.i386 is a binary

distribution of Ruby 1.8.2 for Intel x86 architectures.

2Prepared exclusively for Jose Sierra

http://www.rpmfind.net

INSTALLING RUBY 3

For Debian dpkg-based Linux systems, you can use the aptget system to find and

install Ruby. You can use the aptcache command to search for Ruby packages.

aptcache search ruby interpreter

libapachemodruby Embedding Ruby in the Apache web server

liberbruby1.6 Tiny eRuby for Ruby 1.6

liberbruby1.8 Tiny eRuby

ruby An interpreter of objectoriented scripting language Ruby

ruby1.7 Interpreter of objectoriented scripting language Ruby

ruby1.8 Interpreter of objectoriented scripting language Ruby

You can install any of these packages using aptget.

aptget install ruby1.8

Reading Package Lists... Done

Building Dependency Tree... Done

The following extra packages will be installed:

libruby1.8

Suggested packages:

ruby1.8examples

The following NEW packages will be installed:

libruby1.8 ruby1.8

: : :

Note that you have to have superuser access to install global packages on a Unix or

Linux box, which is why we show the prompt as a #.

If you’re running on Microsoft Windows, you’ll find the home page of the One-Click

Installer at http://rubyinstaller.rubyforge.org.

Building Ruby from Source

Because Ruby is an open-source project, you can download the source code to the inter-

preter and build it on your own system. Compared to using a binary distribution, this

gives you a lot more control over where things go, and you can keep your installation

totally up-to-date. The downside is that you’re taking on the responsibility of managing

the build and installation process. This isn’t onerous, but it can be scary if you’ve never

installed an open-source application from source.

The first thing to do is to download the source. This comes in three flavors, all from

http://www.rubylang.org.

1. The stable release in tarball format. A tarball is an archive file, much like a zip

file. Click the Download Ruby link, and then click the stable release link.

2. The stable snapshot. This is a tarball, created nightly, of the latest source code in

Ruby’s stable development branch. The stable branch is intended for production

code and in general will be reliable. However, because the snapshot is taken daily,

new features may not have received thorough testing yet—the stable tarball in

item (1) will be generally more reliable.

Prepared exclusively for Jose Sierra

http://rubyinstaller.rubyforge.org
http://www.ruby-lang.org

RUNNING RUBY 4

3. The nightly development snapshot. This is again a tarball, created nightly. Unlike

the stable code in (1) and (2), this code is leading edge, as it is taken from the head

of the development branch. Expect things to be broken in here.

If you plan on downloading either of the nightly snapshots regularly, it may be easier

to subscribe to the source repository directly. The sidebar on the next page gives more

details.

Once you’ve loaded a tarball, you’ll have to expand the archive into its constituent

files. Use the tar command for this (if you don’t have tar installed, you can try using

another archiving utility, as many now support tar-format files).

% tar xzf snapshot.tar.gz

ruby/

ruby/bcc32/

ruby/bcc32/Makefile.sub

ruby/bcc32/README.bcc32

: : :

This installs the Ruby source tree in the subdirectory ruby/. In that directory you’ll find

a file named README, which explains the installation procedure in detail. To summa-

rize, you build Ruby on POSIX-based systems using the same four commands you use

for most other open-source applications: ./configure, make, make test, and make

install. You can build Ruby under other environments (including Windows) by using

a POSIX emulation environment such as cygwin1 or by using native compilers—see

README.win32 in the distribution’s win32 subdirectory as a starting point.

Source Code from This Book

We’ve made the source code from this book available for download from our web site

at http://pragmaticprogrammer.com/titles/ruby/code . Sometimes, the listings

of code in the book correspond to a complete source file. Other times, the book contains

just a part of the source in a file—the program file may contain additional scaffolding

to make the code run.

Running Ruby
Now that Ruby is installed, you’d probably like to run some programs. Unlike compiled

languages, you have two ways to run Ruby—you can type in code interactively, or you

can create program files and run them. Typing in code interactively is a great way to

experiment with the language, but for code that’s more complex, or that you will want

to run more than once, you’ll need to create program files and run them.

1. See http://www.cygwin.com for details.

Prepared exclusively for Jose Sierra

http://pragmaticprogrammer.com/titles/ruby/code
http://www.cygwin.com

RUNNING RUBY 5

The Very Latest Ruby

For those who just have to be on the very latest, hot-off-the-press
and untested cutting edge (as we were while writing this book), you
can get development versions straight from the developers’ working
repository.

The Ruby developers use CVS (Concurrent Version System, freely
available from https://www.cvshome.org) as their revision control
system. You can check files out as an anonymous user from their
archive by executing the following CVS commands:

% cvs z4 d :pserver:anonymous@cvs.rubylang.org:/src←֓
login

(Logging in to anonymous@cvs.rubylang.org)

CVS password: ENTER

% cvs z4 d :pserver:anonymous@cvs.rubylang.org:/src←֓
checkout ruby

The complete source code tree, just as the developers last left it, will
now be copied to a ruby subdirectory on your machine.

This command will check out the head of the development tree. If you
want the Ruby 1.8 branch, add r ruby_1_8 after the word checkout

in the second command.

If you use the CVSup mirroring utility (conveniently available from
http://www.cvsup.org), you can find Ruby supfiles on the rubylang

site at http://cvs.rubylang.org/cvsup/.

Interactive Ruby

One way to run Ruby interactively is simply to type ruby at the shell prompt. Here

we typed in the single puts expression and an end-of-file character (which is Ctrl+D

on our system). This process works, but it’s painful if you make a typo, and you can’t

really see what’s going on as you type.

% ruby

puts "Hello, world!"

^D

Hello, world!

For most folks, irb—Interactive Ruby—is the tool of choice for executing Ruby inter-

actively. irb is a Ruby Shell, complete with command-line history, line-editing capabil-

ities, and job control. (In fact, it has its own chapter beginning on page 174.) You run

irb from the command line. Once it starts, just type in Ruby code. It will show you the

value of each expression as it evaluates it.

Prepared exclusively for Jose Sierra

https://www.cvshome.org
http://www.cvsup.org
http://cvs.ruby-lang.org/cvsup/

RUNNING RUBY 6

% irb

irb(main):001:0> def sum(n1, n2)

irb(main):002:1> n1 + n2

irb(main):003:1> end

=> nil

irb(main):004:0> sum(3, 4)

=> 7

irb(main):005:0> sum("cat", "dog")

=> "catdog"

We recommend that you get familiar with irb so you can try some of our examples

interactively.

There’s a trick when you want to use irb to try our example code that’s already in a file.

Say, for example, you wanted to try the Fibonacci module listed on page 196. You can

do this from within irb by loading in the program file and then calling the methods it

contains. In this case, the program file is in code/rdoc/fib_example.rb.

% irb

irb(main):001:0> load "code/rdoc/fib_example.rb"

=> true

irb(main):002:0> Fibonacci.upto(20)

=> [1, 1, 2, 3, 5, 8, 13]

Ruby Programs

You can run a Ruby program from a file as you would any other shell script, Perl

program, or Python program. Simply run the Ruby interpreter, giving it the script name

as an argument.

% ruby myprog.rb

You can also use the Unix “shebang” notation as the first line of the program file.2

#!/usr/local/bin/ruby w

puts "Hello, world!"

If you make this source file executable (using, for instance, chmod +x myprog.rb),

Unix lets you run the file as a program.

% ./myprog.rb

Hello, world!

You can do something similar under Microsoft Windows using file associations, and

you can run Ruby GUI applications by double-clicking their names in Explorer.

2. If your system supports it, you can avoid hard-coding the path to Ruby in the “shebang” line by using

#!/usr/bin/env ruby, which will search your path for ruby and then execute it.

Prepared exclusively for Jose Sierra

RUBY DOCUMENTATION: RDOC AND RI 7

Ruby Documentation: RDoc and ri
As the volume of the Ruby libraries has grown, it has become impossible to docu-

ment them all in one book; the standard library that comes with Ruby now contains

more than 9,000 methods. Fortunately, an alternative to paper documentation exists for

these methods (and classes and modules). Many are now documented internally using

a system called RDoc.

If a source file is documented using RDoc, its documentation can be extracted and

converted into HTML and ri formats.

Several sites on the Web contain a complete set of the RDoc documentation for Ruby,

but http://www.rubydoc.org is probably the best known. Browse on over, and

you should be able to find at least some form of documentation for any Ruby library.

They’re adding new documentation all the time.

The ri tool is a local, command-line viewer for this same documentation. Most Ruby

distributions now also install the resources used by the ri program.

To find the documentation for a class, type ri ClassName. For example, the following

lists the summary information for the GC class. (For a list of classes with ri documenta-

tion, type ri -c.)

% ri GC

 Class: GC

The GC module provides an interface to Ruby's mark and sweep

garbage collection mechanism. Some of the underlying methods are

also available via the ObjectSpace module.

Class methods:

disable, enable, start

Instance methods:

garbage_collect

For information on a particular method, give its name as a parameter.

% ri enable

 GC::enable

GC.enable => true or false

Enables garbage collection, returning true if garbage collection

was previously disabled.

GC.disable #=> false

GC.enable #=> true

GC.enable #=> false

Prepared exclusively for Jose Sierra

http://www.ruby-doc.org

RUBY DOCUMENTATION: RDOC AND RI 8

If the method you pass to ri occurs in more than one class or module, ri will list all of

the alternatives. Reissue the command, prefixing the method name with the name of

the class and a dot.

% ri start

More than one method matched your request. You can refine

your search by asking for information on one of:

Date#new_start, Date#start, GC::start, Logger::Application#start,

Thread::start

% ri GC.start

 GC::start

GC.start => nil

gc.garbage_collect => nil

ObjectSpace.garbage_collect => nil

Initiates garbage collection, unless manually disabled.

For general help on using ri, type “ri --help”. In particular you might want to experi-

ment with the “--format” option, which tells ri how to render decorated text (such as

section headings). If your terminal program supports ANSI escape sequences, using

“--format ansi” will generate a nice, colorful display. Once you find a set of options

you like, you can set them into the RI environment variable. Using my shell (zsh), this

would be done using:

% export RI="format ansi width 70"

If a class or module isn’t yet documented in RDoc format, ask the friendly folks over

at suggestions@rubydoc.org to consider adding it.

All this command-line hacking may seem a tad off-putting if you’re not a regular visitor

to the shell prompt. But, in reality, it isn’t that difficult, and the power you get from

being able to string together commands this way is often surprising. Stick with it, and

you’ll be well on your way to mastering both Ruby and your computer.

Prepared exclusively for Jose Sierra

Chapter 2

Ruby.new

When we originally designed this book, we had a grand plan (we were younger then).

We wanted to document the language from the top down, starting with classes and

objects and ending with the nitty-gritty syntax details. It seemed like a good idea at the

time. After all, most everything in Ruby is an object, so it made sense to talk about

objects first.

Or so we thought.

Unfortunately, it turns out to be difficult to describe a language that way. If you haven’t

covered strings, if statements, assignments, and other details, it’s difficult to write

examples of classes. Throughout our top-down description, we kept coming across

low-level details we needed to cover so that the example code would make sense.

So, we came up with another grand plan (they don’t call us pragmatic for nothing).

We’d still describe Ruby starting at the top. But before we did that, we’d add a short

chapter that described all the common language features used in the examples along

with the special vocabulary used in Ruby, a kind of minitutorial to bootstrap us into the

rest of the book.

Ruby Is an Object-Oriented Language
Let’s say it again. Ruby is a genuine object-oriented language. Everything you manip-

ulate is an object, and the results of those manipulations are themselves objects. How-

ever, many languages make the same claim, and their users often have a different inter-

pretation of what object-oriented means and a different terminology for the concepts

they employ.

So, before we get too far into the details, let’s briefly look at the terms and notation that

we’ll be using.

9Prepared exclusively for Jose Sierra

RUBY IS AN OBJECT-ORIENTED LANGUAGE 10

When you write object-oriented code, you’re normally looking to model concepts from

the real world in your code. Typically during this modeling process you’ll discover

categories of things that need to be represented in code. In a jukebox, the concept of

a “song” could be such a category. In Ruby, you’d define a class to represent each of

these entities. A class is a combination of state (for example, the name of the song) and

methods that use that state (perhaps a method to play the song).

Once you have these classes, you’ll typically want to create a number of instances

of each. For the jukebox system containing a class called Song, you’d have separate

instances for popular hits such as “Ruby Tuesday,” “Enveloped in Python,” “String

of Pearls,” “Small Talk,” and so on. The word object is used interchangeably with

class instance (and being lazy typists, we’ll probably be using the word object more

frequently).

In Ruby, these objects are created by calling a constructor, a special method associated

with a class. The standard constructor is called new.

song1 = Song.new("Ruby Tuesday")

song2 = Song.new("Enveloped in Python")

and so on

These instances are both derived from the same class, but they have unique charac-

teristics. First, every object has a unique object identifier (abbreviated as object ID).

Second, you can define instance variables, variables with values that are unique to

each instance. These instance variables hold an object’s state. Each of our songs, for

example, will probably have an instance variable that holds the song title.

Within each class, you can define instance methods. Each method is a chunk of func-

tionality that may be called from within the class and (depending on accessibility con-

straints) from outside the class. These instance methods in turn have access to the

object’s instance variables and hence to the object’s state.

Methods are invoked by sending a message to an object. The message contains the

method’s name, along with any parameters the method may need.1 When an object

receives a message, it looks into its own class for a corresponding method. If found,

that method is executed. If the method isn’t found. . . well, we’ll get to that later.

This business of methods and messages may sound complicated, but in practice it is

very natural. Let’s look at some method calls.

"gin joint".length → 9

"Rick".index("c") → 2

1942.abs → 1942

sam.play(song) → "duh dum, da dum de dum ..."

1. This idea of expressing method calls in the form of messages comes from Smalltalk.

Prepared exclusively for Jose Sierra

SOME BASIC RUBY 11

(Remember, in the code examples in this book, the arrows show the value of an expres-

sion. The result of executing 1942.abs is 1942. If you just typed this code into a

file and ran it using Ruby, you’d see no output, because we didn’t tell Ruby to display

anything. If you’re using irb, you’d see the values we show in the book.)

Here, the thing before the period is called the receiver, and the name after the period is

the method to be invoked. The first example asks a string for its length, and the second

asks a different string to find the index of the letter c. The third line has a number

calculate its absolute value. Finally, we ask Sam to play us a song.

It’s worth noting here a major difference between Ruby and most other languages. In

(say) Java, you’d find the absolute value of some number by calling a separate function

and passing in that number. You could write

number = Math.abs(number) // Java code

In Ruby, the ability to determine an absolute value is built into numbers—they take

care of the details internally. You simply send the message abs to a number object and

let it do the work.

number = number.abs

The same applies to all Ruby objects: in C you’d write strlen(name), but in Ruby it’s

name.length, and so on. This is part of what we mean when we say that Ruby is a

genuine object-oriented language.

Some Basic Ruby
Not many people like to read heaps of boring syntax rules when they’re picking up a

new language, so we’re going to cheat. In this section we’ll hit some of the highlights—

the stuff you’ll just have to know if you’re going to write Ruby programs. Later, in

Chapter 22, which begins on page 302, we’ll go into all the gory details.

Let’s start with a simple Ruby program. We’ll write a method that returns a cheery,

personalized greeting. We’ll then invoke that method a couple of times.

def say_goodnight(name)

result = "Good night, " + name

return result

end

Time for bed...

puts say_goodnight("JohnBoy")

puts say_goodnight("MaryEllen")

As the example shows, Ruby syntax is clean. You don’t need semicolons at the ends

of statements as long as you put each statement on a separate line. Ruby comments

start with a # character and run to the end of the line. Code layout is pretty much up to

Prepared exclusively for Jose Sierra

SOME BASIC RUBY 12

you; indentation is not significant (but using two-character indentation will make you

friends in the community if you plan on distributing your code).

Methods are defined with the keyword def, followed by the method name (in this

case, say_goodnight) and the method’s parameters between parentheses. (In fact, the

parentheses are optional, but we like to use them.) Ruby doesn’t use braces to delimit

the bodies of compound statements and definitions. Instead, you simply finish the body

with the keyword end. Our method’s body is pretty simple. The first line concatenates

the literal string "Good night, " and the parameter name and assigns the result to the

local variable result. The next line returns that result to the caller. Note that we didn’t

have to declare the variable result; it sprang into existence when we assigned to it.

Having defined the method, we call it twice. In both cases we pass the result to the

method puts, which simply outputs its argument followed by a newline (moving on to

the next line of output).

Good night, JohnBoy

Good night, MaryEllen

The line puts say_goodnight("JohnBoy") contains two method calls, one to the

method say_goodnight and the other to the method puts. Why does one call have its

arguments in parentheses while the other doesn’t? In this case it’s purely a matter of

taste. The following lines are both equivalent.

puts say_goodnight("JohnBoy")

puts(say_goodnight("JohnBoy"))

However, life isn’t always that simple, and precedence rules can make it difficult to

know which argument goes with which method invocation, so we recommend using

parentheses in all but the simplest cases.

This example also shows some Ruby string objects. You have many ways to create

a string object, but probably the most common is to use string literals: sequences of

characters between single or double quotation marks. The difference between the two

forms is the amount of processing Ruby does on the string while constructing the literal.

In the single-quoted case, Ruby does very little. With a few exceptions, what you type

into the string literal becomes the string’s value.

In the double-quoted case, Ruby does more work. First, it looks for substitutions—

sequences that start with a backslash character—and replaces them with some binary

value. The most common of these is \n, which is replaced with a newline character.

When a string containing a newline is output, the \n forces a line break.

puts "And good night,\nGrandma"

produces:

And good night,

Grandma

Prepared exclusively for Jose Sierra

SOME BASIC RUBY 13

The second thing that Ruby does with double-quoted strings is expression interpolation.

Within the string, the sequence #{expression} is replaced by the value of expression.

We could use this to rewrite our previous method.

def say_goodnight(name)

result = "Good night, #{name}"

return result

end

puts say_goodnight('Pa')

produces:

Good night, Pa

When Ruby constructs this string object, it looks at the current value of name and

substitutes it into the string. Arbitrarily complex expressions are allowed in the #{...}

construct. Here we invoke the capitalize method, defined for all strings, to output

our parameter with a leading uppercase letter.

def say_goodnight(name)

result = "Good night, #{name.capitalize}"

return result

end

puts say_goodnight('uncle')

produces:

Good night, Uncle

As a shortcut, you don’t need to supply the braces when the expression is simply a

global, instance, or class variable (which we’ll talk about shortly).

$greeting = "Hello" # $greeting is a global variable

@name = "Prudence" # @name is an instance variable

puts "#$greeting, #@name"

produces:

Hello, Prudence

For more information on strings, as well as on the other Ruby standard types, see Chap-

ter 5, which begins on page 55.

Finally, we could simplify this method some more. The value returned by a Ruby

method is the value of the last expression evaluated, so we can get rid of the temporary

variable and the return statement altogether.

def say_goodnight(name)

"Good night, #{name}"

end

puts say_goodnight('Ma')

produces:

Good night, Ma

Prepared exclusively for Jose Sierra

ARRAYS AND HASHES 14

We promised that this section would be brief. We’ve got just one more topic to cover:

Ruby names. For brevity, we’ll be using some terms (such as class variable) that we

aren’t going to define here. However, by talking about the rules now, you’ll be ahead of

the game when we actually come to discuss class variables and the like later.

Ruby uses a convention to help it distinguish the usage of a name: the first characters of

a name indicate how the name is used. Local variables, method parameters, and method

names should all start with a lowercase letter or with an underscore. Global variables

are prefixed with a dollar sign ($), and instance variables begin with an “at” sign (@).

Class variables start with two “at” signs (@@). Finally, class names, module names,

and constants must start with an uppercase letter. Samples of different names are given

in Table 2.1 on the next page.

Following this initial character, a name can be any combination of letters, digits, and

underscores (with the proviso that the character following an @ sign may not be a

digit). However, by convention multiword instance variables are written with under-

scores between the words, and multiword class names are written in MixedCase (with

each word capitalized). Method names may end with the characters ?, !, and =.

Arrays and Hashes
Ruby’s arrays and hashes are indexed collections. Both store collections of objects,

accessible using a key. With arrays, the key is an integer, whereas hashes support any

object as a key. Both arrays and hashes grow as needed to hold new elements. It’s more

efficient to access array elements, but hashes provide more flexibility. Any particular

array or hash can hold objects of differing types; you can have an array containing an

integer, a string, and a floating-point number, as we’ll see in a minute.

You can create and initialize a new array object using an array literal—a set of elements

between square brackets. Given an array object, you can access individual elements by

supplying an index between square brackets, as the next example shows. Note that

Ruby array indices start at zero.

a = [1, 'cat', 3.14] # array with three elements

access the first element

a[0] → 1

set the third element

a[2] = nil

dump out the array

a → [1, "cat", nil]

You may have noticed that we used the special value nil in this example. In many

languages, the concept of nil (or null) means “no object.” In Ruby, that’s not the case;

nil is an object, just like any other, that happens to represent nothing. Anyway, back

to arrays and hashes.

Prepared exclusively for Jose Sierra

ARRAYS AND HASHES 15

Table 2.1. Example variable and class names

Variables Constants and

Local Global Instance Class Class Names

name $debug @name @@total PI

fish_and_chips $CUSTOMER @point_1 @@symtab FeetPerMile

x_axis $_ @X @@N String

thx1138 $plan9 @_ @@x_pos MyClass

_26 $Global @plan9 @@SINGLE JazzSong

Sometimes creating arrays of words can be a pain, what with all the quotes and com-

mas. Fortunately, Ruby has a shortcut: %w does just what we want.

a = ['ant', 'bee', 'cat', 'dog', 'elk']

a[0] → "ant"

a[3] → "dog"

this is the same:

a = %w{ ant bee cat dog elk }

a[0] → "ant"

a[3] → "dog"

Ruby hashes are similar to arrays. A hash literal uses braces rather than square brackets.

The literal must supply two objects for every entry: one for the key, the other for the

value.

For example, you may want to map musical instruments to their orchestral sections.

You could do this with a hash.

inst_section = {

'cello' => 'string',

'clarinet' => 'woodwind',

'drum' => 'percussion',

'oboe' => 'woodwind',

'trumpet' => 'brass',

'violin' => 'string'

}

The thing to the left of the => is the key, and that on the right is the corresponding value.

Keys in a particular hash must be unique—you can’t have two entries for “drum.” The

keys and values in a hash can be arbitrary objects—you can have hashes where the

values are arrays, other hashes, and so on.

Hashes are indexed using the same square bracket notation as arrays.

inst_section['oboe'] → "woodwind"

inst_section['cello'] → "string"

inst_section['bassoon'] → nil

Prepared exclusively for Jose Sierra

CONTROL STRUCTURES 16

As the last example shows, a hash by default returns nil when indexed by a key it

doesn’t contain. Normally this is convenient, as nil means false when used in condi-

tional expressions. Sometimes you’ll want to change this default. For example, if you’re

using a hash to count the number of times each key occurs, it’s convenient to have the

default value be zero. This is easily done by specifying a default value when you create

a new, empty hash.

histogram = Hash.new(0)

histogram['key1'] → 0

histogram['key1'] = histogram['key1'] + 1

histogram['key1'] → 1

Array and hash objects have lots of useful methods: see the discussion starting on

page 40, and the reference sections starting on pages 406 and 471, for details.

Control Structures
Ruby has all the usual control structures, such as if statements and while loops. Java,

C, and Perl programmers may well get caught by the lack of braces around the bodies

of these statements. Instead, Ruby uses the keyword end to signify the end of a body.

if count > 10

puts "Try again"

elsif tries == 3

puts "You lose"

else

puts "Enter a number"

end

Similarly, while statements are terminated with end.

while weight < 100 and num_pallets <= 30

pallet = next_pallet()

weight += pallet.weight

num_pallets += 1

end

Most statements in Ruby return a value, which means you can use them as conditions.

For example, the method gets returns the next line from the standard input stream or

nil when end of file is reached. Because Ruby treats nil as a false value in conditions,

you could write the following to process the lines in a file.

while line = gets

puts line.downcase

end

Here, the assignment statement sets the variable line to either the next line of text or

nil, and then the while statement tests the value of the assignment, terminating the

loop when it is nil.

Prepared exclusively for Jose Sierra

REGULAR EXPRESSIONS 17

Ruby statement modifiers are a useful shortcut if the body of an if or while statement

is just a single expression. Simply write the expression, followed by if or while and

the condition. For example, here’s a simple if statement.

if radiation > 3000

puts "Danger, Will Robinson"

end

Here it is again, rewritten using a statement modifier.

puts "Danger, Will Robinson" if radiation > 3000

Similarly, a while loop such as

square = 2

while square < 1000

square = square*square

end

becomes the more concise

square = 2

square = square*square while square < 1000

These statement modifiers should seem familiar to Perl programmers.

Regular Expressions
Most of Ruby’s built-in types will be familiar to all programmers. A majority of lan-

guages have strings, integers, floats, arrays, and so on. However, regular expression

support is typically built into only scripting languages, such as Ruby, Perl, and awk.

This is a shame: regular expressions, although cryptic, are a powerful tool for working

with text. And having them built in, rather than tacked on through a library interface,

makes a big difference.

Entire books have been written about regular expressions (for example, Mastering Reg-

ular Expressions [Fri02]), so we won’t try to cover everything in this short section.

Instead, we’ll look at just a few examples of regular expressions in action. You’ll find

full coverage of regular expressions starting on page 64.

A regular expression is simply a way of specifying a pattern of characters to be matched

in a string. In Ruby, you typically create a regular expression by writing a pattern

between slash characters (/pattern/). And, Ruby being Ruby, regular expressions are

objects and can be manipulated as such.

For example, you could write a pattern that matches a string containing the text Perl or

the text Python using the following regular expression.

/Perl|Python/

Prepared exclusively for Jose Sierra

REGULAR EXPRESSIONS 18

The forward slashes delimit the pattern, which consists of the two things we’re match-

ing, separated by a pipe character (|). This pipe character means “either the thing on

the right or the thing on the left,” in this case either Perl or Python. You can use paren-

theses within patterns, just as you can in arithmetic expressions, so you could also have

written this pattern as

/P(erl|ython)/

You can also specify repetition within patterns. /ab+c/ matches a string containing an

a followed by one or more b’s, followed by a c. Change the plus to an asterisk, and

/ab*c/ creates a regular expression that matches one a, zero or more b’s, and one c.

You can also match one of a group of characters within a pattern. Some common exam-

ples are character classes such as \s, which matches a whitespace character (space, tab,

newline, and so on); \d, which matches any digit; and \w, which matches any character

that may appear in a typical word. A dot (.) matches (almost) any character. A table of

these character classes appears on page 68.

We can put all this together to produce some useful regular expressions.

/\d\d:\d\d:\d\d/ # a time such as 12:34:56

/Perl.*Python/ # Perl, zero or more other chars, then Python

/Perl Python/ # Perl, a space, and Python

/Perl *Python/ # Perl, zero or more spaces, and Python

/Perl +Python/ # Perl, one or more spaces, and Python

/Perl\s+Python/ # Perl, whitespace characters, then Python

/Ruby (Perl|Python)/ # Ruby, a space, and either Perl or Python

Once you have created a pattern, it seems a shame not to use it. The match operator

=~ can be used to match a string against a regular expression. If the pattern is found in

the string, =~ returns its starting position, otherwise it returns nil. This means you can

use regular expressions as the condition in if and while statements. For example, the

following code fragment writes a message if a string contains the text Perl or Python.

if line =~ /Perl|Python/

puts "Scripting language mentioned: #{line}"

end

The part of a string matched by a regular expression can be replaced with different text

using one of Ruby’s substitution methods.

line.sub(/Perl/, 'Ruby') # replace first 'Perl' with 'Ruby'

line.gsub(/Python/, 'Ruby') # replace every 'Python' with 'Ruby'

You can replace every occurrence of Perl and Python with Ruby using

line.gsub(/Perl|Python/, 'Ruby')

We’ll have a lot more to say about regular expressions as we go through the book.

Prepared exclusively for Jose Sierra

BLOCKS AND ITERATORS 19

Blocks and Iterators
This section briefly describes one of Ruby’s particular strengths. We’re about to look

at code blocks: chunks of code you can associate with method invocations, almost as

if they were parameters. This is an incredibly powerful feature. One of our reviewers

commented at this point: “This is pretty interesting and important, and so if you weren’t

paying attention before, you should probably start now.” We’d have to agree.

You can use code blocks to implement callbacks (but they’re simpler than Java’s anony-

mous inner classes), to pass around chunks of code (but they’re more flexible than C’s

function pointers), and to implement iterators.

Code blocks are just chunks of code between braces or between do. . .end.

{ puts "Hello" } # this is a block

do ###

club.enroll(person) # and so is this

person.socialize #

end ###

Why are there two kinds of delimiter? It’s partly because sometimes one feels more

natural to write than another. It’s partly too because they have different precedences:

the braces bind more tightly than the do/end pairs. In this book, we try to follow what

is becoming a Ruby standard and use braces for single-line blocks and do/end for

multiline blocks.

Once you’ve created a block, you can associate it with a call to a method. You do this

by putting the start of the block at the end of the source line containing the method call.

For example, in the following code, the block containing puts "Hi" is associated with

the call to the method greet.

greet { puts "Hi" }

If the method has parameters, they appear before the block.

verbose_greet("Dave", "loyal customer") { puts "Hi" }

A method can then invoke an associated block one or more times using the Ruby yield

statement. You can think of yield as being something like a method call that calls out

to the block associated with the method containing the yield.

The following example shows this in action. We define a method that calls yield twice.

We then call this method, putting a block on the same line, after the call (and after any

arguments to the method).2

2. Some people like to think of the association of a block with a method as a kind of parameter passing.

This works on one level, but it isn’t really the whole story. You may be better off thinking of the block and

the method as coroutines, which transfer control back and forth between themselves.

Prepared exclusively for Jose Sierra

BLOCKS AND ITERATORS 20

def call_block

puts "Start of method"

yield

yield

puts "End of method"

end

call_block { puts "In the block" }

produces:

Start of method

In the block

In the block

End of method

See how the code in the block (puts "In the block") is executed twice, once for

each call to yield.

You can provide parameters to the call to yield: these will be passed to the block.

Within the block, you list the names of the arguments to receive these parameters

between vertical bars (|).

def call_block

yield("hello", 99)

end

call_block {|str, num| ... }

Code blocks are used throughout the Ruby library to implement iterators: methods that

return successive elements from some kind of collection, such as an array.

animals = %w(ant bee cat dog elk) # create an array

animals.each {|animal| puts animal } # iterate over the contents

produces:

ant

bee

cat

dog

elk

Let’s look at how we could implement the Array class’s each iterator that we used

in the previous example. The each iterator loops through every element in the array,

calling yield for each one. In pseudo-code, this may look like

within class Array...

def each

for each element # < not valid Ruby

yield(element)

end

end

Prepared exclusively for Jose Sierra

READING AND ’RITING 21

Many of the looping constructs that are built into languages such as C and Java are

simply method calls in Ruby, with the methods invoking the associated block zero or

more times.

['cat', 'dog', 'horse'].each {|name| print name, " " }

5.times { print "*" }

3.upto(6) {|i| print i }

('a'..'e').each {|char| print char }

produces:

cat dog horse *****3456abcde

Here we ask the object 5 to call a block five times and then ask the object 3 to call a

block, passing in successive values until it reaches 6. Finally, the range of characters

from a to e invokes a block using the method each.

Reading and ’Riting
Ruby comes with a comprehensive I/O library. However, in most of the examples in this

book we’ll stick to a few simple methods. We’ve already come across two methods that

do output. puts writes its arguments, adding a newline after each. print also writes

its arguments, but with no newline. Both can be used to write to any I/O object, but by

default they write to standard output.

Another output method we use a lot is printf, which prints its arguments under the

control of a format string (just like printf in C or Perl).

printf("Number: %5.2f,\nString: %s\n", 1.23, "hello")

produces:

Number: 1.23,

String: hello

In this example, the format string "Number: %5.2f,\nString: %s\n" tells printf

to substitute in a floating-point number (allowing five characters in total, with two after

the decimal point) and a string. Notice the newlines (\n) embedded in the string; each

moves the output onto the next line.

You have many ways to read input into your program. Probably the most traditional is

to use the routine gets, which returns the next line from your program’s standard input

stream.

line = gets

print line

Prepared exclusively for Jose Sierra

ONWARD AND UPWARD 22

Ruby Escapes Its Past

In the old days Ruby borrowed a lot from the Perl language. One of
these features is a certain “magic” when it comes to global variables,
and probably no global is more magical than $_. For example, the
gets method has a side effect: as well as returning the line just read,
it also stores it into $_. If you call print with no argument, it prints the
contents of $_. If you write an if or while statement with just a regular
expression as the condition, that expression is matched against $_.
As a result of all this magic, you could write the following program to
look for all lines in a file containing the text Ruby.

while gets

if /Ruby/

print

end

end

However, this style of Ruby programming is rapidly falling out of fash-
ion with purists. As one of these purists happens to be Matz, you’ll
now find that Ruby issues warnings for many of these special uses:
expect to see these features go away in the future.

That doesn’t mean you have to write more verbose programs. The
“Ruby way” to write this would be to use an iterator and the predefined
object ARGF, which represents the program’s input files.

ARGF.each {|line| print line if line =~ /Ruby/ }

You could write it even more concisely.

print ARGF.grep(/Ruby/)

In general, there’s a move away from some of the Perlisms in the
Ruby community. If you run your programs with the w flag to enable
warnings (you do run with warnings enabled, don’t you?), you’ll find
the Ruby interpreter catches most of them.

Onward and Upward
That’s it. We’ve finished our lightning-fast tour of some of the basic features of Ruby.

We’ve had a look at objects, methods, strings, containers, and regular expressions, seen

some simple control structures, and looked at some rather nifty iterators. We hope this

chapter has given you enough ammunition to be able to attack the rest of this book.

Time to move on, and up—up to a higher level. Next, we’ll be looking at classes and

objects, things that are at the same time both the highest-level constructs in Ruby and

the essential underpinnings of the entire language.

Prepared exclusively for Jose Sierra

Chapter 3

Classes, Objects, and

Variables

From the examples we’ve shown so far, you may be wondering about our earlier asser-

tion that Ruby is an object-oriented language. Well, this chapter is where we justify

that claim. We’re going to be looking at how you create classes and objects in Ruby

and at some of the ways in which Ruby is more powerful than most object-oriented lan-

guages. Along the way, we’ll be implementing part of our next billion-dollar product,

the Internet Enabled Jazz and Bluegrass jukebox.

After months of work, our highly paid Research and Development folks have deter-

mined that our jukebox needs songs. So it seems like a good idea to start by setting

up a Ruby class that represents things that are songs. We know that a real song has a

name, an artist, and a duration, so we’ll want to make sure that the song objects in our

program do, too.

We’ll start by creating the basic class Song,1 which contains just a single method,

initialize.

class Song

def initialize(name, artist, duration)

@name = name

@artist = artist

@duration = duration

end

end

initialize is a special method in Ruby programs. When you call Song.new to create

a new Song object, Ruby allocates some memory to hold an uninitialized object and

1. As we mentioned on page 14, class names start with an uppercase letter, and method names normally

start with a lowercase letter.

23Prepared exclusively for Jose Sierra

24

then calls that object’s initialize method, passing in any parameters that were passed

to new. This gives you a chance to write code that sets up your object’s state.

For class Song, the initialize method takes three parameters. These parameters act

just like local variables within the method, so they follow the local variable naming

convention of starting with a lowercase letter.

Each object represents its own song, so we need each of our Song objects to carry

around its own song name, artist, and duration. This means we need to store these

values as instance variables within the object. Instance variables are accessible to all

the methods in an object, and each object has its own copy of its instance variables.

In Ruby, an instance variable is simply a name preceded by an “at” sign (@). In our

example, the parameter name is assigned to the instance variable @name, artist is

assigned to @artist, and duration (the length of the song in seconds) is assigned to

@duration.

Let’s test our spiffy new class.

song = Song.new("Bicyclops", "Fleck", 260)

song.inspect → #<Song:0x1c8ac8 @duration=260, @artist="Fleck",

@name="Bicyclops">

Well, it seems to work. By default, the inspect message, which can be sent to any

object, formats the object’s ID and instance variables. It looks as though we have them

set up correctly.

Our experience tells us that during development we’ll be printing out the contents of

a Song object many times, and inspect’s default formatting leaves something to be

desired. Fortunately, Ruby has a standard message, to_s, that it sends to any object it

wants to render as a string. Let’s try it on our song.

song = Song.new("Bicylops", "Fleck", 260)

song.to_s → "#<Song:0x1c8ce4>"

That wasn’t too useful—it just reported the object ID. So, let’s override to_s in our

class. As we do this, we should also take a moment to talk about how we’re showing

the class definitions in this book.

In Ruby, classes are never closed: you can always add methods to an existing class.

This applies to the classes you write as well as the standard, built-in classes. Just open

a class definition for an existing class, and the new contents you specify will be added

to whatever’s there.

This is great for our purposes. As we go through this chapter, adding features to our

classes, we’ll show just the class definitions for the new methods; the old ones will

still be there. It saves us having to repeat redundant stuff in each example. Obviously,

though, if you were creating this code from scratch, you’d probably just throw all the

methods into a single class definition.

Prepared exclusively for Jose Sierra

INHERITANCE AND MESSAGES 25

Enough detail! Let’s get back to adding a to_s method to our Song class. We’ll use the

character in the string to interpolate the value of the three instance variables.

class Song

def to_s

"Song: #@name#@artist (#@duration)"

end

end

song = Song.new("Bicyclops", "Fleck", 260)

song.to_s → "Song: BicyclopsFleck (260)"

Excellent, we’re making progress. However, we’ve slipped something subtle into the

mix. We said that Ruby supports to_s for all objects, but we didn’t say how. The answer

has to do with inheritance, subclassing, and how Ruby determines what method to run

when you send a message to an object. This is a subject for a new section, so. . . .

Inheritance and Messages
Inheritance allows you to create a class that is a refinement or specialization of another

class. For example, our jukebox has the concept of songs, which we encapsulate in

class Song. Then marketing comes along and tells us that we need to provide karaoke

support. A karaoke song is just like any other (it doesn’t have a vocal track, but that

doesn’t concern us). However, it also has an associated set of lyrics, along with timing

information. When our jukebox plays a karaoke song, the lyrics should flow across the

screen on the front of the jukebox in time with the music.

An approach to this problem is to define a new class, KaraokeSong, that is just like

Song but with a lyric track.

class KaraokeSong < Song

def initialize(name, artist, duration, lyrics)

super(name, artist, duration)

@lyrics = lyrics

end

end

The “< Song” on the class definition line tells Ruby that a KaraokeSong is a sub-

class of Song. (Not surprisingly, this means that Song is a superclass of KaraokeSong.

People also talk about parent-child relationships, so KaraokeSong’s parent would be

Song.) For now, don’t worry too much about the initialize method; we’ll talk about

that super call later.

Let’s create a KaraokeSong and check that our code worked. (In the final system, the

lyrics will be held in an object that includes the text and timing information.) To test

our class, though, we’ll just use a string. This is another benefit of dynamically typed

languages—we don’t have to define everything before we start running code.

Prepared exclusively for Jose Sierra

INHERITANCE AND MESSAGES 26

song = KaraokeSong.new("My Way", "Sinatra", 225, "And now, the...")

song.to_s → "Song: My WaySinatra (225)"

Well, it ran. But why doesn’t the to_s method show the lyric?

The answer has to do with the way Ruby determines which method should be called

when you send a message to an object. During the initial parsing of the program source,

when Ruby comes across the method invocation song.to_s, it doesn’t actually know

where to find the method to_s. Instead, it defers the decision until the program is run.

At that time, it looks at the class of song. If that class implements a method with the

same name as the message, that method is run. Otherwise, Ruby looks for a method in

the parent class, and then in the grandparent, and so on up the ancestor chain. If it runs

out of ancestors without finding the appropriate method, it takes a special action that

normally results in an error being raised.2

Back to our example. We sent the message to_s to song, an object of class Karaoke

Song. Ruby looks in KaraokeSong for a method called to_s but doesn’t find it. The

interpreter then looks in KaraokeSong’s parent, class Song, and there it finds the to_s

method that we defined on page 24. That’s why it prints out the song details but not the

lyrics—class Song doesn’t know anything about lyrics.

Let’s fix this by implementing KaraokeSong#to_s. You have a number of ways to do

this. Let’s start with a bad way. We’ll copy the to_s method from Song and add on the

lyric.

class KaraokeSong

...

def to_s

"KS: #@name#@artist (#@duration) [#@lyrics]"

end

end

song = KaraokeSong.new("My Way", "Sinatra", 225, "And now, the...")

song.to_s → "KS: My WaySinatra (225) [And now, the...]"

We’re correctly displaying the value of the @lyrics instance variable. To do this, the

subclass directly accesses the instance variables of its ancestors. So why is this a bad

way to implement to_s?

The answer has to do with good programming style (and something called decoupling).

By poking around inside our parent’s internal structure, and explicitly examining its

instance variables, we’re tying ourselves tightly to its implementation. Say we decided

to change Song to store the duration in milliseconds. Suddenly, KaraokeSong would

start reporting ridiculous values. The idea of a karaoke version of “My Way” that lasts

for 3,750 minutes is just too frightening to consider.

2. In fact, you can intercept this error, which allows you to fake out methods at runtime. This is described

under Object#method_missing on page 551.

Prepared exclusively for Jose Sierra

OBJECTS AND ATTRIBUTES 27

We get around this problem by having each class handle its own implementation details.

When KaraokeSong#to_s is called, we’ll have it call its parent’s to_s method to get

the song details. It will then append to this the lyric information and return the result.

The trick here is the Ruby keyword super. When you invoke super with no arguments,

Ruby sends a message to the parent of the current object, asking it to invoke a method

of the same name as the method invoking super. It passes this method the parameters

that were passed to the originally invoked method. Now we can implement our new

and improved to_s.

class KaraokeSong < Song

Format ourselves as a string by appending

our lyrics to our parent's #to_s value.

def to_s

super + " [#@lyrics]"

end

end

song = KaraokeSong.new("My Way", "Sinatra", 225, "And now, the...")

song.to_s → "Song: My WaySinatra (225) [And now, the...]"

We explicitly told Ruby that KaraokeSong was a subclass of Song, but we didn’t spec-

ify a parent class for Song itself. If you don’t specify a parent when defining a class,

Ruby supplies class Object as a default. This means that all objects have Object as

an ancestor and that Object’s instance methods are available to every object in Ruby.

Back on page 24 we said that to_s is available to all objects. Now we know why; to_s

is one of more than 35 instance methods in class Object. The complete list begins on

page 546.

So far in this chapter we’ve been looking at classes and their methods. Now it’s time to

move on to the objects, such as the instances of class Song.

Objects and Attributes
The Song objects we’ve created so far have an internal state (such as the song title and

artist). That state is private to those objects—no other object can access an object’s

instance variables. In general, this is a Good Thing. It means that the object is solely

responsible for maintaining its own consistency.

However, an object that is totally secretive is pretty useless—you can create it, but then

you can’t do anything with it. You’ll normally define methods that let you access and

manipulate the state of an object, allowing the outside world to interact with the object.

These externally visible facets of an object are called its attributes.

For our Song objects, the first thing we may need is the ability to find out the title and

artist (so we can display them while the song is playing) and the duration (so we can

display some kind of progress bar).

Prepared exclusively for Jose Sierra

OBJECTS AND ATTRIBUTES 28

Inheritance and Mixins

Some object-oriented languages (such as C++) support multiple
inheritance, where a class can have more than one immediate par-
ent, inheriting functionality from each. Although powerful, this tech-
nique can be dangerous, as the inheritance hierarchy can become
ambiguous.

Other languages, such as Java and C#, support single inheritance.
Here, a class can have only one immediate parent. Although cleaner
(and easier to implement), single inheritance also has drawbacks—in
the real world objects often inherit attributes from multiple sources (a
ball is both a bouncing thing and a spherical thing, for example).

Ruby offers an interesting and powerful compromise, giving you
the simplicity of single inheritance and the power of multiple inheri-
tance. A Ruby class has only one direct parent, so Ruby is a single-
inheritance language. However, Ruby classes can include the func-
tionality of any number of mixins (a mixin is like a partial class defi-
nition). This provides a controlled multiple-inheritance-like capability
with none of the drawbacks. We’ll explore mixins more beginning on
page 111.

class Song

def name

@name

end

def artist

@artist

end

def duration

@duration

end

end

song = Song.new("Bicyclops", "Fleck", 260)

song.artist → "Fleck"

song.name → "Bicyclops"

song.duration → 260

Here we’ve defined three accessor methods to return the values of the three instance

variables. The method name(), for example, returns the value of the instance variable

@name. Because this is such a common idiom, Ruby provides a convenient shortcut:

attr_reader creates these accessor methods for you.

class Song

attr_reader :name, :artist, :duration

end

Prepared exclusively for Jose Sierra

OBJECTS AND ATTRIBUTES 29

song = Song.new("Bicyclops", "Fleck", 260)

song.artist → "Fleck"

song.name → "Bicyclops"

song.duration → 260

This example has introduced something new. The construct :artist is an expression

that returns a Symbol object corresponding to artist. You can think of :artist as

meaning the name of the variable artist, and plain artist as meaning the value

of the variable. In this example, we named the accessor methods name, artist, and

duration. The corresponding instance variables, @name, @artist, and @duration,

will be created automatically. These accessor methods are identical to the ones we

wrote by hand earlier.

Writable Attributes

Sometimes you need to be able to set an attribute from outside the object. For example,

let’s assume that the duration that is initially associated with a song is an estimate

(perhaps gathered from information on a CD or in the MP3 data). The first time we

play the song, we get to find out how long it actually is, and we store this new value

back in the Song object.

In languages such as C++ and Java, you’d do this with setter functions.

class JavaSong { // Java code

private Duration _duration;

public void setDuration(Duration newDuration) {

_duration = newDuration;

}

}

s = new JavaSong(....);

s.setDuration(length);

In Ruby, the attributes of an object can be accessed as if they were any other variable.

We’ve seen this above with phrases such as song.name. So, it seems natural to be able

to assign to these variables when you want to set the value of an attribute. In Ruby you

do that by creating a method whose name ends with an equals sign. These methods can

be used as the target of assignments.

class Song

def duration=(new_duration)

@duration = new_duration

end

end

song = Song.new("Bicyclops", "Fleck", 260)

song.duration → 260

song.duration = 257 # set attribute with updated value

song.duration → 257

Prepared exclusively for Jose Sierra

OBJECTS AND ATTRIBUTES 30

The assignment song.duration = 257 invokes the method duration= in the song

object, passing it 257 as an argument. In fact, defining a method name ending in an

equals sign makes that name eligible to appear on the left side of an assignment.

Again, Ruby provides a shortcut for creating these simple attribute-setting methods.

class Song

attr_writer :duration

end

song = Song.new("Bicyclops", "Fleck", 260)

song.duration = 257

Virtual Attributes

These attribute-accessing methods do not have to be just simple wrappers around an

object’s instance variables. For example, you may want to access the duration in min-

utes and fractions of a minute, rather than in seconds as we’ve been doing.

class Song

def duration_in_minutes

@duration/60.0 # force floating point

end

def duration_in_minutes=(new_duration)

@duration = (new_duration*60).to_i

end

end

song = Song.new("Bicyclops", "Fleck", 260)

song.duration_in_minutes → 4.33333333333333

song.duration_in_minutes = 4.2

song.duration → 252

Here we’ve used attribute methods to create a virtual instance variable. To the out-

side world, duration_in_minutes seems to be an attribute like any other. Internally,

though, it has no corresponding instance variable.

This is more than a curiosity. In his landmark book Object-Oriented Software Con-

struction [Mey97], Bertrand Meyer calls this the Uniform Access Principle. By hiding

the difference between instance variables and calculated values, you are shielding the

rest of the world from the implementation of your class. You’re free to change how

things work in the future without impacting the millions of lines of code that use your

class. This is a big win.

Attributes, Instance Variables, and Methods

This description of attributes may leave you thinking that they’re nothing more than

methods—why’d we need to invent a fancy name for them? In a way, that’s absolutely

right. An attribute is just a method. Sometimes an attribute simply returns the value

of an instance variable. Sometimes an attribute returns the result of a calculation. And

Prepared exclusively for Jose Sierra

CLASS VARIABLES AND CLASS METHODS 31

sometimes those funky methods with equals signs at the end of their names are used to

update the state of an object. So the question is, where do attributes stop and regular

methods begin? What makes something an attribute, and not just a plain old method?

Ultimately, that’s one of those “angels on a pinhead” questions. Here’s a personal take.

When you design a class, you decide what internal state it has and also decide how

that state is to appear on the outside (to users of your class). The internal state is

held in instance variables. The external state is exposed through methods we’re call-

ing attributes. And the other actions your class can perform are just regular methods.

It really isn’t a crucially important distinction, but by calling the external state of an

object its attributes, you’re helping clue people in to how they should view the class

you’ve written.

Class Variables and Class Methods
So far, all the classes we’ve created have contained instance variables and instance

methods: variables that are associated with a particular instance of the class, and meth-

ods that work on those variables. Sometimes classes themselves need to have their own

states. This is where class variables come in.

Class Variables

A class variable is shared among all objects of a class, and it is also accessible to

the class methods that we’ll describe later. Only one copy of a particular class variable

exists for a given class. Class variable names start with two “at” signs, such as @@count.

Unlike global and instance variables, class variables must be initialized before they

are used. Often this initialization is just a simple assignment in the body of the class

definition.

For example, our jukebox may want to record how many times each song has been

played. This count would probably be an instance variable of the Song object. When

a song is played, the value in the instance is incremented. But say we also want to

know how many songs have been played in total. We could do this by searching for all

the Song objects and adding their counts, or we could risk excommunication from the

Church of Good Design and use a global variable. Instead, we’ll use a class variable.

class Song

@@plays = 0

def initialize(name, artist, duration)

@name = name

@artist = artist

@duration = duration

@plays = 0

end

Prepared exclusively for Jose Sierra

CLASS VARIABLES AND CLASS METHODS 32

def play

@plays += 1 # same as @plays = @plays + 1

@@plays += 1

"This song: #@plays plays. Total #@@plays plays."

end

end

For debugging purposes, we’ve arranged for Song#play to return a string containing

the number of times this song has been played, along with the total number of plays for

all songs. We can test this easily.

s1 = Song.new("Song1", "Artist1", 234) # test songs..

s2 = Song.new("Song2", "Artist2", 345)

s1.play → "This song: 1 plays. Total 1 plays."

s2.play → "This song: 1 plays. Total 2 plays."

s1.play → "This song: 2 plays. Total 3 plays."

s1.play → "This song: 3 plays. Total 4 plays."

Class variables are private to a class and its instances. If you want to make them acces-

sible to the outside world, you’ll need to write an accessor method. This method could

be either an instance method or, leading us neatly to the next section, a class method.

Class Methods

Sometimes a class needs to provide methods that work without being tied to any par-

ticular object. We’ve already come across one such method. The new method creates a

new Song object but is not itself associated with a particular song.

song = Song.new(....)

You’ll find class methods sprinkled throughout the Ruby libraries. For example, objects

of class File represent open files in the underlying file system. However, class File

also provides several class methods for manipulating files that aren’t open and there-

fore don’t have a File object. If you want to delete a file, you call the class method

File.delete, passing in the name.

File.delete("doomed.txt")

Class methods are distinguished from instance methods by their definition; class meth-

ods are defined by placing the class name and a period in front of the method name (but

also see the sidebar on page 34).

class Example

def instance_method # instance method

end

def Example.class_method # class method

end

end

Prepared exclusively for Jose Sierra

CLASS VARIABLES AND CLASS METHODS 33

Jukeboxes charge money for each song played, not by the minute. That makes short

songs more profitable than long ones. We may want to prevent songs that take too long

from being available on the SongList. We could define a class method in SongList

that checked to see if a particular song exceeded the limit. We’ll set this limit using

a class constant, which is simply a constant (remember constants? They start with an

uppercase letter) that is initialized in the class body.

class SongList

MAX_TIME = 5*60 # 5 minutes

def SongList.is_too_long(song)

return song.duration > MAX_TIME

end

end

song1 = Song.new("Bicyclops", "Fleck", 260)

SongList.is_too_long(song1) → false

song2 = Song.new("The Calling", "Santana", 468)

SongList.is_too_long(song2) → true

Singletons and Other Constructors

Sometimes you want to override the default way in which Ruby creates objects. As an

example, let’s look at our jukebox. Because we’ll have many jukeboxes, spread all over

the country, we want to make maintenance as easy as possible. Part of the requirement

is to log everything that happens to a jukebox: the songs played, the money received,

the strange fluids poured into it, and so on. Because we want to reserve the network

bandwidth for music, we’ll store these log files locally. This means we’ll need a class

that handles logging. However, we want only one logging object per jukebox, and we

want that object to be shared among all the other objects that use it.

Enter the Singleton pattern, documented in Design Patterns [GHJV95]. We’ll arrange

things so that the only way to create a logging object is to call MyLogger.create, and

we’ll ensure that only one logging object is ever created.

class MyLogger

private_class_method :new

@@logger = nil

def MyLogger.create

@@logger = new unless @@logger

@@logger

end

end

By making MyLogger’s new method private, we prevent anyone from creating a log-

ging object using the conventional constructor. Instead, we provide a class method,

MyLogger.create. This method uses the class variable @@logger to keep a reference

Prepared exclusively for Jose Sierra

CLASS VARIABLES AND CLASS METHODS 34

Class Method Definitions

Back on page 32 we said that class methods are defined by putting
the class name and a period in front of the method name. That was
actually a simplification (but one that works all the time).

In fact, you can define class methods in a number of ways, but under-
standing why those ways work will have to wait until Chapter 24. For
now, we’ll just show you the idioms that people use, in case you come
across them in Ruby code.

The following all define class methods within class Demo.

class Demo

def Demo.meth1

...

end

def self.meth2

...

end

class <<self

def meth3

...

end

end

end

to a single instance of the logger, returning that instance every time it is called.3 We

can check this by looking at the object identifiers the method returns.

MyLogger.create.object_id → 938358

MyLogger.create.object_id → 938358

Using class methods as pseudo-constructors can also make life easier for users of your

class. As a trivial example, let’s look at a class Shape that represents a regular polygon.

Instances of Shape are created by giving the constructor the required number of sides

and the total perimeter.

class Shape

def initialize(num_sides, perimeter)

...

end

end

3. The implementation of singletons that we present here is not thread-safe; if multiple threads were

running, it would be possible to create multiple logger objects. Rather than add thread safety ourselves,

however, we’d probably use the Singleton mixin supplied with Ruby, which is described on page 712.

Prepared exclusively for Jose Sierra

ACCESS CONTROL 35

However, a couple of years later, this class is used in a different application, where the

programmers are used to creating shapes by name and by specifying the length of one

side, not the perimeter. Simply add some class methods to Shape.

class Shape

def Shape.triangle(side_length)

Shape.new(3, side_length*3)

end

def Shape.square(side_length)

Shape.new(4, side_length*4)

end

end

Class methods have many interesting and powerful uses, but exploring them won’t get

our jukebox finished any sooner, so let’s move on.

Access Control
When designing a class interface, it’s important to consider just how much access to

your class you’ll be exposing to the outside world. Allow too much access into your

class, and you risk increasing the coupling in your application—users of your class will

be tempted to rely on details of your class’s implementation, rather than on its logical

interface. The good news is that the only easy way to change an object’s state in Ruby

is by calling one of its methods. Control access to the methods, and you’ve controlled

access to the object. A good rule of thumb is never to expose methods that could leave

an object in an invalid state. Ruby gives you three levels of protection.

• Public methods can be called by anyone—no access control is enforced. Methods

are public by default (except for initialize, which is always private).

• Protected methods can be invoked only by objects of the defining class and its

subclasses. Access is kept within the family.

• Private methods cannot be called with an explicit receiver—the receiver is always

self. This means that private methods can be called only in the context of the

current object; you can’t invoke another object’s private methods.

The difference between “protected” and “private” is fairly subtle and is different in

Ruby than in most common OO languages. If a method is protected, it may be called

by any instance of the defining class or its subclasses. If a method is private, it may

be called only within the context of the calling object—it is never possible to access

another object’s private methods directly, even if the object is of the same class as the

caller.

Prepared exclusively for Jose Sierra

ACCESS CONTROL 36

Ruby differs from other OO languages in another important way. Access control is

determined dynamically, as the program runs, not statically. You will get an access

violation only when the code attempts to execute the restricted method.

Specifying Access Control

You specify access levels to methods within class or module definitions using one or

more of the three functions public, protected, and private. You can use each func-

tion in two different ways.

If used with no arguments, the three functions set the default access control of subse-

quently defined methods. This is probably familiar behavior if you’re a C++ or Java

programmer, where you’d use keywords such as public to achieve the same effect.

class MyClass

def method1 # default is 'public'

#...

end

protected # subsequent methods will be 'protected'

def method2 # will be 'protected'

#...

end

private # subsequent methods will be 'private'

def method3 # will be 'private'

#...

end

public # subsequent methods will be 'public'

def method4 # and this will be 'public'

#...

end

end

Alternatively, you can set access levels of named methods by listing them as arguments

to the access control functions.

class MyClass

def method1

end

... and so on

public :method1, :method4

protected :method2

private :method3

end

It’s time for some examples. Perhaps we’re modeling an accounting system where every

debit has a corresponding credit. Because we want to ensure that no one can break this

rule, we’ll make the methods that do the debits and credits private, and we’ll define our

external interface in terms of transactions.

Prepared exclusively for Jose Sierra

VARIABLES 37

class Accounts

def initialize(checking, savings)

@checking = checking

@savings = savings

end

private

def debit(account, amount)

account.balance = amount

end

def credit(account, amount)

account.balance += amount

end

public

#...

def transfer_to_savings(amount)

debit(@checking, amount)

credit(@savings, amount)

end

#...

end

Protected access is used when objects need to access the internal state of other objects

of the same class. For example, we may want to allow individual Account objects to

compare their cleared balances but may want to hide those balances from the rest of the

world (perhaps because we present them in a different form).

class Account

attr_reader :cleared_balance # accessor method 'cleared_balance'

protected :cleared_balance # and make it protected

def greater_balance_than(other)

return @cleared_balance > other.cleared_balance

end

end

Because cleared_balance is protected, it’s available only within Account objects.

Variables
Now that we’ve gone to the trouble to create all these objects, let’s make sure we don’t

lose them. Variables are used to keep track of objects; each variable holds a reference

to an object.

Let’s confirm this with some code.

person = "Tim"

person.object_id → 938678

person.class → String

person → "Tim"

Prepared exclusively for Jose Sierra

VARIABLES 38

On the first line, Ruby creates a new String object with the value “Tim.” A reference to

this object is placed in the local variable person. A quick check shows that the variable

has indeed taken on the personality of a string, with an object ID, a class, and a value.

So, is a variable an object? In Ruby, the answer is “no.” A variable is simply a reference

to an object. Objects float around in a big pool somewhere (the heap, most of the time)

and are pointed to by variables.

Let’s make the example slightly more complicated.

person1 = "Tim"

person2 = person1

person1[0] = 'J'

person1 → "Jim"

person2 → "Jim"

What happened here? We changed the first character of person1, but both person1

and person2 changed from “Tim” to “Jim.”

It all comes back to the fact that variables hold references to objects, not the objects

themselves. The assignment of person1 to person2 doesn’t create any new objects;

it simply copies person1’s object reference to person2 so that both person1 and

person2 refer to the same object. We show this in Figure 3.1 on the following page.

Assignment aliases objects, potentially giving you multiple variables that reference the

same object. But can’t this cause problems in your code? It can, but not as often as

you’d think (objects in Java, for example, work exactly the same way). For instance,

in the example in Figure 3.1, you could avoid aliasing by using the dup method of

String, which creates a new String object with identical contents.

person1 = "Tim"

person2 = person1.dup

person1[0] = "J"

person1 → "Jim"

person2 → "Tim"

You can also prevent anyone from changing a particular object by freezing it (we talk

more about freezing objects on page 377). Attempt to alter a frozen object, and Ruby

will raise a TypeError exception.

person1 = "Tim"

person2 = person1

person1.freeze # prevent modifications to the object

person2[0] = "J"

produces:

prog.rb:4:in `[]=': can't modify frozen string (TypeError)

from prog.rb:4

Prepared exclusively for Jose Sierra

VARIABLES 39

Figure 3.1. Variables hold object references.

person1 = "Tim"

person1

Tim

String

...

person2 = person1

person1

person2
Tim

String

...

person1[0] = "J"

person1

person2
Jim

String

That concludes our look at classes and objects in Ruby. This material is important;

everything you manipulate in Ruby is an object. And one of the most common things

we do with objects is create collections of them. But that’s the subject of our next

chapter.

Prepared exclusively for Jose Sierra

Chapter 4

Containers, Blocks,

and Iterators

A jukebox with one song is unlikely to be popular (except perhaps in some very, very

scary bars), so pretty soon we’ll have to start thinking about producing a catalog of

available songs and a playlist of songs waiting to be played. Both of these are contain-

ers: objects that hold references to one or more other objects.

Both the catalog and the playlist need a similar set of methods: add a song, remove

a song, return a list of songs, and so on. The playlist may perform additional tasks,

such as inserting advertising every so often or keeping track of cumulative play time,

but we’ll worry about these things later. In the meantime, it seems like a good idea to

develop some kind of generic SongList class, which we can specialize into catalogs

and playlists.

Containers
Before we start implementing, we’ll need to work out how to store the list of songs

inside a SongList object. We have three obvious choices. We could use the Ruby

Array type, use the Ruby Hash type, or create our own list structure. Being lazy, for

now we’ll look at arrays and hashes and choose one of these for our class.

Arrays

The class Array holds a collection of object references. Each object reference occupies

a position in the array, identified by a non-negative integer index.

You can create arrays by using literals or by explicitly creating an Array object. A

literal array is simply a list of objects between square brackets.

40Prepared exclusively for Jose Sierra

CONTAINERS 41

a = [3.14159, "pie", 99]

a.class → Array

a.length → 3

a[0] → 3.14159

a[1] → "pie"

a[2] → 99

a[3] → nil

b = Array.new

b.class → Array

b.length → 0

b[0] = "second"

b[1] = "array"

b → ["second", "array"]

Arrays are indexed using the [] operator. As with most Ruby operators, this is actu-

ally a method (an instance method of class Array) and hence can be overridden in

subclasses. As the example shows, array indices start at zero. Index an array with a

non-negative integer, and it returns the object at that position or returns nil if nothing

is there. Index an array with a negative integer, and it counts from the end.

a = [1, 3, 5, 7, 9]

a[1] → 9

a[2] → 7

a[99] → nil

This indexing scheme is illustrated in more detail in Figure 4.1 on the following page.

You can also index arrays with a pair of numbers, [start, count]. This returns a

new array consisting of references to count objects starting at position start.

a = [1, 3, 5, 7, 9]

a[1, 3] → [3, 5, 7]

a[3, 1] → [7]

a[3, 2] → [5, 7]

Finally, you can index arrays using ranges, in which start and end positions are sepa-

rated by two or three periods. The two-period form includes the end position, and the

three-period form does not.

a = [1, 3, 5, 7, 9]

a[1..3] → [3, 5, 7]

a[1...3] → [3, 5]

a[3..3] → [7]

a[3..1] → [5, 7, 9]

The [] operator has a corresponding []= operator, which lets you set elements in the

array. If used with a single integer index, the element at that position is replaced by

whatever is on the right side of the assignment. Any gaps that result will be filled with

nil.

Prepared exclusively for Jose Sierra

CONTAINERS 42

Figure 4.1. How arrays are indexed

Positive→ 0 1 2 3 4 5 6 Negative

indices −7 −6 −5 −4 −3 −2 −1 ← indices

a = “ant” “bat” “cat” “dog” “elk” “fly” “gnu”

a[2]→ “cat”

a[3]→ “elk”

a[1..3]→ “bat” “cat” “dog”

a[3..1]→ “elk” “fly” “gnu”

a[4..2]→ “elk” “fly”

a = [1, 3, 5, 7, 9] → [1, 3, 5, 7, 9]

a[1] = ’bat’ → [1, "bat", 5, 7, 9]

a[3] = ’cat’ → [1, "bat", "cat", 7, 9]

a[3] = [9, 8] → [1, "bat", "cat", [9, 8], 9]

a[6] = 99 → [1, "bat", "cat", [9, 8], 9, nil, 99]

If the index to []= is two numbers (a start and a length) or a range, then those elements

in the original array are replaced by whatever is on the right side of the assignment.

If the length is zero, the right side is inserted into the array before the start position;

no elements are removed. If the right side is itself an array, its elements are used in

the replacement. The array size is automatically adjusted if the index selects a different

number of elements than are available on the right side of the assignment.

a = [1, 3, 5, 7, 9] → [1, 3, 5, 7, 9]

a[2, 2] = ’cat’ → [1, 3, "cat", 9]

a[2, 0] = ’dog’ → [1, 3, "dog", "cat", 9]

a[1, 1] = [9, 8, 7] → [1, 9, 8, 7, "dog", "cat", 9]

a[0..3] = [] → ["dog", "cat", 9]

a[5..6] = 99, 98 → ["dog", "cat", 9, nil, nil, 99, 98]

Arrays have a large number of other useful methods. Using these, you can treat arrays

as stacks, sets, queues, dequeues, and fifos. A complete list of array methods starts on

page 406.

Hashes

Hashes (sometimes known as associative arrays, maps, or dictionaries) are similar to

arrays in that they are indexed collections of object references. However, while you

index arrays with integers, you can index a hash with objects of any type: strings,

regular expressions, and so on. When you store a value in a hash, you actually supply

Prepared exclusively for Jose Sierra

CONTAINERS 43

two objects—the index, normally called the key, and the value. You can subsequently

retrieve the value by indexing the hash with the same key. The values in a hash can be

objects of any type.

The example that follows uses hash literals: a list of key => value pairs between braces.

h = { 'dog' => 'canine', 'cat' => 'feline', 'donkey' => 'asinine' }

h.length → 3

h['dog'] → "canine"

h['cow'] = 'bovine'

h[12] = 'dodecine'

h['cat'] = 99

h → {"cow"=>"bovine", "cat"=>99, 12=>"dodecine",

"donkey"=>"asinine", "dog"=>"canine"}

Compared with arrays, hashes have one significant advantage: they can use any object

as an index. However, they also have a significant disadvantage: their elements are not

ordered, so you cannot easily use a hash as a stack or a queue.

You’ll find that hashes are one of the most commonly used data structures in Ruby. A

full list of the methods implemented by class Hash starts on page 471.

Implementing a SongList Container

After that little diversion into arrays and hashes, we’re now ready to implement the

jukebox’s SongList. Let’s invent a basic list of methods we need in our SongList.

We’ll want to add to it as we go along, but this will do for now.

append(song)→ list

Append the given song to the list.

delete_first() → song

Remove the first song from the list, returning that song.

delete_last()→ song

Remove the last song from the list, returning that song.

[index]→ song

Return the song at the integer index.

with_title(title) → song

Return the song with the given title.

This list gives us a clue to the implementation. The ability to append songs at the end,

and remove them from both the front and end, suggests a dequeue—a double-ended

queue—which we know we can implement using an Array. Similarly, the ability to

return a song at an integer position in the list is supported by arrays.

Prepared exclusively for Jose Sierra

CONTAINERS 44

However, you also need to be able to retrieve songs by title, which may suggest using a

hash, with the title as a key and the song as a value. Unfortunately, hashes aren’t useful

in this context. First, a hash is unordered, so we’d probably need to use an ancillary

array to keep track of the list. A second, bigger problem is that a hash does not support

multiple entries where the keys have the same value. That would be a problem for our

playlist, where the same song may be queued for playing multiple times. So, for now

we’ll stick with an array of songs, searching it for titles when needed. If this becomes

a performance bottleneck, we can always add some kind of hash-based lookup later.

We’ll start our class with a basic initialize method, which creates the Array we’ll

use to hold the songs and stores a reference to it in the instance variable @songs.

class SongList

def initialize

@songs = Array.new

end

end

The SongList#append method adds the given song to the end of the @songs array. It

also returns self, a reference to the current SongList object. This is a useful convention,

as it lets us chain together multiple calls to append. We’ll see an example of this later.

class SongList

def append(song)

@songs.push(song)

self

end

end

Then we’ll add the delete_first and delete_last methods, trivially implemented

using Array#shift and Array#pop, respectively.

class SongList

def delete_first

@songs.shift

end

def delete_last

@songs.pop

end

end

So far, so good. Our next method is [], which accesses elements by index. These

kind of simple delegating methods occur frequently in Ruby code: don’t worry if your

code ends up containing a bunch of one- or two-line methods—it’s a sign that you’re

designing things correctly.

class SongList

def [](index)

@songs[index]

end

end

Prepared exclusively for Jose Sierra

CONTAINERS 45

At this point, a quick test may be in order. To do this, we’re going to use a testing

framework called TestUnit that comes with the standard Ruby distributions. We won’t

describe it fully yet (we do that in the Unit Testing chapter starting on page 143). For

now, we’ll just say that the method assert_equal checks that its two parameters are

equal, complaining bitterly if they aren’t. Similarly, the method assert_nil complains

unless its parameter is nil. We’re using these assertions to verify that the correct songs

are deleted from the list.

The test contains some initial housekeeping, necessary to tell Ruby to use the TestUnit

framework and to tell the framework that we’re writing some test code. Then we create

a SongList and four songs and append the songs to the list. (Just to show off, we use

the fact that append returns the SongList object to chain together these method calls.)

We can then test our [] method, verifying that it returns the correct song (or nil) for a

set of indices. Finally, we delete songs from the start and end of the list, checking that

the correct songs are returned.

require 'test/unit'

class TestSongList < Test::Unit::TestCase

def test_delete

list = SongList.new

s1 = Song.new('title1', 'artist1', 1)

s2 = Song.new('title2', 'artist2', 2)

s3 = Song.new('title3', 'artist3', 3)

s4 = Song.new('title4', 'artist4', 4)

list.append(s1).append(s2).append(s3).append(s4)

assert_equal(s1, list[0])

assert_equal(s3, list[2])

assert_nil(list[9])

assert_equal(s1, list.delete_first)

assert_equal(s2, list.delete_first)

assert_equal(s4, list.delete_last)

assert_equal(s3, list.delete_last)

assert_nil(list.delete_last)

end

end

produces:

Loaded suite

Started

.

Finished in 0.00072 seconds.

1 tests, 8 assertions, 0 failures, 0 errors

The running test confirms that eight assertions were executed in one test method, and

they all passed. We’re on our way to a working jukebox!

Prepared exclusively for Jose Sierra

BLOCKS AND ITERATORS 46

Now we need to add the facility that lets us look up a song by title. This is going to

involve scanning through the songs in the list, checking the title of each. To do this, we

first need to spend a couple of pages looking at one of Ruby’s neatest features: iterators.

Blocks and Iterators
Our next problem with SongList is to implement the method with_title that takes

a string and searches for a song with that title. This seems straightforward: we have an

array of songs, so we’ll go through it one element at a time, looking for a match.

class SongList

def with_title(title)

for i in 0...@songs.length

return @songs[i] if title == @songs[i].name

end

return nil

end

end

This works, and it looks comfortingly familiar: a for loop iterating over an array. What

could be more natural?

It turns out there is something more natural. In a way, our for loop is somewhat too

intimate with the array; it asks for a length, and it then retrieves values in turn until it

finds a match. Why not just ask the array to apply a test to each of its members? That’s

just what the find method in Array does.

class SongList

def with_title(title)

@songs.find {|song| title == song.name }

end

end

The method find is an iterator—a method that invokes a block of code repeatedly.

Iterators and code blocks are among the more interesting features of Ruby, so let’s

spend a while looking into them (and in the process we’ll find out exactly what that

line of code in our with_title method actually does).

Implementing Iterators

A Ruby iterator is simply a method that can invoke a block of code. At first sight, a

block in Ruby looks just like a block in C, Java, C#, or Perl. Unfortunately, in this

case looks are deceiving—a Ruby block is a way of grouping statements, but not in the

conventional way.

First, a block may appear only in the source adjacent to a method call; the block is

written starting on the same line as the method call’s last parameter (or the closing

Prepared exclusively for Jose Sierra

BLOCKS AND ITERATORS 47

parenthesis of the parameter list). Second, the code in the block is not executed at the

time it is encountered. Instead, Ruby remembers the context in which the block appears

(the local variables, the current object, and so on) and then enters the method. This is

where the magic starts.

Within the method, the block may be invoked, almost as if it were a method itself, using

the yield statement. Whenever a yield is executed, it invokes the code in the block.

When the block exits, control picks back up immediately after the yield.1 Let’s start

with a trivial example.

def three_times

yield

yield

yield

end

three_times { puts "Hello" }

produces:

Hello

Hello

Hello

The block (the code between the braces) is associated with the call to the method

three_times. Within this method, yield is called three times in a row. Each time, it

invokes the code in the block, and a cheery greeting is printed. What makes blocks inter-

esting, however, is that you can pass parameters to them and receive values from them.

For example, we could write a simple function that returns members of the Fibonacci

series up to a certain value.2

def fib_up_to(max)

i1, i2 = 1, 1 # parallel assignment (i1 = 1 and i2 = 1)

while i1 <= max

yield i1

i1, i2 = i2, i1+i2

end

end

fib_up_to(1000) {|f| print f, " " }

produces:

1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987

1. Programming-language buffs will be pleased to know that the keyword yield was chosen to echo the

yield function in Liskov’s language CLU, a language that is more than 20 years old and yet contains features

that still haven’t been widely exploited by the CLU-less.

2. The basic Fibonacci series is a sequence of integers, starting with two 1s, in which each subsequent

term is the sum of the two preceding terms. The series is sometimes used in sorting algorithms and in

analyzing natural phenomena.

Prepared exclusively for Jose Sierra

BLOCKS AND ITERATORS 48

In this example, the yield statement has a parameter. This value is passed to the asso-

ciated block. In the definition of the block, the argument list appears between vertical

bars. In this instance, the variable f receives the value passed to the yield, so the block

prints successive members of the series. (This example also shows parallel assignment

in action. We’ll come back to this on page 85.) Although it is common to pass just one

value to a block, this is not a requirement; a block may have any number of arguments.

If the parameters to a block are existing local variables, those variables will be used as

the block parameters, and their values may be changed by the block’s execution. The

same thing applies to variables inside the block: if they appear for the first time in the

block, they’re local to the block. If instead they first appeared outside the block, the

variables will be shared between the block and the surrounding environment.3

In this (contrived) example, we see that the block inherits the variables a and b from

the surrounding scope, but c is local to the block (the method defined? returns nil if

its argument is not defined).

a = [1, 2]

b = 'cat'

a.each {|b| c = b * a[1] }

a → [1, 2]

b → 2

defined?(c) → nil

A block may also return a value to the method. The value of the last expression evalu-

ated in the block is passed back to the method as the value of the yield. This is how the

find method used by class Array works.4 Its implementation would look something

like the following.

class Array

def find

for i in 0...size

value = self[i]

return value if yield(value)

end

return nil

end

end

[1, 3, 5, 7, 9].find {|v| v*v > 30 } → 7

This passes successive elements of the array to the associated block. If the block returns

true, the method returns the corresponding element. If no element matches, the method

returns nil. The example shows the benefit of this approach to iterators. The Array

3. Although extremely useful at times, this feature may lead to unexpected behavior and is hotly debated

in the Ruby community. It is possible that Ruby 2.0 will change the way blocks inherit local variables.

4. The find method is actually defined in module Enumerable, which is mixed into class Array.

Prepared exclusively for Jose Sierra

BLOCKS AND ITERATORS 49

class does what it does best, accessing array elements, leaving the application code to

concentrate on its particular requirement (in this case, finding an entry that meets some

mathematical criteria).

Some iterators are common to many types of Ruby collections. We’ve looked at find

already. Two others are each and collect. each is probably the simplest iterator—all

it does is yield successive elements of its collection.

[1, 3, 5, 7, 9].each {|i| puts i }

produces:

1

3

5

7

9

The each iterator has a special place in Ruby; on page 97 we’ll describe how it’s used

as the basis of the language’s for loop, and starting on page 113 we’ll see how defining

an each method can add a whole lot more functionality to your class for free.

Another common iterator is collect, which takes each element from the collection

and passes it to the block. The results returned by the block are used to construct a new

array. For instance:

["H", "A", "L"].collect {|x| x.succ } → ["I", "B", "M"]

Iterators are not limited to accessing existing data in arrays and hashes. As we saw in

the Fibonacci example, an iterator can return derived values. This capability is used by

Ruby input/output classes, which implement an iterator interface that returns successive

lines (or bytes) in an I/O stream. (This example uses do. . .end to define a block. The

only difference between this notation and using braces to define blocks is precedence:

do. . .end binds lower than {. . . }. We discuss the impact of this on page 341.)

f = File.open("testfile")

f.each do |line|

puts line

end

f.close

produces:

This is line one

This is line two

This is line three

And so on...

Let’s look at just one more useful iterator. The (somewhat obscurely named) inject

method1.8 (defined in the module Enumerable) lets you accumulate a value across the

Prepared exclusively for Jose Sierra

BLOCKS AND ITERATORS 50

members of a collection. For example, you can sum all the elements in an array, and

find their product, using code such as

[1,3,5,7].inject(0) {|sum, element| sum+element} → 16

[1,3,5,7].inject(1) {|product, element| product*element} → 105

inject works like this: the first time the associated block is called, sum is set to

inject’s parameter and element is set to the first element in the collection. The second

and subsequent times the block is called, sum is set to the value returned by the block

on the previous call. The final value of inject is the value returned by the block the

last time it was called. There’s one final wrinkle: if inject is called with no parameter,

it uses the first element of the collection as the initial value and starts the iteration with

the second value. This means that we could have written the previous examples as

[1,3,5,7].inject {|sum, element| sum+element} → 16

[1,3,5,7].inject {|product, element| product*element} → 105

Internal and External Iterators

It’s worth spending a paragraph comparing Ruby’s approach to iterators to that of lan-

guages such as C++ and Java. In the Ruby approach, the iterator is internal to the

collection—it’s simply a method, identical to any other, that happens to call yield

whenever it generates a new value. The thing that uses the iterator is just a block of

code associated with this method.

In other languages, collections don’t contain their own iterators. Instead, they generate

external helper objects (for example, those based on Java’s Iterator interface) that

carry the iterator state. In this, as in many other ways, Ruby is a transparent language.

When you write a Ruby program, you concentrate on getting the job done, not on

building scaffolding to support the language itself.

It’s probably also worth spending a paragraph looking at why Ruby’s internal itera-

tors aren’t always the best solution. One area where they fall down badly is where you

need to treat an iterator as an object in its own right (for example, passing the iter-

ator into a method that needs to access each of the values returned by that iterator).

It’s also difficult to iterate over two collections in parallel using Ruby’s internal iter-

ator scheme. Fortunately, Ruby 1.81.8 comes with the Generator library (described on

page 662), which implements external iterators in Ruby for just such occasions.

Blocks for Transactions

Although blocks are often the target of an iterator, they also have other uses. Let’s look

at a few.

You can use blocks to define a chunk of code that must be run under some kind of trans-

actional control. For example, you’ll often open a file, do something with its contents,

and then want to ensure that the file is closed when you finish. Although you can do this

Prepared exclusively for Jose Sierra

BLOCKS AND ITERATORS 51

using conventional code, an argument exists for making the file responsible for closing

itself. We can do this with blocks. A naive implementation (ignoring error handling)

could look something like the following.

class File

def File.open_and_process(*args)

f = File.open(*args)

yield f

f.close()

end

end

File.open_and_process("testfile", "r") do |file|

while line = file.gets

puts line

end

end

produces:

This is line one

This is line two

This is line three

And so on...

open_and_process is a class method—it may be called independently of any particu-

lar file object. We want it to take the same arguments as the conventional File.open

method, but we don’t really care what those arguments are. To do this, we speci-

fied the arguments as *args, meaning “collect the actual parameters passed to the

method into an array named args.” We then call File.open, passing it *args as

a parameter. This expands the array back into individual parameters. The net result

is that open_and_process transparently passes whatever parameters it received to

File.open.

Once the file has been opened, open_and_process calls yield, passing the open file

object to the block. When the block returns, the file is closed. In this way, the responsi-

bility for closing an open file has been passed from the user of file objects back to the

files themselves.

The technique of having files manage their own life cycle is so useful that the class

File supplied with Ruby supports it directly. If File.open has an associated block,

then that block will be invoked with a file object, and the file will be closed when

the block terminates. This is interesting, as it means that File.open has two different

behaviors: when called with a block, it executes the block and closes the file. When

called without a block, it returns the file object. This is made possible by the method

Kernel.block_given?, which returns true if a block is associated with the current

method. Using this method, you could implement something similar to the standard

File.open (again, ignoring error handling) using the following.

Prepared exclusively for Jose Sierra

BLOCKS AND ITERATORS 52

class File

def File.my_open(*args)

result = file = File.new(*args)

If there's a block, pass in the file and close

the file when it returns

if block_given?

result = yield file

file.close

end

return result

end

end

This has one last twist: in the previous examples of using blocks to control resources,

we haven’t addressed error handling. If we wanted to implement these methods prop-

erly, we’d need to ensure that we closed files even if the code processing that file some-

how aborted. We do this using exception handling, which we talk about later (starting

on page 101).

Blocks Can Be Closures

Let’s get back to our jukebox for a moment (remember the jukebox?). At some point

we’ll be working on the code that handles the user interface—the buttons that people

press to select songs and control the jukebox. We’ll need to associate actions with

those buttons: press START and the music starts. It turns out that Ruby’s blocks are

a convenient way to do this. Let’s start by assuming that the people who made the

hardware implemented a Ruby extension that gives us a basic button class. (We talk

about extending Ruby beginning on page 261.)

start_button = Button.new("Start")

pause_button = Button.new("Pause")

...

What happens when the user presses one of our buttons? In the Button class, the hard-

ware folks rigged things so that a callback method, button_pressed, will be invoked.

The obvious way of adding functionality to these buttons is to create subclasses of

Button and have each subclass implement its own button_pressed method.

class StartButton < Button

def initialize

super("Start") # invoke Button's initialize

end

def button_pressed

do start actions...

end

end

start_button = StartButton.new

Prepared exclusively for Jose Sierra

BLOCKS AND ITERATORS 53

This has two problems. First, this will lead to a large number of subclasses. If the

interface to Button changes, this could involve us in a lot of maintenance. Second, the

actions performed when a button is pressed are expressed at the wrong level; they are

not a feature of the button but are a feature of the jukebox that uses the buttons. We can

fix both of these problems using blocks.

songlist = SongList.new

class JukeboxButton < Button

def initialize(label, &action)

super(label)

@action = action

end

def button_pressed

@action.call(self)

end

end

start_button = JukeboxButton.new("Start") { songlist.start }

pause_button = JukeboxButton.new("Pause") { songlist.pause }

The key to all this is the second parameter to JukeboxButton#initialize. If the last

parameter in a method definition is prefixed with an ampersand (such as &action),

Ruby looks for a code block whenever that method is called. That code block is con-

verted to an object of class Proc and assigned to the parameter. You can then treat

the parameter as any other variable. In our example, we assigned it to the instance

variable @action. When the callback method button_pressed is invoked, we use the

Proc#call method on that object to invoke the block.

So what exactly do we have when we create a Proc object? The interesting thing is that

it’s more than just a chunk of code. Associated with a block (and hence a Proc object)

is all the context in which the block was defined: the value of self and the methods,

variables, and constants in scope. Part of the magic of Ruby is that the block can still

use all this original scope information even if the environment in which it was defined

would otherwise have disappeared. In other languages, this facility is called a closure.

Let’s look at a contrived example. This example uses the method lambda, which con-

verts a block to a Proc object.

def n_times(thing)

return lambda {|n| thing * n }

end

p1 = n_times(23)

p1.call(3) → 69

p1.call(4) → 92

p2 = n_times("Hello ")

p2.call(3) → "Hello Hello Hello "

Prepared exclusively for Jose Sierra

CONTAINERS EVERYWHERE 54

The method n_times returns a Proc object that references the method’s parameter,

thing. Even though that parameter is out of scope by the time the block is called, the

parameter remains accessible to the block.

Containers Everywhere
Containers, blocks, and iterators are core concepts in Ruby. The more you write in

Ruby, the more you’ll find yourself moving away from conventional looping constructs.

Instead, you’ll write classes that support iteration over their contents. And you’ll find

that this code is compact, easy to read, and a joy to maintain.

Prepared exclusively for Jose Sierra

Chapter 5

Standard Types

So far we’ve been having fun implementing pieces of our jukebox code, but we’ve been

negligent. We’ve looked at arrays, hashes, and procs, but we haven’t really covered

the other basic types in Ruby: numbers, strings, ranges, and regular expressions. Let’s

spend a few pages on these basic building blocks now.

Numbers
Ruby supports integers and floating-point numbers. Integers can be any length (up to a

maximum determined by the amount of free memory on your system). Integers within a

certain range (normally−230 to 230−1 or−262 to 262−1) are held internally in binary

form and are objects of class Fixnum. Integers outside this range are stored in objects

of class Bignum (currently implemented as a variable-length set of short integers). This

process is transparent, and Ruby automatically manages the conversion back and forth.

num = 81

6.times do

puts "#{num.class}: #{num}"

num *= num

end

produces:

Fixnum: 81

Fixnum: 6561

Fixnum: 43046721

Bignum: 1853020188851841

Bignum: 3433683820292512484657849089281

Bignum: 11790184577738583171520872861412518665678211592275841109096961

You write integers using an optional leading sign, an optional base indicator (0 for

octal, 0d for decimal [the default], 0x for hex, or 0b for binary), followed by a string

of digits in the appropriate base. Underscore characters are ignored in the digit string

(some folks use them in place of commas in larger numbers).

55Prepared exclusively for Jose Sierra

NUMBERS 56

123456 => 123456 # Fixnum

0d123456 => 123456 # Fixnum

123_456 => 123456 # Fixnum underscore ignored

543 => 543 # Fixnum negative number

0xaabb => 43707 # Fixnum hexadecimal

0377 => 255 # Fixnum octal

0b10_1010 => 42 # Fixnum binary (negated)

123_456_789_123_456_789 => 123456789123456789 # Bignum

The integer values of control characters can be generated using ?\Cx and ?\cx (the

control version of x is x&0x9f). Metacharacters (x|0x80) can be generated using

?\Mx. The combination of meta and control is generated using and ?\M\Cx. You can

get the integer value of a backslash character using the sequence ?\\.

?a => 97 # ASCII character

?\n => 10 # code for a newline (0x0a)

?\Ca => 1 # control a = ?A & 0x9f = 0x01

?\Ma => 225 # meta sets bit 7

?\M\Ca => 129 # meta and control a

?\C? => 127 # delete character

A numeric literal with a decimal point and/or an exponent is turned into a Float object,

corresponding to the native architecture’s double data type. You must both precede1.8
and follow the decimal point with a digit (if you write 1.0e3 as 1.e3, Ruby will try to

invoke the method e3 in class Fixnum).

All numbers are objects and respond to a variety of messages (listed in full starting on

pages 420, 463, 466, 480, and 541). So, unlike (say) C++, you find the absolute value

of a number by writing num.abs, not abs(num).

Integers also support several useful iterators. We’ve seen one already: 6.times in the

code example on the preceding page. Others include upto and downto, for iterating up

and down between two integers. Class Numeric also provides the more general method

step, which is more like a traditional for loop.

3.times { print "X " }

1.upto(5) {|i| print i, " " }

99.downto(95) {|i| print i, " " }

50.step(80, 5) {|i| print i, " " }

produces:

X X X 1 2 3 4 5 99 98 97 96 95 50 55 60 65 70 75 80

Finally, we’ll offer a warning for Perl users. Strings that contain just digits are not

automatically converted into numbers when used in expressions. This tends to bite

most often when reading numbers from a file. For example, we may want to find the

sum of the two numbers on each line for a file such as

3 4

5 6

7 8

Prepared exclusively for Jose Sierra

STRINGS 57

The following code doesn’t work.

some_file.each do |line|

v1, v2 = line.split # split line on spaces

print v1 + v2, " "

end

produces:

34 56 78

The problem is that the input was read as strings, not numbers. The plus operator con-

catenates strings, so that’s what we see in the output. To fix this, use the Integer

method to convert the string to an integer.

some_file.each do |line|

v1, v2 = line.split

print Integer(v1) + Integer(v2), " "

end

produces:

7 11 15

Strings
Ruby strings are simply sequences of 8-bit bytes. They normally hold printable charac-

ters, but that is not a requirement; a string can also hold binary data. Strings are objects

of class String.

Strings are often created using string literals—sequences of characters between delim-

iters. Because binary data is otherwise difficult to represent within program source,

you can place various escape sequences in a string literal. Each is replaced with the

corresponding binary value as the program is compiled. The type of string delimiter

determines the degree of substitution performed. Within single-quoted strings, two con-

secutive backslashes are replaced by a single backslash, and a backslash followed by a

single quote becomes a single quote.

'escape using "\\"' → escape using "\"

'That\'s right' → That's right

Double-quoted strings support a boatload more escape sequences. The most common

is probably \n, the newline character. Table 22.2 on page 306 gives the complete list. In

addition, you can substitute the value of any Ruby code into a string using the sequence

#{ expr }. If the code is just a global variable, a class variable, or an instance variable,

you can omit the braces.

"Seconds/day: #{24*60*60}" → Seconds/day: 86400

"#{'Ho! '*3}Merry Christmas!" → Ho! Ho! Ho! Merry Christmas!

"This is line #$." → This is line 3

Prepared exclusively for Jose Sierra

STRINGS 58

The interpolated code can be one or more statements, not just an expression.1.8

puts "now is #{ def the(a)

'the ' + a

end

the('time')

} for all good coders..."

produces:

now is the time for all good coders...

You have three more ways to construct string literals: %q, %Q, and here documents.

%q and %Q start delimited single- and double-quoted strings (you can think of %q as a

thin quote ', and %Q as a thick quote ").

%q/general singlequoted string/ → general singlequoted string

%Q!general doublequoted string! → general doublequoted string

%Q{Seconds/day: #{24*60*60}} → Seconds/day: 86400

The character following the q or Q is the delimiter. If it is an opening bracket “[”, brace

“{”, parenthesis “(”, or less-than sign “<”, the string is read until the matching close

symbol is found. Otherwise the string is read until the next occurrence of the same

delimiter. The delimiter can be any nonalphanumeric or nonmultibyte character.1.8

Finally, you can construct a string using a here document.

string = <<END_OF_STRING

The body of the string

is the input lines up to

one ending with the same

text that followed the '<<'

END_OF_STRING

A here document consists of lines in the source up to, but not including, the terminating

string that you specify after the << characters. Normally, this terminator must start in

the first column. However, if you put a minus sign after the << characters, you can

indent the terminator.

print <<STRING1, <<STRING2

Concat

STRING1

enate

STRING2

produces:

Concat

enate

Note that Ruby does not strip leading spaces off the contents of the strings in these

cases.

Prepared exclusively for Jose Sierra

STRINGS 59

Working with Strings

String is probably the largest built-in Ruby class, with more than 75 standard methods.

We won’t go through them all here; the library reference has a complete list. Instead,

we’ll look at some common string idioms—things that are likely to pop up during day-

to-day programming.

Let’s get back to our jukebox. Although it’s designed to be connected to the Internet, it

also holds copies of some popular songs on a local hard drive. That way, if a squirrel

chews through our ’net connection, we’ll still be able to entertain the customers.

For historical reasons (are there any other kind?), the list of songs is stored as rows in

a flat file. Each row holds the name of the file containing the song, the song’s duration,

the artist, and the title, all in vertical bar–separated fields. A typical file may start

/jazz/j00132.mp3 | 3:45 | Fats Waller | Ain't Misbehavin'

/jazz/j00319.mp3 | 2:58 | Louis Armstrong | Wonderful World

/bgrass/bg0732.mp3| 4:09 | Strength in Numbers | Texas Red

: : : :

Looking at the data, it’s clear that we’ll be using some of class String’s many methods

to extract and clean up the fields before we create Song objects based on them. At a

minimum, we’ll need to

• break each line into fields,

• convert the running times from mm:ss to seconds, and

• remove those extra spaces from the artists’ names.

Our first task is to split each line into fields, and String#split will do the job nicely.

In this case, we’ll pass split a regular expression, /\s*\|\s*/, that splits the line

into tokens wherever split finds a vertical bar, optionally surrounded by spaces. And,

because the line read from the file has a trailing newline, we’ll use String#chomp to

strip it off just before we apply the split.

File.open("songdata") do |song_file|

songs = SongList.new

song_file.each do |line|

file, length, name, title = line.chomp.split(/\s*\|\s*/)

songs.append(Song.new(title, name, length))

end

puts songs[1]

end

produces:

Song: Wonderful WorldLouis Armstrong (2:58)

Unfortunately, whoever created the original file entered the artists’ names in columns,

so some of them contain extra spaces. These will look ugly on our high-tech, super-

twist, flat-panel, Day-Glo display, so we’d better remove these extra spaces before

Prepared exclusively for Jose Sierra

STRINGS 60

we go much further. We have many ways of doing this, but probably the simplest is

String#squeeze, which trims runs of repeated characters. We’ll use the squeeze!

form of the method, which alters the string in place.

File.open("songdata") do |song_file|

songs = SongList.new

song_file.each do |line|

file, length, name, title = line.chomp.split(/\s*\|\s*/)

name.squeeze!(" ")

songs.append(Song.new(title, name, length))

end

puts songs[1]

end

produces:

Song: Wonderful WorldLouis Armstrong (2:58)

Finally, we have the minor matter of the time format: the file says 2:58, and we want

the number of seconds, 178. We could use split again, this time splitting the time field

around the colon character.

mins, secs = length.split(/:/)

Instead, we’ll use a related method. String#scan is similar to split in that it breaks

a string into chunks based on a pattern. However, unlike split, with scan you specify

the pattern that you want the chunks to match. In this case, we want to match one or

more digits for both the minutes and seconds component. The pattern for one or more

digits is /\d+/.

File.open("songdata") do |song_file|

songs = SongList.new

song_file.each do |line|

file, length, name, title = line.chomp.split(/\s*\|\s*/)

name.squeeze!(" ")

mins, secs = length.scan(/\d+/)

songs.append(Song.new(title, name, mins.to_i*60+secs.to_i))

end

puts songs[1]

end

produces:

Song: Wonderful WorldLouis Armstrong (178)

Our jukebox has a keyword search capability. Given a word from a song title or an

artist’s name, it will list all matching tracks. Type in fats, and it may come back with

songs by Fats Domino, Fats Navarro, and Fats Waller, for example. We’ll implement

this by creating an indexing class. Feed it an object and some strings, and it will index

that object under every word (of two or more characters) that occurs in those strings.

This will illustrate a few more of class String’s many methods.

Prepared exclusively for Jose Sierra

STRINGS 61

class WordIndex

def initialize

@index = {}

end

def add_to_index(obj, *phrases)

phrases.each do |phrase|

phrase.scan(/\w[\w']+/) do |word| # extract each word

word.downcase!

@index[word] = [] if @index[word].nil?

@index[word].push(obj)

end

end

end

def lookup(word)

@index[word.downcase]

end

end

The String#scan method extracts elements from a string that match a regular expres-

sion. In this case, the pattern \w[\w']+ matches any character that can appear in a

word, followed by one or more of the things specified in the brackets (a hyphen, another

word character, or a single quote). We’ll talk more about regular expressions beginning

on page 64. To make our searches case insensitive, we map both the words we extract

and the words used as keys during the lookup to lowercase. Note the exclamation mark

at the end of the first downcase! method name. As with the squeeze! method we used

previously, this is an indication that the method will modify the receiver in place, in

this case converting the string to lowercase.1

We’ll extend our SongList class to index songs as they’re added and add a method to

look up a song given a word.

class SongList

def initialize

@songs = Array.new

@index = WordIndex.new

end

def append(song)

@songs.push(song)

@index.add_to_index(song, song.name, song.artist)

self

end

def lookup(word)

@index.lookup(word)

end

end

1. This code sample contains a minor bug: the song “Gone, Gone, Gone” would get indexed three times.

Can you come up with a fix?

Prepared exclusively for Jose Sierra

RANGES 62

Finally, we’ll test it all.

songs = SongList.new

song_file.each do |line|

file, length, name, title = line.chomp.split(/\s*\|\s*/)

name.squeeze!(" ")

mins, secs = length.scan(/\d+/)

songs.append(Song.new(title, name, mins.to_i*60+secs.to_i))

end

puts songs.lookup("Fats")

puts songs.lookup("ain't")

puts songs.lookup("RED")

puts songs.lookup("WoRlD")

produces:

Song: Ain't Misbehavin'Fats Waller (225)

Song: Ain't Misbehavin'Fats Waller (225)

Song: Texas RedStrength in Numbers (249)

Song: Wonderful WorldLouis Armstrong (178)

In the preceding code, the lookup method returns an array of matches. When we pass

an array to puts, it simply writes each element in turn, separated by a newline.

We could spend the next 50 pages looking at all the methods in class String. However,

let’s move on instead to look at a simpler data type: the range.

Ranges
Ranges occur everywhere: January to December, 0 to 9, rare to well-done, lines 50

through 67, and so on. If Ruby is to help us model reality, it seems natural for it to

support these ranges. In fact, Ruby goes one better: it actually uses ranges to implement

three separate features: sequences, conditions, and intervals.

Ranges as Sequences

The first and perhaps most natural use of ranges is to express a sequence. Sequences

have a start point, an end point, and a way to produce successive values in the sequence.

In Ruby, these sequences are created using the “. .” and “. . .” range operators. The two-

dot form creates an inclusive range, and the three-dot form creates a range that excludes

the specified high value.

1..10

'a'..'z'

my_array = [1, 2, 3]

0...my_array.length

Prepared exclusively for Jose Sierra

RANGES 63

In Ruby, unlike in some earlier versions of Perl, ranges are not represented internally

as lists: the sequence 1..100000 is held as a Range object containing references to two

Fixnum objects. If you need to, you can convert a range to a list using the to_a method.

(1..10).to_a → [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

('bar'..'bat').to_a → ["bar", "bas", "bat"]

Ranges implement methods that let you iterate over them and test their contents in a

variety of ways.

digits = 0..9

digits.include?(5) → true

digits.min → 0

digits.max → 9

digits.reject {|i| i < 5 } → [5, 6, 7, 8, 9]

digits.each {|digit| dial(digit) } → 0..9

So far we’ve shown ranges of numbers and strings. However, as you’d expect from

an object-oriented language, Ruby can create ranges based on objects that you define.

The only constraints are that the objects must respond to succ by returning the next

object in sequence and the objects must be comparable using <=>. Sometimes called

the spaceship operator, <=> compares two values, returning −1, 0, or +1 depending

on whether the first is less than, equal to, or greater than the second.

Here’s a simple class that represents rows of # signs. We may want to use it as a text-

based version of the jukebox volume control.

class VU

include Comparable

attr :volume

def initialize(volume) # 0..9

@volume = volume

end

def inspect

'#' * @volume

end

Support for ranges

def <=>(other)

self.volume <=> other.volume

end

def succ

raise(IndexError, "Volume too big") if @volume >= 9

VU.new(@volume.succ)

end

end

Because our VU class implements succ and <=>, it can participate in ranges.

medium_volume = VU.new(4)..VU.new(7)

medium_volume.to_a → [####, #####, ######, #######]

medium_volume.include?(VU.new(3)) → false

Prepared exclusively for Jose Sierra

REGULAR EXPRESSIONS 64

Ranges as Conditions

As well as representing sequences, ranges may also be used as conditional expressions.

Here, they act as a kind of toggle switch—they turn on when the condition in the first

part of the range becomes true, and they turn off when the condition in the second

part becomes true. For example, the following code fragment prints sets of lines from

standard input, where the first line in each set contains the word start and the last line

contains the word end.

while line = gets

puts line if line =~ /start/ .. line =~ /end/

end

Behind the scenes, the range keeps track of the state of each of the tests. We’ll show

some examples of this in the description of loops that starts on page 94 and in the

language section on page 327.

In older versions of Ruby, bare ranges could be used as conditions in if, while, and

similar statements.1.8 You could, for example, have written the previous code fragment as

while gets

print if /start/../end/

end

This is no longer supported. Unfortunately, no error is raised; the test will simply suc-

ceed each time.

Ranges as Intervals

A final use of the versatile range is as an interval test: seeing if some value falls within

the interval represented by the range. We do this using ===, the case equality operator.

(1..10) === 5 → true

(1..10) === 15 → false

(1..10) === 3.14159 → true

('a'..'j') === 'c' → true

('a'..'j') === 'z' → false

The example of a case expression on page 92 shows this test in action, determining a

jazz style given a year.

Regular Expressions
Back on page 59 when we were creating a song list from a file, we used a regular

expression to match the field delimiter in the input file. We claimed that the expression

line.split(/\s*\|\s*/) matched a vertical bar surrounded by optional whitespace.

Let’s explore regular expressions in more detail to see why this claim is true.

Prepared exclusively for Jose Sierra

REGULAR EXPRESSIONS 65

Regular expressions are used to match patterns against strings. Ruby provides built-

in support that makes pattern matching and substitution convenient and concise. In this

section we’ll work through all the main features of regular expressions. We won’t cover

some details here: have a look at page 309 for more information.

Regular expressions are objects of type Regexp. They can be created by calling the

constructor explicitly or by using the literal forms /pattern/ and %r{pattern}.

a = Regexp.new('^\s*[az]') → /^\s*[az]/

b = /^\s*[az]/ → /^\s*[az]/

c = %r{^\s*[az]} → /^\s*[az]/

Once you have a regular expression object, you can match it against a string using

Regexp#match(string) or the match operators =~ (positive match) and !~ (negative

match). The match operators are defined for both String and Regexp objects. At least

one operand of the match operator must be a regular expression.1.8 (In previous versions

of Ruby, both could be strings, in which case the second operand was converted into a

regular expression behind the scenes.)

name = "Fats Waller"

name =~ /a/ → 1

name =~ /z/ → nil

/a/ =~ name → 1

The match operators return the character position at which the match occurred. They

also have the side effect of setting a whole load of Ruby variables. $& receives the part

of the string that was matched by the pattern, $` receives the part of the string that

preceded the match, and $' receives the string after the match. We can use this to write

a method, show_regexp, that illustrates where a particular pattern matches.

def show_regexp(a, re)

if a =~ re

"#{$`}<<#{$&}>>#{$'}"

else

"no match"

end

end

show_regexp('very interesting', /t/) → very in<<t>>eresting

show_regexp('Fats Waller', /a/) → F<<a>>ts Waller

show_regexp('Fats Waller', /ll/) → Fats Wa<<ll>>er

show_regexp('Fats Waller', /z/) → no match

The match also sets the thread-local variables $~ and $1 through $9. The variable $~ is

a MatchData object (described beginning on page 516) that holds everything you may

want to know about the match. $1, and so on, hold the values of parts of the match.

We’ll talk about these later. And for people who cringe when they see these Perl-like

variable names, stay tuned. There’s good news at the end of the chapter.

Prepared exclusively for Jose Sierra

REGULAR EXPRESSIONS 66

Patterns

Every regular expression contains a pattern, which is used to match the regular expres-

sion against a string.

Within a pattern, all characters except ., |, (,), [,], {, }, +, \, ^, $, *, and ? match

themselves.

show_regexp('kangaroo', /angar/) → k<<angar>>oo

show_regexp('!@%&_=+', /%&/) → !@<<%&>>_=+

If you want to match one of these special characters literally, precede it with a back-

slash. This explains part of the pattern we used to split the song line, /\s*\|\s*/.

The \| means “match a vertical bar.” Without the backslash, the | would have meant

alternation (which we’ll describe later).

show_regexp('yes | no', /\|/) → yes <<|>> no

show_regexp('yes (no)', /\(no\)/) → yes <<(no)>>

show_regexp('are you sure?', /e\?/) → are you sur<<e?>>

A backslash followed by an alphanumeric character is used to introduce a special match

construct, which we’ll cover later. In addition, a regular expression may contain #{...}

expression substitutions.

Anchors

By default, a regular expression will try to find the first match for the pattern in a string.

Match /iss/ against the string “Mississippi,” and it will find the substring “iss” starting

at position one. But what if you want to force a pattern to match only at the start or end

of a string?

The patterns ^ and $ match the beginning and end of a line, respectively. These are often

used to anchor a pattern match: for example, /^option/ matches the word option only

if it appears at the start of a line. The sequence \A matches the beginning of a string,

and \z and \Z match the end of a string. (Actually, \Z matches the end of a string unless

the string ends with a \n, it which case it matches just before the \n.)

show_regexp("this is\nthe time", /^the/) → this is\n<<the>> time

show_regexp("this is\nthe time", /is$/) → this <<is>>\nthe time

show_regexp("this is\nthe time", /\Athis/) → <<this>> is\nthe time

show_regexp("this is\nthe time", /\Athe/) → no match

Similarly, the patterns \b and \B match word boundaries and nonword boundaries,

respectively. Word characters are letters, numbers, and underscores.

show_regexp("this is\nthe time", /\bis/) → this <<is>>\nthe time

show_regexp("this is\nthe time", /\Bis/) → th<<is>> is\nthe time

Prepared exclusively for Jose Sierra

REGULAR EXPRESSIONS 67

Character Classes

A character class is a set of characters between brackets: [characters] matches any

single character between the brackets. [aeiou] will match a vowel, [,.:;!?] matches

punctuation, and so on. The significance of the special regular expression characters—

.|()[{+^$*?—is turned off inside the brackets. However, normal string substitution

still occurs, so (for example) \b represents a backspace character and \n a newline

(see Table 22.2 on page 306). In addition, you can use the abbreviations shown in

Table 5.1 on the next page so that (for example) \s matches any whitespace character,

not just a literal space. The POSIX character classes in the second half of the table

correspond to the ctype(3) macros of the same names.

show_regexp('Price $12.', /[aeiou]/) → Pr<<i>>ce $12.

show_regexp('Price $12.', /[\s]/) → Price<< >>$12.

show_regexp('Price $12.', /[[:digit:]]/) → Price $<<1>>2.

show_regexp('Price $12.', /[[:space:]]/) → Price<< >>$12.

show_regexp('Price $12.', /[[:punct:]aeiou]/) → Pr<<i>>ce $12.

Within the brackets, the sequence c1-c2 represents all the characters between c1 and c2,

inclusive.

a = 'see [Design Patternspage 123]'

show_regexp(a, /[AF]/) → see [<<D>>esign Patternspage 123]

show_regexp(a, /[AFaf]/) → s<<e>>e [Design Patternspage 123]

show_regexp(a, /[09]/) → see [Design Patternspage <<1>>23]

show_regexp(a, /[09][09]/) → see [Design Patternspage <<12>>3]

If you want to include the literal characters] and within a character class, they must

appear at the start. Put a ^ immediately after the opening bracket to negate a character

class: [^az] matches any character that isn’t a lowercase alphabetic.

a = 'see [Design Patternspage 123]'

show_regexp(a, /[]]/) → see [Design Patternspage 123<<]>>

show_regexp(a, /[]/) → see [Design Patterns<<>>page 123]

show_regexp(a, /[^az]/) → see<< >>[Design Patternspage 123]

show_regexp(a, /[^az\s]/) → see <<[>>Design Patternspage 123]

Some character classes are used so frequently that Ruby provides abbreviations for

them. These abbreviations are listed in Table 5.1 on the following page—they may be

used both within brackets and in the body of a pattern.

show_regexp('It costs $12.', /\s/) → It<< >>costs $12.

show_regexp('It costs $12.', /\d/) → It costs $<<1>>2.

Finally, a period (.) appearing outside brackets represents any character except a new-

line (though in multiline mode it matches a newline, too).

a = 'It costs $12.'

show_regexp(a, /c.s/) → It <<cos>>ts $12.

show_regexp(a, /./) → <<I>>t costs $12.

show_regexp(a, /\./) → It costs $12<<.>>

Prepared exclusively for Jose Sierra

REGULAR EXPRESSIONS 68

Table 5.1. Character class abbreviations

Sequence As [. . .] Meaning

\d [0-9] Digit character

\D [^0-9] Any character except a digit

\s [\t\r\n\f] Whitespace character

\S [^ \t\r\n\f] Any character except whitespace

\w [A-Za-z0-9_] Word character

\W [^A-Za-z0-9_] Any character except a word character

POSIX Character Classes

[:alnum:] Alphanumeric

[:alpha:] Uppercase or lowercase letter

[:blank:] Blank and tab

[:cntrl:] Control characters (at least 0x00–0x1f, 0x7f)

[:digit:] Digit

[:graph:] Printable character excluding space

[:lower:] Lowercase letter

[:print:] Any printable character (including space)

[:punct:] Printable character excluding space and alphanumeric

[:space:] Whitespace (same as \s)

[:upper:] Uppercase letter

[:xdigit:] Hex digit (0–9, a–f, A–F)

Repetition

When we specified the pattern that split the song list line, /\s*\|\s*/, we said we

wanted to match a vertical bar surrounded by an arbitrary amount of whitespace. We

now know that the \s sequences match a single whitespace character, so it seems likely

that the asterisks somehow mean “an arbitrary amount.” In fact, the asterisk is one of a

number of modifiers that allow you to match multiple occurrences of a pattern.

If r stands for the immediately preceding regular expression within a pattern, then

r* matches zero or more occurrences of r.

r+ matches one or more occurrences of r.

r? matches zero or one occurrence of r.

r{m,n} matches at least “m” and at most “n” occurrences of r.

r{m,} matches at least “m” occurrences of r.

r{m} matches exactly “m” occurrences of r.

These repetition constructs have a high precedence—they bind only to the immediately

preceding regular expression in the pattern. /ab+/ matches an a followed by one or

Prepared exclusively for Jose Sierra

REGULAR EXPRESSIONS 69

more b’s, not a sequence of ab’s. You have to be careful with the * construct too—the

pattern /a*/ will match any string; every string has zero or more a’s.

These patterns are called greedy, because by default they will match as much of the

string as they can. You can alter this behavior, and have them match the minimum, by

adding a question mark suffix.

a = "The moon is made of cheese"

show_regexp(a, /\w+/) → <<The>> moon is made of cheese

show_regexp(a, /\s.*\s/) → The<< moon is made of >>cheese

show_regexp(a, /\s.*?\s/) → The<< moon >>is made of cheese

show_regexp(a, /[aeiou]{2,99}/) → The m<<oo>>n is made of cheese

show_regexp(a, /mo?o/) → The <<moo>>n is made of cheese

Alternation

We know that the vertical bar is special, because our line-splitting pattern had to escape

it with a backslash. That’s because an unescaped vertical bar (|) matches either the

regular expression that precedes it or the regular expression that follows it.

a = "red ball blue sky"

show_regexp(a, /d|e/) → r<<e>>d ball blue sky

show_regexp(a, /al|lu/) → red b<<al>>l blue sky

show_regexp(a, /red ball|angry sky/) → <<red ball>> blue sky

There’s a trap for the unwary here, as | has a very low precedence. The last example

above matches red ball or angry sky, not red ball sky or red angry sky. To match red

ball sky or red angry sky, you’d need to override the default precedence using grouping.

Grouping

You can use parentheses to group terms within a regular expression. Everything within

the group is treated as a single regular expression.

show_regexp('banana', /an*/) → b<<an>>ana

show_regexp('banana', /(an)*/) → <<>>banana

show_regexp('banana', /(an)+/) → b<<anan>>a

a = 'red ball blue sky'

show_regexp(a, /blue|red/) → <<red>> ball blue sky

show_regexp(a, /(blue|red) \w+/) → <<red ball>> blue sky

show_regexp(a, /(red|blue) \w+/) → <<red ball>> blue sky

show_regexp(a, /red|blue \w+/) → <<red>> ball blue sky

show_regexp(a, /red (ball|angry) sky/) → no match

a = 'the red angry sky'

show_regexp(a, /red (ball|angry) sky/) → the <<red angry sky>>

Parentheses also collect the results of pattern matching. Ruby counts opening parenthe-

ses, and for each stores the result of the partial match between it and the corresponding

closing parenthesis. You can use this partial match both within the rest of the pattern

Prepared exclusively for Jose Sierra

REGULAR EXPRESSIONS 70

and in your Ruby program. Within the pattern, the sequence \1 refers to the match of

the first group, \2 the second group, and so on. Outside the pattern, the special variables

$1, $2, and so on, serve the same purpose.

"12:50am" =~ /(\d\d):(\d\d)(..)/ → 0

"Hour is #$1, minute #$2" → "Hour is 12, minute 50"

"12:50am" =~ /((\d\d):(\d\d))(..)/ → 0

"Time is #$1" → "Time is 12:50"

"Hour is #$2, minute #$3" → "Hour is 12, minute 50"

"AM/PM is #$4" → "AM/PM is am"

The ability to use part of the current match later in that match allows you to look for

various forms of repetition.

match duplicated letter

show_regexp('He said "Hello"', /(\w)\1/) → He said "He<<ll>>o"

match duplicated substrings

show_regexp('Mississippi', /(\w+)\1/) → M<<ississ>>ippi

You can also use back references to match delimiters.

show_regexp('He said "Hello"', /(["']).*?\1/) → He said

<<"Hello">>

show_regexp("He said 'Hello'", /(["']).*?\1/) → He said

<<'Hello'>>

Pattern-Based Substitution

Sometimes finding a pattern in a string is good enough. If a friend challenges you to

find a word that contains the letters a, b, c, d, and e in order, you could search a word

list with the pattern /a.*b.*c.*d.*e/ and find abjectedness, absconded, ambuscade,

and carbacidometer, among others. That has to be worth something.

However, sometimes you need to change things based on a pattern match. Let’s go

back to our song list file. Whoever created it entered all the artists’ names in lowercase.

When we display them on our jukebox’s screen, they’d look better in mixed case. How

can we change the first character of each word to uppercase?

The methods String#sub and String#gsub look for a portion of a string matching

their first argument and replace it with their second argument. String#sub performs

one replacement, and String#gsub replaces every occurrence of the match. Both rou-

tines return a new copy of the String containing the substitutions. Mutator versions

String#sub! and String#gsub! modify the original string.

a = "the quick brown fox"

a.sub(/[aeiou]/, '*') → "th* quick brown fox"

a.gsub(/[aeiou]/, '*') → "th* q**ck br*wn f*x"

a.sub(/\s\S+/, '') → "the brown fox"

a.gsub(/\s\S+/, '') → "the"

Prepared exclusively for Jose Sierra

REGULAR EXPRESSIONS 71

The second argument to both functions can be either a String or a block. If a block is

used, it is passed the matching substring, and the block’s value is substituted into the

original string.

a = "the quick brown fox"

a.sub(/^./) {|match| match.upcase } → "The quick brown fox"

a.gsub(/[aeiou]/) {|vowel| vowel.upcase } → "thE qUIck brOwn fOx"

So, this looks like the answer to converting our artists’ names. The pattern that matches

the first character of a word is \b\w—look for a word boundary followed by a word

character. Combine this with gsub, and we can hack the artists’ names.

def mixed_case(name)

name.gsub(/\b\w/) {|first| first.upcase }

end

mixed_case("fats waller") → "Fats Waller"

mixed_case("louis armstrong") → "Louis Armstrong"

mixed_case("strength in numbers") → "Strength In Numbers"

Backslash Sequences in the Substitution

Earlier we noted that the sequences \1, \2, and so on, are available in the pattern,

standing for the nth group matched so far. The same sequences are available in the

second argument of sub and gsub.

"fred:smith".sub(/(\w+):(\w+)/, '\2, \1') → "smith, fred"

"nercpyitno".gsub(/(.)(.)/, '\2\1') → "encryption"

Additional backslash sequences work in substitution strings: \& (last match), \+ (last

matched group), \` (string prior to match), \' (string after match), and \\ (a literal

backslash).

It gets confusing if you want to include a literal backslash in a substitution. The obvious

thing is to write

str.gsub(/\\/, '\\\\')

Clearly, this code is trying to replace each backslash in str with two. The programmer

doubled up the backslashes in the replacement text, knowing that they’d be converted

to \\ in syntax analysis. However, when the substitution occurs, the regular expression

engine performs another pass through the string, converting \\ to \, so the net effect

is to replace each single backslash with another single backslash. You need to write

gsub(/\\/, '\\\\\\\\')!

str = 'a\b\c' → "a\b\c"

str.gsub(/\\/, '\\\\\\\\') → "a\\b\\c"

However, using the fact that \& is replaced by the matched string, you could also write

str = 'a\b\c' → "a\b\c"

str.gsub(/\\/, '\&\&') → "a\\b\\c"

Prepared exclusively for Jose Sierra

REGULAR EXPRESSIONS 72

If you use the block form of gsub, the string for substitution is analyzed only once

(during the syntax pass) and the result is what you intended.

str = 'a\b\c' → "a\b\c"

str.gsub(/\\/) { '\\\\' } → "a\\b\\c"

Finally, as an example of the wonderful expressiveness of combining regular expres-

sions with code blocks, consider the following code fragment from the CGI library

module, written by Wakou Aoyama. The code takes a string containing HTML escape

sequences and converts it into normal ASCII. Because it was written for a Japanese

audience, it uses the n modifier on the regular expressions, which turns off wide-

character processing. It also illustrates Ruby’s case expression, which we discuss start-

ing on page 92.

def unescapeHTML(string)

str = string.dup

str.gsub!(/&(.*?);/n) {

match = $1.dup

case match

when /\Aamp\z/ni then '&'

when /\Aquot\z/ni then '"'

when /\Agt\z/ni then '>'

when /\Alt\z/ni then '<'

when /\A#(\d+)\z/n then Integer($1).chr

when /\A#x([09af]+)\z/ni then $1.hex.chr

end

}

str

end

puts unescapeHTML("1<2 && 4>3")

puts unescapeHTML(""A" = A = A")

produces:

1<2 && 4>3

"A" = A = A

Object-Oriented Regular Expressions

We have to admit that while all these weird variables are very convenient to use, they

aren’t very object oriented, and they’re certainly cryptic. And didn’t we say that every-

thing in Ruby was an object? What has gone wrong here?

Nothing, really. It’s just that when Matz designed Ruby, he produced a fully object-

oriented regular expression handling system. He then made it look familiar to Perl

programmers by wrapping all these $-variables on top of it all. The objects and classes

are still there, underneath the surface. So let’s spend a while digging them out.

We’ve already come across one class: regular expression literals create instances of

class Regexp (documented beginning on page 579).

Prepared exclusively for Jose Sierra

REGULAR EXPRESSIONS 73

re = /cat/

re.class → Regexp

The method Regexp#match matches a regular expression against a string. If unsuc-

cessful, the method returns nil. On success, it returns an instance of class MatchData,

documented beginning on page 516. And that MatchData object gives you access to

all available information about the match. All that good stuff that you can get from the

$-variables is bundled in a handy little object.

re = /(\d+):(\d+)/ # match a time hh:mm

md = re.match("Time: 12:34am")

md.class → MatchData

md[0] # == $& → "12:34"

md[1] # == $1 → "12"

md[2] # == $2 → "34"

md.pre_match # == $` → "Time: "

md.post_match # == $' → "am"

Because the match data is stored in its own object, you can keep the results of two

or more pattern matches available at the same time, something you can’t do using the

$-variables. In the next example, we’re matching the same Regexp object against two

strings. Each match returns a unique MatchData object, which we verify by examining

the two subpattern fields.

re = /(\d+):(\d+)/ # match a time hh:mm

md1 = re.match("Time: 12:34am")

md2 = re.match("Time: 10:30pm")

md1[1, 2] → ["12", "34"]

md2[1, 2] → ["10", "30"]

So how do the $-variables fit in? Well, after every pattern match, Ruby stores a refer-

ence to the result (nil or a MatchData object) in a thread-local variable (accessible

using $~). All the other regular expression variables are then derived from this object.

Although we can’t really think of a use for the following code, it demonstrates that all

the other MatchData-related $-variables are indeed slaved off the value in $~.

re = /(\d+):(\d+)/

md1 = re.match("Time: 12:34am")

md2 = re.match("Time: 10:30pm")

[$1, $2] # last successful match → ["10", "30"]

$~ = md1

[$1, $2] # previous successful match → ["12", "34"]

Having said all this, we have to ’fess up. We normally use the $-variables rather than

worrying about MatchData objects. For everyday use, they just end up being more

convenient. Sometimes we just can’t help being pragmatic.

Prepared exclusively for Jose Sierra

Chapter 6

More about Methods

So far in this book, we’ve been defining and using methods without much thought. Now

it’s time to get into the details.

Defining a Method
As we’ve seen, a method is defined using the keyword def. Method names should begin

with a lowercase letter.1 Methods that act as queries are often named with a trailing ?,

such as instance_of?. Methods that are “dangerous,” or modify the receiver, may

be named with a trailing !. For instance, String provides both a chop and a chop!.

The first one returns a modified string; the second modifies the receiver in place. And

methods that can be assigned to (a feature we discussed on page 29) end with an equals

sign (=). ?, !, and = are the only “weird” characters allowed as method name suffixes.

Now that we’ve specified a name for our new method, we may need to declare some

parameters. These are simply a list of local variable names in parentheses. (The paren-

theses are optional around a method’s arguments; our convention is to use them when

a method has arguments and omit them when it doesn’t.)

def my_new_method(arg1, arg2, arg3) # 3 arguments

Code for the method would go here

end

def my_other_new_method # No arguments

Code for the method would go here

end

Ruby lets you specify default values for a method’s arguments—values that will be used

if the caller doesn’t pass them explicitly. You do this using the assignment operator.

1. You won’t get an immediate error if you use an uppercase letter, but when Ruby sees you calling the

method, it will first guess that it is a constant, not a method invocation, and as a result it may parse the call

incorrectly.

74Prepared exclusively for Jose Sierra

DEFINING A METHOD 75

def cool_dude(arg1="Miles", arg2="Coltrane", arg3="Roach")

"#{arg1}, #{arg2}, #{arg3}."

end

cool_dude → "Miles, Coltrane, Roach."

cool_dude("Bart") → "Bart, Coltrane, Roach."

cool_dude("Bart", "Elwood") → "Bart, Elwood, Roach."

cool_dude("Bart", "Elwood", "Linus") → "Bart, Elwood, Linus."

The body of a method contains normal Ruby expressions, except that you may not

define a nonsingleton class or module within a method. If you define a method inside

another method,1.8 the inner method gets defined when the outer method executes. The

return value of a method is the value of the last expression executed or the result of an

explicit return expression.

Variable-Length Argument Lists

But what if you want to pass in a variable number of arguments or want to capture

multiple arguments into a single parameter? Placing an asterisk before the name of the

parameter after the “normal” parameters does just that.

def varargs(arg1, *rest)

"Got #{arg1} and #{rest.join(', ')}"

end

varargs("one") → "Got one and "

varargs("one", "two") → "Got one and two"

varargs "one", "two", "three" → "Got one and two, three"

In this example, the first argument is assigned to the first method parameter as usual.

However, the next parameter is prefixed with an asterisk, so all the remaining arguments

are bundled into a new Array, which is then assigned to that parameter.

Methods and Blocks

As we discussed in the section on blocks and iterators beginning on page 46, when a

method is called, it may be associated with a block. Normally, you simply call the block

from within the method using yield.

def take_block(p1)

if block_given?

yield(p1)

else

p1

end

end

take_block("no block") → "no block"

take_block("no block") {|s| s.sub(/no /, '') } → "block"

Prepared exclusively for Jose Sierra

CALLING A METHOD 76

However, if the last parameter in a method definition is prefixed with an ampersand,

any associated block is converted to a Proc object, and that object is assigned to the

parameter.

class TaxCalculator

def initialize(name, &block)

@name, @block = name, block

end

def get_tax(amount)

"#@name on #{amount} = #{ @block.call(amount) }"

end

end

tc = TaxCalculator.new("Sales tax") {|amt| amt * 0.075 }

tc.get_tax(100) → "Sales tax on 100 = 7.5"

tc.get_tax(250) → "Sales tax on 250 = 18.75"

Calling a Method
You call a method by specifying a receiver, the name of the method, and optionally

some parameters and an optional block.

connection.download_MP3("jitterbug") {|p| show_progress(p) }

In this example, the object connection is the receiver, download_MP3 is the name

of the method, "jitterbug" is the parameter, and the stuff between the braces is the

associated block.

For class and module methods, the receiver will be the class or module name.

File.size("testfile") → 66

Math.sin(Math::PI/4) → 0.707106781186548

If you omit the receiver, it defaults to self, the current object.

self.class → Object

self.frozen? → false

frozen? → false

self.object_id → 969948

object_id → 969948

This defaulting mechanism is how Ruby implements private methods. Private methods

may not be called with a receiver, so they must be methods available in the current

object.

Also, in the previous example we called self.class, but we could not call the method

class without a receiver. This is because class is also a keyword in Ruby (it intro-

duces class definitions), so its stand-alone use would generate a syntax error.

Prepared exclusively for Jose Sierra

CALLING A METHOD 77

The optional parameters follow the method name. If no ambiguity exists, you can omit

the parentheses around the argument list when calling a method.2 However, except in

the simplest cases we don’t recommend this—some subtle problems can trip you up.3

Our rule is simple: if you have any doubt, use parentheses.

a = obj.hash # Same as

a = obj.hash() # this.

obj.some_method "Arg1", arg2, arg3 # Same thing as

obj.some_method("Arg1", arg2, arg3) # with parentheses.

Older Ruby versions compounded the problem by allowing you to put spaces between

the method name and the opening parenthesis. This made it hard to parse: is the paren-

thesis the start of the parameters or the start of an expression? As of Ruby 1.81.8 you get

a warning if you put a space between a method name and an open parenthesis.

Method Return Values

Every called method returns a value (although no rule says you have to use that value).

The value of a method is the value of the last statement executed during the method’s

execution. Ruby has a return statement, which exits from the currently executing

method. The value of a return is the value of its argument(s). It is idiomatic Ruby

to omit the return if it isn’t needed.

def meth_one

"one"

end

meth_one → "one"

def meth_two(arg)

case

when arg > 0

"positive"

when arg < 0

"negative"

else

"zero"

end

end

meth_two(23) → "positive"

meth_two(0) → "zero"

2. Other Ruby documentation sometimes calls these method calls without parentheses commands.

3. In particular, you must use parentheses on a method call that is itself a parameter to another method

call (unless it is the last parameter).

Prepared exclusively for Jose Sierra

CALLING A METHOD 78

def meth_three

100.times do |num|

square = num*num

return num, square if square > 1000

end

end

meth_three → [32, 1024]

As the last case illustrates, if you give return multiple parameters, the method returns

them in an array. You can use parallel assignment to collect this return value.

num, square = meth_three

num → 32

square → 1024

Expanding Arrays in Method Calls

Earlier we saw that if you put an asterisk in front of a formal parameter in a method

definition, multiple arguments in the call to the method will be bundled into an array.

Well, the same thing works in reverse.

When you call a method, you can explode an array, so that each of its members is taken

as a separate parameter. Do this by prefixing the array argument (which must follow all

the regular arguments) with an asterisk.

def five(a, b, c, d, e)

"I was passed #{a} #{b} #{c} #{d} #{e}"

end

five(1, 2, 3, 4, 5) → "I was passed 1 2 3 4 5"

five(1, 2, 3, *['a', 'b']) → "I was passed 1 2 3 a b"

five(*(10..14).to_a) → "I was passed 10 11 12 13 14"

Making Blocks More Dynamic

We’ve already seen how to associate a block with a method call.

list_bones("aardvark") do |bone|

...

end

Normally, this is perfectly good enough—you associate a fixed block of code with a

method in the same way you’d have a chunk of code after an if or while statement.

Sometimes, however, you’d like to be more flexible. For example, we may be teaching

math skills.4 The student could ask for an n-plus table or an n-times table. If the student

4. Of course, Andy and Dave would have to learn math skills first. Conrad Schneiker reminded us that

there are three kinds of people: those who can count and those who can’t.

Prepared exclusively for Jose Sierra

CALLING A METHOD 79

asked for a 2-times table, we’d output 2, 4, 6, 8, and so on. (This code does not check

its inputs for errors.)

print "(t)imes or (p)lus: "

times = gets

print "number: "

number = Integer(gets)

if times =~ /^t/

puts((1..10).collect {|n| n*number }.join(", "))

else

puts((1..10).collect {|n| n+number }.join(", "))

end

produces:

(t)imes or (p)lus: t

number: 2

2, 4, 6, 8, 10, 12, 14, 16, 18, 20

This works, but it’s ugly, with virtually identical code on each branch of the if state-

ment. It would be nice if we could factor out the block that does the calculation.

print "(t)imes or (p)lus: "

times = gets

print "number: "

number = Integer(gets)

if times =~ /^t/

calc = lambda {|n| n*number }

else

calc = lambda {|n| n+number }

end

puts((1..10).collect(&calc).join(", "))

produces:

(t)imes or (p)lus: t

number: 2

2, 4, 6, 8, 10, 12, 14, 16, 18, 20

If the last argument to a method is preceded by an ampersand, Ruby assumes that it

is a Proc object. It removes it from the parameter list, converts the Proc object into a

block, and associates it with the method.

Collecting Hash Arguments

Some languages feature keyword arguments—that is, instead of passing arguments in a

given order and quantity, you pass the name of the argument with its value, in any order.

Ruby 1.8 does not have keyword arguments (making us liars, because in the previous

version of this book we said it would have. Perhaps in Ruby 2.0). In the meantime,

people are using hashes as a way of achieving the same effect. For example, we could

consider adding a more powerful named-search facility to our SongList.

Prepared exclusively for Jose Sierra

CALLING A METHOD 80

class SongList

def create_search(name, params)

...

end

end

list.create_search("short jazz songs",

{

'genre' => "jazz",

'duration_less_than' => 270

})

The first parameter is the search name, and the second is a hash literal containing search

parameters. The use of a hash means we can simulate keywords: look for songs with a

genre of “jazz” and a duration less than 4 1
2 minutes. However, this approach is slightly

clunky, and that set of braces could easily be mistaken for a block associated with the

method. So, Ruby has a shortcut. You can place key => value pairs in an argument list, as

long as they follow any normal arguments and precede any array and block arguments.

All these pairs will be collected into a single hash and passed as one argument to the

method. No braces are needed.

list.create_search('short jazz songs',

'genre' => 'jazz',

'duration_less_than' => 270)

Finally, in idiomatic Ruby you’d probably use symbols rather than strings, as symbols

make it clearer that you’re referring to the name of something.

list.create_search('short jazz songs',

:genre => :jazz,

:duration_less_than => 270)

A well-written Ruby program will typically contain many methods, each quite small,

so it’s worth getting familiar with the options available when defining and using Ruby

methods.

Prepared exclusively for Jose Sierra

Chapter 7

Expressions

So far we’ve been fairly cavalier in our use of expressions in Ruby. After all, a = b + c is

pretty standard stuff. You could write a whole heap of Ruby code without reading any

of this chapter.

But it wouldn’t be as much fun ;).

One of the first differences with Ruby is that anything that can reasonably return a value

does: just about everything is an expression. What does this mean in practice?

Some obvious things include the ability to chain statements together.

a = b = c = 0 → 0

[3, 1, 7, 0].sort.reverse → [7, 3, 1, 0]

Perhaps less obvious, things that are normally statements in C or Java are expressions

in Ruby. For example, the if and case statements both return the value of the last

expression executed.

song_type = if song.mp3_type == MP3::Jazz

if song.written < Date.new(1935, 1, 1)

Song::TradJazz

else

Song::Jazz

end

else

Song::Other

end

rating = case votes_cast

when 0...10 then Rating::SkipThisOne

when 10...50 then Rating::CouldDoBetter

else Rating::Rave

end

We’ll talk more about if and case starting on page 90.

81Prepared exclusively for Jose Sierra

OPERATOR EXPRESSIONS 82

Operator Expressions
Ruby has the basic set of operators (+, -, *, /, and so on) as well as a few surprises. A

complete list of the operators, and their precedences, is given in Table 22.4 on page 324.

In Ruby, many operators are actually implemented as method calls. For example, when

you write a*b + c you’re actually asking the object referenced by a to execute the

method * , passing in the parameter b. You then ask the object that results from that

calculation to execute the + method, passing c as a parameter. This is equivalent to

writing

(a.*(b)).+(c)

Because everything is an object, and because you can redefine instance methods, you

can always redefine basic arithmetic if you don’t like the answers you’re getting.

class Fixnum

alias old_plus + # we can reference the original '+' as 'old_plus'

Redefine addition of Fixnums. This

is a BAD IDEA!

def +(other)

old_plus(other).succ

end

end

1 + 2 → 4

a = 3

a += 4 → 8

a + a + a → 26

More useful is that classes you write can participate in operator expressions just as if

they were built-in objects. For example, we may want to be able to extract a number

of seconds of music from the middle of a song. We could do this using the indexing

operator [] to specify the music to be extracted.

class Song

def [](from_time, to_time)

result = Song.new(self.title + " [extract]",

self.artist,

to_time from_time)

result.set_start_time(from_time)

result

end

end

This code fragment extends class Song with the method [], which takes two parameters

(a start time and an end time). It returns a new song, with the music clipped to the given

interval. We could then play the introduction to a song with code such as

song[0, 15].play

Prepared exclusively for Jose Sierra

MISCELLANEOUS EXPRESSIONS 83

Miscellaneous Expressions
As well as the obvious operator expressions and method calls, and the (perhaps) less

obvious statement expressions (such as if and case), Ruby has a few more things that

you can use in expressions.

Command Expansion

If you enclose a string in backquotes (sometimes called backticks), or use the delimited

form prefixed by %x, it will (by default) be executed as a command by your underlying

operating system. The value of the expression is the standard output of that command.

Newlines will not be stripped, so it is likely that the value you get back will have a

trailing return or linefeed character.

`date` → "Wed Sep 20 16:04:50 CDT 2006\n"

`ls`.split[34] → "code"

%x{echo "Hello there"} → "Hello there\n"

You can use expression expansion and all the usual escape sequences in the command

string.

for i in 0..3

status = `dbmanager status id=#{i}`

...

end

The exit status of the command is available in the global variable $?.

Redefining Backquotes

In the description of the command output expression, we said that the string in back-

quotes would “by default” be executed as a command. In fact, the string is passed to

the method called Kernel.` (a single backquote). If you want, you can override this.

alias old_backquote `

def `(cmd)

result = old_backquote(cmd)

if $? != 0

fail "Command #{cmd} failed: #$?"

end

result

end

print `date`

print `data`

produces:

Wed Sep 20 16:04:50 CDT 2006

prog.rb:10: command not found: data

prog.rb:5:in ``': Command data failed: 32512 (RuntimeError)

from prog.rb:10

Prepared exclusively for Jose Sierra

ASSIGNMENT 84

Assignment
Just about every example we’ve given so far in this book has featured assignment.

Perhaps it’s about time we said something about it.

An assignment statement sets the variable or attribute on its left side (the lvalue) to

refer to the value on the right (the rvalue). It then returns that value as the result of the

assignment expression. This means you can chain assignments, and you can perform

assignments in some unexpected places.

a = b = 1 + 2 + 3

a → 6

b → 6

a = (b = 1 + 2) + 3

a → 6

b → 3

File.open(name = gets.chomp)

Ruby has two basic forms of assignment. The first assigns an object reference to a

variable or constant. This form of assignment is hardwired into the language.

instrument = "piano"

MIDDLE_A = 440

The second form of assignment involves having an object attribute or element reference

on the left side.

song.duration = 234

instrument["ano"] = "ccolo"

These forms are special, because they are implemented by calling methods in the

lvalues, which means you can override them.

We’ve already seen how to define a writable object attribute. Simply define a method

name ending in an equals sign. This method receives as its parameter the assignment’s

rvalue.

class Song

def duration=(new_duration)

@duration = new_duration

end

end

These attribute-setting methods don’t have to correspond with internal instance vari-

ables, and you don’t need an attribute reader for every attribute writer (or vice versa).

class Amplifier

def volume=(new_volume)

self.left_channel = self.right_channel = new_volume

end

end

Prepared exclusively for Jose Sierra

ASSIGNMENT 85

In older Ruby versions, the result of the assignment was the value returned by the

attribute-setting method.1.8 In Ruby 1.8, the value of the assignment is always the value

of the parameter; the return value of the method is discarded.

class Test

def val=(val)

@val = val

return 99

end

end

t = Test.new

a = t.val = 2

a → 2

In older versions of Ruby, a would be set to 99 by the assignment, and in Ruby 1.8 it

will be set to 2.

Parallel Assignment

During your first week in a programming course (or the second semester if it was a

party school), you may have had to write code to swap the values in two variables.

int a = 1;

int b = 2;

int temp;

temp = a;

a = b;

b = temp;

You can do this much more cleanly in Ruby.

a, b = b, a

Ruby assignments are effectively performed in parallel, so the values assigned are not

affected by the assignment itself. The values on the right side are evaluated in the order

in which they appear before any assignment is made to variables or attributes on the left.

A somewhat contrived example illustrates this. The second line assigns to the variables

a, b, and c the values of the expressions x, x += 1, and x += 1, respectively.

x = 0 → 0

a, b, c = x, (x += 1), (x += 1) → [0, 1, 2]

When an assignment has more than one lvalue, the assignment expression returns an

array of the rvalues. If an assignment contains more lvalues than rvalues, the excess

lvalues are set to nil. If a multiple assignment contains more rvalues than lvalues, the

extra rvalues are ignored. If an assignment has just one lvalue and multiple rvalues, the

rvalues are converted to an array and assigned to the lvalue.

Prepared exclusively for Jose Sierra

ASSIGNMENT 86

Using Accessors within a Class

Why did we write self.left_channel in the example on page 84?
Well, writable attributes have a hidden gotcha. Normally, methods
within a class can invoke other methods in the same class and its
superclasses in functional form (that is, with an implicit receiver of
self). However, this doesn’t work with attribute writers. Ruby sees
the assignment and decides that the name on the left must be a local
variable, not a method call to an attribute writer.

class BrokenAmplifier

attr_accessor :left_channel, :right_channel

def volume=(vol)

left_channel = self.right_channel = vol

end

end

ba = BrokenAmplifier.new

ba.left_channel = ba.right_channel = 99

ba.volume = 5

ba.left_channel → 99

ba.right_channel → 5

We forgot to put “self.” in front of the assignment to left_channel,
so Ruby stored the new value in a local variable of method volume=;
the object’s attribute never got updated. This can be a tricky bug to
track down.

You can collapse and expand arrays using Ruby’s parallel assignment operator. If the

last lvalue is preceded by an asterisk, all the remaining rvalues will be collected and

assigned to that lvalue as an array. Similarly, if the last rvalue is an array, you can

prefix it with an asterisk, which effectively expands it into its constituent values in

place. (This is not necessary if the rvalue is the only thing on the right side—the array

will be expanded automatically.)

a = [1, 2, 3, 4]

b, c = a → b == 1, c == 2

b, *c = a → b == 1, c == [2, 3, 4]

b, c = 99, a → b == 99, c == [1, 2, 3, 4]

b, *c = 99, a → b == 99, c == [[1, 2, 3, 4]]

b, c = 99, *a → b == 99, c == 1

b, *c = 99, *a → b == 99, c == [1, 2, 3, 4]

Nested Assignments

Parallel assignments have one more feature worth mentioning. The left side of an

assignment may contain a parenthesized list of terms. Ruby treats these terms as if they

Prepared exclusively for Jose Sierra

CONDITIONAL EXECUTION 87

were a nested assignment statement. It extracts the corresponding rvalue, assigning it

to the parenthesized terms, before continuing with the higher-level assignment.

b, (c, d), e = 1,2,3,4 → b == 1, c == 2, d == nil, e == 3

b, (c, d), e = [1,2,3,4] → b == 1, c == 2, d == nil, e == 3

b, (c, d), e = 1,[2,3],4 → b == 1, c == 2, d == 3, e == 4

b, (c, d), e = 1,[2,3,4],5 → b == 1, c == 2, d == 3, e == 5

b, (c,*d), e = 1,[2,3,4],5 → b == 1, c == 2, d == [3, 4], e == 5

Other Forms of Assignment

In common with many other languages, Ruby has a syntactic shortcut: a = a + 2 may be

written as a += 2.

The second form is converted internally to the first. This means that operators you have

defined as methods in your own classes work as you’d expect.

class Bowdlerize

def initialize(string)

@value = string.gsub(/[aeiou]/, '*')

end

def +(other)

Bowdlerize.new(self.to_s + other.to_s)

end

def to_s

@value

end

end

a = Bowdlerize.new("damn ") → d*mn

a += "shame" → d*mn sh*m*

Something you won’t find in Ruby are the autoincrement (++) and autodecrement (--)

operators of C and Java. Use the += and = forms instead.

Conditional Execution
Ruby has several different mechanisms for conditional execution of code; most of them

should feel familiar, and many have some neat twists. Before we get into them, though,

we need to spend a short time looking at boolean expressions.

Boolean Expressions

Ruby has a simple definition of truth. Any value that is not nil or the constant false

is true. You’ll find that the library routines use this fact consistently. For example,

IO#gets, which returns the next line from a file, returns nil at end of file, enabling

you to write loops such as

Prepared exclusively for Jose Sierra

CONDITIONAL EXECUTION 88

while line = gets

process line

end

However, C, C++, and Perl programmers sometimes fall into a trap. The number zero

is not interpreted as a false value. Neither is a zero-length string. This can be a tough

habit to break.

Defined?, And, Or, and Not

Ruby supports all the standard boolean operators and introduces the new operator

defined?.

Both and and && evaluate to true only if both operands are true. They evaluate the sec-

ond operand only if the first is true (this is sometimes known as shortcircuit evaluation).

The only difference in the two forms is precedence (and binds lower than &&).

Similarly, both or and || evaluate to true if either operand is true. They evaluate their

second operand only if the first is false. As with and, the only difference between or

and || is their precedence.

Just to make life interesting, and and or have the same precedence, and && has a higher

precedence than ||.

not and ! return the opposite of their operand (false if the operand is true, and true if

the operand is false). And, yes, not and ! differ only in precedence.

All these precedence rules are summarized in Table 22.4 on page 324.

The defined? operator returns nil if its argument (which can be an arbitrary expres-

sion) is not defined; otherwise it returns a description of that argument. If the argument

is yield, defined? returns the string “yield” if a code block is associated with the

current context.

defined? 1 → "expression"

defined? dummy → nil

defined? printf → "method"

defined? String → "constant"

defined? $_ → "globalvariable"

defined? Math::PI → "constant"

defined? a = 1 → "assignment"

defined? 42.abs → "method"

In addition to the boolean operators, Ruby objects support comparison using the meth-

ods ==, ===, <=>, =~, eql?, and equal? (see Table 7.1 on the following page). All but

<=> are defined in class Object but are often overridden by descendents to provide

appropriate semantics. For example, class Array redefines == so that two array objects

are equal if they have the same number of elements and corresponding elements are

equal.

Prepared exclusively for Jose Sierra

CONDITIONAL EXECUTION 89

Table 7.1. Common comparison operators

Operator Meaning

== Test for equal value.

=== Used to compare each of the items with the target in the when clause of

a case statement.

<=> General comparison operator. Returns −1, 0, or +1, depending on

whether its receiver is less than, equal to, or greater than its argument.

<, <=, >=, > Comparison operators for less than, less than or equal, greater than or

equal, and greater than.

=~ Regular expression pattern match.

eql? True if the receiver and argument have both the same type and equal

values. 1 == 1.0 returns true, but 1.eql?(1.0) is false.

equal? True if the receiver and argument have the same object ID.

Both == and =~ have negated forms, != and !~. However, these are converted by Ruby

when your program is read. a != b is equivalent to !(a == b), and a !~ b is the same

as !(a =~ b). This means that if you write a class that overrides == or =~ you get a

working != and !~ for free. But on the flip side, this also means that you cannot define

!= and !~ independent of == and =~, respectively.

You can use a Ruby range as a boolean expression. A range such as exp1..exp2 will

evaluate as false until exp1 becomes true. The range will then evaluate as true until

exp2 becomes true. Once this happens, the range resets, ready to fire again. We show

some examples of this on page 94.

Prior to Ruby 1.8, you could use a bare regular expression as a boolean expression.1.8 This

is now deprecated. You can still use the ~ operator (described on page 580) to match

$_ against a pattern.

The Value of Logical Expressions

In the text, we said things such as “and evaluates to true if both operands are true.” But

it’s actually slightly more subtle than that. The operators and, or, && and || actually

return the first of their arguments that determine the truth or falsity of the condition.

Sounds grand. What does it mean?

Take the expression “val1 and val2”. If val1 is either false or nil, then we know

the expression cannot be true. In this case, the value of val1 determines the overall

value of the expression, so it is the value returned. If val1 has some other value, then

the overall value of the expression depends on val2, so its value is returned.

Prepared exclusively for Jose Sierra

CONDITIONAL EXECUTION 90

nil and true → nil

false and true → false

99 and false → false

99 and nil → nil

99 and "cat" → "cat"

Note that despite all this magic, the overall truth value of the expression is correct.

The same evaluation takes place for or (except an or expression’s value is known early

if val1 is not false).

false or nil → nil

nil or false → false

99 or false → 99

A common Ruby idiom makes use of this.

words[key] ||= []

words[key] << word

The first line is equivalent to words[key] = words[key] || []. If the entry in the

hash words for key is unset (nil), the value of || will be the second operand, a new,

empty array. Thus, this line of code will assign an array to a hash element that doesn’t

already have a value, leaving it untouched otherwise. You’ll sometimes see this written

on one line:

(words[key] ||= []) << word

If and Unless Expressions

An if expression in Ruby is pretty similar to “if” statements in other languages.

if song.artist == "Gillespie" then

handle = "Dizzy"

elsif song.artist == "Parker" then

handle = "Bird"

else

handle = "unknown"

end

If you lay out your if statements on multiple lines, you can leave off the then keyword.

if song.artist == "Gillespie"

handle = "Dizzy"

elsif song.artist == "Parker"

handle = "Bird"

else

handle = "unknown"

end

However, if you want to lay out your code more tightly, you can separate the boolean

expression from the following statements with the then keyword.

Prepared exclusively for Jose Sierra

CONDITIONAL EXECUTION 91

if song.artist == "Gillespie" then handle = "Dizzy"

elsif song.artist == "Parker" then handle = "Bird"

else handle = "unknown"

end

You can get even terser and use a colon (:) in place of the then.1.8

if song.artist == "Gillespie": handle = "Dizzy"

elsif song.artist == "Parker": handle = "Bird"

else handle = "unknown"

end

You can have zero or more elsif clauses and an optional else clause.

As we’ve said before, if is an expression, not a statement—it returns a value. You don’t

have to use the value of an if expression, but it can come in handy.

handle = if song.artist == "Gillespie" then

"Dizzy"

elsif song.artist == "Parker" then

"Bird"

else

"unknown"

end

Ruby also has a negated form of the if statement.

unless song.duration > 180

cost = 0.25

else

cost = 0.35

end

Finally, for the C fans out there, Ruby also supports the C-style conditional expression.

cost = song.duration > 180 ? 0.35 : 0.25

A conditional expression returns the value of either the expression before or the expres-

sion after the colon, depending on whether the boolean expression before the question

mark evaluates to true or false. In this case, if the song duration is greater than three

minutes, the expression returns 0.35. For shorter songs, it returns 0.25. Whatever the

result, it is then assigned to cost.

If and Unless Modifiers

Ruby shares a neat feature with Perl. Statement modifiers let you tack conditional state-

ments onto the end of a normal statement.

mon, day, year = $1, $2, $3 if date =~ /(\d\d)(\d\d)(\d\d)/

puts "a = #{a}" if debug

print total unless total.zero?

Prepared exclusively for Jose Sierra

CASE EXPRESSIONS 92

For an if modifier, the preceding expression will be evaluated only if the condition is

true. unless works the other way around.

File.foreach("/etc/passwd") do |line|

next if line =~ /^#/ # Skip comments

parse(line) unless line =~ /^$/ # Don't parse empty lines

end

Because if itself is an expression, you can get really obscure with statements such as

if artist == "John Coltrane"

artist = "'Trane"

end unless use_nicknames == "no"

This path leads to the gates of madness.

Case Expressions
The Ruby case expression is a powerful beast: a multiway if on steroids. And just to

make it even more powerful, it comes in two flavors.

The first form is fairly close to a series of if statements: it lets you list a series of con-

ditions and execute a statement corresponding to the first one that’s true. For example,

leap years must be divisible by 400, or divisible by 4 and not by 100.

leap = case

when year % 400 == 0: true

when year % 100 == 0: false

else year % 4 == 0

end

The second form of the case statement is probably more common. You specify a target

at the top of the case statement, and each when clause lists one or more comparisons.

case input_line

when "debug"

dump_debug_info

dump_symbols

when /p\s+(\w+)/

dump_variable($1)

when "quit", "exit"

exit

else

print "Illegal command: #{input_line}"

end

As with if, case returns the value of the last expression executed, and you can use a

then keyword if the expression is on the same line as the condition.

Prepared exclusively for Jose Sierra

CASE EXPRESSIONS 93

kind = case year

when 1850..1889 then "Blues"

when 1890..1909 then "Ragtime"

when 1910..1929 then "New Orleans Jazz"

when 1930..1939 then "Swing"

when 1940..1950 then "Bebop"

else "Jazz"

end

As with if statements, you can use a colon (:) in place of the then.1.8

kind = case year

when 1850..1889: "Blues"

when 1890..1909: "Ragtime"

when 1910..1929: "New Orleans Jazz"

when 1930..1939: "Swing"

when 1940..1950: "Bebop"

else "Jazz"

end

case operates by comparing the target (the expression after the keyword case) with

each of the comparison expressions after the when keywords. This test is done using

comparison === target. As long as a class defines meaningful semantics for === (and

all the built-in classes do), objects of that class can be used in case expressions.

For example, regular expressions define === as a simple pattern match.

case line

when /title=(.*)/

puts "Title is #$1"

when /track=(.*)/

puts "Track is #$1"

when /artist=(.*)/

puts "Artist is #$1"

end

Ruby classes are instances of class Class, which defines === to test if the argument

is an instance of the class or one of its superclasses. So (abandoning the benefits of

polymorphism and bringing the gods of refactoring down around your ears), you can

test the class of objects.

case shape

when Square, Rectangle

...

when Circle

...

when Triangle

...

else

...

end

Prepared exclusively for Jose Sierra

LOOPS 94

Loops
Don’t tell anyone, but Ruby has pretty primitive built-in looping constructs.

The while loop executes its body zero or more times as long as its condition is true.

For example, this common idiom reads until the input is exhausted.

while line = gets

...

end

The until loop is the opposite; it executes the body until the condition becomes true.

until play_list.duration > 60

play_list.add(song_list.pop)

end

As with if and unless, you can use both of the loops as statement modifiers.

a = 1

a *= 2 while a < 100

a = 10 until a < 100

a → 98

On page 89 in the section on boolean expressions, we said that a range can be used as

a kind of flip-flop, returning true when some event happens and then staying true until

a second event occurs. This facility is normally used within loops. In the example that

follows, we read a text file containing the first ten ordinal numbers (“first,” “second,”

and so on) but print only the lines starting with the one that matches “third” and ending

with the one that matches “fifth.”

file = File.open("ordinal")

while line = file.gets

puts(line) if line =~ /third/ .. line =~ /fifth/

end

produces:

third

fourth

fifth

You may find folks who come from Perl writing the previous example slightly differ-

ently.

file = File.open("ordinal")

while file.gets

print if ~/third/ .. ~/fifth/

end

produces:

third

fourth

fifth

Prepared exclusively for Jose Sierra

LOOPS 95

This uses some behind-the-scenes magic behavior: gets assigns the last line read to

the global variable $_, the ~ operator does a regular expression match against $_, and

print with no arguments prints $_. This kind of code is falling out of fashion in the

Ruby community.

The start and end of a range used in a boolean expression can themselves be expres-

sions. These are evaluated each time the overall boolean expression is evaluated. For

example, the following code uses the fact that the variable $. contains the current input

line number to display line numbers one through three and those between a match of

/eig/ and /nin/.

File.foreach("ordinal") do |line|

if (($. == 1) || line =~ /eig/) .. (($. == 3) || line =~ /nin/)

print line

end

end

produces:

first

second

third

eighth

ninth

You’ll come across a wrinkle when you use while and until as statement modifiers.

If the statement they are modifying is a begin/end block, the code in the block will

always execute at least one time, regardless of the value of the boolean expression.

print "Hello\n" while false

begin

print "Goodbye\n"

end while false

produces:

Goodbye

Iterators

If you read the beginning of the previous section, you may have been discouraged.

“Ruby has pretty primitive built-in looping constructs,” it said. Don’t despair, gentle

reader, for we have good news. Ruby doesn’t need any sophisticated built-in loops,

because all the fun stuff is implemented using Ruby iterators.

For example, Ruby doesn’t have a “for” loop—at least not the kind you’d find in C,

C++, and Java. Instead, Ruby uses methods defined in various built-in classes to provide

equivalent, but less error-prone, functionality.

Let’s look at some examples.

Prepared exclusively for Jose Sierra

LOOPS 96

3.times do

print "Ho! "

end

produces:

Ho! Ho! Ho!

It’s easy to avoid fence-post and off-by-one errors; this loop will execute three times,

period. In addition to times, integers can loop over specific ranges by calling downto

and upto, and all numbers can loop using step. For instance, a traditional “for” loop

that runs from 0 to 9 (something like i=0; i < 10; i++) is written as follows.

0.upto(9) do |x|

print x, " "

end

produces:

0 1 2 3 4 5 6 7 8 9

A loop from 0 to 12 by 3 can be written as follows.

0.step(12, 3) {|x| print x, " " }

produces:

0 3 6 9 12

Similarly, iterating over arrays and other containers is made easy using their each

method.

[1, 1, 2, 3, 5].each {|val| print val, " " }

produces:

1 1 2 3 5

And once a class supports each, the additional methods in the Enumerable module

(documented beginning on page 433 and summarized on page 113) become available.

For example, the File class provides an each method, which returns each line of a file

in turn. Using the grep method in Enumerable, we could iterate over only those lines

that meet a certain condition.

File.open("ordinal").grep(/d$/) do |line|

puts line

end

produces:

second

third

Last, and probably least, is the most basic loop of all. Ruby provides a built-in iterator

called loop.

Prepared exclusively for Jose Sierra

LOOPS 97

loop do

block ...

end

The loop iterator calls the associated block forever (or at least until you break out of

the loop, but you’ll have to read ahead to find out how to do that).

For . . . In

Earlier we said that the only built-in Ruby looping primitives were while and until.

What’s this for thing, then? Well, for is almost a lump of syntactic sugar. When you

write

for song in songlist

song.play

end

Ruby translates it into something like

songlist.each do |song|

song.play

end

The only difference between the for loop and the each form is the scope of local

variables that are defined in the body. This is discussed on page 99.

You can use for to iterate over any object that responds to the method each, such as

an Array or a Range.

for i in ['fee', 'fi', 'fo', 'fum']

print i, " "

end

for i in 1..3

print i, " "

end

for i in File.open("ordinal").find_all {|line| line =~ /d$/}

print i.chomp, " "

end

produces:

fee fi fo fum 1 2 3 second third

As long as your class defines a sensible each method, you can use a for loop to traverse

its objects.

class Periods

def each

yield "Classical"

yield "Jazz"

yield "Rock"

end

end

Prepared exclusively for Jose Sierra

LOOPS 98

periods = Periods.new

for genre in periods

print genre, " "

end

produces:

Classical Jazz Rock

Break, Redo, and Next

The loop control constructs break, redo, and next let you alter the normal flow

through a loop or iterator.

break terminates the immediately enclosing loop; control resumes at the statement

following the block. redo repeats the loop from the start, but without reevaluating the

condition or fetching the next element (in an iterator). next skips to the end of the loop,

effectively starting the next iteration.

while line = gets

next if line =~ /^\s*#/ # skip comments

break if line =~ /^END/ # stop at end

substitute stuff in backticks and try again

redo if line.gsub!(/`(.*?)`/) { eval($1) }

process line ...

end

These keywords can also be used with any of the iterator-based looping mechanisms.

i=0

loop do

i += 1

next if i < 3

print i

break if i > 4

end

produces:

345

As of Ruby 1.8,1.8 a value may be passed to break and next. When used in conventional

loops, it probably makes sense only to do this with break, where it sets the value

returned by the loop. (Any value given to next is effectively lost.) If a conventional

loop doesn’t execute a break, its value is nil.

result = while line = gets

break(line) if line =~ /answer/

end

process_answer(result) if result

If you want the nitty-gritty detail of how break and next work with blocks and procs,

have a look at the reference description starting on page 343. If you are looking for a

Prepared exclusively for Jose Sierra

VARIABLE SCOPE, LOOPS, AND BLOCKS 99

way of exiting from nested blocks or loops, have a look at Kernel.catch, described

on pages 347 and 498.

Retry

The redo statement causes a loop to repeat the current iteration. Sometimes, though,

you need to wind the loop right back to the very beginning. The retry statement is just

the ticket. retry restarts any kind of iterator loop.

for i in 1..100

print "Now at #{i}. Restart? "

retry if gets =~ /^y/i

end

Running this interactively, you may see

Now at 1. Restart? n

Now at 2. Restart? y

Now at 1. Restart? n

. . .

retry will reevaluate any arguments to the iterator before restarting it. Here’s an exam-

ple of a do-it-yourself until loop.

def do_until(cond)

break if cond

yield

retry

end

i = 0

do_until(i > 10) do

print i, " "

i += 1

end

produces:

0 1 2 3 4 5 6 7 8 9 10

Variable Scope, Loops, and Blocks
The while, until, and for loops are built into the language and do not introduce new

scope; previously existing locals can be used in the loop, and any new locals created

will be available afterward.

The blocks used by iterators (such as loop and each) are a little different. Normally,

the local variables created in these blocks are not accessible outside the block.

Prepared exclusively for Jose Sierra

VARIABLE SCOPE, LOOPS, AND BLOCKS 100

[1, 2, 3].each do |x|

y = x + 1

end

[x, y]

produces:

prog.rb:4: undefined local variable or method `x' for

main:Object (NameError)

However, if at the time the block executes a local variable already exists with the same

name as that of a variable in the block, the existing local variable will be used in the

block. Its value will therefore be available after the block finishes. As the following

example shows, this applies both to normal variables in the block and to the block’s

parameters.

x = nil

y = nil

[1, 2, 3].each do |x|

y = x + 1

end

[x, y] → [3, 4]

Note that the variable need not have been given a value in the outer scope: the Ruby

interpreter just needs to have seen it.

if false

a = 1

end

3.times {|i| a = i }

a → 2

The whole issue with variable scope and blocks is one that generates considerable dis-

cussion in the Ruby community. The current scheme has definite problems (particularly

when variables are unexpectedly aliased inside blocks), but at the same time no one has

managed to come up with something that’s both better and acceptable to the wider com-

munity. Matz is promising changes in Ruby 2.0, but in the meantime, we have a couple

of suggestions to minimize the problems with local and block variables interfering.

• Keep your methods and blocks short. The fewer variables, the smaller the chance

that they’ll clobber each other. It’s also easier to eyeball the code and check that

you don’t have conflicting names.

• Use different naming schemes for local variables and block parameters. For exam-

ple, you probably don’t want a local variable called “i,” but that might be perfectly

acceptable as a block parameter.

In reality, this problem doesn’t arise in practice as often as you may think.

Prepared exclusively for Jose Sierra

Chapter 8

Exceptions,

Catch, and Throw

So far we’ve been developing code in Pleasantville, a wonderful place where nothing

ever, ever goes wrong. Every library call succeeds, users never enter incorrect data, and

resources are plentiful and cheap. Well, that’s about to change. Welcome to the real

world!

In the real world, errors happen. Good programs (and programmers) anticipate them

and arrange to handle them gracefully. This isn’t always as easy as it may sound. Often

the code that detects an error does not have the context to know what to do about it.

For example, attempting to open a file that doesn’t exist is acceptable in some circum-

stances and is a fatal error at other times. What’s your file-handling module to do?

The traditional approach is to use return codes. The open method returns some specific

value to say it failed. This value is then propagated back through the layers of calling

routines until someone wants to take responsibility for it.

The problem with this approach is that managing all these error codes can be a pain.

If a function calls open, then read, and finally close, and each can return an error

indication, how can the function distinguish these error codes in the value it returns to

its caller?

To a large extent, exceptions solve this problem. Exceptions let you package informa-

tion about an error into an object. That exception object is then propagated back up the

calling stack automatically until the runtime system finds code that explicitly declares

that it knows how to handle that type of exception.

The Exception Class
The package that contains the information about an exception is an object of class

Exception or one of class Exception’s children. Ruby predefines a tidy hierarchy of

101Prepared exclusively for Jose Sierra

HANDLING EXCEPTIONS 102

exceptions, shown in Figure 8.1 on the following page. As we’ll see later, this hierarchy

makes handling exceptions considerably easier.

When you need to raise an exception, you can use one of the built-in Exception

classes, or you can create one of your own. If you create your own, you may want

to make it a subclass of StandardError or one of its children. If you don’t, your

exception won’t be caught by default.

Every Exception has associated with it a message string and a stack backtrace. If you

define your own exceptions, you can add additional information.

Handling Exceptions
Our jukebox downloads songs from the Internet using a TCP socket. The basic code is

simple (assuming that the filename and the socket are already set up).

op_file = File.open(opfile_name, "w")

while data = socket.read(512)

op_file.write(data)

end

What happens if we get a fatal error halfway through the download? We certainly don’t

want to store an incomplete song in the song list. “I Did It My *click*.”

Let’s add some exception-handling code and see how it helps. To do exception han-

dling, we enclose the code that could raise an exception in a begin/end block and use

one or more rescue clauses to tell Ruby the types of exceptions we want to handle. In

this particular case we’re interested in trapping SystemCallError exceptions (and, by

implication, any exceptions that are subclasses of SystemCallError), so that’s what

appears on the rescue line. In the error-handling block, we report the error, close and

delete the output file, and then reraise the exception.

op_file = File.open(opfile_name, "w")

begin

Exceptions raised by this code will

be caught by the following rescue clause

while data = socket.read(512)

op_file.write(data)

end

rescue SystemCallError

$stderr.print "IO failed: " + $!

op_file.close

File.delete(opfile_name)

raise

end

When an exception is raised, and independent of any subsequent exception handling,

Ruby places a reference to the associated Exception object into the global variable $!

Prepared exclusively for Jose Sierra

HANDLING EXCEPTIONS 103

Figure 8.1. Ruby exception hierarchy

Exception

fatal (used internally by Ruby)

NoMemoryError

ScriptError

LoadError

NotImplementedError

SyntaxError

SignalException

Interrupt

StandardError

ArgumentError

IOError

EOFError

IndexError

LocalJumpError

NameError

NoMethodError

RangeError

FloatDomainError

RegexpError

RuntimeError

SecurityError

SystemCallError

system-dependent exceptions (Errno::xxx)

ThreadError

TypeError

ZeroDivisionError

SystemExit

SystemStackError

(the exclamation point presumably mirroring our surprise that any of our code could

cause errors). In the previous example, we used the $! variable to format our error

message.

After closing and deleting the file, we call raise with no parameters, which reraises

the exception in $!. This is a useful technique, as it allows you to write code that

filters exceptions, passing on those you can’t handle to higher levels. It’s almost like

implementing an inheritance hierarchy for error processing.

You can have multiple rescue clauses in a begin block, and each rescue clause can

specify multiple exceptions to catch. At the end of each rescue clause you can give

Prepared exclusively for Jose Sierra

HANDLING EXCEPTIONS 104

Ruby the name of a local variable to receive the matched exception. Many people find

this more readable than using $! all over the place.

begin

eval string

rescue SyntaxError, NameError => boom

print "String doesn't compile: " + boom

rescue StandardError => bang

print "Error running script: " + bang

end

How does Ruby decide which rescue clause to execute? It turns out that the processing

is pretty similar to that used by the case statement. For each rescue clause in the

begin block, Ruby compares the raised exception against each of the parameters in

turn. If the raised exception matches a parameter, Ruby executes the body of the rescue

and stops looking. The match is made using parameter===$!.1.8 For most exceptions,

this means that the match will succeed if the exception named in the rescue clause

is the same as the type of the currently thrown exception, or is a superclass of that

exception.1 If you write a rescue clause with no parameter list, the parameter defaults

to StandardError.

If no rescue clause matches, or if an exception is raised outside a begin/end block,

Ruby moves up the stack and looks for an exception handler in the caller, then in the

caller’s caller, and so on.

Although the parameters to the rescue clause are typically the names of Exception

classes, they can actually be arbitrary expressions (including method calls) that return

an Exception class.

System Errors1.8

System errors are raised when a call to the operating system returns an error code. On

POSIX systems, these errors have names such as EAGAIN and EPERM. (If you’re on a

Unix box, you could type man errno to get a list of these errors.)

Ruby takes these errors and wraps them each in a specific exception object. Each is

a subclass of SystemCallError, and each is defined in a module called Errno. This

means you’ll find exceptions with class names such as Errno::EAGAIN, Errno::EIO,

and Errno::EPERM. If you want to get to the underlying system error code, Errno

exception objects each have a class constant called (somewhat confusingly) Errno that

contains the value.

1. This comparison happens because exceptions are classes, and classes in turn are kinds of Module. The

=== method is defined for modules, returning true if the class of the operand is the same as or is a descendent

of the receiver.

Prepared exclusively for Jose Sierra

HANDLING EXCEPTIONS 105

Errno::EAGAIN::Errno → 35

Errno::EPERM::Errno → 1

Errno::EIO::Errno → 5

Errno::EWOULDBLOCK::Errno → 35

Note that EWOULDBLOCK and EAGAIN have the same error number. This is a feature of the

operating system of the computer used to produce this book—the two constants map to

the same error number. To deal with this, Ruby arranges things so that Errno::EAGAIN

and Errno::EWOULDBLOCK are treated identically in a rescue clause. If you ask to

rescue one, you’ll rescue either. It does this by redefining SystemCallError#=== so

that if two subclasses of SystemCallError are compared, the comparison is done on

their error number and not on their position in the hierarchy.

Tidying Up

Sometimes you need to guarantee that some processing is done at the end of a block of

code, regardless of whether an exception was raised. For example, you may have a file

open on entry to the block, and you need to make sure it gets closed as the block exits.

The ensure clause does just this. ensure goes after the last rescue clause and contains

a chunk of code that will always be executed as the block terminates. It doesn’t matter

if the block exits normally, if it raises and rescues an exception, or if it is terminated by

an uncaught exception—the ensure block will get run.

f = File.open("testfile")

begin

.. process

rescue

.. handle error

ensure

f.close unless f.nil?

end

The else clause is a similar, although less useful, construct. If present, it goes after the

rescue clauses and before any ensure. The body of an else clause is executed only

if no exceptions are raised by the main body of code.

f = File.open("testfile")

begin

.. process

rescue

.. handle error

else

puts "Congratulations no errors!"

ensure

f.close unless f.nil?

end

Prepared exclusively for Jose Sierra

RAISING EXCEPTIONS 106

Play It Again

Sometimes you may be able to correct the cause of an exception. In those cases, you

can use the retry statement within a rescue clause to repeat the entire begin/end

block. Clearly, tremendous scope exists for infinite loops here, so this is a feature to

use with caution (and with a finger resting lightly on the interrupt key).

As an example of code that retries on exceptions, have a look at the following, adapted

from Minero Aoki’s net/smtp.rb library.

@esmtp = true

begin

First try an extended login. If it fails because the

server doesn't support it, fall back to a normal login

if @esmtp then

@command.ehlo(helodom)

else

@command.helo(helodom)

end

rescue ProtocolError

if @esmtp then

@esmtp = false

retry

else

raise

end

end

This code tries first to connect to an SMTP server using the EHLO command, which

is not universally supported. If the connection attempt fails, the code sets the @esmtp

variable to false and retries the connection. If this fails a second time, the exception

is raised up to the caller.

Raising Exceptions
So far we’ve been on the defensive, handling exceptions raised by others. It’s time

to turn the tables and go on the offensive. (Some say your gentle authors are always

offensive, but that’s a different book.)

You can raise exceptions in your code with the Kernel.raise method (or its somewhat

judgmental synonym, Kernel.fail).

raise

raise "bad mp3 encoding"

raise InterfaceException, "Keyboard failure", caller

Prepared exclusively for Jose Sierra

RAISING EXCEPTIONS 107

The first form simply reraises the current exception (or a RuntimeError if there is no

current exception). This is used in exception handlers that need to intercept an excep-

tion before passing it on.

The second form creates a new RuntimeError exception, setting its message to the

given string. This exception is then raised up the call stack.

The third form uses the first argument to create an exception and then sets the associated

message to the second argument and the stack trace to the third argument. Typically

the first argument will be either the name of a class in the Exception hierarchy or a

reference to an object instance of one of these classes.2 The stack trace is normally

produced using the Kernel.caller method.

Here are some typical examples of raise in action.

raise

raise "Missing name" if name.nil?

if i >= names.size

raise IndexError, "#{i} >= size (#{names.size})"

end

raise ArgumentError, "Name too big", caller

In the last example, we remove the current routine from the stack backtrace, which is

often useful in library modules. We can take this further: the following code removes

two routines from the backtrace by passing only a subset of the call stack to the new

exception.

raise ArgumentError, "Name too big", caller[1..1]

Adding Information to Exceptions

You can define your own exceptions to hold any information that you need to pass out

from the site of an error. For example, certain types of network errors may be transient

depending on the circumstances. If such an error occurs, and the circumstances are

right, you could set a flag in the exception to tell the handler that it may be worth

retrying the operation.

class RetryException < RuntimeError

attr :ok_to_retry

def initialize(ok_to_retry)

@ok_to_retry = ok_to_retry

end

end

2. Technically, this argument can be any object that responds to the message exception by returning an

object such that object.kind_of?(Exception) is true.

Prepared exclusively for Jose Sierra

CATCH AND THROW 108

Somewhere down in the depths of the code, a transient error occurs.

def read_data(socket)

data = socket.read(512)

if data.nil?

raise RetryException.new(true), "transient read error"

end

.. normal processing

end

Higher up the call stack, we handle the exception.

begin

stuff = read_data(socket)

.. process stuff

rescue RetryException => detail

retry if detail.ok_to_retry

raise

end

Catch and Throw
While the exception mechanism of raise and rescue is great for abandoning execu-

tion when things go wrong, it’s sometimes nice to be able to jump out of some deeply

nested construct during normal processing. This is where catch and throw come in

handy.

catch (:done) do

while line = gets

throw :done unless fields = line.split(/\t/)

songlist.add(Song.new(*fields))

end

songlist.play

end

catch defines a block that is labeled with the given name (which may be a Symbol or

a String). The block is executed normally until a throw is encountered.

When Ruby encounters a throw, it zips back up the call stack looking for a catch

block with a matching symbol. When it finds it, Ruby unwinds the stack to that point

and terminates the block. So, in the previous example, if the input does not contain

correctly formatted lines, the throw will skip to the end of the corresponding catch,

not only terminating the while loop but also skipping the playing of the song list. If the

throw is called with the optional second parameter, that value is returned as the value

of the catch.

The following example uses a throw to terminate interaction with the user if ! is typed

in response to any prompt.

Prepared exclusively for Jose Sierra

CATCH AND THROW 109

def prompt_and_get(prompt)

print prompt

res = readline.chomp

throw :quit_requested if res == "!"

res

end

catch :quit_requested do

name = prompt_and_get("Name: ")

age = prompt_and_get("Age: ")

sex = prompt_and_get("Sex: ")

..

process information

end

As this example illustrates, the throw does not have to appear within the static scope

of the catch.

Prepared exclusively for Jose Sierra

Chapter 9

Modules

Modules are a way of grouping together methods, classes, and constants. Modules give

you two major benefits.

1. Modules provide a namespace and prevent name clashes.

2. Modules implement the mixin facility.

Namespaces
As you start to write bigger and bigger Ruby programs, you’ll naturally find your-

self producing chunks of reusable code—libraries of related routines that are generally

applicable. You’ll want to break this code into separate files so the contents can be

shared among different Ruby programs.

Often this code will be organized into classes, so you’ll probably stick a class (or a set

of interrelated classes) into a file.

However, there are times when you want to group things together that don’t naturally

form a class.

An initial approach may be to put all these things into a file and simply load that file

into any program that needs it. This is the way the C language works. However, this

approach has a problem. Say you write a set of the trigonometry functions sin, cos,

and so on. You stuff them all into a file, trig.rb, for future generations to enjoy.

Meanwhile, Sally is working on a simulation of good and evil, and she codes a set of

her own useful routines, including be_good and sin, and sticks them into moral.rb.

Joe, who wants to write a program to find out how many angels can dance on the head

of a pin, needs to load both trig.rb and moral.rb into his program. But both define

a method called sin. Bad news.

110Prepared exclusively for Jose Sierra

MIXINS 111

The answer is the module mechanism. Modules define a namespace, a sandbox in

which your methods and constants can play without having to worry about being

stepped on by other methods and constants. The trig functions can go into one module

module Trig

PI = 3.141592654

def Trig.sin(x)

..

end

def Trig.cos(x)

..

end

end

and the good and bad “moral” methods can go into another.

module Moral

VERY_BAD = 0

BAD = 1

def Moral.sin(badness)

...

end

end

Module constants are named just like class constants, with an initial uppercase letter.

The method definitions look similar, too: these module methods are defined just like

class methods.

If a third program wants to use these modules, it can simply load the two files (using the

Ruby require statement, which we discuss on page 116) and reference the qualified

names.

require 'trig'

require 'moral'

y = Trig.sin(Trig::PI/4)

wrongdoing = Moral.sin(Moral::VERY_BAD)

As with class methods, you call a module method by preceding its name with the mod-

ule’s name and a period, and you reference a constant using the module name and two

colons.

Mixins
Modules have another, wonderful use. At a stroke, they pretty much eliminate the need

for multiple inheritance, providing a facility called a mixin.

In the previous section’s examples, we defined module methods, methods whose names

were prefixed by the module name. If this made you think of class methods, your next

thought may well be “what happens if I define instance methods within a module?”

Prepared exclusively for Jose Sierra

MIXINS 112

Good question. A module can’t have instances, because a module isn’t a class. How-

ever, you can include a module within a class definition. When this happens, all the

module’s instance methods are suddenly available as methods in the class as well. They

get mixed in. In fact, mixed-in modules effectively behave as superclasses.

module Debug

def who_am_i?

"#{self.class.name} (\##{self.object_id}): #{self.to_s}"

end

end

class Phonograph

include Debug

...

end

class EightTrack

include Debug

...

end

ph = Phonograph.new("West End Blues")

et = EightTrack.new("Surrealistic Pillow")

ph.who_am_i? → "Phonograph (#937328): West End Blues"

et.who_am_i? → "EightTrack (#937308): Surrealistic Pillow"

By including the Debug module, both Phonograph and EightTrack gain access to the

who_am_i? instance method.

We’ll make a couple of points about the include statement before we go on. First,

it has nothing to do with files. C programmers use a preprocessor directive called

#include to insert the contents of one file into another during compilation. The Ruby

include statement simply makes a reference to a named module. If that module is in a

separate file, you must use require (or its less commonly used cousin, load) to drag

that file in before using include. Second, a Ruby include does not simply copy the

module’s instance methods into the class. Instead, it makes a reference from the class

to the included module. If multiple classes include that module, they’ll all point to the

same thing. If you change the definition of a method within a module, even while your

program is running, all classes that include that module will exhibit the new behavior.1

Mixins give you a wonderfully controlled way of adding functionality to classes. How-

ever, their true power comes out when the code in the mixin starts to interact with code

in the class that uses it. Let’s take the standard Ruby mixin Comparable as an example.

You can use the Comparable mixin to add the comparison operators (<, <=, ==, >=, and

>), as well as the method between?, to a class. For this to work, Comparable assumes

that any class that uses it defines the operator <=>. So, as a class writer, you define one

method, <=>, include Comparable, and get six comparison functions for free. Let’s

1. Of course, we’re speaking only of methods here. Instance variables are always per object, for example.

Prepared exclusively for Jose Sierra

ITERATORS AND THE ENUMERABLE MODULE 113

try this with our Song class, by making the songs comparable based on their duration.

All we have to do is include the Comparable module and implement the comparison

operator <=>.

class Song

include Comparable

def initialize(name, artist, duration)

@name = name

@artist = artist

@duration = duration

end

def <=>(other)

self.duration <=> other.duration

end

end

We can check that the results are sensible with a few test songs.

song1 = Song.new("My Way", "Sinatra", 225)

song2 = Song.new("Bicyclops", "Fleck", 260)

song1 <=> song2 → 1

song1 < song2 → true

song1 == song1 → true

song1 > song2 → false

Iterators and the Enumerable Module
You’ve probably noticed that the Ruby collection classes support a large number of

operations that do various things with the collection: traverse it, sort it, and so on.

You may be thinking, “Gee, it’d sure be nice if my class could support all these neat-o

features, too!” (If you actually thought that, it’s probably time to stop watching reruns

of 1960s television shows.)

Well, your classes can support all these neat-o features, thanks to the magic of mixins

and module Enumerable. All you have to do is write an iterator called each, which

returns the elements of your collection in turn. Mix in Enumerable, and suddenly your

class supports things such as map, include?, and find_all?. If the objects in your

collection implement meaningful ordering semantics using the <=> method, you’ll also

get methods such as min, max, and sort.

Composing Modules
Back on page 49 we discussed the inject method of Enumerable. Enumerable is

another standard mixin, implementing a bunch of methods in terms of the host class’s

Prepared exclusively for Jose Sierra

COMPOSING MODULES 114

each method. Because of this, we can use inject in any class that includes the Enum

erable module and defines the method each. Many built-in classes do this.

[1, 2, 3, 4, 5].inject {|v,n| v+n } → 15

('a'..'m').inject {|v,n| v+n } → "abcdefghijklm"

We could also define our own class that mixes in Enumerable and hence gets inject

support.

class VowelFinder

include Enumerable

def initialize(string)

@string = string

end

def each

@string.scan(/[aeiou]/) do |vowel|

yield vowel

end

end

end

vf = VowelFinder.new("the quick brown fox jumped")

vf.inject {|v,n| v+n } → "euiooue"

Notice that we’ve used the same pattern in the call to inject in these examples—we’re

using it to perform a summation. When applied to numbers, it returns the arithmetic

sum, when applied to strings it concatenates them. We can use a module to encapsulate

this functionality too.

module Summable

def sum

inject {|v,n| v+n }

end

end

class Array

include Summable

end

class Range

include Summable

end

class VowelFinder

include Summable

end

[1, 2, 3, 4, 5].sum → 15

('a'..'m').sum → "abcdefghijklm"

vf = VowelFinder.new("the quick brown fox jumped")

vf.sum → "euiooue"

Prepared exclusively for Jose Sierra

COMPOSING MODULES 115

Instance Variables in Mixins

People coming to Ruby from C++ often ask us, “What happens to instance variables

in a mixin? In C++, I have to jump through some hoops to control how variables are

shared in a multiple-inheritance hierarchy. How does Ruby handle this?”

Well, for starters, it’s not really a fair question, we tell them. Remember how instance

variables work in Ruby: the first mention of an @-prefixed variable creates the instance

variable in the current object, self.

For a mixin, this means that the module you mix into your client class (the mixee?) may

create instance variables in the client object and may use attr_reader and friends to

define accessors for these instance variables. For instance, the Observable module in

the following example adds an instance variable @observer_list to any class that

includes it.

module Observable

def observers

@observer_list ||= []

end

def add_observer(obj)

observers << obj

end

def notify_observers

observers.each {|o| o.update }

end

end

However, this behavior exposes us to a risk. A mixin’s instance variables can clash

with those of the host class or with those of other mixins. The example that follows

shows a class that uses our Observer module but that unluckily also uses an instance

variable called @observer_list. At runtime, this program will go wrong in some

hard-to-diagnose ways.

class TelescopeScheduler

other classes can register to get notifications

when the schedule changes

include Observable

def initialize

@observer_list = [] # folks with telescope time

end

def add_viewer(viewer)

@observer_list << viewer

end

...

end

For the most part, mixin modules don’t try to carry their own instance data around—

they use accessors to retrieve data from the client object. But if you need to create

Prepared exclusively for Jose Sierra

INCLUDING OTHER FILES 116

a mixin that has to have its own state, ensure that the instance variables have unique

names to distinguish them from any other mixins in the system (perhaps by using the

module’s name as part of the variable name). Alternatively, the module could use a

module-level hash, indexed by the current object ID, to store instance-specific data

without using Ruby instance variables.

module Test

State = {}

def state=(value)

State[object_id] = value

end

def state

State[object_id]

end

end

class Client

include Test

end

c1 = Client.new

c2 = Client.new

c1.state = 'cat'

c2.state = 'dog'

c1.state → "cat"

c2.state → "dog"

Resolving Ambiguous Method Names

One of the other questions folks ask about mixins is, how is method lookup handled?

In particular, what happens if methods with the same name are defined in a class, in

that class’s parent class, and in a mixin included into the class?

The answer is that Ruby looks first in the immediate class of an object, then in the

mixins included into that class, and then in superclasses and their mixins. If a class has

multiple modules mixed in, the last one included is searched first.

Including Other Files
Because Ruby makes it easy to write good, modular code, you’ll often find yourself

producing small files containing some chunk of self-contained functionality—an inter-

face to x, an algorithm to do y, and so on. Typically, you’ll organize these files as class

or module libraries.

Prepared exclusively for Jose Sierra

INCLUDING OTHER FILES 117

Having produced these files, you’ll want to incorporate them into your new programs.

Ruby has two statements that do this. The load method includes the named Ruby

source file every time the method is executed.

load 'filename.rb'

The more commonly used require method loads any given file only once.2

require 'filename'

Local variables in a loaded or required file are not propagated to the scope that loads or

requires them. For example, here’s a file called included.rb .

a = 1

def b

2

end

And here’s what happens when we include it into another file.

a = "cat"

b = "dog"

require 'included'

a → "cat"

b → "dog"

b() → 2

require has additional functionality: it can load shared binary libraries. Both routines

accept relative and absolute paths. If given a relative path (or just a plain name), they’ll

search every directory in the current load path ($:, discussed on page 173) for the file.

Files loaded using load or require can, of course, include other files, which include

other files, and so on. What may not be obvious is that require is an executable

statement—it may be inside an if statement, or it may include a string that was just

built. The search path can be altered at runtime as well. Just add the directory you want

to the array $:.

Since load will include the source unconditionally, you can use it to reload a source

file that may have changed since the program began. The example that follows is (very)

contrived.

2. This is not strictly true. Ruby keeps a list of the files loaded by require in the array $". However, this

list contains just the names of files as given to require. It’s possible to fake Ruby out and get the same file

loaded twice.

require '/usr/lib/ruby/1.8/English.rb'

require '/usr/lib/ruby/1.8/rdoc/../English.rb'

$" → ["/usr/lib/ruby/1.8/English.rb", "/usr/lib/ruby/1.8/rdoc/../English.rb"]

In this case, both require statements ended up pointing at the same file but used different paths to load it.

Some consider this a bug, and this behavior may well change in later releases.

Prepared exclusively for Jose Sierra

INCLUDING OTHER FILES 118

5.times do |i|

File.open("temp.rb","w") do |f|

f.puts "module Temp"

f.puts " def Temp.var"

f.puts " #{i}"

f.puts " end"

f.puts "end"

end

load "temp.rb"

puts Temp.var

end

produces:

0

1

2

3

4

For a less contrived use of this facility, consider a Web application that reloads compo-

nents while running. This allows it to update itself on the fly; it needn’t be restarted for

new versions of the software to be integrated. This is one of the many benefits of using

a dynamic language such as Ruby.

Prepared exclusively for Jose Sierra

Chapter 10

Basic Input and Output

Ruby provides what at first sight looks like two separate sets of I/O routines. The first

is the simple interface—we’ve been using it pretty much exclusively so far.

print "Enter your name: "

name = gets

A whole set of I/O-related methods is implemented in the Kernel module—gets,

open, print, printf, putc, puts, readline, readlines, and test—that makes it

simple and convenient to write straightforward Ruby programs. These methods typi-

cally do I/O to standard input and standard output, which makes them useful for writing

filters. You’ll find them documented starting on page 495.

The second way, which gives you a lot more control, is to use IO objects.

What Is an IO Object?
Ruby defines a single base class, IO, to handle input and output. This base class is

subclassed by classes File and BasicSocket to provide more specialized behavior,

but the principles are the same. An IO object is a bidirectional channel between a Ruby

program and some external resource.1 An IO object may have more to it than meets the

eye, but in the end you still simply write to it and read from it.

In this chapter, we’ll be concentrating on class IO and its most commonly used subclass,

class File. For more details on using the socket classes for networking, see the section

beginning on page 740.

1. For those who just have to know the implementation details, this means that a single IO object can

sometimes be managing more than one operating system file descriptor. For example, if you open a pair of

pipes, a single IO object contains both a read pipe and a write pipe.

119Prepared exclusively for Jose Sierra

OPENING AND CLOSING FILES 120

Opening and Closing Files
As you may expect, you can create a new file object using File.new.

file = File.new("testfile", "r")

... process the file

file.close

You can create a File object that is open for reading, writing, or both, according to the

mode string. (Here we opened testfile for reading with an "r". We could also have

used "w" for write or "r+" for read-write. The full list of allowed modes appears on

page 483.) You can also optionally specify file permissions when creating a file; see the

description of File.new on page 449 for details. After opening the file, we can work

with it, writing and/or reading data as needed. Finally, as responsible software citizens,

we close the file, ensuring that all buffered data is written and that all related resources

are freed.

But here Ruby can make life a little bit easier for you. The method File.open also

opens a file. In regular use, it behaves just like File.new. However, if a block is asso-

ciated with the call, open behaves differently. Instead of returning a new File object,

it invokes the block, passing the newly opened File as a parameter. When the block

exits, the file is automatically closed.

File.open("testfile", "r") do |file|

... process the file

end

This second approach has an added benefit. In the earlier case, if an exception is raised

while processing the file, the call to file.close may not happen. Once the file variable

goes out of scope, then garbage collection will eventually close it, but this may not

happen for a while. Meanwhile, resources are being held open.

This doesn’t happen with the block form of File.open. If an exception is raised inside

the block, the file is closed before the exception is propagated on to the caller. It’s as if

the open method looks like the following.

class File

def File.open(*args)

result = f = File.new(*args)

if block_given?

begin

result = yield f

ensure

f.close

end

end

return result

end

end

Prepared exclusively for Jose Sierra

READING AND WRITING FILES 121

Reading and Writing Files
The same methods that we’ve been using for “simple” I/O are available for all file

objects. So, gets reads a line from standard input (or from any files specified on the

command line when the script was invoked), and file.gets reads a line from the file

object file.

For example, we could create a program called copy.rb.

while line = gets

puts line

end

If we run this program with no arguments, it will read lines from the console and copy

them back to the console. Note that each line is echoed once the return key is pressed.

(In this and later examples, we show user input in a bold font.)

% ruby copy.rb

These are lines

These are lines

that I am typing

that I am typing

^D

We can also pass in one or more filenames on the command line, in which case gets

will read from each in turn.

% ruby copy.rb testfile

This is line one

This is line two

This is line three

And so on...

Finally, we can explicitly open the file and read from it.

File.open("testfile") do |file|

while line = file.gets

puts line

end

end

produces:

This is line one

This is line two

This is line three

And so on...

As well as gets, I/O objects enjoy an additional set of access methods, all intended to

make our lives easier.

Prepared exclusively for Jose Sierra

READING AND WRITING FILES 122

Iterators for Reading

As well as using the usual loops to read data from an IO stream, you can also use

various Ruby iterators. IO#each_byte invokes a block with the next 8-bit byte from

the IO object (in this case, an object of type File).

File.open("testfile") do |file|

file.each_byte {|ch| putc ch; print "." }

end

produces:

T.h.i.s. .i.s. .l.i.n.e. .o.n.e.

.T.h.i.s. .i.s. .l.i.n.e. .t.w.o.

.T.h.i.s. .i.s. .l.i.n.e. .t.h.r.e.e.

.A.n.d. .s.o. .o.n.......

.

IO#each_line calls the block with each line from the file. In the next example, we’ll

make the original newlines visible using String#dump, so you can see that we’re not

cheating.

File.open("testfile") do |file|

file.each_line {|line| puts "Got #{line.dump}" }

end

produces:

Got "This is line one\n"

Got "This is line two\n"

Got "This is line three\n"

Got "And so on...\n"

You can pass each_line any sequence of characters as a line separator, and it will

break up the input accordingly, returning the line ending at the end of each line of data.

That’s why you see the \n characters in the output of the previous example. In the next

example, we’ll use the character e as the line separator.

File.open("testfile") do |file|

file.each_line("e") {|line| puts "Got #{ line.dump }" }

end

produces:

Got "This is line"

Got " one"

Got "\nThis is line"

Got " two\nThis is line"

Got " thre"

Got "e"

Got "\nAnd so on...\n"

Prepared exclusively for Jose Sierra

READING AND WRITING FILES 123

If you combine the idea of an iterator with the autoclosing block feature, you get

IO.foreach. This method takes the name of an I/O source, opens it for reading, calls

the iterator once for every line in the file, and then closes the file automatically.

IO.foreach("testfile") {|line| puts line }

produces:

This is line one

This is line two

This is line three

And so on...

Or, if you prefer, you can retrieve an entire file into a string or into an array of lines.

read into string

str = IO.read("testfile")

str.length → 66

str[0, 30] → "This is line one\nThis is line "

read into an array

arr = IO.readlines("testfile")

arr.length → 4

arr[0] → "This is line one\n"

Don’t forget that I/O is never certain in an uncertain world—exceptions will be raised

on most errors, and you should be ready to rescue them and take appropriate action.

Writing to Files

So far, we’ve been merrily calling puts and print, passing in any old object and

trusting that Ruby will do the right thing (which, of course, it does). But what exactly

is it doing?

The answer is pretty simple. With a couple of exceptions, every object you pass to puts

and print is converted to a string by calling that object’s to_s method. If for some

reason the to_s method doesn’t return a valid string, a string is created containing the

object’s class name and ID, something like #<ClassName:0x123456>.

The exceptions are simple, too. The nil object will print as the string “nil,” and an array

passed to puts will be written as if each of its elements in turn were passed separately

to puts.

What if you want to write binary data and don’t want Ruby messing with it? Well,

normally you can simply use IO#print and pass in a string containing the bytes to be

written. However, you can get at the low-level input and output routines if you really

want—look at the documentation for IO#sysread and IO#syswrite on page 493.

And how do you get the binary data into a string in the first place? The three common

ways are to use a literal, poke it in byte by byte, or use Array#pack.

Prepared exclusively for Jose Sierra

READING AND WRITING FILES 124

str1 = "\001\002\003" → "\001\002\003"

str2 = ""

str2 << 1 << 2 << 3 → "\001\002\003"

[1, 2, 3].pack("c*") → "\001\002\003"

But I Miss My C++ iostream

Sometimes there’s just no accounting for taste. . . . However, just as you can append an

object to an Array using the << operator, you can also append an object to an output

IO stream.

endl = "\n"

STDOUT << 99 << " red balloons" << endl

produces:

99 red balloons

Again, the << method uses to_s to convert its arguments to strings before sending them

on their merry way.

Although we started off disparaging the poor << operator, there are actually some good

reasons for using it. Because other classes (such as String and Array) also implement

a << operator with similar semantics, you can quite often write code that appends to

something using << without caring whether it is added to an array, a file, or a string.

This kind of flexibility also makes unit testing easy. We discuss this idea in greater

detail in the chapter on duck typing, starting on page 349.

Doing I/O with Strings1.8

There are often times where you need to work with code that assumes it’s reading from

or writing to one or more files. But you have a problem: the data isn’t in files. Perhaps

it’s available instead via a SOAP service, or it has been passed to you as command-line

parameters. Or maybe you’re running unit tests, and you don’t want to alter the real file

system.

Enter StringIO objects. They behave just like other I/O objects, but they read and

write strings, not files. If you open a StringIO object for reading, you supply it with a

string. All read operations on the StringIO object then read from this string. Similarly,

when you want to write to a StringIO object, you pass it a string to be filled.

require 'stringio'

ip = StringIO.new("now is\nthe time\nto learn\nRuby!")

op = StringIO.new("", "w")

ip.each_line do |line|

op.puts line.reverse

end

op.string → "\nsi won\n\nemit eht\n\nnrael ot\n!ybuR\n"

Prepared exclusively for Jose Sierra

TALKING TO NETWORKS 125

Talking to Networks
Ruby is fluent in most of the Internet’s protocols, both low-level and high-level.

For those who enjoy groveling around at the network level, Ruby comes with a set

of classes in the socket library (documented starting on page 740). These classes give

you access to TCP, UDP, SOCKS, and Unix domain sockets, as well as any additional

socket types supported on your architecture. The library also provides helper classes to

make writing servers easier. Here’s a simple program that gets information about the

“mysql” user on our local machine using the finger protocol.

require 'socket'

client = TCPSocket.open('127.0.0.1', 'finger')

client.send("mysql\n", 0) # 0 means standard packet

puts client.readlines

client.close

produces:

Login: mysql Name: MySQL Server

Directory: /var/empty Shell: /usr/bin/false

Never logged in.

No Mail.

No Plan.

At a higher level, the lib/net set of library modules provides handlers for a set of

application-level protocols (currently FTP, HTTP, POP, SMTP, and telnet). These are

documented starting on page 677. For example, the following program lists the images

that are displayed on the Pragmatic Programmer home page.

require 'net/http'

h = Net::HTTP.new('www.pragmaticprogrammer.com', 80)

response = h.get('/index.html', nil)

if response.message == "OK"

puts response.body.scan(/<img src="(.*?)"/m).uniq

end

produces:

images/title_main.gif

images/dot.gif

/images/studio_logo.png

images/Bookshelf_1.5_in_green.png

...

Although attractively simple, this example could be improved significantly. In particu-

lar, it doesn’t do much in the way of error handling. It should really report “Not Found”

errors (the infamous 404), and should handle redirects (which happen when a web

server gives the client an alternative address for the requested page).

Prepared exclusively for Jose Sierra

TALKING TO NETWORKS 126

We can take this to a higher level still. By bringing the openuri library into a pro-

gram, the Kernel.open method suddenly recognizes http:// and ftp:// URLs in

the filename. Not just that: it also handles redirects automatically.

require 'openuri'

open('http://www.pragmaticprogrammer.com') do |f|

puts f.read.scan(/<img src="(.*?)"/m).uniq

end

produces:

images/title_main.gif

images/dot.gif

/images/studio_logo.png

images/Bookshelf_1.5_in_green.png

http://pragmaticprogrammer.com/images/Friday_small_cover.gif

...

Have a look at Chapter 18 on page 222 for more information on using Ruby on the

Internet.

Prepared exclusively for Jose Sierra

Chapter 11

Threads and Processes

Ruby gives you two basic ways to organize your program so that you can run different

parts of it “at the same time.” You can split up cooperating tasks within the program,

using multiple threads, or you can split up tasks between different programs, using

multiple processes. Let’s look at each in turn.

Multithreading
Often the simplest way to do two things at once is by using Ruby threads. These

are totally in-process, implemented within the Ruby interpreter. That makes the Ruby

threads completely portable—they don’t rely on the operating system. At the same

time, you don’t get certain benefits from having native threads. What does this mean?

You may experience thread starvation (that’s where a low-priority thread doesn’t get a

chance to run). If you manage to get your threads deadlocked, the whole process may

grind to a halt. And if some thread happens to make a call to the operating system that

takes a long time to complete, all threads will hang until the interpreter gets control

back. Finally, if your machine has more than one processor, Ruby threads won’t take

advantage of that fact—because they run in one process, and in a single native thread,

they are constrained to run on one processor at a time.

All this sounds scary. In practice, though, in many circumstances the benefits of using

threads far outweigh any potential problems that may occur. Ruby threads are an effi-

cient and lightweight way to achieve parallelism in your code. You just need to under-

stand the underlying implementation issues and design accordingly.

Creating Ruby Threads

Creating a new thread is pretty straightforward. The code that follows is a simple exam-

ple. It downloads a set of Web pages in parallel. For each URL that it is asked to down-

load, the code creates a separate thread that handles the HTTP transaction.

127Prepared exclusively for Jose Sierra

MULTITHREADING 128

require 'net/http'

pages = %w(www.rubycentral.com slashdot.org www.google.com)

threads = []

for page_to_fetch in pages

threads << Thread.new(page_to_fetch) do |url|

h = Net::HTTP.new(url, 80)

puts "Fetching: #{url}"

resp = h.get('/', nil)

puts "Got #{url}: #{resp.message}"

end

end

threads.each {|thr| thr.join }

produces:

Fetching: www.rubycentral.com

Fetching: slashdot.org

Fetching: www.google.com

Got www.google.com: OK

Got www.rubycentral.com: OK

Got slashdot.org: OK

Let’s look at this code in more detail, as a few subtle things are happening.

New threads are created with the Thread.new call. It is given a block that contains

the code to be run in a new thread. In our case, the block uses the net/http library

to fetch the top page from each of our nominated sites. Our tracing clearly shows that

these fetches are going on in parallel.

When we create the thread, we pass the required URL as a parameter. This parameter

is passed to the block as url. Why do we do this, rather than simply using the value of

the variable page_to_fetch within the block?

A thread shares all global, instance, and local variables that are in existence at the

time the thread starts. As anyone with a kid brother can tell you, sharing isn’t always

a good thing. In this case, all three threads would share the variable page_to_fetch.

The first thread gets started, and page_to_fetch is set to "www.rubycentral.com".

In the meantime, the loop creating the threads is still running. The second time around,

page_to_fetch gets set to "slashdot.org". If the first thread has not yet finished

using the page_to_fetch variable, it will suddenly start using this new value. These

kinds of bugs are difficult to track down.

However, local variables created within a thread’s block are truly local to that thread—

each thread will have its own copy of these variables. In our case, the variable url will

be set at the time the thread is created, and each thread will have its own copy of the

page address. You can pass any number of arguments into the block via Thread.new.

Prepared exclusively for Jose Sierra

MULTITHREADING 129

Manipulating Threads

Another subtlety occurs on the last line in our download program. Why do we call join

on each of the threads we created?

When a Ruby program terminates, all threads are killed, regardless of their states. How-

ever, you can wait for a particular thread to finish by calling that thread’s Thread#join

method. The calling thread will block until the given thread is finished. By calling join

on each of the requestor threads, you can make sure that all three requests have com-

pleted before you terminate the main program. If you don’t want to block forever,1.8 you

can give join a timeout parameter—if the timeout expires before the thread terminates,

the join call returns nil. Another variant of join, the method Thread#value, returns

the value of the last statement executed by the thread.

In addition to join, a few other handy routines are used to manipulate threads. The

current thread is always accessible using Thread.current. You can obtain a list of all

threads using Thread.list, which returns a list of all Thread objects that are runnable

or stopped. To determine the status of a particular thread, you can use Thread#status

and Thread#alive?.

In addition, you can adjust the priority of a thread using Thread#priority= . Higher-

priority threads will run before lower-priority threads. We’ll talk more about thread

scheduling, and stopping and starting threads, in just a bit.

Thread Variables

A thread can normally access any variables that are in scope when the thread is created.

Variables local to the block containing the thread code are local to the thread and are

not shared.

But what if you need per-thread variables that can be accessed by other threads—

including the main thread? Class Thread features a special facility that allows thread-

local variables to be created and accessed by name. You simply treat the thread object

as if it were a Hash, writing to elements using []= and reading them back using []. In

the example that follows, each thread records the current value of the variable count

in a thread-local variable with the key mycount. To do this, the code uses the string

"mycount" when indexing thread objects. (A race condition1 exists in this code, but

we haven’t talked about synchronization yet, so we’ll just quietly ignore it for now.)

1. A race condition occurs when two or more pieces of code (or hardware) both try to access some shared

resource, and where the outcome changes depending on the order in which they do so. In the example here,

it is possible for one thread to set the value of its mycount variable to count, but before it gets a chance

to increment count, the thread gets descheduled and another thread reuses the same value of count. These

issues are fixed by synchronizing the access to shared resources (such as the count variable).

Prepared exclusively for Jose Sierra

MULTITHREADING 130

count = 0

threads = []

10.times do |i|

threads[i] = Thread.new do

sleep(rand(0.1))

Thread.current["mycount"] = count

count += 1

end

end

threads.each {|t| t.join; print t["mycount"], ", " }

puts "count = #{count}"

produces:

4, 1, 0, 8, 7, 9, 5, 6, 3, 2, count = 10

The main thread waits for the subthreads to finish and then prints out the value of count

captured by each. Just to make it more interesting, we have each thread wait a random

time before recording the value.

Threads and Exceptions

What happens if a thread raises an unhandled exception? It depends on the setting of

the abort_on_exception flag (documented on pages 612 and 615) and on the setting

of the interpreter’s debug flag (described on page 168).

If abort_on_exception is false and the debug flag is not enabled (the default con-

dition), an unhandled exception simply kills the current thread—all the rest continue

to run. In fact, you don’t even hear about the exception until you issue a join on the

thread that raised it.

In the following example, thread 2 blows up and fails to produce any output. However,

you can still see the trace from the other threads.

threads = []

4.times do |number|

threads << Thread.new(number) do |i|

raise "Boom!" if i == 2

print "#{i}\n"

end

end

threads.each {|t| t.join }

produces:

0

1

prog.rb:4: Boom! (RuntimeError)

from prog.rb:8:in `join'

from prog.rb:8

from prog.rb:8:in `each'

from prog.rb:8

Prepared exclusively for Jose Sierra

MULTITHREADING 131

We can rescue the exception at the time the threads are joined.

threads = []

4.times do |number|

threads << Thread.new(number) do |i|

raise "Boom!" if i == 2

print "#{i}\n"

end

end

threads.each do |t|

begin

t.join

rescue RuntimeError => e

puts "Failed: #{e.message}"

end

end

produces:

0

1

3

Failed: Boom!

However, set abort_on_exception to true, or use d to turn on the debug flag, and

an unhandled exception kills all running threads. Once thread 2 dies, no more output is

produced.

Thread.abort_on_exception = true

threads = []

4.times do |number|

threads << Thread.new(number) do |i|

raise "Boom!" if i == 2

print "#{i}\n"

end

end

threads.each {|t| t.join }

produces:

0

1

prog.rb:5: Boom! (RuntimeError)

from prog.rb:4:in `initialize'

from prog.rb:4:in `new'

from prog.rb:4

from prog.rb:3:in `times'

from prog.rb:3

This code also illustrates a gotcha. Inside the loop, the threads use print to write out

the number, rather than puts. Why? Because behind the scenes, puts splits its work

into two chunks: it writes its argument, and then it writes a newline. Between these

two, a thread could get scheduled, and the output would be interleaved. Calling print

with a single string that already contains the newline gets around the problem.

Prepared exclusively for Jose Sierra

CONTROLLING THE THREAD SCHEDULER 132

Controlling the Thread Scheduler
In a well-designed application, you’ll normally just let threads do their thing; building

timing dependencies into a multithreaded application is generally considered to be bad

form, as it makes the code far more complex and also prevents the thread scheduler

from optimizing the execution of your program.

However, sometimes you need to control threads explicitly. Perhaps the jukebox has a

thread that displays a light show. We may need to stop it temporarily when the music

stops. You may have two threads in a classic producer-consumer relationship, where

the consumer has to pause if the producer gets backlogged.

Class Thread provides a number of methods to control the thread scheduler. Invoking

Thread.stop stops the current thread, and invoking Thread#run arranges for a par-

ticular thread to be run. Thread.pass deschedules the current thread, allowing others

to run, and Thread#join and Thread#value suspend the calling thread until a given

thread finishes.

We can demonstrate these features in the following, totally pointless program. It creates

two child threads, t1 and t2, each of which runs an instance of class Chaser. The chase

method increments a count but doesn’t let it get more than two higher than the count

in the other thread. To stop it getting higher, the method issues a Thread.pass, which

allows the chase in the other thread to catch up. To make it interesting (for some minor

definition of interesting), we have the threads suspend themselves initially and then

start a random one first.

class Chaser

attr_reader :count

def initialize(name)

@name = name

@count = 0

end

def chase(other)

while @count < 5

while @count other.count > 1

Thread.pass

end

@count += 1

print "#@name: #{count}\n"

end

end

end

c1 = Chaser.new("A")

c2 = Chaser.new("B")

threads = [

Thread.new { Thread.stop; c1.chase(c2) },

Thread.new { Thread.stop; c2.chase(c1) }

]

Prepared exclusively for Jose Sierra

MUTUAL EXCLUSION 133

start_index = rand(2)

threads[start_index].run

threads[1 start_index].run

threads.each {|t| t.join }

produces:

A: 1

A: 2

B: 1

B: 2

B: 3

B: 4

A: 3

A: 4

A: 5

B: 5

However, using these primitives to achieve synchronization in real-life code is not

easy—race conditions will always be waiting to bite you. And when you’re working

with shared data, race conditions pretty much guarantee long and frustrating debugging

sessions. In fact, the previous example includes just such a bug; it is possible for count

to be incremented in one thread, but before that count can be output, the second thread

gets scheduled and outputs its count. The resulting output will be out of sequence.

Fortunately, threads have one additional facility—the idea of mutual exclusion. Using

this, we can build a number of secure synchronization schemes.

Mutual Exclusion
The lowest-level method of blocking other threads from running uses a global thread-

critical condition. When the condition is set to true (using the Thread.critical=

method), the scheduler will not schedule any existing thread to run. However, this does

not block new threads from being created and run. Certain thread operations (such as

stopping or killing a thread, sleeping in the current thread, and raising an exception)

may cause a thread to be scheduled even when in a critical section.

Using Thread.critical= directly is certainly possible, but it isn’t terribly conven-

ient. In fact, we strongly recommend you don’t use it unless you have a black belt in

multithreading (and a penchant for long debugging sessions). Fortunately, Ruby comes

packaged with several alternatives. Right now we’ll look at one of these, the Monitor

library. You may also want to look at the Sync library (on page 717), the Mutex_m

library (beginning on page 676), and the Queue class implemented in the thread library

(on page 722).

Prepared exclusively for Jose Sierra

MUTUAL EXCLUSION 134

Monitors

While the threading primitives provide basic synchronization, they can be tricky to use.

Over the years, various folks have come up with higher-level alternatives. One that

works well, particularly in the context of object-oriented systems, is the concept of a

monitor.

Monitors wrap an object containing some kind of resource with synchronization func-

tions. To see them in action, let’s look at a simple counter that is accessed from two

threads.

class Counter

attr_reader :count

def initialize

@count = 0

end

def tick

@count += 1

end

end

c = Counter.new

t1 = Thread.new { 100_000.times { c.tick } }

t2 = Thread.new { 100_000.times { c.tick } }

t1.join

t2.join

c.count → 161510

Perhaps surprisingly, the count doesn’t equal 200,000. The reason is a single line of

code.

@count += 1

This line is actually more complex than it first appears. Within the Ruby interpreter, it

might break down into

val = fetch_current(@count)

add 1 to val

store val back into @count

Now imagine two threads executing this code at the same time. Table 11.1 on the fol-

lowing page shows the thread number (t1 and t2), the code being executed, and the

value of the counter (which we initialize to 0).

Even though our basic set of load/add/store instructions executed five times, we ended

up with a count of three. Because thread 1 interrupted the execution of thread 2 in the

middle of a sequence, when thread 2 resumed it stored a stale value back into @count.

Prepared exclusively for Jose Sierra

MUTUAL EXCLUSION 135

Table 11.1. Two threads in a race condition

Thread Executes. . . Result

t1: val = fetch_current(@count) @count = 0

t1: add 1 to val 0

t1: store val back into @count @count = 1

t2: val = fetch_current(@count) 1

t2: add 1 to val 1

t2: store val back into @count @count = 2

t1: val = fetch_current(@count) 2

t2: val = fetch_current(@count) 2

t1: add 1 to val 2

t1: store val back into @count @count = 3

t1: val = fetch_current(@count) 3

t1: add 1 to val 3

t1: store val back into @count @count = 4

t2: add 1 to val 4

t2: store val back into @count @count = 3

The solution is to arrange things so that only one thread can execute the tick method’s

increment at any one time. This is easy using monitors.

require 'monitor'

class Counter < Monitor

attr_reader :count

def initialize

@count = 0

super

end

def tick

synchronize do

@count += 1

end

end

end

c = Counter.new

t1 = Thread.new { 100_000.times { c.tick } }

t2 = Thread.new { 100_000.times { c.tick } }

t1.join; t2.join

c.count → 200000

By making our counter a monitor, it gains access to the synchronize method. Only

one thread can be executing code within a synchronize block for a particular monitor

object at any one time, so we no longer have two threads caching intermediate results

at the same time, and our count has its expected value.

Prepared exclusively for Jose Sierra

MUTUAL EXCLUSION 136

We don’t have to make our class a subclass of Monitor to gain these benefits. We could

also mix in a variant, MonitorMixin.

require 'monitor'

class Counter

include MonitorMixin

. . .

end

The previous example put the synchronization inside the resource being synchronized.

This is appropriate when all accesses to all objects of the class require synchronization.

But if you want to control access to objects that require synchronization only in some

circumstances, or if the synchronization is spread across a group of objects, then it may

be better to use an external monitor.

require 'monitor'

class Counter

attr_reader :count

def initialize

@count = 0

end

def tick

@count += 1

end

end

c = Counter.new

lock = Monitor.new

t1 = Thread.new { 100_000.times { lock.synchronize { c.tick } } }

t2 = Thread.new { 100_000.times { lock.synchronize { c.tick } } }

t1.join; t2.join

c.count → 200000

We can even make specific objects into monitors.

require 'monitor'

class Counter

as before...

end

c = Counter.new

c.extend(MonitorMixin)

t1 = Thread.new { 100_000.times { c.synchronize { c.tick } } }

t2 = Thread.new { 100_000.times { c.synchronize { c.tick } } }

t1.join; t2.join

c.count → 200000

Prepared exclusively for Jose Sierra

MUTUAL EXCLUSION 137

Here, because class Counter doesn’t know it is a monitor at the time it’s defined, we

have to perform the synchronization externally (in this case by wrapping the calls to

c.tick). This is clearly a tad dangerous: if some other code calls tick but doesn’t

realize that synchronization is required, we’re back in the same mess we started with.

Queues

Most of the examples in this chapter use the Monitor class for synchronization. How-

ever, another technique is useful, particularly when you need to synchronize work

between producers and consumers. The Queue class, located in the thread library,

implements a thread-safe queuing mechanism. Multiple threads can add and remove

objects from the queue, and each addition and removal is guaranteed to be atomic. For

an example of this, see the description of the thread library on page 722.

Condition Variables

Monitors give us half of what we need, but there’s a problem. Say we have two threads

accessing a shared queue. One needs to add entries, and the other needs to read them

(perhaps the list represents songs waiting to be played on our jukebox: it gets added to

when customers make selections, and gets emptied as records get played).

We know we need to synchronize access, so we try something like

require 'monitor'

playlist = []

playlist.extend(MonitorMixin)

Player thread

Thread.new do

record = nil

loop do

playlist.synchronize do # < < BUG!!!

sleep 0.1 while playlist.empty?

record = playlist.shift

end

play(record)

end

end

Customer request thread

Thread.new do

loop do

req = get_customer_request

playlist.synchronize do

playlist << req

end

end

end

Prepared exclusively for Jose Sierra

MUTUAL EXCLUSION 138

But this code has a problem. Inside the player thread, we gain access to the monitor

and then loop waiting for something to be added to the playlist. But because we own

the monitor, the customer thread will never be able to enter its synchronized block, and

will never add something to the playlist. We’re stuck. What we need is to be able to sig-

nal that the playlist has something in it and to provide synchronization between threads

based on this condition, all while staying within the safety of a monitor. More gener-

ally, we need to be able to give up temporarily the exclusive use of the critical region

and simultaneously tell people that we’re waiting for a resource. When the resource

becomes available, we need to be able to grab it and reobtain the lock on the critical

region, all in one step.

That’s where condition variables come in. A condition variable is a controlled way of

communicating an event (or a condition) between two threads. One thread can wait on

the condition, and the other can signal it. For example, we could rewrite our jukebox

using condition variables. (For the purposes of this code we’ll write stub methods for

receiving customer requests and playing records. We also have to add a flag to tell the

player that it’s OK to shut down; normally it would run forever.)

require 'monitor'

SONGS = [

'Blue Suede Shoes',

'Take Five',

'Bye Bye Love',

'Rock Around The Clock',

'Ruby Tuesday'

]

START_TIME = Time.now

def timestamp

(Time.now START_TIME).to_i

end

Wait for up to two minutes between customer requests

def get_customer_request

sleep(120 * rand)

song = SONGS.shift

puts "#{timestamp}: Requesting #{song}" if song

song

end

Songs take between two and three minutes

def play(song)

puts "#{timestamp}: Playing #{song}"

sleep(120 + 60*rand)

end

ok_to_shutdown = false

and here's our original code

playlist = []

playlist.extend(MonitorMixin)

Prepared exclusively for Jose Sierra

RUNNING MULTIPLE PROCESSES 139

plays_pending = playlist.new_cond

Customer request thread

customer = Thread.new do

loop do

req = get_customer_request

break unless req

playlist.synchronize do

playlist << req

plays_pending.signal

end

end

end

Player thread

player = Thread.new do

loop do

song = nil

playlist.synchronize do

break if ok_to_shutdown && playlist.empty?

plays_pending.wait_while { playlist.empty? }

song = playlist.shift

end

break unless song

play(song)

end

end

customer.join

ok_to_shutdown = true

player.join

produces:

25: Requesting Blue Suede Shoes

25: Playing Blue Suede Shoes

70: Requesting Take Five

184: Requesting Bye Bye Love

205: Playing Take Five

284: Requesting Rock Around The Clock

294: Requesting Ruby Tuesday

384: Playing Bye Bye Love

551: Playing Rock Around The Clock

693: Playing Ruby Tuesday

Running Multiple Processes
Sometimes you may want to split a task into several process-sized chunks—or perhaps

you need to run a separate process that was not written in Ruby. Not a problem: Ruby

has a number of methods by which you may spawn and manage separate processes.

Prepared exclusively for Jose Sierra

RUNNING MULTIPLE PROCESSES 140

Spawning New Processes

You have several ways to spawn a separate process; the easiest is to run some command

and wait for it to complete. You may find yourself doing this to run some separate

command or retrieve data from the host system. Ruby does this for you with the system

and backquote (or backtick) methods.

system("tar xzf test.tgz") → true

result = `date`

result → "Wed Sep 20 16:05:04 CDT 2006\n"

The method Kernel.system executes the given command in a subprocess; it returns

true if the command was found and executed properly and false otherwise. In case

of failure, you’ll find the subprocess’s exit code in the global variable $?.

One problem with system is that the command’s output will simply go to the same

destination as your program’s output, which may not be what you want. To capture the

standard output of a subprocess, you can use the backquote characters, as with `date`

in the previous example. Remember that you may need to use String#chomp to remove

the line-ending characters from the result.

OK, this is fine for simple cases—we can run some other process and get the return

status. But many times we need a bit more control than that. We’d like to carry on a

conversation with the subprocess, possibly sending it data and possibly getting some

back. The method IO.popen does just this. The popen method runs a command as

a subprocess and connects that subprocess’s standard input and standard output to a

Ruby IO object. Write to the IO object, and the subprocess can read it on standard

input. Whatever the subprocess writes is available in the Ruby program by reading

from the IO object.

For example, on our systems one of the more useful utilities is pig, a program that

reads words from standard input and prints them in pig latin (or igpay atinlay). We

can use this when our Ruby programs need to send us output that our five-year-olds

shouldn’t be able to understand.

pig = IO.popen("/usr/local/bin/pig", "w+")

pig.puts "ice cream after they go to bed"

pig.close_write

puts pig.gets

produces:

iceway eamcray afterway eythay ogay otay edbay

This example illustrates both the apparent simplicity and the real-world complexi-

ties involved in driving subprocesses through pipes. The code certainly looks simple

enough: open the pipe, write a phrase, and read back the response. But it turns out that

the pig program doesn’t flush the output it writes. Our original attempt at this exam-

ple, which had a pig.puts followed by a pig.gets, hung forever. The pig program

Prepared exclusively for Jose Sierra

RUNNING MULTIPLE PROCESSES 141

processed our input, but its response was never written to the pipe. We had to insert

the pig.close_write line. This sends an end-of-file to pig’s standard input, and the

output we’re looking for gets flushed as pig terminates.

popen has one more twist. If the command you pass it is a single minus sign (–), popen

will fork a new Ruby interpreter. Both this and the original interpreter will continue

running by returning from the popen. The original process will receive an IO object

back, and the child will receive nil. This works only on operating systems that support

the fork(2) call (and for now this excludes Windows).

pipe = IO.popen("","w+")

if pipe

pipe.puts "Get a job!"

STDERR.puts "Child says '#{pipe.gets.chomp}'"

else

STDERR.puts "Dad says '#{gets.chomp}'"

puts "OK"

end

produces:

Dad says 'Get a job!'

Child says 'OK'

In addition to the popen method, some platforms support the methods Kernel.fork,

Kernel.exec, and IO.pipe. The file-naming convention of many IO methods and

Kernel.open will also spawn subprocesses if you put a | as the first character of the

filename (see the introduction to class IO on page 482 for details). Note that you cannot

create pipes using File.new; it’s just for files.

Independent Children

Sometimes we don’t need to be quite so hands-on: we’d like to give the subprocess its

assignment and then go on about our business. Sometime later, we’ll check to see if it

has finished. For instance, we may want to kick off a long-running external sort.

exec("sort testfile > output.txt") if fork.nil?

The sort is now running in a child process

carry on processing in the main program

... dum di dum ...

then wait for the sort to finish

Process.wait

The call to Kernel.fork returns a process ID in the parent, and nil in the child, so the

child process will perform the Kernel.exec call and run sort. Sometime later, we issue

a Process.wait call, which waits for the sort to complete (and returns its process ID).

Prepared exclusively for Jose Sierra

RUNNING MULTIPLE PROCESSES 142

If you’d rather be notified when a child exits (instead of just waiting around), you can

set up a signal handler using Kernel.trap (described on page 513). Here we set up a

trap on SIGCLD, which is the signal sent on “death of child process.”

trap("CLD") do

pid = Process.wait

puts "Child pid #{pid}: terminated"

end

exec("sort testfile > output.txt") if fork.nil?

do other stuff...

produces:

Child pid 14975: terminated

For more information on using and controlling external processes, see the documenta-

tion for Kernel.open, IO.popen, and the section on the Process module on page 562.

Blocks and Subprocesses

IO.popen works with a block in pretty much the same way as File.open does. If you

pass it a command, such as date, the block will be passed an IO object as a parameter.

IO.popen("date") {|f| puts "Date is #{f.gets}" }

produces:

Date is Wed Sep 20 16:05:05 CDT 2006

The IO object will be closed automatically when the code block exits, just as it is with

File.open.

If you associate a block with Kernel.fork, the code in the block will be run in a Ruby

subprocess, and the parent will continue after the block.

fork do

puts "In child, pid = #$$"

exit 99

end

pid = Process.wait

puts "Child terminated, pid = #{pid}, status = #{$?.exitstatus}"

produces:

In child, pid = 14982

Child terminated, pid = 14982, status = 99

$? is a global variable that contains information on the termination of a subprocess.

See the section on Process::Status beginning on page 570 for more information.

Prepared exclusively for Jose Sierra

Chapter 12

Unit Testing

Unit testing (described in the sidebar on the following page) is a technique that helps

developers write better code. It helps before the code is actually written, as thinking

about testing leads you naturally to create better, more decoupled designs. It helps as

you’re writing the code, as it gives you instant feedback on how accurate your code is.

And it helps after you’ve written code, both because it gives you the ability to check

that the code still works and because it helps others understand how to use your code.

Unit testing is a Good Thing.

But why have a chapter on unit testing in the middle of a book on Ruby? Because unit

testing and languages such as Ruby seem to go hand in hand. The flexibility of Ruby

makes writing tests easy, and the tests make it easier to verify that your code is working.

Once you get into the swing of it, you’ll find yourself writing a little code, writing a

test or two, verifying that everything is copacetic, and then writing some more code.

Unit testing is also pretty trivial—run a program that calls part of your application’s

code, get back some results, and then check the results are what you expected.

Let’s say we’re testing a Roman number class. So far the code is pretty simple: it just

lets us create an object representing a certain number and display that object in Roman

numerals. Figure 12.1 on page 145 shows our first stab at an implementation.

We could test this code by writing another program, like this.

require 'roman'

r = Roman.new(1)

fail "'i' expected" unless r.to_s == "i"

r = Roman.new(9)

fail "'ix' expected" unless r.to_s == "ix"

However, as the number of tests in a project grows, this kind of ad-hoc approach can

start to get complicated to manage. Over the years, various unit testing frameworks

have emerged to help structure the testing process. Ruby comes with one preinstalled,

Nathaniel Talbott’s Test::Unit framework.

143Prepared exclusively for Jose Sierra

TEST::UNIT FRAMEWORK 144

What is Unit Testing?

Unit testing focuses on small chunks (units) of code, typically individ-
ual methods or lines within methods. This is in contrast to most other
forms of testing, which consider the system as a whole.

Why focus in so tightly? Because ultimately all software is constructed
in layers: code on one layer relies on the correct operation of the code
in the layers below. If this underlying code turns out to contain bugs,
then all higher layers are potentially affected. This is a big problem.
Fred may write the code with a bug one week, and then you may end
up calling it, indirectly, two months later. When your code generates
incorrect results, it will take you a while to track down the problem in
Fred’s method. And when you ask Fred why he wrote it that way, the
likely answer will be “I don’t remember. That was months ago.”

If instead Fred had unit tested his code when he wrote it, two things
would have happened. First, he’d have found the bug while the code
was still fresh in his mind. Second, because the unit test was only
looking at the code he’d just written, when the bug did appear, he’d
only have to look through a handful of lines of code to find it, rather
than doing archaeology on the rest of the code base.

Test::Unit Framework
The Test::Unit framework is basically three facilities wrapped into a neat package.

1. It gives you a way of expressing individual tests.

2. It provides a framework for structuring the tests.

3. It gives you flexible ways of invoking the tests.

Assertions == Expected Results

Rather than have you write series of individual if statements in your tests, Test::Unit

provides a series of assertions that achieve the same thing. Although a number of dif-

ferent styles of assertion exist, they all follow basically the same pattern. Each assertion

gives you a way of specifying a desired result or outcome and a way of passing in the

actual outcome. If the actual doesn’t equal the expected, the assertion outputs a nice

message and records the fact as a failure.

For example, we could rewrite our previous test of the Roman class in Test::Unit. For

now, ignore the scaffolding code at the start and end, and just look at the assert_equal

methods.

Prepared exclusively for Jose Sierra

TEST::UNIT FRAMEWORK 145

Figure 12.1. Roman numerals generation (with bugs)

class Roman

MAX_ROMAN = 4999

def initialize(value)

if value <= 0 || value > MAX_ROMAN

fail "Roman values must be > 0 and <= #{MAX_ROMAN}"

end

@value = value

end

FACTORS = [["m", 1000], ["cm", 900], ["d", 500], ["cd", 400],

["c", 100], ["xc", 90], ["l", 50], ["xl", 40],

["x", 10], ["ix", 9], ["v", 5], ["iv", 4],

["i", 1]]

def to_s

value = @value

roman = ""

for code, factor in FACTORS

count, value = value.divmod(factor)

roman << code unless count.zero?

end

roman

end

end

require 'roman'

require 'test/unit'

class TestRoman < Test::Unit::TestCase

def test_simple

assert_equal("i", Roman.new(1).to_s)

assert_equal("ix", Roman.new(9).to_s)

end

end

produces:

Loaded suite

Started

.

Finished in 0.001209 seconds.

1 tests, 2 assertions, 0 failures, 0 errors

The first assertion says that we’re expecting the Roman number string representation

of 1 to be “i”, and the second test says we expect 9 to be “ix”. Luckily for us, both

expectations are met, and the tracing reports that our tests pass.

Let’s add a few more tests.

Prepared exclusively for Jose Sierra

TEST::UNIT FRAMEWORK 146

require 'roman'

require 'test/unit'

class TestRoman < Test::Unit::TestCase

def test_simple

assert_equal("i", Roman.new(1).to_s)

assert_equal("ii", Roman.new(2).to_s)

assert_equal("iii", Roman.new(3).to_s)

assert_equal("iv", Roman.new(4).to_s)

assert_equal("ix", Roman.new(9).to_s)

end

end

produces:

Loaded suite

Started

F

Finished in 0.009083 seconds.

1) Failure:

<"ii"> expected but was

<"i">.

1 tests, 2 assertions, 1 failures, 0 errors

test_simple(TestRoman) [prog.rb:6]:

Uh oh! The second assertion failed. See how the error message uses the fact that the

assert knows both the expected and actual values: it expected to get “ii” but instead got

“i”. Looking at our code, you can see a clear bug in to_s. If the count after dividing

by the factor is greater than zero, then we should output that many Roman digits. The

existing code outputs just one. The fix is easy.

def to_s

value = @value

roman = ""

for code, factor in FACTORS

count, value = value.divmod(factor)

roman << (code * count)

end

roman

end

Now let’s run our tests again.

Loaded suite

Started

.

Finished in 0.000791 seconds.

1 tests, 5 assertions, 0 failures, 0 errors

Looking good. We can now go a step further and remove some of that duplication.

Prepared exclusively for Jose Sierra

TEST::UNIT FRAMEWORK 147

require 'roman'

require 'test/unit'

class TestRoman < Test::Unit::TestCase

NUMBERS = [

[1, "i"], [2, "ii"], [3, "iii"],

[4, "iv"], [5, "v"], [9, "ix"]

]

def test_simple

NUMBERS.each do |arabic, roman|

r = Roman.new(arabic)

assert_equal(roman, r.to_s)

end

end

end

produces:

Loaded suite

Started

.

Finished in 0.000721 seconds.

1 tests, 6 assertions, 0 failures, 0 errors

What else can we test? Well, the constructor checks that the number we pass in can

be represented as a Roman number, throwing an exception if it can’t. Let’s test the

exception.

require 'roman'

require 'test/unit'

class TestRoman < Test::Unit::TestCase

def test_range

assert_raise(RuntimeError) { Roman.new(0) }

assert_nothing_raised() { Roman.new(1) }

assert_nothing_raised() { Roman.new(4999) }

assert_raise(RuntimeError) { Roman.new(5000) }

end

end

produces:

Loaded suite

Started

.

Finished in 0.00091 seconds.

1 tests, 4 assertions, 0 failures, 0 errors

We could do a lot more testing on our Roman class, but let’s move on to bigger and

better things. Before we go, though, we should say that we’ve only scratched the surface

of the set of assertions available inside Test::Unit. Figure 12.2 on page 154 gives a full

list. The final parameter to every assertion is a message, which is output before any

Prepared exclusively for Jose Sierra

STRUCTURING TESTS 148

failure message. This normally isn’t needed, as Test::Unit’s messages are normally

pretty reasonable. The one exception is the test assert_not_nil, where the message

“<nil> expected to not be nil” doesn’t help much. In that case, you may want to add

some annotation of your own.

require 'test/unit'

class TestsWhichFail < Test::Unit::TestCase

def test_reading

assert_not_nil(ARGF.read, "Read next line of input")

end

end

produces:

Loaded suite

Started

F

Finished in 0.007975 seconds.

1) Failure:

Read next line of input.

<nil> expected to not be nil.

1 tests, 1 assertions, 1 failures, 0 errors

test_reading(TestsWhichFail) [prog.rb:4]:

Structuring Tests
Earlier we asked you to ignore the scaffolding around our tests. Now it’s time to look

at it.

You include Test::Unit facilities in your unit test with the following line.

require 'test/unit'

Unit tests seem to fall quite naturally into high-level groupings, called test cases, and

lower level groupings, the test methods themselves. The test cases generally contain all

the tests relating to a particular facility or feature. Our Roman number class is fairly

simple, so all the tests for it will probably be in a single test case. Within the test

case, you’ll probably want to organize your assertions into a number of test methods,

where each method contains the assertions for one type of test: one method could check

regular number conversions, another could test error handling, and so on.

The classes that represent test cases must be subclasses of Test::Unit::TestCase. The

methods that hold the assertions must have names that start with test. This is impor-

tant: Test::Unit uses reflection to find tests to run, and only methods whose names start

with test are eligible.

Prepared exclusively for Jose Sierra

STRUCTURING TESTS 149

Quite often you’ll find all of the test methods within a test case setting up a particu-

lar scenario. Each test method then probes some aspect of that scenario. Finally, each

method may then tidy up after itself. For example, we could be testing a class that

extracts jukebox playlists from a database.

require 'test/unit'

require 'dbi'

require 'playlist_builder'

class TestPlaylistBuilder < Test::Unit::TestCase

def test_empty_playlist

db = DBI.connect('DBI:mysql:playlists')

pb = PlaylistBuilder.new(db)

assert_equal([], pb.playlist())

db.disconnect

end

def test_artist_playlist

db = DBI.connect('DBI:mysql:playlists')

pb = PlaylistBuilder.new(db)

pb.include_artist("krauss")

assert(pb.playlist.size > 0, "Playlist shouldn't be empty")

pb.playlist.each do |entry|

assert_match(/krauss/i, entry.artist)

end

db.disconnect

end

def test_title_playlist

db = DBI.connect('DBI:mysql:playlists')

pb = PlaylistBuilder.new(db)

pb.include_title("midnight")

assert(pb.playlist.size > 0, "Playlist shouldn't be empty")

pb.playlist.each do |entry|

assert_match(/midnight/i, entry.title)

end

db.disconnect

end

...

end

produces:

Loaded suite

Started

...

Finished in 0.001206 seconds.

3 tests, 23 assertions, 0 failures, 0 errors

Each test starts by connecting to the database and creating a new playlist builder. Each

test ends by disconnecting from the database. (The idea of using a real database in unit

Prepared exclusively for Jose Sierra

STRUCTURING TESTS 150

tests is questionable, as unit tests are supposed to be fast running, context independent,

and easy to set up, but it illustrates a point.)

We can extract all this common code into setup and teardown methods. Within a

TestCase class, a method called setup will be run before each and every test method,

and a method called teardown will be run after each test method finishes. Let’s empha-

size that: the setup and teardown methods bracket each test, rather than being run

once per test case.

Our test would then become

require 'test/unit'

require 'dbi'

require 'playlist_builder'

class TestPlaylistBuilder < Test::Unit::TestCase

def setup

@db = DBI.connect('DBI:mysql:playlists')

@pb = PlaylistBuilder.new(@db)

end

def teardown

@db.disconnect

end

def test_empty_playlist

assert_equal([], @pb.playlist())

end

def test_artist_playlist

@pb.include_artist("krauss")

assert(@pb.playlist.size > 0, "Playlist shouldn't be empty")

@pb.playlist.each do |entry|

assert_match(/krauss/i, entry.artist)

end

end

def test_title_playlist

@pb.include_title("midnight")

assert(@pb.playlist.size > 0, "Playlist shouldn't be empty")

@pb.playlist.each do |entry|

assert_match(/midnight/i, entry.title)

end

end

...

end

produces:

Loaded suite

Started

...

Finished in 0.001211 seconds.

3 tests, 23 assertions, 0 failures, 0 errors

Prepared exclusively for Jose Sierra

ORGANIZING AND RUNNING TESTS 151

Organizing and Running Tests
The test cases we’ve shown so far are all runnable Test::Unit programs. If, for example,

the test case for the Roman class was in a file called test_roman.rb, we could run the

tests from the command line using

% ruby test_roman.rb

Loaded suite test_roman

Started

..

Finished in 0.039257 seconds.

2 tests, 9 assertions, 0 failures, 0 errors

Test::Unit is clever enough to notice that there’s no main program, so it collects up all

the test case classes and runs each in turn.

If we want, we can ask it to run just a particular test method.

% ruby test_roman.rb name test_range

Loaded suite test_roman

Started

.

Finished in 0.006445 seconds.

1 tests, 4 assertions, 0 failures, 0 errors

Where to Put Tests

Once you get into unit testing, you may well find yourself generating almost as much

test code as production code. All of those tests have to live somewhere. The problem

is that if you put them alongside your regular production code source files, your direc-

tories start to get bloated—effectively you end up with two files for every production

source file.

A common solution is to have a test/ directory where you place all your test source

files. This directory is then placed parallel to the directory containing the code you’re

developing. For example, for our Roman numeral class, we may have

roman

lib/

roman.rb

other files. . .

test/

test_roman.rb

other tests. . .

other stuff

Prepared exclusively for Jose Sierra

ORGANIZING AND RUNNING TESTS 152

This works well as a way of organizing files but leaves you with a small problem: how

do you tell Ruby where to find the library files to test? For example, if our TestRoman

test code was in a test/ subdirectory, how does Ruby know where to find the roman.

rb source file, the thing we’re trying to test?

An option that doesn’t work reliably is to build the path into require statements in the

test and run the tests from the test/ subdirectory.

require 'test/unit'

require '../lib/roman'

class TestRoman < Test::Unit::TestCase

...

end

Why doesn’t it work? Because our roman.rb file may itself require other source files in

the library we’re writing. It’ll load them using require (without the leading “../lib/”),

and because they aren’t in Ruby’s $LOAD_PATH, they won’t be found. Our test just won’t

run. A second, less immediate problem is that we won’t be able to use these same tests

to test our classes once installed on a target system, as then they’ll be referenced simply

using require 'roman'.

A better solution is to run the tests from the directory containing the library being

tested. Because the current directory is in the load path, the test code will be able to

find it.

% ruby ../test/test_roman.rb

However, this approach breaks down if you want to be able to run the tests from some-

where else on your system. Perhaps your scheduled build process runs tests for all the

software in the application by simply looking for files called test_xxx and executing

them. In this case, you need a little load path magic. At the front of your test code (for

example in test_roman.rb), add the following line:

$:.unshift File.join(File.dirname(__FILE__), "..", "lib")

require ...

This magic works because the test code is in a known location relative to the code being

tested. It starts by working out the name of the directory from which the test file is run

and then constructing the path to the files under test. This directory is then prepended

to the load path (the variable $:). From then on, code such as require 'roman' will

search the library being tested first.

Test Suites

After a while, you’ll grow a decent collection of test cases for your application. You

may well find that these tend to cluster: one group of cases tests a particular set of

functions, and another group tests a different set of functions. If so, you can group

those test cases together into test suites, letting you run them all as a group.

Prepared exclusively for Jose Sierra

ORGANIZING AND RUNNING TESTS 153

This is easy to do in Test::Unit. All you have to do is create a Ruby file that requires

test/unit, and then requires each of the files holding the test cases you want to group.

This way, you build yourself a hierarchy of test material.

• You can run individual tests by name.

• You can run all the tests in a file by running that file.

• You can group a number of files into a test suite and run them as a unit.

• You can group test suites into other test suites.

This gives you the ability to run your unit tests at a level of granularity that you control,

testing just one method or testing the entire application.

At this point, it’s worthwhile thinking about naming conventions. Nathaniel Talbott,

the author of Test::Unit, uses the convention that test cases are in files named tc_xxx

and test suites are in files named ts_xxx.

file ts_dbaccess.rb

require 'test/unit'

require 'tc_connect'

require 'tc_query'

require 'tc_update'

require 'tc_delete'

Now, if you run Ruby on the file ts_dbaccess.rb, you execute the test cases in the

four files you’ve required.

Is that all there is to it? No, you can make it more complicated if you want. You can

manually create and populate TestSuite objects, but there doesn’t seem to be much

point in practice. If you want to find more information, ri Test::Unit should help.

Test::Unit comes with a number of fancy GUI test runners. As real programmers use

the command line, however, these aren’t described here. Again, see the documentation

for details.

Prepared exclusively for Jose Sierra

ORGANIZING AND RUNNING TESTS 154

Figure 12.2. Test::Unit assertions

assert(boolean, [message])

Fails if boolean is false or nil.

assert_nil(obj, [message])

assert_not_nil(obj, [message])

Expects obj to be (not) nil.

assert_equal(expected, actual, [message])

assert_not_equal(expected, actual, [message])

Expects actual to equal/not equal expected, using ==.

assert_in_delta(expected_float, actual_float, delta, [message])

Expects that the actual floating-point value is within delta of the expected value.

assert_raise(Exception, . . .) { block }

assert_nothing_raised(Exception, . . .) { block }

Expects the block to (not) raise one of the listed exceptions.

assert_instance_of(klass, obj, [message])

assert_kind_of(klass, obj, [message])

Expects obj to be a kind/instance of klass.

assert_respond_to(obj, message, [message])

Expects obj to respond to message (a symbol).

assert_match(regexp, string, [message])

assert_no_match(regexp, string, [message])

Expects string to (not) match regexp.

assert_same(expected, actual, [message])

assert_not_same(expected, actual, [message])

Expects expected.equal?(actual).

assert_operator(obj1, operator, obj2, [message])
Expects the result of sending the message operator to obj1 with parameter obj2 to

be true.

assert_throws(expected_symbol, [message]) { block }

Expects the block to throw the given symbol.

assert_send(send_array, [message])
Sends the message in send_array[1] to the receiver in send_array[0], passing the

rest of send_array as arguments. Expects the return value to be true.

flunk(message="Flunked")

Always fail.

Prepared exclusively for Jose Sierra

Chapter 13

When Trouble Strikes

Sad to say, it is possible to write buggy programs using Ruby. Sorry about that.

But not to worry! Ruby has several features that will help debug your programs. We’ll

look at these features, and then we’ll show some common mistakes you can make in

Ruby and how to fix them.

Ruby Debugger
Ruby comes with a debugger, which is conveniently built into the base system. You can

run the debugger by invoking the interpreter with the r debug option, along with any

other Ruby options and the name of your script.

ruby r debug [debug-options] [programfile] [program-arguments]

The debugger supports the usual range of features you’d expect, including the ability

to set breakpoints, to step into and step over method calls, and to display stack frames

and variables. It can also list the instance methods defined for a particular object or

class, and it allows you to list and control separate threads within Ruby. Table 13.1 on

page 165 lists all the commands that are available under the debugger.

If your Ruby installation has readline support enabled, you can use cursor keys to

move back and forth in command history and use line-editing commands to amend

previous input.

To give you an idea of what the Ruby debugger is like, here is a sample session (with

user input in bold face type).

% ruby -r debug t.rb
Debug.rb

Emacs support available.

t.rb:1:def fact(n)

(rdb:1) list 1-9
[1, 10] in t.rb

155Prepared exclusively for Jose Sierra

INTERACTIVE RUBY 156

=> 1 def fact(n)

2 if n <= 0

3 1

4 else

5 n * fact(n1)

6 end

7 end

8

9 p fact(5)

(rdb:1) b 2
Set breakpoint 1 at t.rb:2

(rdb:1) c
breakpoint 1, fact at t.rb:2

t.rb:2: if n <= 0

(rdb:1) disp n
1: n = 5

(rdb:1) del 1
(rdb:1) watch n==1
Set watchpoint 2

(rdb:1) c
watchpoint 2, fact at t.rb:fact

t.rb:1:def fact(n)

1: n = 1

(rdb:1) where
> #1 t.rb:1:in `fact'

#2 t.rb:5:in `fact'

#3 t.rb:5:in `fact'

#4 t.rb:5:in `fact'

#5 t.rb:5:in `fact'

#6 t.rb:9

(rdb:1) del 2
(rdb:1) c
120

Interactive Ruby
If you want to play with Ruby, we recommend Interactive Ruby—irb, for short. irb is

essentially a Ruby “shell” similar in concept to an operating system shell (complete

with job control). It provides an environment where you can “play around” with the

language in real time. You launch irb at the command prompt.

irb [irb-options] [ruby_script] [program-arguments]

irb will display the value of each expression as you complete it. For instance:

% irb

irb(main):001:0> a = 1 +
irb(main):002:0* 2 * 3 /
irb(main):003:0* 4 % 5

Prepared exclusively for Jose Sierra

EDITOR SUPPORT 157

=> 2

irb(main):004:0> 2+2
=> 4

irb(main):005:0> def test
irb(main):006:1> puts "Hello, world!"
irb(main):007:1> end
=> nil

irb(main):008:0> test
Hello, world!

=> nil

irb(main):009:0>

irb also allows you to create subsessions, each one of which may have its own context.

For example, you can create a subsession with the same (top-level) context as the orig-

inal session or create a subsession in the context of a particular class or instance. The

sample session shown in Figure 13.1 on the following page is a bit longer but shows

how you can create subsessions and switch between them.

For a full description of all the commands that irb supports, see the reference beginning

on page 174.

As with the debugger, if your version of Ruby was built with GNU readline support,

you can use arrow keys (as with Emacs) or vi-style key bindings to edit individual lines

or to go back and reexecute or edit a previous line—just like a command shell.

irb is a great learning tool: it’s very handy if you want to try an idea quickly and see if

it works.

Editor Support
The Ruby interpreter is designed to read a program in one pass; this means you can

pipe an entire program to the interpreter’s standard input, and it will work just fine.

We can take advantage of this feature to run Ruby code from inside an editor. In Emacs,

for instance, you can select a region of Ruby text and use the command Meta| to

execute Ruby. The Ruby interpreter will use the selected region as standard input, and

output will go to a buffer named *Shell Command Output*. This feature has come

in quite handy for us while writing this book—just select a few lines of Ruby in the

middle of a paragraph and try it!

You can do something similar in the vi editor using :%!ruby which replaces the pro-

gram text with its output, or :w !ruby, which displays the output without affecting the

buffer. Other editors have similar features.

While we are on the subject, this would probably be a good place to mention that a

Ruby mode for Emacs is included in the Ruby source distribution as rubymode.el

in the misc/ subdirectory. You can also find syntax-highlighting modules for vim

Prepared exclusively for Jose Sierra

EDITOR SUPPORT 158

Figure 13.1. Sample irb session

In this same irb session,

we’ll create a new

subsession in the context

of class VolumeKnob.

We can use fg 0 to

switch back to the main

session, take at look at all

current jobs, and see what

instance methods

VolumeKnob defines.

Make a new VolumeKnob

object, and create a new

subsession with that

object as the context.

% irb
irb(main):001:0> irb
irb#1(main):001:0> jobs
#0>irb on main (#<Thread:0x401bd654>: stop)

#1>irb#1 on main (#<Thread:0x401d5a28>: running)

irb#1(main):002:0> fg 0
#<IRB::Irb:@scanner=#<RubyLex:0x401ca7>,@signal_status=:IN_EVAL,

@context=#<IRB::Context:0x401ca86c>>

irb(main):002:0> class VolumeKnob
irb(main):003:1> end
=> nil

irb(main):004:0> irb VolumeKnob
irb#2(VolumeKnob):001:0> def initialize
irb#2(VolumeKnob):002:1> @vol=50
irb#2(VolumeKnob):003:1> end
=> nil

irb#2(VolumeKnob):004:0> def up
irb#2(VolumeKnob):005:1> @vol += 10
irb#2(VolumeKnob):006:1> end
=> nil

irb#2(VolumeKnob):007:0> fg 0
#<IRB::Irb:@scanner=#<RubyLex:0x401ca7>,@signal_status=:IN_EVAL,

@context=#<IRB::Context:0x401ca86c>>

irb(main):005:0> jobs
#0>irb on main (#<Thread:0x401bd654>: running)

#1>irb#1 on main (#<Thread:0x401d5a28>: stop)

#2>irb#2 on VolumeKnob (#<Thread:0x401c400c>: stop)

irb(main):006:0> VolumeKnob.instance_methods
=> ["up"]

irb(main):007:0> v = VolumeKnob.new
#<VolumeKnob: @vol=50>

irb(main):008:0> irb v
irb#3(#<VolumeKnob:0x401e7d40>):001:0> up
=> 60

irb#3(#<VolumeKnob:0x401e7d40>):002:0> up
=> 70

irb#3(#<VolumeKnob:0x401e7d40>):003:0> up
=> 80

irb#3(VolumeKnob):004:0> fg 0
#<IRB::Irb:@scanner=#<RubyLex:0x401ca7>,@signal_status=:IN_EVAL,

@context=#<IRB::Context:0x401ca86c>>

irb(main):009:0> kill 1,2,3
=> [1, 2, 3]

irb(main):010:0> jobs
#0>irb on main (#<Thread:0x401bd654>: running)

irb(main):011:0> exit

Switch back to the main

session, kill the

subsessions, and exit.

Prepared exclusively for Jose Sierra

BUT IT DOESN’T WORK! 159

(an enhanced version of the vi editor), jed, and other editors on the ’net. Check the

Ruby FAQ (http://www.rubygarden.org/iowa/faqtotum) for an up-to-date list

and pointers to resources.

But It Doesn’t Work!
So you’ve read through enough of the book, you start to write your very own Ruby

program, and it doesn’t work. Here’s a list of common gotchas and other tips.

• First and foremost, run your scripts with warnings enabled (the w command-line

option).

• If you happen to forget a “,” in an argument list—especially to print—you can

produce some very odd error messages.

• A parse error at the last line of the source often indicates a missing end keyword,

sometimes quite a bit earlier.

• An attribute setter is not being called. Within a class definition, Ruby will parse

setter= as an assignment to a local variable, not as a method call. Use the form

self.setter= to indicate the method call.

class Incorrect

attr_accessor :one, :two

def initialize

one = 1 # incorrect sets local variable

self.two = 2

end

end

obj = Incorrect.new

obj.one → nil

obj.two → 2

• Objects that don’t appear to be properly set up may have been victims of an incor-

rectly spelled initialize method.

class Incorrect

attr_reader :answer

def initialise # < < < spelling error

@answer = 42

end

end

ultimate = Incorrect.new

ultimate.answer → nil

The same kind of thing can happen if you misspell the instance variable name.

Prepared exclusively for Jose Sierra

http://www.rubygarden.org/iowa/faqtotum

BUT IT DOESN’T WORK! 160

class Incorrect

attr_reader :answer

def initialize

@anwser = 42 #<« spelling error

end

end

ultimate = Incorrect.new

ultimate.answer → nil

• Block parameters are in the same scope as local variables. If an existing local

variable with the same name as a block parameter exists when the block executes,

that variable will be modified by the call to the block. This may or may not be a

Good Thing.

c = "carbon"

i = "iodine"

elements = [c, i]

elements.each_with_index do |element, i|

do some chemistry

end

c → "carbon"

i → 1

• Watch out for precedence issues, especially when using {} instead of do/end.

def one(arg)

if block_given?

"block given to 'one' returns #{yield}"

else

arg

end

end

def two

if block_given?

"block given to 'two' returns #{yield}"

end

end

result1 = one two {

"three"

}

result2 = one two do

"three"

end

puts "With braces, result = #{result1}"

puts "With do/end, result = #{result2}"

produces:

With braces, result = block given to 'two' returns three

With do/end, result = block given to 'one' returns three

Prepared exclusively for Jose Sierra

BUT IT DOESN’T WORK! 161

• Output written to a terminal may be buffered. This means you may not see a mes-

sage you write immediately. In addition, if you write messages to both $stdout

and $stderr, the output may not appear in the order you were expecting. Always

use nonbuffered I/O (set sync=true) for debug messages.

• If numbers don’t come out right, perhaps they’re strings. Text read from a file will

be a String and will not be automatically converted to a number by Ruby. A call

to Integer will work wonders (and will throw an exception if the input isn’t a

well-formed integer). A common mistake Perl programmers make is

while line = gets

num1, num2 = line.split(/,/)

...

end

You can rewrite this as

while line = gets

num1, num2 = line.split(/,/)

num1 = Integer(num1)

num2 = Integer(num2)

...

end

Or, you could convert all the strings using map.

while line = gets

num1, num2 = line.split(/,/).map {|val| Integer(val) }

...

end

• Unintended aliasing—if you are using an object as the key of a hash, make sure it

doesn’t change its hash value (or arrange to call Hash#rehash if it does).

arr = [1, 2]

hash = { arr => "value" }

hash[arr] → "value"

arr[0] = 99

hash[arr] → nil

hash.rehash → {[99, 2]=>"value"}

hash[arr] → "value"

• Make sure the class of the object you are using is what you think it is. If in doubt,

use puts my_obj.class.

• Make sure your method names start with a lowercase letter and class and constant

names start with an uppercase letter.

• If method calls aren’t doing what you’d expect, make sure you’ve put parentheses

around the arguments.

Prepared exclusively for Jose Sierra

BUT IT’S TOO SLOW! 162

• Make sure the open parenthesis of a method’s parameter list butts up against the

end of the method name with no intervening spaces.

• Use irb and the debugger.

• Use Object#freeze. If you suspect that some unknown portion of code is setting

a variable to a bogus value, try freezing the variable. The culprit will then be

caught during the attempt to modify the variable.

One major technique makes writing Ruby code both easier and more fun. Develop your

applications incrementally. Write a few lines of code, and then run them. Perhaps use

Test::Unit to write some tests. Write a few more lines of code, and then exercise them.

One of the major benefits of a dynamically typed language is that things don’t have to

be complete before you use them.

But It’s Too Slow!
Ruby is an interpreted, high-level language, and as such it may not perform as fast as a

lower-level language such as C. In the following sections, we’ll list some basic things

you can do to improve performance; also have a look in the index under Performance

for other pointers.

Typically, slow-running programs have one or two performance graveyards, places

where execution time goes to die. Find and improve these, and suddenly your whole

program springs back to life. The trick is finding them. The Benchmark module and the

Ruby profilers can help.

Benchmark

You can use the Benchmark module, also described on page 636, to time sections of

code. For example, we may wonder which is faster: a large loop using variables local

to the loop’s block or using variables from the surrounding scope. Figure 13.2 on the

next page shows how to use Benchmark to find out.

You have to be careful when benchmarking, because oftentimes Ruby programs can run

slowly because of the overhead of garbage collection. Because this garbage collection

can happen any time during your program’s execution, you may find that benchmark-

ing gives misleading results, showing a section of code running slowly when in fact the

slowdown was caused because garbage collection happened to trigger while that code

was executing. The Benchmark module has the bmbm method that runs the tests twice,

once as a rehearsal and once to measure performance, in an attempt to minimize the dis-

tortion introduced by garbage collection. The benchmarking process itself is relatively

well mannered—it doesn’t slow down your program much.

Prepared exclusively for Jose Sierra

BUT IT’S TOO SLOW! 163

Figure 13.2. Comparing variable access costs using benchmark

require 'benchmark'

include Benchmark

LOOP_COUNT = 1_000_000

bm(12) do |test|

test.report("normal:") do

LOOP_COUNT.times do |x|

y = x + 1

end

end

test.report("predefine:") do

x = y = 0

LOOP_COUNT.times do |x|

y = x + 1

end

end

end

produces:
user system total real

normal: 0.660000 0.000000 0.660000 (0.660813)

predefine: 0.480000 0.000000 0.480000 (0.486147)

The Profiler

Ruby comes with a code profiler (documentation begins on page 696). The profiler

shows you the number of times each method in the program is called and the average

and cumulative time that Ruby spends in those methods.

You can add profiling to your code using the command-line option r profile or

from within the code using require 'profile'. For example:

require 'profile'

count = 0

words = File.open("/usr/share/dict/words")

while word = words.gets

word = word.chomp!

if word.length == 12

count += 1

end

end

puts "#{count} twelvecharacter words"

The first time we ran this (without profiling) against a dictionary of almost 235,000

words, it takes several seconds to complete. This seems excessive, so we added the

r profile command-line option and tried again. Eventually we saw output that

looked like the following.

Prepared exclusively for Jose Sierra

BUT IT’S TOO SLOW! 164

20460 twelvecharacter words

% cumulative self self total

time seconds seconds calls ms/call ms/call name

7.76 12.01 12.01 234937 0.05 0.05 String#chomp!

7.75 24.00 11.99 234938 0.05 0.05 IO#gets

7.71 35.94 11.94 234937 0.05 0.05 String#length

7.62 47.74 11.80 234937 0.05 0.05 Fixnum#==

0.59 48.66 0.92 20460 0.04 0.04 Fixnum#+

0.01 48.68 0.02 1 20.00 20.00 Profiler__.start_profile

0.00 48.68 0.00 1 0.00 0.00 File#initialize

0.00 48.68 0.00 1 0.00 0.00 Fixnum#to_s

0.00 48.68 0.00 1 0.00 0.00 File#open

0.00 48.68 0.00 1 0.00 0.00 Kernel.puts

0.00 48.68 0.00 2 0.00 0.00 IO#write

0.00 48.68 0.00 1 0.00 154800.00 #toplevel

The first thing to notice is that the timings shown are a lot slower than when the program

runs without the profiler. Profiling has a serious overhead, but the assumption is that

it applies across the board, and therefore the relative numbers are still meaningful.

This particular program clearly spends a lot of time in the loop, which executes almost

235,000 times. We could probably improve performance if we could either make the

stuff in the loop less expensive or eliminate the loop altogether. One way of doing the

latter is to read the word list into one long string, then use a pattern to match and extract

all twelve character words.

require 'profile'

words = File.read("/usr/share/dict/words")

count = words.scan(/^............\n/).size

puts "#{count} twelvecharacter words"

Our profile numbers are now a lot better (and the program runs more than five times

faster when we take the profiling back out).

20460 twelvecharacter words

% cumulative self self total

time seconds seconds calls ms/call ms/call name

100.00 0.10 0.10 1 100.00 100.00 String#scan

0.00 0.10 0.00 1 0.00 0.00 Kernel.puts

0.00 0.10 0.00 2 0.00 0.00 IO#write

0.00 0.10 0.00 1 0.00 0.00 Kernel.respond_to?

0.00 0.10 0.00 1 0.00 100.00 #toplevel

0.00 0.10 0.00 1 0.00 0.00 Array#size

0.00 0.10 0.00 1 0.00 0.00 Fixnum#to_s

0.00 0.10 0.00 1 0.00 0.00 Profiler__.start_profile

0.00 0.10 0.00 1 0.00 0.00 File#read

Remember to check the code without the profiler afterward, though—sometimes the

slowdown the profiler introduces can mask other problems.

Ruby is a wonderfully transparent and expressive language, but it does not relieve the

programmer of the need to apply common sense: creating unnecessary objects, per-

forming unneeded work, and creating bloated code will slow down your programs

regardless of the language.

Prepared exclusively for Jose Sierra

BUT IT’S TOO SLOW! 165

Table 13.1. Debugger commands

b [reak] [file|class:]line Set breakpoint at given line in file (default current file) or class.

b [reak] [file|class:]name Set breakpoint at method in file or class.

b [reak] Display breakpoints and watchpoints.

wat [ch] expr Break when expression becomes true.

del [ete] [nnn] Delete breakpoint nnn (default all).

cat [ch] exception Stop when exception is raised.

cat [ch] List current catches.

tr [ace] (on|off) [all] Toggle execution trace of current or all threads.

disp [lay] expr Display value of nnn every time debugger gets control.

disp [lay] Show current displays.

undisp [lay] [nnn] Remove display (default all).

c [ont] Continue execution.

s [tep] nnn=1 Execute next nnn lines, stepping into methods.

n [ext] nnn=1 Execute next nnn lines, stepping over methods.

fin [ish] Finish execution of the current function.

q [uit] Exit the debugger.

w [here] Display current stack frame.

f [rame] Synonym for where.

l [ist] [start–end] List source lines from start to end.

up nnn=1 Move up nnn levels in the stack frame.

down nnn=1 Move down nnn levels in the stack frame.

v [ar] g [lobal] Display global variables.

v [ar] l [ocal] Display local variables.

v [ar] i [stance] obj Display instance variables of obj.

v [ar] c [onst] Name Display constants in class or module name.

m [ethod] i [nstance] obj Display instance methods of obj.

m [ethod] Name Display instance methods of the class or module name.

th [read] l [ist] List all threads.

th [read] [c[ur[rent]]] Display status of current thread.

th [read] [c[ur[rent]]] nnn Make thread nnn current, and stop it.

th [read] stop nnn Make thread nnn current, and stop it.

th [read] resume nnn Resume thread nnn.

th [read] [sw[itch]] nnn Switch thread context to nnn.

[p] expr Evaluate expr in the current context. expr may include assignment

to variables and method invocations.

h[elp] Show summary of commands.

empty A null command repeats the last command.

Prepared exclusively for Jose Sierra

Part II

Ruby in Its Setting

166Prepared exclusively for Jose Sierra

Chapter 14

Ruby and Its World

It’s an unfortunate fact of life that our applications have to deal with the big, bad world.

In this chapter, we’ll look at how Ruby interacts with its environment. Microsoft Win-

dows users will probably also want to look at platform-specific information beginning

on page 253.

Command-Line Arguments
“In the beginning was the command line.”1Regardless of the system in which Ruby is

deployed, whether it be a super high-end scientific graphics workstation or an embed-

ded PDA device, you’ve got to start the Ruby interpreter somehow, and that gives us

the opportunity to pass in command-line arguments.

A Ruby command line consists of three parts: options to the Ruby interpreter, option-

ally the name of a program to run, and optionally a set of arguments for that program.

ruby [options] [] [programfile] [arguments]

The Ruby options are terminated by the first word on the command line that doesn’t

start with a hyphen, or by the special flag (two hyphens).

If no filename is present on the command line, or if the filename is a single hyphen (),

Ruby reads the program source from standard input.

Arguments for the program itself follow the program name. For example:

% ruby w "Hello World"

will enable warnings, read a program from standard input, and pass it the quoted string

"Hello World" as an argument.

1. This is the title of a marvelous essay by Neal Stephenson (available online at

http://www.spack.org/index.cgi/InTheBeginningWasTheCommandLine).

167Prepared exclusively for Jose Sierra

http://www.spack.org/index.cgi/InTheBeginningWasTheCommandLine

COMMAND-LINE ARGUMENTS 168

Command-Line Options

0[octal]

The 0 flag (the digit zero) specifies the record separator character (\0, if no digit

follows). 00 indicates paragraph mode: records are separated by two successive

default record separator characters. 0777 reads the entire file at once (as it is an

illegal character). Sets $/.

a Autosplit mode when used with n or p; equivalent to executing $F = $_.split

at the top of each loop iteration.

C directory

Changes working directory to directory before executing.

c Checks syntax only; does not execute the program.

copyright

Prints the copyright notice and exits.

d, debug

Sets $DEBUG and $VERBOSE1.8 to true. This can be used by your programs to enable

additional tracing.

e 'command'

Executes command as one line of Ruby source. Several e’s are allowed, and the

commands are treated as multiple lines in the same program. If programfile is

omitted when e is present, execution stops after the e commands have been

run. Programs1.8 run using e have access to the old behavior of ranges and regular

expressions in conditions—ranges of integers compare against the current input

line number, and regular expressions match against $_.

F pattern

Specifies the input field separator ($;) used as the default for split() (affects the

a option).

h, help

Displays a short help screen.

I directories

Specifies directories to be prepended to $LOAD_PATH ($:). Multiple I options

may be present. Multiple directories may appear following each I, separated

by a colon (:) on Unix-like systems and by a semicolon (;) on DOS/Windows

systems.

i [extension]

Edits ARGV files in place. For each file named in ARGV, anything you write to stan-

dard output will be saved back as the contents of that file. A backup copy of the

file will be made if extension is supplied.

% ruby pi.bak e "gsub(/Perl/, 'Ruby')" *.txt

Prepared exclusively for Jose Sierra

COMMAND-LINE ARGUMENTS 169

K kcode

Specifies the code set to be used. This option is useful mainly when Ruby is used

for Japanese-language processing. kcode may be one of: e, E for EUC; s, S for

SJIS; u, U for UTF-8; or a, A, n, N for ASCII.

l Enables automatic line-ending processing; sets $\ to the value of $/ and chops

every input line automatically.

n Assumes a while gets; ...; end loop around your program. For example, a

simple grep command could be implemented as

% ruby n e "print if /wombat/" *.txt

p Places your program code within the loop while gets; ...; print; end.

% ruby p e "$_.downcase!" *.txt

r library

requires the named library before executing.

S Looks for the program file using RUBYPATH or PATH environment variable.

s Any command-line switches found after the program filename, but before any

filename arguments or before a , are removed from ARGV and set to a global

variable named for the switch. In the following example, the effect of this would

be to set the variable $opt to "electric".

% ruby s prog opt=electric ./mydata

T[level]

Sets the safe level, which among other things enables tainting checks (see page

379). Sets $SAFE.

v, verbose

Sets $VERBOSE to true1.8 , which enables verbose mode. Also prints the version num-

ber. In verbose mode, compilation warnings are printed. If no program filename

appears on the command line, Ruby exits.

version

Displays the Ruby version number and exits.

w Enables verbose mode. Unlike v, reads program from standard input if no pro-

gram files are present on the command line. We recommend running your Ruby

programs with w.1.8

W level

Sets the level of warnings issued. With a level or two (or with no level specified),

equivalent to w—additional warnings are given. If level is 1, runs at the standard

(default) warning level. With W0 absolutely no warnings are given (including

those issued using Kernel.warn).

Prepared exclusively for Jose Sierra

PROGRAM TERMINATION 170

X directory

Changes working directory to directory before executing. Same as C directory.

x [directory]

Strips off text before #!ruby line and changes working directory to directory if

given.

y, yydebug

Enables yacc debugging in the parser (waaay too much information).

ARGV

Any command-line arguments after the program filename are available to your Ruby

program in the global array ARGV. For instance, assume test.rb contains the following

program:

ARGV.each {|arg| p arg }

Invoke it with the following command line:

% ruby w test.rb "Hello World" a1 1.6180

It’ll generate the following output:

"Hello World"

"a1"

"1.6180"

There’s a gotcha here for all you C programmers—ARGV[0] is the first argument to the

program, not the program name. The name of the current program is available in the

global variable $0. Notice that all the values in ARGV are strings.

If your program attempts to read from standard input (or uses the special file ARGF,

described on page 321), the program arguments in ARGV will be taken to be filenames,

and Ruby will read from these files. If your program takes a mixture of arguments and

filenames, make sure you empty the nonfilename arguments from the ARGV array before

reading from the files.

Program Termination
The method Kernel#exit terminates your program, returning a status value to the

operating system. However, unlike some languages, exit doesn’t terminate the pro-

gram immediately. Kernel#exit first raises a SystemExit exception, which you may

catch, and then performs a number of cleanup actions, including running any registered

at_exit methods and object finalizers. See the reference for Kernel#exit beginning

on page 500 for details.

Prepared exclusively for Jose Sierra

ENVIRONMENT VARIABLES 171

Environment Variables
You can access operating system environment variables using the predefined variable

ENV. It responds to the same methods as Hash.2

ENV['SHELL'] → "/bin/sh"

ENV['HOME'] → "/Users/dave"

ENV['USER'] → "dave"

ENV.keys.size → 32

ENV.keys[0, 7] → ["TERM_PROGRAM", "SHELL", "TERM", "SAVEHIST",

"MAKEFLAGS", "HISTSIZE", "DIRSTACKSIZE"]

The values of some environment variables are read by Ruby when it first starts. These

variables modify the behavior of the interpreter, as shown in Table 14.1 on the following

page.

Writing to Environment Variables

A Ruby program may write to the ENV object. On most systems this changes the values

of the corresponding environment variables. However, this change is local to the pro-

cess that makes it and to any subsequently spawned child processes. This inheritance

of environment variables is illustrated in the code that follows. A subprocess changes

an environment variable, and this change is inherited by a process that it then starts.

However, the change is not visible to the original parent. (This just goes to prove that

parents never really know what their children are doing.)

puts "In parent, term = #{ENV['TERM']}"

fork do

puts "Start of child 1, term = #{ENV['TERM']}"

ENV['TERM'] = "ansi"

fork do

puts "Start of child 2, term = #{ENV['TERM']}"

end

Process.wait

puts "End of child 1, term = #{ENV['TERM']}"

end

Process.wait

puts "Back in parent, term = #{ENV['TERM']}"

produces:

In parent, term = xtermcolor

Start of child 1, term = xtermcolor

Start of child 2, term = ansi

End of child 1, term = ansi

Back in parent, term = xtermcolor

2. ENV is not actually a hash, but if you need to, you can convert it into a Hash using ENV#to_hash.

Prepared exclusively for Jose Sierra

WHERE RUBY FINDS ITS MODULES 172

Table 14.1. Environment variables used by Ruby

Variable Name Description

DLN_LIBRARY_PATH Search path for dynamically loaded modules.

HOME Points to user’s home directory. Used when expanding ~ in file

and directory names.

LOGDIR Fallback pointer to the user’s home directory if $HOME is not set.

Used only by Dir.chdir.

OPENSSL_CONF Specify location of OpenSSL configuration file.1.8
RUBYLIB Additional search path for Ruby programs ($SAFE must be 0).

RUBYLIB_PREFIX (Windows only) Mangle the RUBYLIB search path by adding

this prefix to each component.

RUBYOPT Additional command-line options to Ruby; examined after real

command-line options are parsed ($SAFE must be 0).

RUBYPATH With S option, search path for Ruby programs (defaults to

PATH).

RUBYSHELL Shell to use when spawning a process under Windows; if not

set, will also check SHELL or COMSPEC.

RUBY_TCL_DLL Override default name for TCL shared library or DLL.

RUBY_TK_DLL Override default name for Tk shared library or DLL. Both this

and RUBY_TCL_DLL must be set for either to be used.

Where Ruby Finds Its Modules
You use require or load to bring a library module into your Ruby program. Some

of these modules are supplied with Ruby, some you may have installed off the Ruby

Application Archive, and some you may have written yourself. How does Ruby find

them?

When Ruby is built for your particular machine, it predefines a set of standard directo-

ries to hold library stuff. Where these are depends on the machine in question. You can

determine this from the command line with something like

% ruby e 'puts $:'

On a typical Linux box, you’ll probably find something such as the following. Note

that as of Ruby 1.8,1.8 the order of these directories has changed—architecture-specific

directories now follow their machine-independent counterparts.

/usr/local/lib/ruby/site_ruby/1.8

/usr/local/lib/ruby/site_ruby/1.8/i686linux

/usr/local/lib/ruby/site_ruby

/usr/local/lib/ruby/1.8

/usr/local/lib/ruby/1.8/i686linux

.

Prepared exclusively for Jose Sierra

BUILD ENVIRONMENT 173

The site_ruby directories are intended to hold modules and extensions that you’ve

added. The architecture-dependent directories (i686linux in this case) hold executa-

bles and other things specific to this particular machine. All these directories are auto-

matically included in Ruby’s search for modules.

Sometimes this isn’t enough. Perhaps you’re working on a large project written in Ruby,

and you and your colleagues have built a substantial library of Ruby code. You want

everyone on the team to have access to all this code. You have a couple of options to

accomplish this. If your program runs at a safe level of zero (see Chapter 25 beginning

on page 379), you can set the environment variable RUBYLIB to a list of one or more

directories to be searched.3 If your program is not setuid, you can use the command-line

parameter I to do the same thing.

The Ruby variable $: is an array of places to search for loaded files. As we’ve seen,

this variable is initialized to the list of standard directories, plus any additional ones

you specified using RUBYLIB and I. You can always add additional directories to this

array from within your running program.

Just to make things more interesting, a new way of organizing libraries came along

just in time to make it into this book. Chapter 17 on page 203 describes RubyGems, a

network-enabled package management system.

Build Environment
When Ruby is compiled for a particular architecture, all the relevant settings used to

build it (including the architecture of the machine on which it was compiled, compiler

options, source code directory, and so on) are written to the module Config within the

library file rbconfig.rb. After installation, any Ruby program can use this module to

get details on how Ruby was compiled.

require 'rbconfig'

include Config

CONFIG["host"] → "powerpcappledarwin8.4.0"

CONFIG["libdir"] → "/Users/dave/ruby1.8/lib"

Extension libraries use this configuration file in order to compile and link properly on

any given architecture. See Chapter 21 beginning on page 261 and the reference for

mkmf beginning on page 755 for details.

3. The separator between entries depends on your platform. For Windows, it’s a semicolon; for Unix, it’s

a colon.

Prepared exclusively for Jose Sierra

Chapter 15

Interactive Ruby Shell

Back on page 156 we introduced irb, a Ruby module that lets you enter Ruby programs

interactively and see the results immediately. This chapter goes into more detail on

using and customizing irb.

Command Line
irb is run from the command line.

irb [irb-options] [ruby_script] [program arguments]

The command-line options for irb are listed in Table 15.1 on the following page. Typ-

ically, you’ll run irb with no options, but if you want to run a script and watch the

blow-by-blow description as it runs, you can provide the name of the Ruby script and

any options for that script.

Once started, irb displays a prompt and waits for input. In the examples that follow,

we’ll use irb’s default prompt, which shows the current binding, the indent (nesting)

level, and the line number.

At a prompt, you can type Ruby code. irb includes a Ruby parser, so it knows when

statements are incomplete. When this happens, the prompt will end with an asterisk.

You can leave irb by typing exit or quit, or by entering an end-of-file character (unless

IGNORE_EOF mode is set).

% irb

irb(main):001:0> 1 + 2

=> 3

irb(main):002:0> 3 +

irb(main):003:0* 4

=> 7

irb(main):004:0> quit

%

174Prepared exclusively for Jose Sierra

COMMAND LINE 175

Table 15.1. irb command-line options

Option Description

backtracelimit n Display backtrace information using the top n and

last n entries. The default value is 16.

d Set $DEBUG to true (same as ruby d).

f Suppress reading ~/.irbrc.

I path specify the $LOAD_PATH directory.

infrubymode Set up irb to run in infrubymode under Emacs.

Change the prompt and suppress readline.

inspect Use Object#inspect to format output (the default,

unless in math mode).

irb_debug n Set internal debug level to n (only useful for irb

development).

m Math mode (fraction and matrix support is available).

noinspect Do not use inspect for output.

noprompt Do not display a prompt.

noreadline Do not use Readline extension module.

prompt prompt-mode Switch prompt. Predefined prompt modes are null,

default, classic, simple, xmp, and infruby.

promptmode prompt-mode Same as prompt.

r load-module Same as ruby r.

readline Use readline extension module.

simpleprompt Use simple prompts.

tracer Display trace for execution of commands.

v, version Print the version of irb.

During an irb session, the work you do is accumulated in irb’s workspace. Variables

you set, methods you define, and classes you create are all remembered and may be

used subsequently.

irb(main):001:0> def fib_up_to(n)

irb(main):002:1> f1, f2 = 1, 1

irb(main):003:1> while f1 <= n

irb(main):004:2> puts f1

irb(main):005:2> f1, f2 = f2, f1+f2

irb(main):006:2> end

irb(main):007:1> end

=> nil

irb(main):008:0> fib_up_to(4)

1

1

2

3

=> nil

Prepared exclusively for Jose Sierra

COMMAND LINE 176

Notice the nil return values. These are the results of defining the method and then

running it. The method output the Fibonacci numbers but then returned nil.

A great use of irb is experimenting with code you’ve already written. Perhaps you want

to track down a bug, or maybe you just want to play. If you load your program into

irb, you can then create instances of the classes it defines and invoke its methods. For

example, the file code/fib_up_to.rb contains the following method definition.

def fib_up_to(max)

i1, i2 = 1, 1

while i1 <= max

yield i1

i1, i2 = i2, i1+i2

end

end

We can load this into irb and play with the method.

% irb

irb(main):001:0> load 'code/fib_up_to.rb'

=> true

irb(main):002:0> result = []

=> []

irb(main):003:0> fib_up_to(20) {|val| result << val}

=> nil

irb(main):004:0> result

=> [1, 1, 2, 3, 5, 8, 13]

In this example, we use load, rather than require, to include the file in our session.

We do this as a matter of practice: load allows us to load the same file multiple times,

so if we find a bug and edit the file, we could reload it into our irb session.

Tab Completion

If your Ruby installation has readline support, then you can use irb’s completion

facility. Once loaded (and we’ll get to how to load it shortly), completion changes the

meaning of the TAB key when typing expressions at the irb prompt. When you press

TAB partway through a word, irb will look for possible completions that make sense at

that point. If there is only one, irb will fill it in automatically. If there’s more than one

valid option, irb initially does nothing. However, if you hit TAB again, it will display

the list of valid completions at that point.

For example, you may be in the middle of an irb session, having just assigned a string

object to the variable a.

irb(main):002:0> a = "cat"

=> "cat"

You now want to try the method String#reverse on this object. You start by typing

a.re and then hit TAB twice.

Prepared exclusively for Jose Sierra

COMMAND LINE 177

irb(main):003:0> a.re TAB TAB

a.reject a.replace a.respond_to? a.reverse a.reverse!

irb lists all the methods supported by the object in a whose names start with “re.” We

see the one we want, reverse, and enter the next character of its name, v, followed by

the TAB key.

irb(main):003:0> a.rev TAB

irb(main):003:0> a.reverse

=> "tac"

irb(main):004:0>

irb responds to the TAB key by expanding the name as far as it can go, in this case

completing the word reverse. If we keyed TAB twice at this point, it would show us

the current options, reverse and reverse!. However, as reverse is the one we want,

we instead hit ENTER , and the line of code is executed.

Tab completion isn’t limited to built-in names. If we define a class in irb, then tab

completion works when we try to invoke one of its methods.

irb(main):004:0> class Test

irb(main):005:1> def my_method

irb(main):006:2> end

irb(main):007:1> end

=> nil

irb(main):008:0> t = Test.new

=> #<Test:0x35b724>

irb(main):009:0> t.my TAB

irb(main):009:0> t.my_method

Tab completion is implemented as an extension library, irb/completion. You can

load it when you invoke irb from the command line.

% irb r irb/completion

You can also load the completion library when irb is running.

irb(main):001:0> require 'irb/completion'

=> true

If you use tab completion all the time, it’s probably most convenient to put the require

command into your .irbrc file.

require 'irb/completion'

Subsessions

irb supports multiple, concurrent sessions. One is always current; the others lie dormant

until activated. Entering the command irb within irb creates a subsession, entering the

jobs command lists all sessions, and entering fg activates a particular dormant session.

Prepared exclusively for Jose Sierra

COMMAND LINE 178

This example also illustrates the r command-line option, which loads in the given file

before irb starts.

% irb r code/fib_up_to.rb

irb(main):001:0> result = []

=> []

irb(main):002:0> fib_up_to(10) {|val| result << val }

=> nil

irb(main):003:0> result

=> [1, 1, 2, 3, 5, 8]

irb(main):004:0> # Create a nested irb session

irb(main):005:0* irb

irb#1(main):001:0> result = %w{ cat dog horse }

=> ["cat", "dog", "horse"]

irb#1(main):002:0> result.map {|val| val.upcase }

=> ["CAT", "DOG", "HORSE"]

irb#1(main):003:0> jobs

=> #0>irb on main (#<Thread:0x331740>: stop)

#1>irb#1 on main (#<Thread:0x341694>: running)

irb#1(main):004:0> fg 0

irb(main):006:0> result

=> [1, 1, 2, 3, 5, 8]

irb(main):007:0> fg 1

irb#1(main):005:0> result

=> ["cat", "dog", "horse"]

Subsessions and Bindings

If you specify an object when you create a subsession, that object becomes the value

of self in that binding. This is a convenient way to experiment with objects. In the

following example, we create a subsession with the string “wombat” as the default

object. Methods with no receiver will be executed by that object.

% irb

irb(main):001:0> self

=> main

irb(main):002:0> irb "wombat"

irb#1(wombat):001:0> self

=> "wombat"

irb#1(wombat):002:0> upcase

=> "WOMBAT"

irb#1(wombat):003:0> size

=> 6

irb#1(wombat):004:0> gsub(/[aeiou]/, '*')

=> "w*mb*t"

irb#1(wombat):005:0> irb_exit

irb(main):003:0> self

=> main

irb(main):004:0> upcase

NameError: undefined local variable or method `upcase' for main:Object

Prepared exclusively for Jose Sierra

CONFIGURATION 179

Configuration
irb is remarkably configurable. You can set configuration options with command-line

options, from within an initialization file, and while you’re inside irb itself.

Initialization File

irb uses an initialization file in which you can set commonly used options or execute

any required Ruby statements. When irb is run, it will try to load an initialization file

from one of the following sources in order: ~/.irbrc, .irbrc, irb.rc, _irbrc, and

$irbrc.

Within the initialization file you may run any arbitrary Ruby code. You can also set

configuration values. The list of configuration variables is given starting on page 181—

the values that can be used in an initialization file are the symbols (starting with a

colon). You use these symbols to set values into the IRB.conf hash. For example, to

make SIMPLE the default prompt for all your irb sessions, you could have the following

in your initialization file.

IRB.conf[:PROMPT_MODE] = :SIMPLE

As an interesting twist on configuring irb, you can set IRB.conf[:IRB_RC] to a Proc

object. This proc will be invoked whenever the irb context is changed and will receive

the configuration for that context as a parameter. You can use this facility to change the

configuration dynamically based on the context. For example, the following .irbrc

file sets the prompt so that only the main prompt shows the irb level, but continuation

prompts and the result still line up.

IRB.conf[:IRB_RC] = proc do |conf|

leader = " " * conf.irb_name.length

conf.prompt_i = "#{conf.irb_name} > "

conf.prompt_s = leader + ' \" '

conf.prompt_c = leader + ' \+ '

conf.return_format = leader + " ==> %s\n\n"

puts "Welcome!"

end

An irb session using this .irbrc file looks like the following.

% irb

Welcome!

irb > 1 + 2

==> 3

irb > 2 +

\+ 6

==> 8

Prepared exclusively for Jose Sierra

CONFIGURATION 180

Extending irb

Because the things you type to irb are interpreted as Ruby code, you can effectively

extend irb by defining new top-level methods. For example, you may want to be able to

look up the documentation for a class or method while in irb. If you add the following to

your .irbrc file, you’ll add a method called ri, which invokes the external ri command

on its arguments. (You’ll need to use ri.bat under Windows.)

def ri(*names)

system(%{ri #{names.map {|name| name.to_s}.join(" ")}})

end

The next time you start irb, you’ll be able to use this method to get documentation.

irb(main):001:0> ri Proc

 Class: Proc

Proc objects are blocks of code that have been bound to a set of

local variables. Once bound, the code may be called in different

contexts and still access those variables.

and so on...

irb(main):002:0> ri :strftime

 Time#strftime

time.strftime(string) => string

Formats time according to the directives in the given format

string. Any text not listed as a directive will be passed through

to the output string.

Format meaning:

%a The abbreviated weekday name (``Sun'')

%A The full weekday name (``Sunday'')

%b The abbreviated month name (``Jan'')

%B The full month name (``January'')

%c The preferred local date and time representation

%d Day of the month (01..31)

and so on...

irb(main):003:0> ri "String.each"

 String#each

str.each(separator=$/) |substr| block => str

str.each_line(separator=$/) |substr| block => str

Splits str using the supplied parameter as the record separator

($/ by default), passing each substring in turn to the supplied

block. If a zerolength record separator is supplied, the string

is split on \n characters, except that multiple successive

newlines are appended together.

print "Example one\n"

"hello\nworld".each |s| p s

and so on...

Prepared exclusively for Jose Sierra

CONFIGURATION 181

Interactive Configuration

Most configuration values are also available while you’re running irb. The list starting

on this page shows these values as conf.xxx. For example, to change your prompt back

to DEFAULT, you could use the following.

irb(main):001:0> 1 +

irb(main):002:0* 2

=> 3

irb(main):003:0> conf.prompt_mode = :SIMPLE

=> :SIMPLE

>> 1 +

?> 2

=> 3

irb Configuration Options

In the descriptions that follow, a label of the form :XXX signifies a key used in the

IRB.conf hash in an initialization file, and conf.xxx signifies a value that can be set

interactively. The value in square brackets at the end of the description is the option’s

default.

:AUTO_INDENT / conf.auto_indent_mode

If true, irb will indent nested structures as you type them. [false]

:BACK_TRACE_LIMIT / conf.back_trace_limit

Displays lines n initial and n final lines of backtrace. [16]

:CONTEXT_MODE

What binding to use for new workspaces: 0→ proc at the top level, 1→ binding in a loaded,

anonymous file, 2→ per thread binding in a loaded file, 3→ binding in a top-level function.

[3]

:DEBUG_LEVEL / conf.debug_level

Sets the internal debug level to n. Useful if you’re debugging irb’s lexer. [0]

:IGNORE_EOF / conf.ignore_eof

Specifies the behavior of an end of file received on input. If true, it will be ignored; other-

wise, irb will quit. [false]

:IGNORE_SIGINT / conf.ignore_sigint

If false, ^C (Ctrl+c) will quit irb. If true, ^C during input will cancel input and return to the

top level; during execution, ^C will abort the current operation. [true]

:INSPECT_MODE / conf.inspect_mode

Specifies how values will be displayed: true means use inspect, false uses to_s, and

nil uses inspect in nonmath mode and to_s in math mode. [nil]

Prepared exclusively for Jose Sierra

CONFIGURATION 182

:IRB_RC

Can be set to a proc object that will be called when an irb session (or subsession) is started.

[nil]

conf.last_value

The last value output by irb. [. . .]

:LOAD_MODULES / conf.load_modules

A list of modules loaded via the r command-line option. [[]]

:MATH_MODE / conf.math_mode

If true, irb runs with the mathn library loaded (see page 671). [false]

conf.prompt_c

The prompt for a continuing statement (for example, immediately after an “if”). [depends]

conf.prompt_i

The standard, top-level prompt. [depends]

:PROMPT_MODE / conf.prompt_mode

The style of prompt to display. [:DEFAULT]

conf.prompt_s

The prompt for a continuing string. [depends]

:PROMPT

See Configuring the Prompt on page 184. [{ . . . }]

:RC / conf.rc

If false, do not load an initialization file. [true]

conf.return_format

The format used to display the results of expressions entered interactively. [depends]

:SINGLE_IRB

If true, nested irb sessions will all share the same binding; otherwise a new binding will be

created according to the value of :CONTEXT_MODE. [nil]

conf.thread

A read-only reference to the currently executing Thread object. [current thread]

:USE_LOADER / conf.use_loader

Specifies whether irb’s own file reader method is used with load/require. [false]

:USE_READLINE / conf.use_readline

irb will use the readline library if available (see page 702) unless this option is set to

false, in which case readline will never be used, or nil, in which case readline will

not be used in infrubymode. [depends]

Prepared exclusively for Jose Sierra

COMMANDS 183

:USE_TRACER / conf.use_tracer

If true, traces the execution of statements. [false]

:VERBOSE / conf.verbose

In theory switches on additional tracing when true; in practice almost no extra tracing

results. [true]

Commands
At the irb prompt, you can enter any valid Ruby expression and see the results. You can

also use any of the following commands to control the irb session.

exit, quit, irb_exit, irb_quit

Quits this irb session or subsession. If you’ve used cb to change bindings (see

below), exits from this binding mode.

conf, context, irb_context

Displays current configuration. Modifying the configuration is achieved by invok-

ing methods of conf. The list starting on page 181 shows the available conf set-

tings. For example, to set the default prompt to something subservient, you could

use

irb(main):001:0> conf.prompt_i = "Yes, Master? "

=> "Yes, Master? "

Yes, Master? 1 + 2

cb, irb_change_binding 〈 obj 〉
Creates and enters a new binding that has its own scope for local variables. If obj

is given, it will be used as self in the new binding.

irb 〈 obj 〉
Starts an irb subsession. If obj is given, it will be used as self.

jobs, irb_jobs

Lists irb subsessions.

fg n, irb_fg n

Switches into the specified irb subsession. n may be any of: an irb subsession

number, a thread ID, an irb object, or the object that was the value of self when a

subsession was launched.

kill n, irb_kill n

Kills an irb subsession. n may be any of the values as described for irb_fg.

Prepared exclusively for Jose Sierra

COMMANDS 184

Configuring the Prompt

You have a lot of flexibility in configuring the prompts that irb uses. Sets of prompts

are stored in the prompt hash, IRB.conf[:PROMPT].

For example, to establish a new prompt mode called “MY_PROMPT”, you could enter

the following (either directly at an irb prompt or in the .irbrc file).

IRB.conf[:PROMPT][:MY_PROMPT] = { # name of prompt mode

:PROMPT_I => '>', # normal prompt

:PROMPT_S => '"', # prompt for continuing strings

:PROMPT_C => '+', # prompt for continuing statement

:RETURN => " ==>%s\n" # format to return value

}

Once you’ve defined a prompt, you have to tell irb to use it. From the command line,

you can use the prompt option. (Notice how the name of the prompt mode is auto-

matically converted to uppercase, with hyphens changing to underscores.)

% irb prompt myprompt

If you want to use this prompt in all your future irb sessions, you can set it as a config-

uration value in your .irbrc file.

IRB.conf[:PROMPT_MODE] = :MY_PROMPT

The symbols PROMPT_I, PROMPT_S, and PROMPT_C specify the format for each of the

prompt strings. In a format string, certain “%” sequences are expanded.

Flag Description

%N Current command.

%m to_s of the main object (self).

%M inspect of the main object (self).

%l Delimiter type. In strings that are continued across a line break, %l will display

the type of delimiter used to begin the string, so you’ll know how to end it. The

delimiter will be one of ", ', /,], or `.

%ni Indent level. The optional number n is used as a width specification to printf,

as printf("%nd").

%nn Current line number (n used as with the indent level).

%% A literal percent sign.

For instance, the default prompt mode is defined as follows.

IRB.conf[:PROMPT_MODE][:DEFAULT] = {

:PROMPT_I => "%N(%m):%03n:%i> ",

:PROMPT_S => "%N(%m):%03n:%i%l ",

:PROMPT_C => "%N(%m):%03n:%i* ",

:RETURN => "%s\n"

}

Prepared exclusively for Jose Sierra

RESTRICTIONS 185

Restrictions
Because of the way irb works, it is slightly incompatible with the standard Ruby inter-

preter. The problem lies in the determination of local variables.

Normally, Ruby looks for an assignment statement to determine if something is a

variable—if a name hasn’t been assigned to, then Ruby assumes that name is a method

call.

eval "var = 0"

var

produces:

prog.rb:2: undefined local variable or method `var'

for main:Object (NameError)

In this case, the assignment is there, but it’s within a string, so Ruby doesn’t take it into

account.

irb, on the other hand, executes statements as they are entered.

irb(main):001:0> eval "var = 0"

0

irb(main):002:0> var

0

In irb, the assignment was executed before the second line was encountered, so var is

correctly identified as a local variable.

If you need to match the Ruby behavior more closely, you can place these statements

within a begin/end pair.

irb(main):001:0> begin

irb(main):002:1* eval "var = 0"

irb(main):003:1> var

irb(main):004:1> end

NameError: undefined local variable or method `var'

(irb):3:in `irb_binding'

rtags and xmp
Just in case irb wasn’t already complex enough, let’s add a few more wrinkles. Along

with the main irb program, the irb suite includes some extra goodies. In the next sec-

tions we’ll look at two: rtags and xmp.

rtags

rtags is a command used to create a TAGS file for use with either the Emacs or vi

editor.

Prepared exclusively for Jose Sierra

RTAGS AND XMP 186

rtags [-vi] [files]...

By default, rtags makes a TAGS file suitable for Emacs (see etags.el). The vi

option makes a TAGS file for use with vi.

rtags needs to be installed in the same manner as irb (that is, you need to install irb in

the library path and make a link from irb/rtags.rb to bin/rtags).

xmp

irb’s xmp is an “example printer”—that is, a pretty-printer that shows the value of each

expression as it is run (much like the script we wrote to format the examples in this

book). There is also another stand-alone xmp in the archives.

xmp can be used as follows.

require 'irb/xmp'

xmp <<END

artist = "Doc Severinsen"

artist.upcase

END

produces:

artist = "Doc Severinsen"

==> "Doc Severinsen"

artist.upcase

==> "DOC SEVERINSEN"

Or, xmp can be used as an object instance. Used in this fashion, the object maintains

context between invocations.

require 'irb/xmp'

x = XMP.new

x.puts 'artist = "Louis Prima"'

x.puts 'artist.upcase'

produces:

artist = "Louis Prima"

==> "Louis Prima"

artist.upcase

==> "LOUIS PRIMA"

You can explicitly provide a binding with either form; otherwise, xmp uses the caller’s

environment.

xmp code_string, abinding

XMP.new(abinding)

Note that xmp does not work with multithreading.

Prepared exclusively for Jose Sierra

Chapter 16

Documenting Ruby

As of version 1.8,1.8 Ruby comes bundled with RDoc, a tool that extracts and formats

documentation that’s embedded in Ruby source code files. This tool is used to doc-

ument the built-in Ruby classes and modules. An increasing number of libraries and

extensions are also documented this way.

RDoc does two jobs. First, it analyzes Ruby and C source files, looking for information

to document.1 Second, it takes this information and converts it into something readable.

Out of the box, RDoc produces two kinds of output: HTML and ri. Figure 16.1 on the

next page shows some HTML-format RDoc output in a browser window. This is the

result of feeding RDoc a Ruby source file with no additional documentation—RDoc

does a credible job of producing something meaningful. If our source code contains

comments, RDoc can use them to spice up the documentation it produces. Typically,

the comment before an element is used to document that element, as shown in Fig-

ure 16.2 on page 189.

RDoc can also be used to produce documentation that can be read by the ri command-

line utility. For example, if we ask RDoc to document the code in Figure 16.2 this way,

we can then access the documentation using ri, as shown in Figure 16.3 on page 190.

New Ruby distributions have the built-in classes and modules (and some libraries) doc-

umented this way. Figure 16.4 on page 191 shows the output produced if you type ri

Proc.

Adding RDoc to Ruby Code
RDoc parses Ruby source files to extract the major elements (classes, modules, meth-

ods, attributes, and so on). You can choose to associate additional documentation with

these by simply adding a comment block before the element in the file.

1. RDoc can also document Fortran 77 programs.

187Prepared exclusively for Jose Sierra

ADDING RDOC TO RUBY CODE 188

class Counterattr_reader :counterdef initialize(initial_value=0)@counter = initial_valueenddef inc@counter += 1endend
This figure shows some RDoc output in a browser window. The overlaid box

shows the source program from which this output was generated. Even though

the source contains no internal documentation, RDoc still manages to extract

interesting information from it. We have three panes at the top of the screen

showing the files, classes, and methods for which we have documentation.

For class Counter, RDoc shows us the attributes and methods (including the

method signatures). And if we clicked a method signature, RDoc would pop up

a window containing the source code for the corresponding method.

Figure 16.1. Browse RDoc output for class counter

Prepared exclusively for Jose Sierra

ADDING RDOC TO RUBY CODE 189

Implements a simple accumulator, whose# value is accessed via the attribute# _counter_. Calling the method Counter#inc# increments this value.class Counter# The current value of the countattr_reader :counter# create a new Counter with the given# initial valuedef initialize(initial_value=0)@counter = initial_valueend# increment the current value of the countdef inc@counter += 1endend
Notice how the comments before each element now appear in the RDoc out-

put, reformatted into HTML. Less obvious is that RDoc has detected hyperlink

opportunities in our comments: in the class-level comment, the reference to

Counter#inc is a hyperlink to the method description, and in the command for

the new method, the reference to class Counter hyperlinks back to the class

documentation. This is a key feature of RDoc: it is designed to be unintrusive

in the Ruby source files and to make up for this by trying to be clever when

producing output.

Figure 16.2. Browse RDoc output when source has comments

Prepared exclusively for Jose Sierra

ADDING RDOC TO RUBY CODE 190

Figure 16.3. Using ri to read documentation

% ri Counter

 Class: Counter

Implements a simple accumulator, whose value is

accessed via the attribute counter. Calling the

method Counter#inc increments this value.

Class methods:

new

Instance methods:

inc

Attributes:

counter

% ri Counter.inc

 Counter#inc

inc()

increment the current value of the count

Comment blocks can be written fairly naturally, either using # on successive lines of

the comment or by including the comment in a =begin. . .=end block. If you use the

latter form, the =begin line must be flagged with an rdoc tag, to distinguish the block

from other styles of documentation.

=begin rdoc

Calculate the minimalcost path though the graph

using Debrinkski's algorithm, with optimized

inverse pruning of isolated leaf nodes.

=end

def calculate_path

. . .

end

Within a documentation comment, paragraphs are lines that share the left margin. Text

indented past this margin is formatted verbatim.

Nonverbatim text can be marked up. To set individual words in italic, bold, or typewriter

fonts, you can use _word_, *word*, and +word+ respectively. If you want to do this

to multiple words, or text containing non-word characters, you can use multiple

words, more words, and <tt>yet more words</tt>. Putting a back-

slash before inline markup stops it being interpreted.

Prepared exclusively for Jose Sierra

ADDING RDOC TO RUBY CODE 191

Figure 16.4. Document for class Proc generated by RDoc/ri

% ri Proc

 Class: Proc

Proc objects are blocks of code that have been

bound to a set of local variables. Once bound,

the code may be called in different contexts and

still access those variables.

def gen_times(factor)

return Proc.new |n| n*factor

end

times3 = gen_times(3)

times5 = gen_times(5)

times3.call(12) #=> 36

times5.call(5) #=> 25

times3.call(times5.call(4)) #=> 60

Class methods:

new

Instance methods:

==, [], arity, binding, call, clone, eql?, hash,

to_proc, to_s

RDoc stops processing comments if it finds a comment line starting #. This can be

used to separate external from internal comments or to stop a comment being associated

with a method, class, or module. Documenting can be turned back on by starting a line

with #++.

Extract the age and calculate the

date of birth.

#

FIXME: fails if the birthday falls on

February 29th, or if the person

was born before epoch and the installed

Ruby doesn't support negative time_t

#++

The DOB is returned as a Time object.

#

But should probably change to use Date.

def get_dob(person)

...

end

Prepared exclusively for Jose Sierra

ADDING RDOC TO RUBY CODE 192

Hyperlinks

Names of classes, source files, and any method names containing an underscore or

preceded by a hash character are automatically hyperlinked from comment text to their

description.

Hyperlinks to the ’net starting http:, mailto:, ftp:, and www: are recognized. An

HTTP URL that references an external image file is converted into an inline <IMG. . . >

tag. Hyperlinks starting link: are assumed to refer to local files whose paths are rela-

tive to the op directory, where output files are stored.

Hyperlinks can also be of the form label[url], in which case the label is used in

the displayed text and url is used as the target. If the label contains multiple words,

surround it in braces: {two words}[url].

Lists

Lists are typed as indented paragraphs with

• a * or - (for bullet lists),

• a digit followed by a period for numbered lists,

• an uppercase or lowercase letter followed by a period for alpha lists.

For example, you could produce something like the previous text with

Lists are typed as indented paragraphs with

* a * or (for bullet lists),

* a digit followed by a period for

numbered lists,

* an upper or lower case letter followed

by a period for alpha lists.

Note how subsequent lines in a list item are indented to line up with the text in the

element’s first line.

Labeled lists (sometimes called description lists) are typed using square brackets for

the label.

[cat] small domestic animal

[+cat+] command to copy standard input

to standard output

Labeled lists may also be produced by putting a double colon after the label. This sets

the result in tabular form, so the descriptions all line up.

cat:: small domestic animal

+cat+:: command to copy standard input

to standard output

Prepared exclusively for Jose Sierra

ADDING RDOC TO RUBY CODE 193

For both kinds of labeled lists, if the body text starts on the same line as the label, then

the start of that text determines the block indent for the rest of the body. The text may

also start on the line following the label, indented from the start of the label. This is

often preferable if the label is long. Both the following are valid labeled list entries

<tt>output</tt> <i>name [, name]</i>::

specify the name of one or more output files. If multiple

files are present, the first is used as the index.

#

<tt>quiet:</tt>:: do not output the names, sizes, byte counts,

index areas, or bit ratios of units as

they are processed.

Headings

Headings are entered on lines starting with equals signs. The more equals signs, the

higher the level of heading.

= Level One Heading

== Level Two Heading

and so on...

Rules (horizontal lines) are entered using three or more hyphens.

and so it goes...

The next section...

Documentation Modifiers

Method parameter lists are extracted and displayed with the method description. If a

method calls yield, then the parameters passed to yield will also be displayed. For

example, consider the following code.

def fred

...

yield line, address

This will get documented as:

fred() {|line, address| ... }

You can override this using a comment containing :yields: ... on the same line as

the method definition.

def fred # :yields: index, position

...

yield line, address

which will get documented as

fred() {|index, position| ... }

Prepared exclusively for Jose Sierra

ADDING RDOC TO RUBY CODE 194

:yields: is an example of a documentation modifier. These appear immediately after

the start of the document element they are modifying.

Other modifiers include

:nodoc: [all]

Don’t include this element in the documentation. For classes and modules, the

methods, aliases, constants, and attributes directly within the affected class or

module will also be omitted from the documentation. By default, though, mod-

ules and classes within that class or module will be documented. This is turned

off by adding the all modifier. For example, in the following code, only class

SM::Input will be documented.

module SM #:nodoc:

class Input

end

end

module Markup #:nodoc: all

class Output

end

end

:doc:

Force a method or attribute to be documented even if it wouldn’t otherwise be.

Useful if, for example, you want to include documentation of a particular private

method.

:notnew:

(Only applicable to the initialize instance method.) Normally RDoc assumes

that the documentation and parameters for #initialize are actually for the cor-

responding class’s new method and so fakes out a new method for the class. The

:notnew: modifier stops this. Remember that #initialize is protected, so you

won’t see the documentation unless you use the a command-line option.

Other Directives

Comment blocks can contain other directives.

:callseq: lines. . .

Text up to the next blank comment line is used as the calling sequence when

generating documentation (overriding the parsing of the method parameter list).

A line is considered blank even if it starts with a #. For this one directive, the

leading colon is optional.

:include: filename

Include the contents of the named file at this point. The file will be searched for

in the directories listed by the include option or in the current directory by

Prepared exclusively for Jose Sierra

ADDING RDOC TO C EXTENSIONS 195

default. The contents of the file will be shifted to have the same indentation as the

: at the start of the :include: directive.

:title: text

Sets the title for the document. Equivalent to the title command-line parame-

ter. (The command-line parameter overrides any :title: directive in the source.)

:main: name

Equivalent to the main command-line parameter, setting the initial page dis-

played for this documentation.

:stopdoc: / :startdoc:

Stop and start adding new documentation elements to the current container. For

example, if a class has a number of constants that you don’t want to document, put

a :stopdoc: before the first and a :startdoc: after the last. If you don’t specify

a :startdoc: by the end of the container, disables documentation for the entire

class or module.

:enddoc:

Document nothing further at the current lexical level.

Figure 16.5 on the next page shows a more complete example of a source file docu-

mented using RDoc.

Adding RDoc to C Extensions
RDoc also understands many of the conventions used when writing extensions to Ruby

in C.

Most C extensions have an Init_Classname function. RDoc takes this as the class

definition—any C comment before the Init_ method will be used as the class’s docu-

mentation.

The Init_ function is normally used to associate C functions with Ruby method names.

For example, a Cipher extension may define a Ruby method salt=, implemented by

the C function salt_set using a call such as

rb_define_method(cCipher, "salt=", salt_set, 1);

RDoc parses this call, adding the salt= method to the class documentation. RDoc then

searches the C source for the C function salt_set. If this function is preceded by a

comment block, RDoc uses this for the method’s documentation.

This basic scheme works with no effort on your part beyond writing the normal doc-

umentation in the comments for functions. However, RDoc cannot discern the calling

sequence for the corresponding Ruby method. In this example, the RDoc output will

Prepared exclusively for Jose Sierra

ADDING RDOC TO C EXTENSIONS 196

Figure 16.5. Ruby source file documented with RDoc

This module encapsulates functionality related to the

generation of Fibonacci sequences.

#

Copyright (c) 2004 Dave Thomas, The Pragmatic Programmers, LLC.

Licensed under the same terms as Ruby. No warranty is provided.

module Fibonacci

Calculate the first _count_ Fibonacci numbers, starting with 1,1.

#

:callseq:

Fibonacci.sequence(count) > array

Fibonacci.sequence(count) {|val| ... } > nil

#

If a block is given, supply successive values to the block and

return +nil+, otherwise return all values as an array.

def Fibonacci.sequence(count, &block)

result, block = setup_optional_block(block)

generate do |val|

break if count <= 0

count = 1

block[val]

end

result

end

Calculate the Fibonacci numbers up to and including _max_.

#

:callseq:

Fibonacci.upto(count) > array

Fibonacci.upto(count) {|val ... } > nil

#

If a block is given, supply successive values to the

block and return +nil+, otherwise return all values as an array.

def Fibonacci.upto(max, &block)

result, block = setup_optional_block(block)

generate do |val|

break if val > max

block[val]

end

result

end

private

Yield a sequence of Fibonacci numbers to a block.

def Fibonacci.generate

f1, f2 = 1, 1

loop do

yield f1

f1, f2 = f2, f1+f2

end

end

If a block parameter is given, use it, otherwise accumulate into an

array. Return the result value and the block to use.

def Fibonacci.setup_optional_block(block)

if block.nil?

[result = [], lambda {|val| result << val }]

else

[nil, block]

end

end

end

Prepared exclusively for Jose Sierra

ADDING RDOC TO C EXTENSIONS 197

show a single argument with the (somewhat meaningless) name “arg1.” You can over-

ride this using the callseq directive in the function’s comment. The lines following

callseq (up to a blank line) are used to document the calling sequence of the method.

/*

* callseq:

* cipher.salt = number

* cipher.salt = "string"

*

* Sets the salt of this cipher to either a binary +number+ or

* bits in +string+.

*/

static VALUE

salt_set(cipher, salt)

...

If a method returns a meaningful value, it should be documented in the callseq

following the characters >.

/*

* callseq:

* cipher.keylen > Fixnum or nil

*/

Although RDoc heuristics work well for finding the class and method comments for

simple extensions, it doesn’t always work for more complex implementations. In these

cases, you can use the directives Documentclass: and Documentmethod: to indi-

cate that a C comment relates to a given class or method, respectively. The modifiers

take the name of the Ruby class or method that’s being documented.

/*

* Documentmethod: reset

*

* Clear the current buffer and prepare to add new

* cipher text. Any accumulated output cipher text

* is also cleared.

*/

Finally, it is possible in the Init_ method to associate a Ruby method with a C func-

tion in a different C source file. RDoc would not find this function without your help:

you add a reference to the file containing the function definition by adding a special

comment to the rb_define_method call. The following example tells RDoc to look in

the file md5.c for the function (and related comment) corresponding to the md5 method.

rb_define_method(cCipher, "md5", gen_md5, 1); /* in md5.c */

Figure 16.6 on the following page shows a C source file documented using RDoc. Note

that the bodies of several internal methods have been elided to save space.

Prepared exclusively for Jose Sierra

ADDING RDOC TO C EXTENSIONS 198

Figure 16.6. C source file documented with RDoc

#include "ruby.h"

#include "cdjukebox.h"

static VALUE cCDPlayer;

static void cd_free(void *p) { ... }

static VALUE cd_alloc(VALUE klass) { ... }

static void progress(CDJukebox *rec, int percent) { ... }

/* callseq:

* CDPlayer.new(unit) > new_cd_player

*

* Assign the newly created CDPlayer to a particular unit

*/

static VALUE cd_initialize(VALUE self, VALUE unit) {

int unit_id;

CDJukebox *jb;

Data_Get_Struct(self, CDJukebox, jb);

unit_id = NUM2INT(unit);

assign_jukebox(jb, unit_id);

return self;

}

/* callseq:

* player.seek(int_disc, int_track) > nil

* player.seek(int_disc, int_track) {|percent| } > nil

*

* Seek to a given part of the track, invoking the block

* with the percent complete as we go.

*/

static VALUE

cd_seek(VALUE self, VALUE disc, VALUE track) {

CDJukebox *jb;

Data_Get_Struct(self, CDJukebox, jb);

jukebox_seek(jb, NUM2INT(disc), NUM2INT(track), progress);

return Qnil;

}

/* callseq:

* player.seek_time > Float

*

* Return the average seek time for this unit (in seconds)

*/

static VALUE

cd_seek_time(VALUE self)

{

double tm;

CDJukebox *jb;

Data_Get_Struct(self, CDJukebox, jb);

tm = get_avg_seek_time(jb);

return rb_float_new(tm);

}

/* Interface to the Spinzalot[http://spinzalot.cd]

* CD Player library.

*/

void Init_CDPlayer() {

cCDPlayer = rb_define_class("CDPlayer", rb_cObject);

rb_define_alloc_func(cCDPlayer, cd_alloc);

rb_define_method(cCDPlayer, "initialize", cd_initialize, 1);

rb_define_method(cCDPlayer, "seek", cd_seek, 2);

rb_define_method(cCDPlayer, "seek_time", cd_seek_time, 0);

}

Prepared exclusively for Jose Sierra

RUNNING RDOC 199

Running RDoc
You run RDoc from the command line.

% rdoc [options] [filenames...]

Type rdoc --help for an up-to-date option summary.

Files are parsed, and the information they contain collected, before any output is pro-

duced. This allows cross-references between all files to be resolved. If a name is a

directory, it is traversed. If no names are specified, all Ruby files in the current direc-

tory (and subdirectories) are processed.

A typical use may be to generate documentation for a package of Ruby source (such as

RDoc itself).

% rdoc

This command generates HTML documentation for all the Ruby and C source files in

and below the current directory. These will be stored in a documentation tree starting

in the subdirectory doc/.

RDoc uses file extensions to determine how to process each file. Filenames ending .rb

and .rbw are assumed to be Ruby source. Files ending .c are parsed as C files. All other

files are assumed to contain just markup (with or without leading # comment markers).

If directory names are passed to RDoc, they are scanned recursively for C and Ruby

source files only. To include nonsource files such as READMEs in the documentation

process, their names must be given explicitly on the command line.

When writing a Ruby library, you often have some source files that implement the

public interface, but the majority are internal and of no interest to the readers of your

documentation. In these cases, construct a .document file in each of your project’s

directories. If RDoc enters a directory containing a .document file, it will process only

the files in that directory whose names match one of the lines in that file. Each line

in the file can be a filename, a directory name, or a wildcard (a file system “glob”

pattern). For example, to include all Ruby files whose names start main, along with the

file constants.rb, you could use a .document file containing

main*.rb

constants.rb

Some project standards ask for documentation in a top-level README file. You may find

it convenient to write this file in RDoc format, and then use the :include: directive to

incorporate this document into that for the main class.

Prepared exclusively for Jose Sierra

DISPLAYING PROGRAM USAGE 200

Create Documentation for ri

RDoc is also used to create documentation which will be later displayed using ri.

When you run ri, it by default looks for documentation in three places:2

1. the system documentation directory, which holds the documentation distributed

with Ruby, and which is created by the Ruby install process,

2. the site directory, which contains sitewide documentation added locally, and

3. the user documentation directory, stored under the user’s own home directory.

You can find these three directories in the following locations.

• $datadir/ri/<ver>/system/...

• $datadir/ri/<ver>/site/...

• ~/.rdoc/....

The variable $datadir is the configured data directory for the installed Ruby. Find

your local datadir using

ruby r rbconfig e 'p Config::CONFIG["datadir"]'

To add documentation to ri, you need to tell RDoc which output directory to use. For

your own use, it’s easiest to use the ri option.

% rdoc ri file1.rb file2.rb

If you want to install sitewide documentation, use the risite option.

% rdoc risite file1.rb file2.rb

The risystem option is normally used only to install documentation for Ruby’s

built-in classes and standard libraries. You can regenerate this documentation from the

Ruby source distribution (not from the installed libraries themselves).

% cd <ruby source base>/lib

% rdoc risystem

Displaying Program Usage
Most command line programs have some kind of facility to describe their correct usage;

give them invalid parameters and they’ll report a short error message followed by a syn-

opsis of their actual options. And, if you’re using RDoc, you’ll probably have described

2. You can override the directory location using the op option to RDoc, and subsequently using the

docdir option with ri.

Prepared exclusively for Jose Sierra

DISPLAYING PROGRAM USAGE 201

Figure 16.7. Sample program using RDoc::usage

== Synopsis

#

Display the current date and time, optionally honoring

a format string.

#

== Usage

#

ruby showtime.rb [h | help] [f | fmt fmtstring]

#

fmtstring::

A +strftime+ format string controlling the

display of the date and time. If omitted,

use "%Y%m%d %H:%M"

#

== Author

Dave Thomas, The Pragmatic Programmers, LLC

#

== Copyright

Copyright (c) 2004 The Pragmatic Programmers.

Licensed under the same terms as Ruby.

require 'optparse'

require 'rdoc/usage'

fmt = "%Y%m%d %H:%M"

opts = OptionParser.new

opts.on("h", "help") { RDoc::usage }

opts.on("f", "fmt FMTSTRING") {|str| fmt = str }

opts.parse(ARGV) rescue RDoc::usage('usage')

puts Time.now.strftime(fmt)

how the program should be used in a RDoc comment at the start of the main pro-

gram. Rather than duplicate all this information in a puts somewhere, you can use

RDoc::usage to extract it straight from the command and write it to the user.

You can pass RDoc::usage a number of string parameters. If present, it extracts from

the comment block only those sections named by parameters (where a section starts

with a heading equal to the parameter, ignoring case). With no string parameters,

RDoc::usage displays the entire comment. In addition, RDoc::usage exits the pro-

gram after displaying the usage message. If the first parameter in the call is an integer,

it is used as the program’s exit code (otherwise RDoc::usage exits with a zero error

code). If you don’t want to exit the program after displaying a usage message, call

RDoc::usage_no_exit.

Figure 16.7 shows a trivial program that displays the time. It uses RDoc::usage to

display the complete comment block if the user asks for help, and to display just the

Prepared exclusively for Jose Sierra

DISPLAYING PROGRAM USAGE 202

Figure 16.8. Help generated by sample program

usage section if the user gives an invalid option. Figure 16.8 shows the output generated

in response to a help option.

RDoc::usage honors the RI environment variable, which can be used to set the display

width and output style. The output in Figure 16.8 was generated with the RI option set

to “-f ansi.” Although not too apparent if you’re looking at this figure in the black-and-

white book, the section headings, code font, and emphasized font are shown in different

colors using ANSI escape sequences.

Prepared exclusively for Jose Sierra

Chapter 17

Package Management

with RubyGems

Chad Fowler is a leading figure in the Ruby

community. He’s on the board of Ruby Central,

Inc. He’s one of the organizers of RubyConf. And

he’s one of the writers of RubyGems. All this

makes him uniquely qualified to write this chapter.

RubyGems is a standardized packaging and installation framework for libraries and

applications, making it easy to locate, install, upgrade, and uninstall Ruby packages. It

provides users and developers with four main facilities.

1. A standardized package format,

2. A central repository for hosting packages in this format,

3. Installation and management of multiple, simultaneously installed versions of the

same library,

4. End-user tools for querying, installing, uninstalling, and otherwise manipulating

these packages.

Before RubyGems came along, installing a new library involved searching the Web,

downloading a package, and attempting to install it—only to find that its dependencies

haven’t been met. If the library you want is packaged using RubyGems, however, you

can now simply ask RubyGems to install it (and all its dependencies). Everything is

done for you.

In the RubyGems world, developers bundle their applications and libraries into single

files called gems. These files conform to a standardized format, and the RubyGems

system provides a command-line tool, appropriately named gem, for manipulating these

gem files.

In this chapter, we’ll see how to

1. Install RubyGems on your computer.

2. Use RubyGems to install other applications and libraries.

3. Write your own gems.

203Prepared exclusively for Jose Sierra

INSTALLING RUBYGEMS 204

Installing RubyGems
To use RubyGems, you’ll first need to download and install the RubyGems system from

the project’s home page at http://rubygems.rubyforge.org. After downloading

and unpacking the distribution, you can install it using the included installation script.

% cd rubygems0.7.0

% ruby install.rb

Depending on your operating system, you may need suitable privileges to write files

into Ruby’s site_ruby/ and bin/ directories.

The best way to test that RubyGems was installed successfully also happens to be the

most important command you’ll learn.

% gem help

RubyGems is a sophisticated package manager for Ruby. This is

a basic help message containing pointers to more information.

Usage:

gem h/help

gem v/version

gem command [arguments...] [options...]

Examples:

gem install rake

gem list local

gem build package.gemspec

gem help install

Further help:

gem help commands list all 'gem' commands

gem help examples show some examples of usage

gem help <COMMAND> show help on COMMAND

(e.g. 'gem help install')

Further information:

http://rubygems.rubyforge.org

Because RubyGems’ help is quite comprehensive, we won’t go into detail about each

of the available RubyGems commands and options in this chapter.

Installing Application Gems
Let’s start by using RubyGems to install an application that is written in Ruby. Jim

Weirich’s Rake (http://rake.rubyforge.org) holds the distinction of being the first

application that was available as a gem. Not only that, but it’s generally a great tool to

have around, as it is a build tool similar to Make and Ant. In fact, you can even use

Rake to build gems!

Locating and installing Rake with RubyGems is simple.

Prepared exclusively for Jose Sierra

http://rubygems.rubyforge.org
http://rake.rubyforge.org

INSTALLING APPLICATION GEMS 205

% gem install r rake

Attempting remote installation of 'Rake'

Successfully installed rake, version 0.4.3

% rake version

rake, version 0.4.3

RubyGems downloads the Rake package and installs it. Because Rake is an application,

RubyGems downloads both the Rake libraries and the command-line program rake.

You control the gem program using subcommands, each of which has its own options

and help screen. In this example, we used the install subcommand with the r option,

which tells it to operate remotely. (Many RubyGems operations can be performed either

locally or remotely. For example, you can use the query command either to display all

the gems that are available remotely for installation or to display a list of gems you

already have installed. For this reason, subcommands accept the options r and l,

specifying whether an operation is meant to be carried out remotely or locally.)

If for some reason—perhaps because of a potential compatibility issue—you wanted

an older version of Rake, you could use RubyGems’ version requirement operators to

specify criteria by which a version would be selected.

% gem install r rake v "< 0.4.3"

Attempting remote installation of 'rake'

Successfully installed rake, version 0.4.2

% rake version

rake, version 0.4.2

Table 17.1 on the next page lists the version requirement operators. The v argument

in our previous example asks for the highest version lower than 0.4.3.

There’s a subtlety when it comes to installing different versions of the same application

with RubyGems. Even though RubyGems keeps separate versions of the application’s

library files, it does not version the actual command you use to run the application. As

a result, each install of an application effectively overwrites the previous one.

During installation, you can also add the t option to the RubyGems install com-

mand, causing RubyGems to run the gem’s test suite (if one has been created). If the

tests fail, the installer will prompt you to either keep or discard the gem. This is a good

way to gain a little more confidence that the gem you’ve just downloaded works on

your system the way the author intended.

% gem install SomePoorlyTestedProgram t

Attempting local installation of 'SomePoorlyTestedProgram1.0.1'

Successfully installed SomePoorlyTestedProgram, version 1.0.1

23 tests, 22 assertions, 0 failures, 1 errors...keep Gem? [Y/n] n

Successfully uninstalled SomePoorlyTestedProgram version 1.0.1

Had we chosen the default and kept the gem installed, we could have inspected the gem

to try to determine the cause of the failing test.

Prepared exclusively for Jose Sierra

INSTALLING AND USING GEM LIBRARIES 206

Table 17.1. Version operators

Both the require_gem method and the add_dependency attribute in a Gem::Specification

accept an argument that specifies a version dependency. RubyGems version dependencies are

of the form operator major.minor.patch_level. Listed below is a table of all the possible

version operators.

Operator Description

= Exact version match. Major, minor, and patch level must be identical.

!= Any version that is not the one specified.

> Any version that is greater (even at the patch level) than the one specified.

< Any version that is less than the one specified.

>= Any version greater than or equal to the specified version.

<= Any version less than or equal to the specified version.

~> “Boxed” version operator. Version must be greater than or equal to the

specified version and less than the specified version after having its minor

version number increased by one. This is to avoid API incompatibilities

between minor version releases.

Installing and Using Gem Libraries
Using RubyGems to install a complete application was a good way to get your feet

wet and to start to learn your way around the gem command. However, in most cases,

you’ll use RubyGems to install Ruby libraries for use in your own programs. Since

RubyGems enables you to install and manage multiple versions of the same library,

you’ll also need to do some new, RubyGems-specific things when you require those

libraries in your code.

Perhaps you’ve been asked by your mother to create a program to help her maintain and

publish a diary. You have decided that you would like to publish the diary in HTML

format, but you are worried that your mother may not understand all of the ins and outs

of HTML markup. For this reason, you’ve opted to use one of the many excellent tem-

plating packages available for Ruby. After some research, you’ve decided on Michael

Granger’s BlueCloth, based on its reputation for being very simple to use.

You first need to find and install the BlueCloth gem.

% gem query rn Blue

*** REMOTE GEMS ***

BlueCloth (0.0.4, 0.0.3, 0.0.2)

BlueCloth is a Ruby implementation of Markdown, a texttoHTML

conversion tool for web writers. Markdown allows you to write using

an easytoread, easytowrite plain text format, then convert it

to structurally valid XHTML (or HTML).

Prepared exclusively for Jose Sierra

INSTALLING AND USING GEM LIBRARIES 207

This invocation of the query command uses the n option to search the central gem

repository for any gem whose name matches the regular expression /Blue/. The results

show that three available versions of BlueCloth exist (0.0.4, 0.0.3, and 0.0.2). Because

you want to install the most recent one, you don’t have to state an explicit version on

the install command; the latest is downloaded by default.

% gem install r BlueCloth

Attempting remote installation of 'BlueCloth'

Successfully installed BlueCloth, version 0.0.4

Generating API Documentation

Being that this is your first time using BlueCloth, you’re not exactly sure how to use it.

You need some API documentation to get started. Fortunately, with the addition of the

rdoc option to the install command, RubyGems will generate RDoc documen-

tation for the gem it is installing. For more information on RDoc, see Chapter 16 on

page 187.

% gem install r BlueCloth rdoc

Attempting remote installation of 'BlueCloth'

Successfully installed BlueCloth, version 0.0.4

Installing RDoc documentation for BlueCloth0.0.4...

WARNING: Generating RDoc on .gem that may not have RDoc.

bluecloth.rb: cc..............................

Generating HTML...

Having generated all this useful HTML documentation, how can you view it? You

have at least two options. The hard way (though it really isn’t that hard) is to open

RubyGems’ documentation directory and browse the documentation directly. As with

most things in RubyGems, the documentation for each gem is stored in a central, pro-

tected, RubyGems-specific place. This will vary by system and by where you may

explicitly choose to install your gems. The most reliable way to find the documents is

to ask the gem command where your RubyGems main directory is located. For exam-

ple:

% gem environment gemdir

/usr/local/lib/ruby/gems/1.8

RubyGems stores generated documentation in the doc/ subdirectory of this directory,

in this case /usr/local/lib/ruby/gems/1.8/doc. You can open the file index.

html and view the documentation. If you find yourself using this path often, you can

create a shortcut. Here’s one way to do that on Mac OS X boxes.

% gemdoc=`gem environment gemdir`/doc

% ls $gemdoc

BlueCloth0.0.4

% open $gemdoc/BlueCloth0.0.4/rdoc/index.html

Prepared exclusively for Jose Sierra

INSTALLING AND USING GEM LIBRARIES 208

To save time, you could declare $gemdoc in your login shell’s profile or rc file.

The second (and easier) way to view gems’ RDoc documentation is to use RubyGems’

included gem_server utility. To start gem_server, simply type

% gem_server

[20040718 11:28:51] INFO WEBrick 1.3.1

[20040718 11:28:51] INFO ruby 1.8.2 (20040629) [i386mswin32]

[20040718 11:28:51] INFO WEBrick::HTTPServer#start: port=8808

gem_server starts a Web server running on whatever computer you run it on. By

default, it will start on port 8808 and will serve gems and their documentation from

the default RubyGems installation directory. Both the port and the gem directory are

overridable via command-line options, using the p and d options, respectively.

Once you’ve started the gem_server program, if you are running it on your local com-

puter, you can access the documentation for your installed gems by pointing your Web

browser to http://localhost:8808. There, you will see a list of the gems you have

installed with their descriptions and links to their RDoc documentation.

Let’s Code!

Now you’ve got BlueCloth installed and you know how to use it, you’re ready to write

some code. Having used RubyGems to download the library, we can now also use

it to load the library components into our application. Prior to RubyGems, we’d say

something like

require 'bluecloth'

With RubyGems, though, we can take advantage of its packaging and versioning sup-

port. To do this, we use require_gem in place of require.

require 'rubygems'

require_gem 'BlueCloth', ">= 0.0.4"

doc = BlueCloth::new <<MARKUP

This is some sample [text][1]. Just learning to use [BlueCloth][1].

Just a simple test.

[1]: http://rubylang.org

MARKUP

puts doc.to_html

produces:

<p>This is some sample text. Just

learning to use BlueCloth.

Just a simple test.</p>

The first two lines are the RubyGems-specific code. The first line loads the RubyGems

core libraries that we’ll need in order to work with installed gems.

require 'rubygems'

Prepared exclusively for Jose Sierra

http://localhost:8808

INSTALLING AND USING GEM LIBRARIES 209

The second line is where most of the magic happens.

require_gem 'BlueCloth', '>= 0.0.4'

This line adds the BlueCloth gem to Ruby’s $LOAD_PATH and uses require to load any

libraries that the gem’s creator specified to be autoloaded. Let’s say that again a slightly

different way.

Each gem is considered to be a bundle of resources. It may contain one library file

or one hundred. In an old-fashioned, non-RubyGems library, all these files would be

copied into some shared location in the Ruby library tree, a location that was in Ruby’s

predefined load path.

RubyGems doesn’t work this way. Instead, it keeps each version of each gem in its own

self-contained directory tree. The gems are not injected into the standard Ruby library

directories. As a result, RubyGems needs to do some fancy footwork so that you can

get to these files. It does this by adding the gem’s directory tree to Ruby’s load path.

From inside a running program, the effect is the same: require just works. From the

outside, though, RubyGems gives you far better control over what’s loaded into your

Ruby programs.

In the case of BlueCloth, the templating code is distributed as one file, bluecloth.rb;

that’s the file that require_gem will load. require_gem has an optional second argu-

ment, which specifies a version requirement. In this example, you’ve specified that

BlueCloth version 0.0.4 or greater be installed to use this code. If you had required ver-

sion 0.0.5 or greater, this program would fail, because the version you’ve just installed

is too low to meet the requirement of the program.

require 'rubygems'

require_gem 'BlueCloth', '>= 0.0.5'

produces:

/usr/local/lib/ruby/site_ruby/rubygems.rb:30:

in `require_gem': (LoadError)

RubyGem version error: BlueCloth(0.0.4 not >= 0.0.5)

from prog.rb:2

As we said earlier, the version requirement argument is optional, and this example is

obviously contrived. But, it’s easy to imagine how this feature can be useful as different

projects begin to depend on multiple, potentially incompatible, versions of the same

library.

Dependent on RubyGems?

Astute readers (that’s all of you) will have noticed that the code we’ve created so far

is dependent on the RubyGems package being installed. In the long term, that’ll be a

fairly safe bet (we’re guessing that RubyGems will make its way into the Ruby core

distribution). For now, though, RubyGems is not part of the standard Ruby distribution,

Prepared exclusively for Jose Sierra

INSTALLING AND USING GEM LIBRARIES 210

The Code Behind the Curtain

So just what does happen behind the scenes when you call the magic
require_gem method?

First, the gems library modifies your $LOAD_PATH, including any direc-
tories you have added to the gemspec’s require_paths. Second,
it calls Ruby’s require method on any files specified in the gem-
spec’s autorequires attribute (described on page 212). It’s this
$LOAD_PATH-modifying behavior that enables RubyGems to manage
multiple installed versions of the same library.

so users of your software may not have RubyGems installed on their computers. If we

distribute code that has require 'rubygems' in it, that code will fail.

You can use at least two techniques to get around this issue. First, you can wrap the

RubyGems-specific code in a block and use Ruby’s exception handling to rescue the

resultant LoadError should RubyGems not be found during the require.

begin

require 'rubygems'

require_gem 'BlueCloth', ">= 0.0.4"

rescue LoadError

require 'bluecloth'

end

This code first tries to require in the RubyGems library. If this fails, the rescue stanza

is invoked, and your program will try to load BlueCloth using a conventional require.

This latter require will fail if BlueCloth isn’t installed, which is the same behavior users

see now if they’re not using RubyGems.

As of RubyGems 0.8.0, requiring rubygems.rb will install an overloaded version of

Ruby’s require method. Having loaded the RubyGems framework, you could say

require 'bluecloth'

Although this looks like conventional code, behind the scenes RubyGems will load

bluecloth.rb from the first match it finds in its list of currently installed gems.

The overloaded require method almost allows you to free your applications from any

RubyGems-specific code. The one exception is that the RubyGems library must be

loaded before any calls to require gem-installed libraries.

To avoid RubyGems dependencies, the Ruby interpreter can be called with the -r switch

ruby rubygems myprogram.rb

Prepared exclusively for Jose Sierra

CREATING YOUR OWN GEMS 211

This will cause the interpreter to load the RubyGems framework, thereby installing

RubyGems’ overloaded version of the require method. To globally cause RubyGems

to load with each invocation of the Ruby interpreter on a given system, you can set the

RUBYOPT environment variable

% export RUBYOPT=rubygems

You can then run the ruby interpreter without explicitly loading the RubyGems frame-

work, and gem-installed libraries will be available to the applications that need them.

The biggest disadvantage of using the overloaded require method is that you lose the

ability to manage multiple installed versions of the same library. If you need a specific

version of a library, it’s better to use the LoadError method described previously.

Creating Your Own Gems
By now, you’ve seen how easy RubyGems makes things for the users of an applica-

tion or library and are probably ready to make a gem of your own. If you’re creating

code to be shared with the open-source community, RubyGems are an ideal way for

end-users to discover, install, and uninstall your code. They also provide a powerful

way to manage internal, company projects, or even personal projects, since they make

upgrades and rollbacks so simple. Ultimately, the availability of more gems makes the

Ruby community stronger. These gems have to come from somewhere; we’re going to

show you how they can start coming from you.

Let’s say you’ve finally gotten your mother’s online diary application, MomLog, fin-

ished, and you have decided to release it under an open-source license. After all, other

programmers have mothers, too. Naturally, you want to release MomLog as a gem

(moms love it when you give them gems).

Package Layout

The first task in creating a gem is organizing your code into a directory structure that

makes sense. The same rules that you would use in creating a typical tar or zip archive

apply in package organization. Some general conventions follow.

• Put all of your Ruby source files under a subdirectory called lib/. Later, we’ll

show you how to ensure that this directory will be added to Ruby’s $LOAD_PATH

when users load this gem.

• If it’s appropriate for your project, include a file under lib/yourproject.rb that

performs the necessary require commands to load the bulk of the project’s func-

tionality. Before RubyGems’ autorequire feature, this made things easier for others

to use a library. Even with RubyGems, it makes it easier for others to explore your

code if you give them an obvious starting point.

Prepared exclusively for Jose Sierra

CREATING YOUR OWN GEMS 212

• Always include a README file including a project summary, author contact infor-

mation, and pointers for getting started. Use RDoc format for this file so you

can add it to the documentation that will be generated during gem installation.

Remember to include a copyright and license in the README file, as many com-

mercial users won’t use a package unless the license terms are clear.

• Tests should go in a directory called test/. Many developers use a library’s unit

tests as a usage guide. It’s nice to put them somewhere predictable, making them

easy for others to find.

• Any executable scripts should go in a subdirectory called bin/.

• Source code for Ruby extensions should go in ext/.

• If you’ve got a great deal of documentation to include with your gem, it’s good to

keep it in its own subdirectory called docs/. If your README file is in the top level

of your package, be sure to refer readers to this location.

This directory layout is illustrated in Figure 17.1 on page 220.

The Gem Specification

Now that you’ve got your files laid out as you want them, it’s time to get to the heart of

gem creation: the gem specification, or gemspec. A gemspec is a collection of metadata

in Ruby or YAML (see page 737) that provides key information about your gem. The

gemspec is used as input to the gem-building process. You can use several different

mechanisms to create a gem, but they’re all conceptually the same. Here’s your first,

basic MomLog gem.

require 'rubygems'

SPEC = Gem::Specification.new do |s|

s.name = "MomLog"

s.version = "1.0.0"

s.author = "Jo Programmer"

s.email = "jo@joshost.com"

s.homepage = "http://www.joshost.com/MomLog"

s.platform = Gem::Platform::RUBY

s.summary = "An online Diary for families"

candidates = Dir.glob("{bin,docs,lib,test}/**/*")

s.files = candidates.delete_if do |item|

item.include?("CVS") || item.include?("rdoc")

end

s.require_path = "lib"

s.autorequire = "momlog"

s.test_file = "test/ts_momlog.rb"

s.has_rdoc = true

s.extra_rdoc_files = ["README"]

s.add_dependency("BlueCloth", ">= 0.0.4")

end

Prepared exclusively for Jose Sierra

CREATING YOUR OWN GEMS 213

Let’s quickly walk through this example. A gem’s metadata is held in an object of class

Gem::Specification. The gemspec can be expressed in either YAML or Ruby code.

Here we’ll show the Ruby version, as it’s generally easier to construct and more flexible

in use. The first five attributes in the specification give basic information such as the

gem’s name, the version, and the author’s name, e-mail, and home page.

In this example, the next attribute is the platform on which this gem can run. In this

case, the gem is a pure Ruby library with no operating system–specific requirements, so

we’ve set the platform to RUBY. If this gem were written for Windows only, for example,

the platform would be listed as WIN32. For now, this field is only informational, but in

the future it will be used by the gem system for intelligent selection of precompiled

native extension gems.

The gem’s summary is the short description that will appear when you run a gem query

(as in our previous BlueCloth example).

The files attribute is an array of pathnames to files that will be included when the

gem is built. In this example, we’ve used Dir.glob to generate the list and filtered out

CVS and RDoc files.

Runtime Magic

The next two attributes, require_path and autorequire, let you specify the directo-

ries that will be added to the $LOAD_PATH when require_gem loads the gem, as well as

any files that will automatically be loaded using require. In this example, lib refers

to a relative path under the MomLog gem directory, and the autorequire will cause

lib/momlog.rb to be required when require_gem "MomLog" is called. RubyGems

also provides require_paths, a plural version of require_path. This takes an array,

allowing you to specify a number of directories to include in $LOAD_PATH.

Adding Tests and Documentation

The test_file attribute holds the relative pathname to a single Ruby file included

in the gem that should be loaded as a Test::Unit test suite. (You can use the plural

form, test_files, to reference an array of files containing tests.) For details on how

to create a test suite, see Chapter 12 on page 143 on unit testing.

Finishing up this example, we have two attributes controlling the production of local

documentation of the gem. The has_rdoc attribute specifies that you have added RDoc

comments to your code. It’s possible to run RDoc on totally uncommented code, pro-

viding a browsable view of its interfaces, but obviously this is a lot less valuable than

running RDoc on well-commented code. has_rdoc is a way for you to tell the world,

“Yes. It’s worth generating the documentation for this gem.”

Prepared exclusively for Jose Sierra

CREATING YOUR OWN GEMS 214

RDoc has the convenience of being very readable in both source and rendered form,

making it an excellent choice for an included README file with a package. The rdoc

command normally runs only on source code files. The extra_rdoc_files attribute

takes an array of paths to non-source files in your gem that you would like to be

included in the generation of RDoc documentation.

Adding Dependencies

For your gem to work properly, users are going to need to have BlueCloth installed.

We saw earlier how to set a load-time version dependency for a library. Now we need

to tell our gemspec about that dependency, so the installer will ensure that it is present

while installing MomLog. We do that with the addition of a single method call to our

Gem::Specification object.

s.add_dependency("BlueCloth", ">= 0.0.4")

The arguments to our add_dependency method are identical to those of require_gem,

which we explained earlier.

After generating this gem, attempting to install it on a clean system would look some-

thing like this.

% gem install pkg/MomLog1.0.0.gem

Attempting local installation of 'pkg/MomLog1.0.0.gem'

/usr/local/lib/ruby/site_ruby/1.8/rubygems.rb:50:in `require_gem':

(LoadError)

Could not find RubyGem BlueCloth (>= 0.0.4)

Because you are performing a local installation from a file, RubyGems won’t attempt to

resolve the dependency for you. Instead, it fails noisily, telling you that it needs Blue-

Cloth to complete the installation. You could then install BlueCloth as we did before,

and things would go smoothly the next time you attempted to install the MomLog gem.

If you had uploaded MomLog to the central RubyGems repository and then tried to

install it on a clean system, you would be prompted to automatically install BlueCloth

as part of the MomLog installation.

% gem install r MomLog

Attempting remote installation of 'MomLog'

Install required dependency BlueCloth? [Yn] y

Successfully installed MomLog, version 1.0.0

Now you’ve got both BlueCloth and MomLog installed, and your mother can start

happily publishing her diary. Had you chosen not to install BlueCloth, the installation

would have failed as it did during the local installation attempt.

As you add more features to MomLog, you may find yourself pulling in additional

external gems to support those features. The add_dependency method can be called

multiple times in a single gemspec, supporting as many dependencies as you need it to

support.

Prepared exclusively for Jose Sierra

CREATING YOUR OWN GEMS 215

Ruby Extension Gems

So far, all of the examples we’ve looked at have been pure Ruby code. However, many

Ruby libraries are created as native extensions (see Chapter 21 on page 261). You have

two ways to package and distribute this kind of library as a gem. You can distribute the

gem in source format and have the installer compile the code at installation time. Alter-

natively, you can precompile the extensions and distribute one gem for each separate

platform you want to support.

For source gems, RubyGems provides an additional Gem::Specification attribute

called extensions. This attribute is an array of paths to Ruby files that will generate

Makefiles. The most typical way to create one of these programs is to use Ruby’s mkmf

library (see Chapter 21 on page 261 and the appendix about mkmf on page 755). These

files are conventionally named extconf.rb, though any name will do.

Your mom has a computerized recipe database that is near and dear to her heart. She

has been storing her recipes in it for years, and you would like to give her the ability

to publish these recipes on the Web for her friends and family. You discover that the

recipe program, MenuBuilder, has a fairly nice native API and decide to write a Ruby

extension to wrap it. Since the extension may be useful to others who aren’t necessarily

using MomLog, you decide to package it as a separate gem and add it as an additional

dependency for MomLog.

Here’s the gemspec.

require 'rubygems'

spec = Gem::Specification.new do |s|

s.name = "MenuBuilder"

s.version = "1.0.0"

s.author = "Jo Programmer"

s.email = "jo@joshost.com"

s.homepage = "http://www.joshost.com/projects/MenuBuilder"

s.platform = Gem::Platform::RUBY

s.summary = "A Ruby wrapper for the MenuBuilder recipe database."

s.files = ["ext/main.c", "ext/extconf.rb"]

s.require_path = "."

s.autorequire = "MenuBuilder"

s.extensions = ["ext/extconf.rb"]

end

if $0 == __FILE__

Gem::manage_gems

Gem::Builder.new(spec).build

end

Note that you have to include source files in the specification’s files list so they’ll be

included in the gem package for distribution.

When a source gem is installed, RubyGems runs each of its extensions programs and

then executes the resultant Makefile.

Prepared exclusively for Jose Sierra

CREATING YOUR OWN GEMS 216

% gem install MenuBuilder1.0.0.gem

Attempting local installation of 'MenuBuilder1.0.0.gem'

ruby extconf.rb inst MenuBuilder1.0.0.gem

creating Makefile

make

gcc fPIC g O2 I. I/usr/local/lib/ruby/1.8/i686linux \

I/usr/local/lib/ruby/1.8/i686linux I. c main.c

gcc shared L"/usr/local/lib" o MenuBuilder.so main.o \

ldl lcrypt lm lc

make install

install c p m 0755 MenuBuilder.so \

/usr/local/lib/ruby/gems/1.8/gems/MenuBuilder1.0.0/.

Successfully installed MenuBuilder, version 1.0.0

RubyGems does not have the capability to detect system library dependencies that

source gems may have. Should your source gems depend on a system library that is

not installed, the gem installation will fail, and any error output from the make com-

mand will be displayed.

Distributing source gems obviously requires that the consumer of the gem have a work-

ing set of development tools. At a minimum, they’ll need some kind of make program

and a compiler. Particularly for Windows users, these tools may not be present. You

can get around this limitation by distributing precompiled gems.

Creation of precompiled gems is simple—add the compiled shared object files (DLLs

on Windows) to the gemspec’s files list, and make sure these files are in one of the

gem’s require_path attributes. As with pure Ruby gems, the require_gem command

will modify Ruby’s $LOAD_PATH, and the shared object will be accessible via require.

Since these gems will be platform specific, you can also use the platform attribute

(remember this from the first gemspec example?) to specify the target platform for

the gem. The Gem::Specification class defines constants for Windows, Intel Linux,

Macintosh, and pure Ruby. For platforms not included in this list, you can use the value

of the RUBY_PLATFORM variable. This attribute is purely informational for now, but it’s

a good habit to acquire. Future RubyGems releases will use the platform attribute to

intelligently select precompiled gems for the platform on which the installer is running.

Building the Gem File

The MomLog gemspec we just created is runnable as a Ruby program. Invoking it will

create a gem file, MomLog0.5.0.gem.

% ruby momlog.gemspec

Attempting to build gem spec 'momlog.gemspec'

Successfully built RubyGem

Name: MomLog

Version: 0.5.0

File: MomLog0.5.0.gem

Prepared exclusively for Jose Sierra

CREATING YOUR OWN GEMS 217

Alternatively, you can use the gem build command to generate the gem file.

% gem build momlog.gemspec

Attempting to build gem spec 'momlog.gemspec'

Successfully built RubyGem

Name: MomLog

Version: 0.5.0

File: MomLog0.5.0.gem

Now that you’ve got a gem file, you can distribute it like any other package. You can

put it on an FTP server or a Web site for download or e-mail it to your friends. Once

your friends have got this file on their local computers (downloading from your FTP

server if necessary), they can install the gem (assuming they have RubyGems installed

too) by calling

% gem install MomLog0.5.0.gem

Attempting local installation of 'MomLog0.5.0.gem'

Successfully installed MomLog, version 0.5.0

If you would like to release your gem to the Ruby community, the easiest way is to use

RubyForge (http://rubyforge.org). RubyForge is an open-source project manage-

ment Web site. It also hosts the central gem repository. Any gem files released using

RubyForge’s file release feature will be automatically picked up and added to the cen-

tral gem repository several times each day. The advantage to potential users of your

software is that it will be available via RubyGems’ remote query and installation oper-

ations, making installation even easier.

Building with Rake

Last but certainly not least, we can use Rake to build gems (remember Rake, the pure-

Ruby build tool we mentioned back on page 204). Rake uses a command file called a

Rakefile to control the build. This defines (in Ruby syntax!) a set of rules and tasks.

The intersection of make’s rule-driven concepts and Ruby’s power make for a build and

release automator’s dream environment. And, what release of a Ruby project would be

complete without the generation of a gem?

For details on how to use Rake, see http://rake.rubyforge.org. Its documents are

comprehensive and always up-to-date. Here, we’ll focus on just enough Rake to build

a gem. From the Rake documentation:

Tasks are the main unit of work in a Rakefile. Tasks have a name (usually given as

a symbol or a string), a list of prerequisites (more symbols or strings), and a list of

actions (given as a block).

Normally, you can use Rake’s built-in task method to define your own named tasks

in your Rakefile. For special cases, it makes sense to provide helper code to automate

some of the repetitive work you would have to do otherwise. Gem creation is one of

Prepared exclusively for Jose Sierra

http://rubyforge.org
http://rake.rubyforge.org

CREATING YOUR OWN GEMS 218

these special cases. Rake comes with a special TaskLib, called GemPackageTask, that

helps integrate gem creation into the rest of your automated build and release process.

To use GemPackageTask in your Rakefile, create the gemspec exactly as we did pre-

viously, but this time place it into your Rakefile. We then feed this specification to

GemPackageTask.

require 'rubygems'

Gem::manage_gems

require 'rake/gempackagetask'

spec = Gem::Specification.new do |s|

s.name = "MomLog"

s.version = "0.5.0"

s.author = "Jo Programmer"

s.email = "jo@joshost.com"

s.homepage = "http://www.joshost.com/MomLog"

s.platform = Gem::Platform::RUBY

s.summary = "An online Diary for families"

s.files = FileList["{bin,tests,lib,docs}/**/*"].exclude("rdoc").to_a

s.require_path = "lib"

s.autorequire = "momlog"

s.test_file = "tests/ts_momlog.rb"

s.has_rdoc = true

s.extra_rdoc_files = ["README"]

s.add_dependency("BlueCloth", ">= 0.0.4")

s.add_dependency("MenuBuilder", ">= 1.0.0")

end

Rake::GemPackageTask.new(spec) do |pkg|

pkg.need_tar = true

end

Note that you’ll have to require the rubygems package into your Rakefile. You’ll also

notice that we’ve used Rake’s FileList class instead of Dir.glob to build the list

of files. FileList is smarter than Dir.glob for this purpose in that it automatically

ignores commonly unused files (such as the CVS directory that the CVS version control

tool leaves lying around).

Internally, the GemPackageTask generates a Rake target with the identifier

package_directory/gemnamegemversion.gem

In our case, this identifier will be pkg/MomLog0.5.0.gem. You can invoke this task

from the same directory where you’ve put the Rakefile.

% rake pkg/MomLog0.5.0.gem

(in /home/chad/download/gembook/code/MomLog)

Successfully built RubyGem

Name: MomLog

Version: 0.5.0

File: MomLog0.5.0.gem

Prepared exclusively for Jose Sierra

CREATING YOUR OWN GEMS 219

Now that you’ve got a task, you can use it like any other Rake task, adding dependencies

to it or adding it to the dependency list of another task, such as deployment or release

packaging.

Maintaining Your Gem

(and One Last Look at MomLog)

You’ve released MomLog, and it’s attracting new, adoring users every week. You have

taken great care to package it cleanly and are using Rake to build your gem.

Your gem being “in the wild” with your contact information attached to it, you know

that it’s only a matter of time before you start receiving feature requests (and fan mail!)

from your users. But, your first request comes via a phone call from none other than

dear old Mom. She has just gotten back from a vacation in Florida and asks you how

she can include her vacation pictures in her diary. You don’t think an explanation of

command-line FTP would be time well spent, and being the ever-devoted son or daugh-

ter, you spend your evening coding a nice photo album module for MomLog.

Since you have added functionality to the application (as opposed to just fixing a bug),

you decide to increase MomLog’s version number from 1.0.0 to 1.1.0. You also add

a set of tests for the new functionality and a document about how to set up the photo

upload functionality.

Figure 17.1 on the following page shows the complete directory structure of your final

MomLog 1.1.0 package. The final gem specification (extracted from the Rakefile) looks

like this.

spec = Gem::Specification.new do |s|

s.name = "MomLog"

s.version = "1.1.0"

s.author = "Jo Programmer"

s.email = "jo@joshost.com"

s.homepage = "http://www.joshost.com/MomLog"

s.platform = Gem::Platform::RUBY

s.summary = "An online diary, recipe publisher, " +

"and photo album for families."

s.files = FileList["{bin,tests,lib,docs}/**/*"].exclude("rdoc").to_a

s.require_path = "lib"

s.autorequire = "momlog"

s.test_file = "tests/ts_momlog.rb"

s.has_rdoc = true

s.extra_rdoc_files = ["README", "docs/DatabaseConfiguration.rdoc",

"docs/Installing.rdoc", "docs/PhotoAlbumSetup.rdoc"]

s.add_dependency("BlueCloth", ">= 0.0.4")

s.add_dependency("MenuBuilder", ">= 1.0.0")

end

Prepared exclusively for Jose Sierra

CREATING YOUR OWN GEMS 220

Figure 17.1. MomLog package structure

momlog/

README

Rakefile

bin/

momlog_server

docs/

Installing.rdoc

DatabaseConfiguration.rdoc

PhotoAlbumSetup.rdoc

lib/

momlog.rb

momlog/

diary.rb

recipes.rb

db.rb

upload.rb

photo_album.rb

rss.rb

tests/

ts_momlog.rb

tc_recipe.rb

tc_photo_album.rb

tc_upload.rb

tc_diary.rb

tc_rss.rb

You run Rake over your Rakefile, generating the updated MomLog gem, and you’re

ready to release the new version. You log into your RubyForge account, and upload

your gem to the “Files” section of your project. While you wait for RubyGems’ auto-

mated process to release the gem into the central gem repository, you type a release

announcement to post to your RubyForge project.

Within about an hour, you log in to your mother’s Web server to install the new software

for her. RubyGems makes things easy, but we have to take special care of Mom.

% gem query rn MomLog

*** REMOTE GEMS ***

MomLog (1.1.0, 1.0.0)

An online diary, recipe publisher, and photo album for families.

Prepared exclusively for Jose Sierra

CREATING YOUR OWN GEMS 221

Great! The query indicates that there are two versions of MomLog available now. You

type the install command without specifying a version argument, because you know

that the default is to install the most recent version.

% gem install r MomLog

Attempting remote installation of 'MomLog'

Successfully installed MomLog, version 1.1.0

You haven’t changed any of the dependencies for MomLog, so your existing BlueCloth

and MenuBuilder installations meet the requirements for MomLog 1.1.0.

Now that Mom’s happy, it’s time to go try some of her recently posted recipes.

Prepared exclusively for Jose Sierra

Chapter 18

Ruby and the Web

Ruby is no stranger to the Internet. Not only can you write your own SMTP server, FTP

daemon, or Web server in Ruby, but you can also use Ruby for more usual tasks such

as CGI programming or as a replacement for PHP.

Many options are available for using Ruby to implement Web applications, and a single

chapter can’t do them all justice. Instead, we’ll try to touch some of the highlights and

point you toward libraries and resources that can help.

Let’s start with some simple stuff: running Ruby programs as Common Gateway Inter-

face (CGI) programs.

Writing CGI Scripts
You can use Ruby to write CGI scripts quite easily. To have a Ruby script generate

HTML output, all you need is something like

#!/usr/bin/ruby

print "Contenttype: text/html\r\n\r\n"

print "<html><body>Hello World! It's #{Time.now}</body></html>\r\n"

Put this script in a CGI directory, mark it as executable, and you’ll be able to access it

via your browser. (If your Web server doesn’t automatically add headers, you’ll need

to add the response header yourself.)

#!/usr/bin/ruby

print "HTTP/1.0 200 OK\r\n"

print "Contenttype: text/html\r\n\r\n"

print "<html><body>Hello World! It's #{Time.now}</body></html>\r\n"

However, that’s hacking around at a pretty low level. You’d need to write your own

request parsing, session management, cookie manipulation, output escaping, and so

on. Fortunately, options are available to make this easier.

222Prepared exclusively for Jose Sierra

WRITING CGI SCRIPTS 223

Using cgi.rb

Class CGI provides support for writing CGI scripts. With it, you can manipulate forms,

cookies, and the environment; maintain stateful sessions; and so on. It’s a fairly large

class, but we’ll take a quick look at its capabilities here.

Quoting

When dealing with URLs and HTML code, you must be careful to quote certain char-

acters. For instance, a slash character (/) has special meaning in a URL, so it must

be “escaped” if it’s not part of the pathname. That is, any / in the query portion of the

URL will be translated to the string %2F and must be translated back to a / for you to

use it. Space and ampersand are also special characters. To handle this, CGI provides

the routines CGI.escape and CGI.unescape.

require 'cgi'

puts CGI.escape("Nicholas Payton/Trumpet & Flugel Horn")

produces:

Nicholas+Payton%2FTrumpet+%26+Flugel+Horn

More frequently, you may want to escape HTML special characters.

require 'cgi'

puts CGI.escapeHTML("a < 100 && b > 200")

produces:

a < 100 && b > 200

To get really fancy, you can decide to escape only certain HTML elements within a

string.

require 'cgi'

puts CGI.escapeElement('<hr>Click Here
','A')

produces:

<hr>Click Here

Here only the A element is escaped; other elements are left alone. Each of these methods

has an “un-” version to restore the original string.

require 'cgi'

puts CGI.unescapeHTML("a < 100 && b > 200")

produces:

a < 100 && b > 200

Prepared exclusively for Jose Sierra

WRITING CGI SCRIPTS 224

Query Parameters

HTTP requests from the browser to your application may contain parameters, either

passed as part of the URL or passed as data embedded in the body of the request.

Processing of these parameters is complicated by the fact that a value with a given name

may be returned multiple times in the same request. For example, say we’re writing a

survey to find out why folks like Ruby. The HTML for our form looks like this.

<html>

<head><title>Test Form</title></head>

<body>

I like Ruby because:

<form target="cgibin/survey.rb">

<input type="checkbox" name="reason" value="flexible" />

It's flexible

<input type="checkbox" name="reason" value="transparent" />

It's transparent

<input type="checkbox" name="reason" value="perlish" />

It's like Perl

<input type="checkbox" name="reason" value="fun" />

It's fun

<p>

Your name: <input type="text" name="name">

</p>

<input type="submit"/>

</form>

</body>

</html>

When someone fills in this form, they might check multiple reasons for liking Ruby (as

shown in Figure 18.1 on the next page). In this case, the form data corresponding to the

name reason will have three values, corresponding to the three checked boxes.

Class CGI gives you access to form data in a couple of ways. First, we can just treat the

CGI object as a hash, indexing it with field names and getting back field values.

require 'cgi'

cgi = CGI.new

cgi['name'] → "Dave Thomas"

cgi['reason'] → "flexible"

However, this doesn’t work well with the reason field: we see only one of the three

values.1.8 We can ask to see them all by using the CGI#params method. The value returned

by params acts like a hash containing the request parameters. You can both read and

write this hash (the latter allows you to modify the data associated with a request). Note

that each of the values in the hash is actually an array.

Prepared exclusively for Jose Sierra

WRITING CGI SCRIPTS 225

Figure 18.1. Sample CGI Form

require 'cgi'

cgi = CGI.new

cgi.params → {"name"=>["Dave Thomas"],

"reason"=>["flexible", "transparent",

"fun"]}

cgi.params['name'] → ["Dave Thomas"]

cgi.params['reason'] → ["flexible", "transparent", "fun"]

cgi.params['name'] = [cgi['name'].upcase]

cgi.params → {"name"=>["DAVE THOMAS"],

"reason"=>["flexible", "transparent",

"fun"]}

You can determine if a particular parameter is present in a request using CGI#has_key?.

require 'cgi'

cgi = CGI.new

cgi.has_key?('name') → true

cgi.has_key?('age') → false

Generating HTML

CGI contains a huge number of methods that can be used to create HTML—one method

per element. To enable these methods, you must create a CGI object by calling CGI.new,

passing in the required level of HTML. In these examples, we’ll use html3.

Prepared exclusively for Jose Sierra

WRITING CGI SCRIPTS 226

To make element nesting easier, these methods take their content as code blocks. The

code blocks should return a String, which will be used as the content for the element.

For this example, we’ve added some gratuitous newlines to make the output fit on the

page.

require 'cgi'

cgi = CGI.new("html3") # add HTML generation methods

cgi.out {

cgi.html {

cgi.head { "\n"+cgi.title{"This Is a Test"} } +

cgi.body { "\n"+

cgi.form {"\n"+

cgi.hr +

cgi.h1 { "A Form: " } + "\n"+

cgi.textarea("get_text") +"\n"+

cgi.br +

cgi.submit

}

}

}

}

produces:

ContentType: text/html

ContentLength: 302

<!DOCTYPE HTML PUBLIC "//W3C//DTD HTML 3.2 Final//EN"><HTML><HEAD>

<TITLE>This Is a Test</TITLE></HEAD><BODY>

<FORM METHOD="post" ENCTYPE="application/xwwwformurlencoded">

<HR><H1>A Form: </H1>

<TEXTAREA NAME="get_text" ROWS="10" COLS="70"></TEXTAREA>

<INPUT TYPE="submit"></FORM></BODY></HTML>

This code will produce an HTML form titled “This Is a Test,” followed by a horizontal

rule, a level-one header, a text input area, and finally a submit button. When the submit

comes back, you’ll have a CGI parameter named get_text containing the text the user

entered.

Although quite interesting, this method of generating HTML is fairly laborious and

probably isn’t used much in practice. Most people seem to write the HTML directly,

use a templating system, or use an application framework, such as Iowa. Unfortunately,

we don’t have space here to discuss Iowa—have a look at the online documentation at

http://enigo.com/projects/iowa, or look at Chapter 6 of The Ruby Developer’s

Guide [FJN02]—but we can look at templating.

Templating Systems

Templating systems let you separate the presentation and logic of your application.

It seems that just about everyone who writes a Web application using Ruby at some

Prepared exclusively for Jose Sierra

http://enigo.com/projects/iowa

WRITING CGI SCRIPTS 227

point also writes a templating system: the RubyGarden wiki lists quite a few,1 and even

this list isn’t complete. For now, let’s just look at three: RDoc templates, Amrita, and

erb/eruby.

RDoc Templates

The RDoc documentation system (described in Chapter 16 on page 187) includes a

very simple templating system that it uses to generate all its XML and HTML output.

Because RDoc is distributed as part of standard Ruby, the templating system is available

wherever Ruby 1.8.2 or later is installed. However, the templating system does not use

conventional HTML or XML markup (as it is intended to be used to generate output in

many different formats), so files marked up with RDoc templates may not be easy to

edit using conventional HTML editing tools.

require 'rdoc/template'

HTML = %{Hello, %name%.

<p>

The reasons you gave were:

START:reasons

%reason_name% (%rank%)

END:reasons

}

data = {

'name' => 'Dave Thomas',

'reasons' => [

{ 'reason_name' => 'flexible', 'rank' => '87' },

{ 'reason_name' => 'transparent', 'rank' => '76' },

{ 'reason_name' => 'fun', 'rank' => '94' },

]

}

t = TemplatePage.new(HTML)

t.write_html_on(STDOUT, data)

produces:

Hello, Dave Thomas.

<p>

The reasons you gave were:

flexible (87)

transparent (76)

fun (94)

1. http://www.rubygarden.org/ruby?HtmlTemplates

Prepared exclusively for Jose Sierra

http://www.rubygarden.org/ruby?HtmlTemplates

WRITING CGI SCRIPTS 228

The constructor is passed a string containing the template to be used. The method

write_html_on is then passed a hash containing names and values. If the template

contains the sequence %xxxx%, the hash is consulted, and the value corresponding to

the name xxx is substituted in. If the template contains START:yyy, the hash value

corresponding to yyy is assumed to be an array of hashes. The template lines between

START:yyy and END:yyy are repeated for each element in that array. The templates also

support conditions: lines between IF:zzz and ENDIF:zzz are included in the output

only if the hash has a key zzz.

Amrita

Amrita2 is a library that generates HTML documents from a template that is itself valid

HTML. This makes Amrita easy to use with existing HTML editors. It also means that

Amrita templates display correctly as freestanding HTML pages.

Amrita uses the id tags in HTML elements to determine the values to be substituted.

If the value corresponding to a given name is nil or false, the HTML element won’t

be included in the resulting output. If the value is an array, it iterates the corresponding

HTML element.

require 'amrita/template'

include Amrita

HTML = %{<p id="greeting" />

<p>The reasons you gave were:</p>

<li id="reasons">,

}

data = {

:greeting => 'Hello, Dave Thomas',

:reasons => [

{ :reason_name => 'flexible', :rank => '87' },

{ :reason_name => 'transparent', :rank => '76' },

{ :reason_name => 'fun', :rank => '94' },

]

}

t = TemplateText.new(HTML)

t.prettyprint = true

t.expand(STDOUT, data)

produces:

<p>Hello, Dave Thomas</p>

<p>The reasons you gave were:</p>

2. http://www.braintokyo.jp/research/amrita/rdocs/

Prepared exclusively for Jose Sierra

http://www.brain-tokyo.jp/research/amrita/rdocs/

WRITING CGI SCRIPTS 229

flexible, 87

transparent, 76

fun, 94

erb and eruby

So far we’ve looked at using Ruby to create HTML output, but we can turn the problem

inside out; we can actually embed Ruby in an HTML document.

A number of packages allow you to embed Ruby statements in some other sort of a

document, especially in an HTML page. Generically, this is known as “eRuby.” Specif-

ically, several different implementations of eRuby exist, including eruby and erb.

eruby, written by Shugo Maeda, is available for download from the Ruby Applica-

tion Archive. erb, its little cousin, is written in pure Ruby and is included with the

standard distribution. We’ll look at erb here.

Embedding Ruby in HTML is a very powerful concept—it basically gives us the equiv-

alent of a tool such as ASP, JSP, or PHP, but with the full power of Ruby.

Using erb

erb is normally used as a filter. Text within the input file is passed through untouched,

with the following exceptions

Expression Description

<% ruby code %> Execute the Ruby code between the delimiters.

<%= ruby expression %> Evaluate the Ruby expression, and replace the sequence

with the expression’s value.

<%# ruby code %> The Ruby code between the delimiters is ignored (useful for

testing).

% line of ruby code A line that starts with a percent is assumed to contain just

Ruby code.

You invoke erb as

erb [options] [document]

If the document is omitted, eruby will read from standard input. The command-line

options for erb are shown in Table 18.1 on the next page.

Let’s look at some simple examples. We’ll run the erb executable on the following

input.

% a = 99

<%= a %> bottles of beer...

Prepared exclusively for Jose Sierra

WRITING CGI SCRIPTS 230

Table 18.1. Command-line options for erb

Option Description

d Sets $DEBUG to true.

Kkcode Specifies an alternate encoding system (see page 169).

n Display resulting Ruby script (with line numbers).

r library Loads the named library.

P Doesn’t do erb processing on lines starting %.

S level Sets the safe level.

T mode Sets the trim mode.

v Enables verbose mode.

x Displays resulting Ruby script.

The line starting with the percent sign simply executes the given Ruby statement. The

next line contains the sequence <%= a %>, which substitutes in the value of a.

erb f1.erb

produces:

99 bottles of beer...

erb works by rewriting its input as a Ruby script and then executing that script. You

can see the Ruby that erb generates using the n or x option.

erb x f1.erb

produces:

_erbout = ''; a = 99

_erbout.concat((a).to_s); _erbout.concat " bottles of beer...\n"

_erbout

Notice how erb builds a string, _erbout, containing both the static strings from the

template and the results of executing expressions (in this case the value of a).

Of course, you can embed Ruby within a more complex document type, such as HTML.

Figure 18.2 on page 232 shows a couple of loops in an HTML document.

Installing eruby in Apache

If you want to use erb-like page generation for a Web site that gets a reasonable amount

of traffic, you’ll probably want to switch across to using eruby, which has better per-

formance. You can then configure the Apache Web server to automatically parse Ruby-

embedded documents using eRuby, much in the same way that PHP does. You create

Ruby-embedded files with an .rhtml suffix and configure the Web server to run the

eruby executable on these documents to produce the desired HTML output.

Prepared exclusively for Jose Sierra

COOKIES 231

To use eruby with the Apache Web server, you need to perform the following steps.

1. Copy the eruby binary to the cgibin directory.

2. Add the following two lines to httpd.conf.

AddType application/xhttpderuby .rhtml

Action application/xhttpderuby /cgibin/eruby

3. If desired, you can also add or replace the DirectoryIndex directive such that

it includes index.rhtml. This lets you use Ruby to create directory listings for

directories that do not contain an index.html. For instance, the following direc-

tive would cause the embedded Ruby script index.rhtml to be searched for and

served if neither index.html nor index.shtml existed in a directory.

DirectoryIndex index.html index.shtml index.rhtml

Of course, you could also simply use a sitewide Ruby script as well.

DirectoryIndex index.html index.shtml /cgibin/index.rb

Cookies
Cookies are a way of letting Web applications store their state on the user’s machine.

Frowned upon by some, cookies are still a convenient (if unreliable) way of remember-

ing session information.

The Ruby CGI class handles the loading and saving of cookies for you. You can access

the cookies associated with the current request using the CGI#cookies method, and you

can set cookies back into the browser by setting the cookies parameter of CGI#out to

reference either a single cookie or an array of cookies.

#!/usr/bin/ruby

COOKIE_NAME = 'chocolate chip'

require 'cgi'

cgi = CGI.new

values = cgi.cookies[COOKIE_NAME]

if values.empty?

msg = "It looks as if you haven't visited recently"

else

msg = "You last visited #{values[0]}"

end

cookie = CGI::Cookie.new(COOKIE_NAME, Time.now.to_s)

cookie.expires = Time.now + 30*24*3600 # 30 days

cgi.out("cookie" => cookie) { msg }

Prepared exclusively for Jose Sierra

COOKIES 232

Figure 18.2. Erb processing a file with loops

<!DOCTYPE HTML PUBLIC "//W3C//DTD HTML 4.01//EN">

<html>

<head>

<title>eruby example</title>

</head>

<body>

<h1>Enumeration</h1>

%5.times do |i|

number <%=i%>

%end

<h1>"Environment variables starting with "T"</h1>

<table>

%ENV.keys.grep(/^T/).each do |key|

<tr><td><%=key%></td><td><%=ENV[key]%></td></tr>

%end

</table>

</body>

</html>

produces:

<!DOCTYPE HTML PUBLIC "//W3C//DTD HTML 4.01//EN">

<html>

<head>

<title>eruby example</title>

</head>

<body>

<h1>Enumeration</h1>

number 0

number 1

number 2

number 3

number 4

<h1>"Environment variables starting with "T"</h1>

<table>

<tr><td>TERM_PROGRAM</td><td>Apple_Terminal</td></tr>

<tr><td>TERM</td><td>xtermcolor</td></tr>

<tr><td>TERM_PROGRAM_VERSION</td><td>133</td></tr>

<tr><td>TYPE</td><td>SCREEN</td></tr>

</table>

</body>

</html>

Prepared exclusively for Jose Sierra

COOKIES 233

Sessions

Cookies by themselves still need a bit of work to be useful. We really want session:

information that persists between requests from a particular Web browser. Sessions

are handled by class CGI::Session, which uses cookies but provides a higher-level

abstraction.

As with cookies, sessions emulate a hashlike behavior, letting you associate values with

keys. Unlike cookies, sessions store the majority of their data on the server, using the

browser-resident cookie simply as a way of uniquely identifying the server-side data.

Sessions also give you a choice of storage techniques for this data: it can be held in

regular files, in a PStore (see the description on page 698), in memory, or even in your

own customized store.

Sessions should be closed after use, as this ensures that their data is written out to the

store. When you’ve permanently finished with a session, you should delete it.

require 'cgi'

require 'cgi/session'

cgi = CGI.new("html3")

sess = CGI::Session.new(cgi,

"session_key" => "rubyweb",

"prefix" => "websession."

)

if sess['lastaccess']

msg = "You were last here #{sess['lastaccess']}."

else

msg = "Looks like you haven't been here for a while"

end

count = (sess["accesscount"] || 0).to_i

count += 1

msg << "<p>Number of visits: #{count}"

sess["accesscount"] = count

sess["lastaccess"] = Time.now.to_s

sess.close

cgi.out {

cgi.html {

cgi.body {

msg

}

}

}

The code in the previous example used the default storage mechanism for sessions: per-

sistent data was stored in files in your default temporary directory (see Dir.tmpdir).

The filenames will all start websession. and will end with a hashed version1.8 of the

session number. See ri CGI::Session for more information.

Prepared exclusively for Jose Sierra

IMPROVING PERFORMANCE 234

Improving Performance
You can use Ruby to write CGI programs for the Web, but, as with most CGI programs,

the default configuration has to start a new copy of Ruby with every cgi-bin page access.

That’s expensive in terms of machine utilization and can be painfully slow for Web

surfers. The Apache Web server solves this problem by supporting loadable modules.

Typically, these modules are dynamically loaded and become part of the running Web

server process—you have no need to spawn another interpreter over and over again to

service requests; the Web server is the interpreter.

And so we come to mod_ruby (available from the archives), an Apache module that

links a full Ruby interpreter into the Apache Web server itself. The README file included

with mod_ruby provides details on how to compile and install it.

Once installed and configured, you can run Ruby scripts pretty much as you could

without mod_ruby, except that now they will come up much faster. You can also take

advantage of the extra facilities that mod_ruby provides (such as tight integration into

Apache’s request handling).

You have some things to watch, however. Because the interpreter remains in mem-

ory between requests, it may end up handling requests from multiple applications. It’s

possible for libraries in these applications to clash (particularly if different libraries

contain classes with the same name). You also cannot assume that the same interpreter

will handle the series of requests from one browser’s session—Apache will allocate

handler processes using its internal algorithms.

Some of these issues are resolved using the FastCGI protocol. This is an interesting

hack, available to all CGI-style programs, not just Ruby. It uses a very small proxy

program, typically running as an Apache module. When requests are received, this

proxy then forwards them to a particular long-running process that acts like a normal

CGI script. The results are fed back to the proxy, and then back to the browser. FastCGI

has the same advantages as running mod_ruby, as the interpreter is always running

in the background. It also gives you more control over how requests are allocated to

interpreters. You’ll find more information at http://www.fastcgi.com.

Choice of Web Servers
So far, we’ve been running Ruby scripts under the control of the Apache Web server.

However, Ruby 1.81.8 and later comes bundled with WEBrick, a flexible, pure-Ruby

HTTP server toolkit. Basically, it’s an extensible plug in–based framework that lets

you write servers to handle HTTP requests and responses. Here’s a basic HTTP server

that serves documents and directory indexes.

Prepared exclusively for Jose Sierra

http://www.fastcgi.com

CHOICE OF WEB SERVERS 235

#!/usr/bin/ruby

require 'webrick'

include WEBrick

s = HTTPServer.new(

:Port => 2000,

:DocumentRoot => File.join(Dir.pwd, "/html")

)

trap("INT") { s.shutdown }

s.start

The HTTPServer constructor creates a new Web server on port 2000. The code sets

the document root to be the html/ subdirectory of the current directory. It then uses

Kernel.trap to arrange to shut down tidily on interrupts before starting the server

running. If you point your browser at http://localhost:2000, you should see a

listing of your html subdirectory.

WEBrick can do far more than serve static content. You can use it just like a Java

servlet container. The following code mounts a simple servlet at the location /hello.

As requests arrive, the do_GET method is invoked. It uses the response object to display

the user agent information and parameters from the request.

#!/usr/bin/ruby

require 'webrick'

include WEBrick

s = HTTPServer.new(:Port => 2000)

class HelloServlet < HTTPServlet::AbstractServlet

def do_GET(req, res)

res['ContentType'] = "text/html"

res.body = %{

<html><body>

Hello. You're calling from a #{req['UserAgent']}

<p>

I see parameters: #{req.query.keys.join(', ')}

</body></html>

}

end

end

s.mount("/hello", HelloServlet)

trap("INT"){ s.shutdown }

s.start

More information on WEBrick is available from http:///www.webrick.org. There

you’ll find links to a set of useful servlets, including one that lets you write SOAP

servers in Ruby.

Prepared exclusively for Jose Sierra

http://localhost:2000
http:///www.webrick.org

SOAP AND WEB SERVICES 236

SOAP and Web Services
Speaking of SOAP,1.8 Ruby now comes with an implementation of SOAP.3 This lets you

write both servers and clients using Web services. By their nature, these applications

can operate both locally and remotely across a network. SOAP applications are also

unaware of the implementation language of their network peers, so SOAP is a conve-

nient way of interconnecting Ruby applications with those written in languages such as

Java, Visual Basic, or C++.

SOAP is basically a marshaling mechanism which uses XML to send data between two

nodes in a network. It is typically used to implement remote procedure calls, RPCs,

between distributed processes. A SOAP server publishes one or more interfaces. These

interfaces are defined in terms of data types and methods that use those types. SOAP

clients then create local proxies that SOAP connects to interfaces on the server. A call

to a method on the proxy is then passed to the corresponding interface on the server.

Return values generated by the method on the server are passed back to the client via

the proxy.

Let’s start with a trivial SOAP service. We’ll write an object that does interest calcula-

tions. Initially, it offers a single method, compound, that determines compound interest

given a principal, an interest rate, the number of times interest is compounded per year,

and the number of years. For management purposes, we’ll also keep track of how many

times this method was called and make that count available via an accessor. Note that

this class is just regular Ruby code—it doesn’t know that it’s running in a SOAP envi-

ronment.

class InterestCalculator

attr_reader :call_count

def initialize

@call_count = 0

end

def compound(principal, rate, freq, years)

@call_count += 1

principal*(1.0 + rate/freq)**(freq*years)

end

end

Now we’ll make an object of this class available via a SOAP server. This will enable

client applications to call the object’s methods over the network. We’re using the stand-

alone server here, which is convenient when testing, as we can run it from the command

line. You can also run Ruby SOAP servers as CGI scripts or under mod_ruby.

3. SOAP once stood for Simple Object Access Protocol. When folks could no longer stand the irony, the

acronym was dropped, and now SOAP is just a name.

Prepared exclusively for Jose Sierra

SOAP AND WEB SERVICES 237

require 'soap/rpc/standaloneServer'

require 'interestcalc'

NS = 'http://pragprog.com/InterestCalc'

class Server2 < SOAP::RPC::StandaloneServer

def on_init

calc = InterestCalculator.new

add_method(calc, 'compound', 'principal', 'rate', 'freq', 'years')

add_method(calc, 'call_count')

end

end

svr = Server2.new('Calc', NS, '0.0.0.0', 12321)

trap('INT') { svr.shutdown }

svr.start

This code defines a class which implements a standalone SOAP server. When it is

initialized, the class creates a InterestCalculator object (an instance of the class

we just wrote). It then uses add_method to add the two methods implemented by this

class, compound and call_count. Finally, the code creates and runs an instance of

this server class. The parameters to the constructor are the name of the application, the

default namespace, the address of the interface to use, and the port.

We then need to write some client code to access this server. The client creates a local

proxy for the InterestCalculator service on the server, adds the methods it wants

to use, and then calls them.

require 'soap/rpc/driver'

proxy = SOAP::RPC::Driver.new("http://localhost:12321",

"http://pragprog.com/InterestCalc")

proxy.add_method('compound', 'principal', 'rate', 'freq', 'years')

proxy.add_method('call_count')

puts "Call count: #{proxy.call_count}"

puts "5 years, compound annually: #{proxy.compound(100, 0.06, 1, 5)}"

puts "5 years, compound monthly: #{proxy.compound(100, 0.06, 12, 5)}"

puts "Call count: #{proxy.call_count}"

To test this, we can run the server in one console window (the output here has been

reformated slightly to fit the width of this page).

% ruby server.rb

I, [20040726T10:55:51.629451 #12327] INFO

 Calc: Start of Calc.

I, [20040726T10:55:51.633755 #12327] INFO

 Calc: WEBrick 1.3.1

I, [20040726T10:55:51.635146 #12327] INFO

 Calc: ruby 1.8.2 (20040726) [powerpcdarwin]

I, [20040726T10:55:51.639347 #12327] INFO

 Calc: WEBrick::HTTPServer#start: pid=12327 port=12321

We then run the client in another window.

Prepared exclusively for Jose Sierra

SOAP AND WEB SERVICES 238

% ruby client.rb

Call count: 0

5 years, compound annually: 133.82255776

5 years, compound monthly: 134.885015254931

Call count: 2

Looking good! Flush with success, we call all our friends over and run it again.

% ruby client.rb

Call count: 2

5 years, compound annually: 133.82255776

5 years, compound monthly: 134.885015254931

Call count: 4

Notice how the call count now starts at two the second time we run the client. The

server creates a single InterestCalculator object to service incoming requests, and

this object is reused for each request.

SOAP and Google

Obviously the real benefit of SOAP is the way it lets you interoperate with other

services on the Web. As an example, let’s write some Ruby code to send queries to

Google’s Web API.

Before sending queries to Google, you need a developer key. This is available from

Google—go to http://www.google.com/apis and follow the instructions in step 2,

Create a Google Account. After you fill in your e-mail address and supply a password,

Google will send you a developer key. In the following examples, we’ll assume that

you’ve stored this key in the file .google_key in your home directory.

Let’s start at the most basic level. Looking at the documentation for the Google API

method doGoogleSearch, we discover it has ten (!) parameters.

key The developer key

q The query string

start The index of the first required result

maxResults The maximum number of results to return per query

filter If enabled, compresses results so that similar pages and pages from the

same domain are only shown once

restrict Restricts the search to a subset of the Google Web index

safeSearch If enabled, removes possible adult content from the results

lr Restricts the search to documents in a given set of languages

ie Ignored (was input encoding)

oe Ignored (was output encoding)

We can use the add_method call to construct a SOAP proxy for the doGoogleSearch

method. The following example does just that, printing out the first entry returned if

you search Google for the term pragmatic.

Prepared exclusively for Jose Sierra

http://www.google.com/apis

SOAP AND WEB SERVICES 239

require 'soap/rpc/driver'

require 'cgi'

endpoint = 'http://api.google.com/search/beta2'

namespace = 'urn:GoogleSearch'

soap = SOAP::RPC::Driver.new(endpoint, namespace)

soap.add_method('doGoogleSearch', 'key', 'q', 'start',

'maxResults', 'filter', 'restrict',

'safeSearch', 'lr', 'ie', 'oe')

query = 'pragmatic'

key = File.read(File.join(ENV['HOME'], ".google_key")).chomp

result = soap.doGoogleSearch(key, query, 0, 1, false, '',

false, '', '', '')

printf "Estimated number of results is %d.\n",

result.estimatedTotalResultsCount

printf "Your query took %6f seconds.\n", result.searchTime

first = result.resultElements[0]

puts first.title

puts first.uRL

puts CGI.unescapeHTML(first.snippet)

Run this, and you’ll see something such as the following (notice how the query term

has been highlighted by Google).

Estimated number of results is 550000.

Your query took 0.123762 seconds.

The Pragmatic Programmers, LLC

http://www.pragmaticprogrammer.com/

Home of Andrew Hunt and David Thomas's bestselling book 'The

Pragmatic Programmer'
 and The 'Pragmatic Starter Kit

(tm)' series. ... The Pragmatic Bookshelf TM. ...

However, SOAP allows for the dynamic discovery of the interface of objects on the

server. This is done using WSDL, the Web Services Description Language. A WSDL

file is an XML document that describes the types, methods, and access mechanisms for

a Web services interface. SOAP clients can read WSDL files to create the interfaces to

a server automatically.

The Web page http://api.google.com/GoogleSearch.wsdl contains the WSDL

describing the Google interface. We can alter our search application to read this WSDL,

which removes the need to add the doGoogleSearch method explicitly.

require 'soap/wsdlDriver'

require 'cgi'

WSDL_URL = "http://api.google.com/GoogleSearch.wsdl"

soap = SOAP::WSDLDriverFactory.new(WSDL_URL).create_rpc_driver

query = 'pragmatic'

key = File.read(File.join(ENV['HOME'], ".google_key")).chomp

result = soap.doGoogleSearch(key, query, 0, 1, false,

'', false, '', '', '')

Prepared exclusively for Jose Sierra

http://api.google.com/GoogleSearch.wsdl

MORE INFORMATION 240

printf "Estimated number of results is %d.\n",

result.estimatedTotalResultsCount

printf "Your query took %6f seconds.\n", result.searchTime

first = result.resultElements[0]

puts first.title

puts first.uRL

puts CGI.unescapeHTML(first.snippet)

Finally, we can take this a step further using Ian Macdonald’s Google library (available

in the RAA). It encapsulates the Web services API behind a nice interface (nice if for no

other reason than it eliminates the need for all those extra parameters). The library also

has methods to construct the date ranges and other restrictions on a Google query and

provides interfaces to the Google cache and the spell-checking facility. The following

code is our “pragmatic” search using Ian’s library.

require 'google'

require 'cgi'

key = File.read(File.join(ENV['HOME'], ".google_key")).chomp

google = Google::Search.new(key)

result = google.search('pragmatic')

printf "Estimated number of results is %d.\n",

result.estimatedTotalResultsCount

printf "Your query took %6f seconds.\n", result.searchTime

first = result.resultElements[0]

puts first.title

puts first.url

puts CGI.unescapeHTML(first.snippet)

More Information
Ruby Web programming is a big topic. To dig deeper, you may want to look at Chapter

9 in The Ruby Way [Ful01], where you’ll find many examples of network and Web

programming, and Chapter 6 of The Ruby Developer’s Guide [FJN02], where you’ll

find some good examples of structuring CGI applications, along with some example

Iowa code.

If SOAP strikes you being complex, you may want to look at using XML-RPC, which

is described briefly on page 736.

A number of other Ruby Web development frameworks are available on the ’net. This

is a dynamic area: new contenders appear constantly, and it is hard for a printed book to

be definitive. However, two frameworks that are currently attracting mindshare in the

Ruby community are

• Rails (http://www.rubyonrails.org), and

• CGIKit (http://www.spiceoflife.net/cgikit/index_en.html).

Prepared exclusively for Jose Sierra

http://www.rubyonrails.org
http://www.spice-of-life.net/cgikit/index_en.html

Chapter 19

Ruby Tk

The Ruby Application Archive contains several extensions that provide Ruby with a

graphical user interface (GUI), including extensions for Fox, GTK, and others.

The Tk extension is bundled in the main distribution and works on both Unix and

Windows systems. To use it, you need to have Tk installed on your system. Tk is a

large system, and entire books have been written about it, so we won’t waste time or

resources by delving too deeply into Tk itself but instead concentrate on how to access

Tk features from Ruby. You’ll need one of these reference books in order to use Tk with

Ruby effectively. The binding we use is closest to the Perl binding, so you probably

want to get a copy of Learning Perl/Tk [Wal99] or Perl/Tk Pocket Reference [Lid98].

Tk works along a composition model—that is, you start by creating a container (such as

a TkFrame or TkRoot) and then create the widgets (another name for GUI components)

that populate it, such as buttons or labels. When you are ready to start the GUI, you

invoke Tk.mainloop. The Tk engine then takes control of the program, displaying

widgets and calling your code in response to GUI events.

Simple Tk Application
A simple Tk application in Ruby may look something like this.

require 'tk'

root = TkRoot.new { title "Ex1" }

TkLabel.new(root) do

text 'Hello, World!'

pack('padx' => 15, 'pady' => 15, 'side' => 'left')

end

Tk.mainloop

Let’s look at the code a little more closely. After loading the tk extension module,

we create a root-level frame using TkRoot.new. We then make a TkLabel widget as a

241Prepared exclusively for Jose Sierra

WIDGETS 242

child of the root frame, setting several options for the label. Finally, we pack the root

frame and enter the main GUI event loop.

It’s a good habit to specify the root explicitly, but you could leave it out—along with

the extra options—and boil this down to a three-liner.

require 'tk'

TkLabel.new { text 'Hello, World!'; pack }

Tk.mainloop

That’s all there is to it! Armed with one of the Perl/Tk books we reference at the start of

this chapter, you can now produce all the sophisticated GUIs you need. But then again,

if you’d like to stick around for some more details, here they come.

Widgets
Creating widgets is easy. Take the name of the widget as given in the Tk documentation

and add a Tk to the front of it. For instance, the widgets Label, Button, and Entry

become the classes TkLabel, TkButton, and TkEntry. You create an instance of a

widget using new, just as you would any other object. If you don’t specify a parent

for a given widget, it will default to the root-level frame. We usually want to specify

the parent of a given widget, along with many other options—color, size, and so on.

We also need to be able to get information back from our widgets while our program

is running by setting up callbacks (routines invoked when certain events happen) and

sharing data.

Setting Widget Options

If you look at a Tk reference manual (the one written for Perl/Tk, for example), you’ll

notice that options for widgets are usually listed with a hyphen—as a command-line

option would be. In Perl/Tk, options are passed to a widget in a Hash. You can do that

in Ruby as well, but you can also pass options using a code block; the name of the

option is used as a method name within the block and arguments to the option appear

as arguments to the method call. Widgets take a parent as the first argument, followed

by an optional hash of options or the code block of options. Thus, the following two

forms are equivalent.

TkLabel.new(parent_widget) do

text 'Hello, World!'

pack('padx' => 5,

'pady' => 5,

'side' => 'left')

end

or

TkLabel.new(parent_widget, 'text' => 'Hello, World!').pack(...)

Prepared exclusively for Jose Sierra

WIDGETS 243

One small caution when using the code block form: the scope of variables is not what

you think it is. The block is actually evaluated in the context of the widget’s object, not

the caller’s. This means that the caller’s instance variables will not be available in the

block, but local variables from the enclosing scope and globals will be (not that you

use global variables, of course.) We’ll show option passing using both methods in the

examples that follow.

Distances (as in the padx and pady options in these examples) are assumed to be in

pixels but may be specified in different units using one of the suffixes c (centimeter), i

(inch), m (millimeter), or p (point). "12p", for example, is twelve points.

Getting Widget Data

We can get information back from widgets by using callbacks and by binding variables.

Callbacks are very easy to set up. The command option (shown in the TkButton call in

the example that follows) takes a Proc object, which will be called when the callback

fires. Here we pass the proc in as a block associated with the method call, but we could

also have used Kernel.lambda to generate an explicit Proc object.

require 'tk'

TkButton.new do

text "EXIT"

command { exit }

pack('side'=>'left', 'padx'=>10, 'pady'=>10)

end

Tk.mainloop

We can also bind a Ruby variable to a Tk widget’s value using a TkVariable proxy.

This arranges things so that whenever the widget’s value changes, the Ruby variable

will automatically be updated, and whenever the variable is changed, the widget will

reflect the new value.

We show this in the following example. Notice how the TkCheckButton is set up;

the documentation says that the variable option takes a var reference as an argu-

ment. For this, we create a Tk variable reference using TkVariable.new. Accessing

mycheck.value will return the string “0” or “1” depending on whether the checkbox

is checked. You can use the same mechanism for anything that supports a var reference,

such as radio buttons and text fields.

require 'tk'

packing = { 'padx'=>5, 'pady'=>5, 'side' => 'left' }

checked = TkVariable.new

def checked.status

value == "1" ? "Yes" : "No"

end

Prepared exclusively for Jose Sierra

WIDGETS 244

status = TkLabel.new do

text checked.status

pack(packing)

end

TkCheckButton.new do

variable checked

pack(packing)

end

TkButton.new do

text "Show status"

command { status.text(checked.status) }

pack(packing)

end

Tk.mainloop

Setting/Getting Options Dynamically

In addition to setting a widget’s options when it’s created, you can reconfigure a widget

while it’s running. Every widget supports the configure method, which takes a Hash

or a code block in the same manner as new. We can modify the first example to change

the label text in response to a button click.

require 'tk'

root = TkRoot.new { title "Ex3" }

top = TkFrame.new(root) { relief 'raised'; border 5 }

lbl = TkLabel.new(top) do

justify 'center'

text 'Hello, World!'

pack('padx'=>5, 'pady'=>5, 'side' => 'top')

end

TkButton.new(top) do

text "Ok"

command { exit }

pack('side'=>'left', 'padx'=>10, 'pady'=>10)

end

TkButton.new(top) do

text "Cancel"

command { lbl.configure('text'=>"Goodbye, Cruel World!") }

pack('side'=>'right', 'padx'=>10, 'pady'=>10)

end

top.pack('fill'=>'both', 'side' =>'top')

Tk.mainloop

Now when the Cancel button is clicked, the text in the label will change immediately

from “Hello, World!” to “Goodbye, Cruel World!”

You can also query widgets for particular option values using cget.

Prepared exclusively for Jose Sierra

WIDGETS 245

require 'tk'

b = TkButton.new do

text "OK"

justify "left"

border 5

end

b.cget('text') → "OK"

b.cget('justify') → "left"

b.cget('border') → 5

Sample Application

Here’s a slightly longer example, showing a genuine application—a pig latin generator.

Type in the phrase such as Ruby rules, and the Pig It button will instantly translate

it into pig latin.

require 'tk'

class PigBox

def pig(word)

leading_cap = word =~ /^[AZ]/

word.downcase!

res = case word

when /^[aeiouy]/

word+"way"

when /^([^aeiouy]+)(.*)/

$2+$1+"ay"

else

word

end

leading_cap ? res.capitalize : res

end

def show_pig

@text.value = @text.value.split.collect{|w| pig(w)}.join(" ")

end

def initialize

ph = { 'padx' => 10, 'pady' => 10 } # common options

root = TkRoot.new { title "Pig" }

top = TkFrame.new(root) { background "white" }

TkLabel.new(top) {text 'Enter Text:' ; pack(ph) }

@text = TkVariable.new

TkEntry.new(top, 'textvariable' => @text).pack(ph)

pig_b = TkButton.new(top) { text 'Pig It'; pack ph}

pig_b.command { show_pig }

exit_b = TkButton.new(top) {text 'Exit'; pack ph}

exit_b.command { exit }

top.pack('fill'=>'both', 'side' =>'top')

end

end

PigBox.new

Tk.mainloop

Prepared exclusively for Jose Sierra

BINDING EVENTS 246

Geometry Management

In the example code in this chapter, you’ll see references to the wid-
get method pack. That’s a very important call, as it turns out—leave it
off and you’ll never see the widget. pack is a command that tells the
geometry manager to place the widget according to constraints that
we specify. Geometry managers recognize three commands.

Command Placement Specification

pack Flexible, constraint-based placement
place Absolute position
grid Tabular (row/column) position

As pack is the most commonly used command, we’ll use it in our
examples.

Binding Events
Our widgets are exposed to the real world; they get clicked, the mouse moves over

them, the user tabs into them; all these things, and more, generate events that we can

capture. You can create a binding from an event on a particular widget to a block of

code, using the widget’s bind method.

For instance, suppose we’ve created a button widget that displays an image. We’d like

the image to change when the user’s mouse is over the button.

require 'tk'

image1 = TkPhotoImage.new { file "img1.gif" }

image2 = TkPhotoImage.new { file "img2.gif" }

b = TkButton.new(@root) do

image image1

command { exit }

pack

end

b.bind("Enter") { b.configure('image'=>image2) }

b.bind("Leave") { b.configure('image'=>image1) }

Tk.mainloop

First, we create two GIF image objects from files on disk, using TkPhotoImage. Next

we create a button (very cleverly named “b”), which displays the image image1. We

then bind the Enter event so that it dynamically changes the image displayed by the

button to image2 when the mouse is over the button, and the Leave event to revert back

to image1 when the mouse leaves the button.

Prepared exclusively for Jose Sierra

CANVAS 247

This example shows the simple events Enter and Leave. But the named event given as

an argument to bind can be composed of several substrings, separated with dashes, in

the order modifier-modifier-type-detail. Modifiers are listed in the Tk reference and

include Button1, Control, Alt, Shift, and so on. Type is the name of the event

(taken from the X11 naming conventions) and includes events such as ButtonPress,

KeyPress, and Expose. Detail is either a number from 1 to 5 for buttons or a keysym

for keyboard input. For instance, a binding that will trigger on mouse release of button 1

while the control key is pressed could be specified as

ControlButton1ButtonRelease

or

ControlButtonRelease1

The event itself can contain certain fields such as the time of the event and the x and y

positions. bind can pass these items to the callback, using event field codes. These are

used like printf specifications. For instance, to get the x and y coordinates on a mouse

move, you’d specify the call to bind with three parameters. The second parameter is

the Proc for the callback, and the third parameter is the event field string.

canvas.bind("Motion", lambda {|x, y| do_motion (x, y)}, "%x %y")

Canvas
Tk provides a Canvas widget with which you can draw and produce PostScript output.

Figure 19.1 on the next page shows a simple bit of code (adapted from the distribution)

that will draw straight lines. Clicking and holding button 1 will start a line, which will

be “rubber-banded” as you move the mouse around. When you release button 1, the

line will be drawn in that position.

A few mouse clicks, and you’ve got an instant masterpiece.

As they say, “We couldn’t find the artist, so we had to hang the picture. . . .”

Prepared exclusively for Jose Sierra

CANVAS 248

Figure 19.1. Drawing on a Tk Canvas

require 'tk'

class Draw

def do_press(x, y)

@start_x = x

@start_y = y

@current_line = TkcLine.new(@canvas, x, y, x, y)

end

def do_motion(x, y)

if @current_line

@current_line.coords @start_x, @start_y, x, y

end

end

def do_release(x, y)

if @current_line

@current_line.coords @start_x, @start_y, x, y

@current_line.fill 'black'

@current_line = nil

end

end

def initialize(parent)

@canvas = TkCanvas.new(parent)

@canvas.pack

@start_x = @start_y = 0

@canvas.bind("1", lambda {|e| do_press(e.x, e.y)})

@canvas.bind("B1Motion",

lambda {|x, y| do_motion(x, y)}, "%x %y")

@canvas.bind("ButtonRelease1",

lambda {|x, y| do_release(x, y)},

"%x %y")

end

end

root = TkRoot.new { title 'Canvas' }

Draw.new(root)

Tk.mainloop

Prepared exclusively for Jose Sierra

SCROLLING 249

Scrolling
Unless you plan on drawing very small pictures, the previous example may not be all

that useful. TkCanvas, TkListbox, and TkText can be set up to use scrollbars, so you

can work on a smaller subset of the “big picture.”

Communication between a scrollbar and a widget is bidirectional. Moving the scrollbar

means that the widget’s view has to change; but when the widget’s view is changed by

some other means, the scrollbar has to change as well to reflect the new position.

Since we haven’t done much with lists yet, our scrolling example will use a scrolling list

of text. In the following code fragment, we’ll start by creating a plain old TkListbox

and an associated TkScrollbar. The scrollbar’s callback (set with command) will call

the list widget’s yview method, which will change the value of the visible portion of

the list in the y direction.

After that callback is set up, we make the inverse association: when the list feels the

need to scroll, we’ll set the appropriate range in the scrollbar using TkScrollbar#set.

We’ll use this same fragment in a fully functional program in the next section.

list_w = TkListbox.new(frame) do

selectmode 'single'

pack 'side' => 'left'

end

list_w.bind("ButtonRelease1") do

busy do

filename = list_w.get(*list_w.curselection)

tmp_img = TkPhotoImage.new { file filename }

scale = tmp_img.height / 100

scale = 1 if scale < 1

image_w.copy(tmp_img, 'subsample' => [scale, scale])

image_w.pack

end

end

scroll_bar = TkScrollbar.new(frame) do

command {|*args| list_w.yview *args }

pack 'side' => 'left', 'fill' => 'y'

end

list_w.yscrollcommand {|first,last| scroll_bar.set(first,last) }

Just One More Thing

We could go on about Tk for another few hundred pages, but that’s another book. The

following program is our final Tk example—a simple GIF image viewer. You can select

a GIF filename from the scrolling list, and a thumb nail version of the image will be

displayed. We’ll point out just a few more things.

Prepared exclusively for Jose Sierra

SCROLLING 250

Have you ever used an application that creates a “busy cursor” and then forgets to reset

it to normal? A neat trick in Ruby will prevent this from happening. Remember how

File.new uses a block to ensure that the file is closed after it is used? We can do a

similar thing with the method busy, as shown in the next example.

This program also demonstrates some simple TkListbox manipulations—adding ele-

ments to the list, setting up a callback on a mouse button release,1 and retrieving the

current selection.

So far, we’ve used TkPhotoImage to display images directly, but you can also zoom,

subsample, and show portions of images as well. Here we use the subsample feature to

scale down the image for viewing.

require 'tk'

class GifViewer

def initialize(filelist)

setup_viewer(filelist)

end

def run

Tk.mainloop

end

def setup_viewer(filelist)

@root = TkRoot.new {title 'Scroll List'}

frame = TkFrame.new(@root)

image_w = TkPhotoImage.new

TkLabel.new(frame) do

image image_w

pack 'side'=>'right'

end

list_w = TkListbox.new(frame) do

selectmode 'single'

pack 'side' => 'left'

end

list_w.bind("ButtonRelease1") do

busy do

filename = list_w.get(*list_w.curselection)

tmp_img = TkPhotoImage.new { file filename }

scale = tmp_img.height / 100

scale = 1 if scale < 1

image_w.copy(tmp_img, 'subsample' => [scale, scale])

image_w.pack

end

end

1. You probably want the button release, not the press, as the widget gets selected on the button press.

Prepared exclusively for Jose Sierra

TRANSLATING FROM PERL/TK DOCUMENTATION 251

filelist.each do |name|

list_w.insert('end', name) # Insert each file name into the list

end

scroll_bar = TkScrollbar.new(frame) do

command {|*args| list_w.yview *args }

pack 'side' => 'left', 'fill' => 'y'

end

list_w.yscrollcommand {|first,last| scroll_bar.set(first,last) }

frame.pack

end

Run a block with a 'wait' cursor

def busy

@root.cursor "watch" # Set a watch cursor

yield

ensure

@root.cursor "" # Back to original

end

end

viewer = GifViewer.new(Dir["screenshots/gifs/*.gif"])

viewer.run

Translating from Perl/Tk Documentation
That’s it, you’re on your own now. For the most part, you can easily translate the doc-

umentation given for Perl/Tk to Ruby. There are a few exceptions; some methods are

not implemented, and some extra functionality is undocumented. Until a Ruby/Tk book

comes out, your best bet is to ask on the newsgroup or read the source code.

But in general, it’s pretty easy to see what’s happening. Remember that options may be

given as a hash, or in code block style, and the scope of the code block is within the

TkWidget being used, not your class instance.

Object Creation

In the Perl/Tk mapping, parents are responsible for creating their child widgets. In

Ruby, the parent is passed as the first parameter to the widget’s constructor.

Perl/Tk: $widget = $parent>Widget([option => value])

Ruby: widget = TkWidget.new(parent, optionhash)

widget = TkWidget.new(parent) { code block }

You may not need to save the returned value of the newly created widget, but it’s there

if you do. Don’t forget to pack a widget (or use one of the other geometry calls), or it

won’t be displayed.

Prepared exclusively for Jose Sierra

TRANSLATING FROM PERL/TK DOCUMENTATION 252

Options

Perl/Tk: background => color

Ruby: 'background' => color

{ background color }

Remember that the code block scope is different.

Variable References

Perl/Tk: textvariable => \$variable

textvariable => varRef

Ruby: ref = TkVariable.new

'textvariable' => ref

{ textvariable ref }

Use TkVariable to attach a Ruby variable to a widget’s value. You can then use the

value accessors in TkVariable (TkVariable#value and TkVariable#value=) to

affect the contents of the widget directly.

Prepared exclusively for Jose Sierra

Chapter 20

Ruby and Microsoft Windows

Ruby runs in a number of different environments. Some of these are Unix-based, and

others are based on the various flavors of Microsoft Windows. Ruby came from people

who were Unix-centric, but over the years it has also developed a whole lot of useful

features in the Windows world, too. In this chapter, we’ll look at these features and

share some secrets to using Ruby effectively under Windows.

Getting Ruby for Windows
Two flavors of Ruby are available for the Windows environment.

The first is a version of Ruby that runs natively—that is, it is just another Windows

application. The easiest way to get this distribution is to use the One-Click Installer,

which loads a ready-made binary distribution onto your box. Follow the links from

http://rubyinstaller.rubyforge.org/ to get the latest version.

If you’re feeling more adventurous, or if you need to compile in libraries that aren’t sup-

plied with the binary distribution, then you can build Ruby from source. You’ll need the

Microsoft VC++ compiler and associated tools to do this. Download the source of Ruby

from http://www.rubylang.org , or use CVS to check out the latest development

version. Then read the file win32\README.win32 for instructions.

A second alternative uses an emulation layer called Cygwin. This provides a Unix-

like environment on top of Windows. The Cygwin version of Ruby is the closest to

Ruby running on Unix platforms, but running it means you must also install Cygwin.

If you want to take this route, you can download the Cygwin version of Ruby from

http://ftp.rubylang.org/pub/ruby/binaries/cygwin/. You’ll also need Cyg-

win itself. The download link has a pointer to the required dynamic link library (DLL),

or you can go to http://www.cygwin.com and download the full package (but be

careful: you need to make sure the version you get is compatible with the Ruby you

downloaded).

253Prepared exclusively for Jose Sierra

http://rubyinstaller.rubyforge.org/
http://www.ruby-lang.org
http://ftp.ruby-lang.org/pub/ruby/binaries/cygwin/
http://www.cygwin.com

RUNNING RUBY UNDER WINDOWS 254

Which version to choose? When the first edition of this book was produced, the Cygwin

version of Ruby was the distribution of choice. That situation has changed:1.8 the native

build has become more and more functional over time, to the point where this is now

our preferred Windows build of Ruby.

Running Ruby Under Windows
You’ll find two executables in the Ruby Windows distribution.

ruby.exe is meant to be used at a command prompt (a DOS shell), just as in the Unix

version. For applications that read and write to the standard input and output, this is

fine. But this also means that anytime you run ruby.exe, you’ll get a DOS shell even

if you don’t want one—Windows will create a new command prompt window and

display it while Ruby is running. This may not be appropriate behavior if, for example,

you double-click a Ruby script that uses a graphical interface (such as Tk), or if you

are running a Ruby script as a background task or from inside another program.

In these cases, you’ll want to use rubyw.exe. It is the same as ruby.exe except that

it does not provide standard in, standard out, or standard error and does not launch a

DOS shell when run.

The installer (by default) sets file associations so that files with the extension .rb will

automatically use rubyw.exe. By doing this, you can double-click Ruby scripts, and

they will simply run without popping up a DOS shell.

Win32API
If you plan on doing Ruby programming that needs to access some Windows 32 API

functions directly, or that needs to use the entry points in some other DLLs, we’ve got

good news for you—the Win32API library.

As an example, here’s some code that’s part of a larger Windows application used

by our book fulfillment system to download and print invoices and receipts. A Web

application generates a PDF file, which the Ruby script running on Windows downloads

into a local file. The script then uses the print shell command under Windows to print

this file.

arg = "ids=#{resp.intl_orders.join(",")}"

fname = "/temp/invoices.pdf"

site = Net::HTTP.new(HOST, PORT)

site.use_ssl = true

http_resp, = site.get2("/fulfill/receipt.cgi?" + arg,

'Authorization' => 'Basic ' +

["name:passwd"].pack('m').strip)

Prepared exclusively for Jose Sierra

WINDOWS AUTOMATION 255

File.open(fname, "wb") {|f| f.puts(http_resp.body) }

shell = Win32API.new("shell32","ShellExecute",

['L','P','P','P','P','L'], 'L')

shell.Call(0, "print", fname, 0,0, SW_SHOWNORMAL)

You create a Win32API object that represents a call to a particular DLL entry point by

specifying the name of the function, the name of the DLL that contains the function,

and the function signature (argument types and return type). In the previous example,

the variable shell wraps the Windows function ShellExecute in the shell32 DLL.

It takes six parameters (a number, four string pointers, and a number) and returns a

number. (These parameter types are described on page 734.) The resulting object can

then be used to make the call to print the file that we downloaded.

Many of the arguments to DLL functions are binary structures of some form. Win32API

handles this by using Ruby String objects to pass the binary data back and forth. You

will need to pack and unpack these strings as necessary (see the example on page 734).

Windows Automation
If groveling around in the low-level Windows API doesn’t interest you, Windows

Automation may—you can use Ruby as a client for Windows Automation thanks to

a Ruby extension called WIN32OLE, written by Masaki Suketa. Win32OLE is part of

the standard Ruby distribution.1.8

Windows Automation allows an automation controller (a client) to issue commands

and queries against an automation server, such as Microsoft Excel, Word, PowerPoint,

and so on.

You can execute a method of an automation server by calling a method of the same

name from a WIN32OLE object. For instance, you can create a new WIN32OLE client that

launches a fresh copy of Internet Explorer and commands it to visit its home page.

ie = WIN32OLE.new('InternetExplorer.Application')

ie.visible = true

ie.gohome

You could also make it navigate to a particular page.

ie = WIN32OLE.new('InternetExplorer.Application')

ie.visible = true

ie.navigate("http://www.pragmaticprogrammer.com")

Methods that aren’t known to WIN32OLE (such as visible, gohome, or navigate) are

passed on to the WIN32OLE#invoke method, which sends the proper commands to the

server.

Prepared exclusively for Jose Sierra

WINDOWS AUTOMATION 256

Getting and Setting Properties

You can set and get properties from the server using normal Ruby hash notation. For

example, to set the Rotation property in an Excel chart, you could write

excel = WIN32OLE.new("excel.application")

excelchart = excel.Charts.Add()

...

excelchart['Rotation'] = 45

puts excelchart['Rotation']

An OLE object’s parameters are automatically set up as attributes of the WIN32OLE

object. This means you can set a parameter by assigning to an object attribute.

excelchart.rotation = 45

r = excelchart.rotation

The following example is a modified version of the sample file excel2.rb (found in

the ext/win32/samples directory). It starts Excel, creates a chart, and then rotates it

on the screen. Watch out, Pixar!

require 'win32ole'

4100 is the value for the Excel constant xl3DColumn.

ChartTypeVal = 4100;

excel = WIN32OLE.new("excel.application")

Create and rotate the chart

excel['Visible'] = TRUE

excel.Workbooks.Add()

excel.Range("a1")['Value'] = 3

excel.Range("a2")['Value'] = 2

excel.Range("a3")['Value'] = 1

excel.Range("a1:a3").Select()

excelchart = excel.Charts.Add()

excelchart['Type'] = ChartTypeVal

30.step(180, 5) do |rot|

excelchart.rotation = rot

sleep(0.1)

end

excel.ActiveWorkbook.Close(0)

excel.Quit()

Named Arguments

Other automation client languages such as Visual Basic have the concept of named

arguments. Suppose you had a Visual Basic routine with the signature

Song(artist, title, length): rem Visual Basic

Prepared exclusively for Jose Sierra

WINDOWS AUTOMATION 257

Instead of calling it with all three arguments in the order specified, you could use named

arguments.

Song title := 'Get It On': rem Visual Basic

This is equivalent to the call Song(nil, ’Get It On’, nil).

In Ruby, you can use this feature by passing a hash with the named arguments.

Song.new('title' => 'Get It On')

for each

Where Visual Basic has a “for each” statement to iterate over a collection of items in a

server, a WIN32OLE object has an each method (which takes a block) to accomplish the

same thing.

require 'win32ole'

excel = WIN32OLE.new("excel.application")

excel.Workbooks.Add

excel.Range("a1").Value = 10

excel.Range("a2").Value = 20

excel.Range("a3").Value = "=a1+a2"

excel.Range("a1:a3").each do |cell|

p cell.Value

end

Events

Your automation client written in Ruby can register itself to receive events from other

programs. This is done using the WIN32OLE_EVENT class. This example (based on code

from the Win32OLE 0.1.1 distribution) shows the use of an event sink that logs the

URLs that a user browses to when using Internet Explorer.

require 'win32ole'

$urls = []

def navigate(url)

$urls << url

end

def stop_msg_loop

puts "IE has exited..."

throw :done

end

def default_handler(event, *args)

case event

when "BeforeNavigate"

puts "Now Navigating to #{args[0]}..."

end

end

Prepared exclusively for Jose Sierra

WINDOWS AUTOMATION 258

ie = WIN32OLE.new('InternetExplorer.Application')

ie.visible = TRUE

ie.gohome

ev = WIN32OLE_EVENT.new(ie, 'DWebBrowserEvents')

ev.on_event {|*args| default_handler(*args)}

ev.on_event("NavigateComplete") {|url| navigate(url)}

ev.on_event("Quit") {|*args| stop_msg_loop}

catch(:done) do

loop do

WIN32OLE_EVENT.message_loop

end

end

puts "You Navigated to the following URLs: "

$urls.each_with_index do |url, i|

puts "(#{i+1}) #{url}"

end

Optimizing

As with most (if not all) high-level languages, it can be all too easy to churn out code

that is unbearably slow, but that can be easily fixed with a little thought.

With WIN32OLE, you need to be careful with unnecessary dynamic lookups. Where pos-

sible, it is better to assign a WIN32OLE object to a variable and then reference elements

from it, rather than creating a long chain of “.” expressions.

For example, instead of writing

workbook.Worksheets(1).Range("A1").value = 1

workbook.Worksheets(1).Range("A2").value = 2

workbook.Worksheets(1).Range("A3").value = 4

workbook.Worksheets(1).Range("A4").value = 8

we can eliminate the common subexpressions by saving the first part of the expression

to a temporary variable and then make calls from that variable.

worksheet = workbook.Worksheets(1)

worksheet.Range("A1").value = 1

worksheet.Range("A2").value = 2

worksheet.Range("A3").value = 4

worksheet.Range("A4").value = 8

You can also create Ruby stubs for a particular Windows type library. These stubs wrap

the OLE object in a Ruby class with one method per entry point. Internally, the stub

uses the entry point’s number, not name, which speeds access.

Generate the wrapper class using the olegen.rb script in the ext\win32ole\samples

directory, giving it the name of the type library to reflect on.

C:\> ruby olegen.rb 'NetMeeting 1.1 Type Library' >netmeeting.rb

Prepared exclusively for Jose Sierra

WINDOWS AUTOMATION 259

The external methods and events of the type library are written as Ruby methods to the

given file. You can then include it in your programs and call the methods directly. Let’s

try some timings.

require 'netmeeting'

require 'benchmark'

include Benchmark

bmbm(10) do |test|

test.report("Dynamic") do

nm = WIN32OLE.new('NetMeeting.App.1')

10000.times { nm.Version }

end

test.report("Via proxy") do

nm = NetMeeting_App_1.new

10000.times { nm.Version }

end

end

produces:

Rehearsal

Dynamic 0.600000 0.200000 0.800000 (1.623000)

Via proxy 0.361000 0.140000 0.501000 (0.961000)

 total: 1.301000sec

user system total real

Dynamic 0.471000 0.110000 0.581000 (1.522000)

Via proxy 0.470000 0.130000 0.600000 (0.952000)

The proxy version is more than 40 percent faster than the code that does the dynamic

lookup.

More Help

If you need to interface Ruby to Windows NT, 2000, or XP, you may want to have a look

at Daniel Berger’s Win32Utils project (http://rubyforge.org/projects/win32utils/).

There you’ll find modules for interfacing to the Windows’ clipboard, event log, sched-

uler, and so on.

Also, the DL library (described briefly on page 648) allows Ruby programs to invoke

methods in dynamically loaded shared objects. On Windows, this means that your Ruby

code can load and invoke entry points in a Windows DLL. For example, the following

code, taken from the DL source code in the standard Ruby distribution, pops up a mes-

sage box on a Windows machine, and determines which button the user clicked.

require 'dl'

User32 = DL.dlopen("user32")

MB_OKCANCEL = 1

Prepared exclusively for Jose Sierra

http://rubyforge.org/projects/win32utils/

WINDOWS AUTOMATION 260

message_box = User32['MessageBoxA', 'ILSSI']

r, rs = message_box.call(0, 'OK?', 'Please Confirm', MB_OKCANCEL)

case r

when 1

print("OK!\n")

when 2

print("Cancel!\n")

end

This code opens the User32 DLL. It then creates a Ruby object, message_box, that

wraps the MessageBoxA entry point. The second paramater, "ILSSI", declares that the

method returns an Integer, and takes a Long, two Strings, and an Integer as parameters.

The wrapper object is then used to call the message box entry point in the DLL. The

return values are the result (in this case, the identifier of the button pressed by the user)

and an array of the parameters passed in (which we ignore).

Prepared exclusively for Jose Sierra

Chapter 21

Extending Ruby

It is easy to extend Ruby with new features by writing code in Ruby. But every now and

then you need to interface to things at a lower level. Once you start adding in low-level

code written in C, the possibilities are endless. Having said this, the stuff in this chapter

is pretty advanced and should probably be skipped the first time through the book.

Extending Ruby with C is pretty easy. For instance, suppose we are building a custom

Internet-ready jukebox for the Sunset Diner and Grill. It will play MP3 audio files from

a hard disk or audio CDs from a CD jukebox. We want to be able to control the jukebox

hardware from a Ruby program. The hardware vendor gave us a C header file and a

binary library to use; our job is to construct a Ruby object that makes the appropriate

C function calls.

Much of the information in this chapter is taken from the README.EXT file that is

included in the distribution. If you are planning on writing a Ruby extension, you may

want to refer to that file for more details as well as the latest changes.

Your First Extension
Just to introduce extension writing, let’s write one. This extension is purely a test of the

process—it does nothing that you couldn’t do in pure Ruby. We’ll also present some

stuff without too much explanation—all the messy details will be given later.

The extension we write will have the same functionality as the following Ruby class.

class MyTest

def initialize

@arr = Array.new

end

def add(obj)

@arr.push(obj)

end

end

261Prepared exclusively for Jose Sierra

YOUR FIRST EXTENSION 262

That is, we’ll be writing an extension in C that is plug-compatible with that Ruby class.

The equivalent code in C should look somewhat familiar.

#include "ruby.h"

static int id_push;

static VALUE t_init(VALUE self)

{

VALUE arr;

arr = rb_ary_new();

rb_iv_set(self, "@arr", arr);

return self;

}

static VALUE t_add(VALUE self, VALUE obj)

{

VALUE arr;

arr = rb_iv_get(self, "@arr");

rb_funcall(arr, id_push, 1, obj);

return arr;

}

VALUE cTest;

void Init_my_test() {

cTest = rb_define_class("MyTest", rb_cObject);

rb_define_method(cTest, "initialize", t_init, 0);

rb_define_method(cTest, "add", t_add, 1);

id_push = rb_intern("push");

}

Let’s go through this example in detail, as it illustrates many of the important concepts

in this chapter. First, we need to include the header file ruby.h to obtain the necessary

Ruby definitions.

Now look at the last function, Init_my_test. Every extension defines a C global func-

tion named Init_name. This function will be called when the interpreter first loads the

extension name (or on startup for statically linked extensions). It is used to initialize

the extension and to insinuate it into the Ruby environment. (Exactly how Ruby knows

that an extension is called name we’ll cover later.) In this case, we define a new class

named MyTest, which is a subclass of Object (represented by the external symbol

rb_cObject; see ruby.h for others).

Next we set up add and initialize as two instance methods for class MyTest. The

calls to rb_define_method establish a binding between the Ruby method name and

the C function that will implement it. If Ruby code calls the add method on one of our

objects, the interpreter will in turn call the C function t_add with one argument.

Similarly, when new is called for this class, Ruby will construct a basic object and then

call initialize, which we have defined here to call the C function t_init with no

(Ruby) arguments.

Prepared exclusively for Jose Sierra

YOUR FIRST EXTENSION 263

Now go back and look at the definition of t_init. Even though we said it took no

arguments, it has a parameter here! In addition to any Ruby arguments, every method

is passed an initial VALUE argument that contains the receiver for this method (the equiv-

alent of self in Ruby code).

The first thing we’ll do in t_init is create a Ruby array and set the instance variable

@arr to point to it. Just as you would expect if you were writing Ruby source, ref-

erencing an instance variable that doesn’t exist creates it. We then return a pointer to

ourselves.

WARNING: Every C function that is callable from Ruby must return a VALUE, even if

it’s just Qnil. Otherwise, a core dump (or GPF) will be the likely result.

Finally, the function t_add gets the instance variable @arr from the current object and

calls Array#push to push the passed value onto that array. When accessing instance

variables in this way, the @ prefix is mandatory—otherwise the variable is created but

cannot be referenced from Ruby.

Despite the extra, clunky syntax that C imposes, you’re still writing in Ruby—you can

manipulate objects using all the method calls you’ve come to know and love, with the

added advantage of being able to craft tight, fast code when needed.

Building Our Extension

We’ll have a lot more to say about building extensions later. For now, though, all we

have to do is follow these steps.

1. Create a file called extconf.rb in the same directory as our my_test.c C source

file. The file extconf.rb should contain the following two lines.

require 'mkmf'

create_makefile("my_test")

2. Run extconf.rb. This will generate a Makefile.

% ruby extconf.rb

creating Makefile

3. Use make to build the extension. This is what happens on an OS X system.

% make

gcc fnocommon g O2 pipe fnocommon I.

I/usr/lib/ruby/1.9/powerpcdarwin7.4.0

I/usr/lib/ruby/1.9/powerpcdarwin7.4.0 I. c my_test.c

cc dynamic bundle undefined suppress flat_namespace

L'/usr/lib' o my_test.bundle my_test.o ldl lobjc

The result of all this is the extension, all nicely bundled up in a shared object (a .so,

.dll, or [on OS X] a .bundle).

Prepared exclusively for Jose Sierra

RUBY OBJECTS IN C 264

Running Our Extension

We can use our extension from Ruby simply by require-ing it dynamically at runtime

(on most platforms). We can wrap this up in a test to verify that things are working as

we expect.

require 'my_test'

require 'test/unit'

class TestTest < Test::Unit::TestCase

def test_test

t = MyTest.new

assert_equal(Object, MyTest.superclass)

assert_equal(MyTest, t.class)

t.add(1)

t.add(2)

assert_equal([1,2], t.instance_eval("@arr"))

end

end

produces:

Finished in 0.000479 seconds.

1 tests, 3 assertions, 0 failures, 0 errors

Once we’re happy that our extension works, we can then install it globally by running

make install.

Ruby Objects in C
When we wrote our first extension, we cheated, because it didn’t really do anything

with the Ruby objects—it didn’t do calculations based on Ruby numbers, for example.

Before we can do this, we need to find out how to represent and access Ruby data types

from within C.

Everything in Ruby is an object, and all variables are references to objects. When we’re

looking at Ruby objects from within C code, the situation is pretty much the same.

Most Ruby objects are represented as C pointers to an area in memory that contains the

object’s data and other implementation details. In C code, all these references are via

variables of type VALUE, so when you pass Ruby objects around, you’ll do it by passing

VALUEs.

This has one exception. For performance reasons, Ruby implements Fixnums, Symbols,

true, false, and nil as so-called immediate values. These are still stored in variables

of type VALUE, but they aren’t pointers. Instead, their value is stored directly in the

variable.

Prepared exclusively for Jose Sierra

RUBY OBJECTS IN C 265

So sometimes VALUEs are pointers, and sometimes they’re immediate values. How does

the interpreter pull off this magic? It relies on the fact that all pointers point to areas of

memory aligned on 4- or 8-byte boundaries. This means that it can guarantee that the

low 2 bits in a pointer will always be zero. When it wants to store an immediate value,

it arranges to have at least one of these bits set, allowing the rest of the interpreter code

to distinguish immediate values from pointers. Although this sounds tricky, it’s actually

easy to use in practice, largely because the interpreter comes with a number of macros

and methods that simplify working with the type system.

This is how Ruby implements object-oriented code in C: A Ruby object is an allocated

structure in memory that contains a table of instance variables and information about

the class. The class itself is another object (an allocated structure in memory) that

contains a table of the methods defined for that class. Ruby is built upon this foundation.

Working With Immediate Objects

As we said above, immediate values are not pointers: Fixnum, Symbol, true, false,

and nil are stored directly in VALUE.

Fixnum values are stored as 31-bit numbers1 that are formed by shifting the original

number left 1 bit and then setting the LSB, or least significant bit (bit 0), to 1. When

VALUE is used as a pointer to a specific Ruby structure, it is guaranteed always to have

an LSB of zero; the other immediate values also have LSBs of zero. Thus, a simple bit

test can tell you whether you have a Fixnum. This test is wrapped in a macro, FIXNUM_P.

Similar tests let you check for other immediate values.

FIXNUM_P(value) → nonzero if value is a Fixnum

SYMBOL_P(value) → nonzero if value is a Symbol

NIL_P(value) → nonzero if value is nil

RTEST(value) → nonzero if value is neither nil nor false

Several useful conversion macros for numbers as well as other standard data types are

shown in Table 21.1 on the next page.

The other immediate values (true, false, and nil) are represented in C as the con-

stants Qtrue, Qfalse, and Qnil, respectively. You can test VALUE variables against

these constants directly or use the conversion macros (which perform the proper cast-

ing).

Working with Strings

In C, we’re used to working with null-terminated strings. Ruby strings, however, are

more general and may well include embedded nulls. The safest way to work with Ruby

1. Or 63-bit on wider CPU architectures.

Prepared exclusively for Jose Sierra

RUBY OBJECTS IN C 266

Table 21.1. C/Ruby data type conversion functions and macros

C Data Types to Ruby Objects:

INT2NUM(int) → Fixnum or Bignum

INT2FIX(int) → Fixnum (faster)

LONG2NUM(long → Fixnum or Bignum

LONG2FIX(int) → Fixnum (faster)

LL2NUM(long long) → Fixnum or Bignum (if native

system supports long long type)

ULL2NUM(long long) → Fixnum or Bignum (if native

system supports long long type)

CHR2FIX(char) → Fixnum

rb_str_new2(char *) → String

rb_float_new(double) → Float

Ruby Objects to C Data Types:

int NUM2INT(Numeric) (Includes type check)

int FIX2INT(Fixnum) (Faster)

unsigned int NUM2UINT(Numeric) (Includes type check)

unsigned int FIX2UINT(Fixnum) (Includes type check)

long NUM2LONG(Numeric) (Includes type check)

long FIX2LONG(Fixnum) (Faster)

unsigned long NUM2ULONG(Numeric) (Includes type check)

char NUM2CHR(Numeric or String) (Includes type check)

double NUM2DBL(Numeric)

see text for strings. . .

strings, therefore, is to do what the interpreter does and use both a pointer and a length.

In fact, Ruby String objects are actually references to an RString structure, and the

RString structure contains both a length and a pointer field. You can access the struc-

ture via the RSTRING macro.

VALUE str;

RSTRING(str)>len → length of the Ruby string

RSTRING(str)>ptr → pointer to string storage

However, life is slightly more complicated than that. Rather than using the VALUE

object directly when you need a string value, you probably want to call the1.8 method

StringValue, passing it the original value. It’ll return an object that you can use

RSTRING on or throw an exception if it can’t derive a string from the original. This

is all part of Ruby 1.8’s duck typing initiative, described in more detail on pages 280

and 349. The StringValue method checks to see if its operand is a String. If not, it

tries to invoke to_str on the object, throwing a TypeError exception if it can’t.

Prepared exclusively for Jose Sierra

RUBY OBJECTS IN C 267

So, if you want to write some code that iterates over all the characters in a String

object, you may write:

static VALUE iterate_over(VALUE original_str) {

int i;

char *p;

VALUE str = StringValue(original_str);

p = RSTRING(str)>ptr; // may be null

for (i = 0; i < RSTRING(str)>len; i++, p++) {

// process *p

}

return str;

}

If you want to bypass the length, and just access the underlying string pointer, you can

use the convenience method StringValuePtr, which both resolves the string reference

and then returns the C pointer to the contents.

If you plan to use a string to access or control some external resource, you proba-

bly want to hook into Ruby’s tainting mechanism. In this case you’ll use the method

SafeStringValue, which works like StringValue but throws an exception if its argu-

ment is tainted and the safe level is greater than zero.

Working with Other Objects

When VALUEs are not immediate, they are pointers to one of the defined Ruby

object structures—you can’t have a VALUE that points to an arbitrary area of mem-

ory. The structures for the basic built-in classes are defined in ruby.h and are named

RClassname: RArray, RBignum, RClass, RData, RFile, RFloat, RHash, RObject,

RRegexp, RString, and RStruct.

You can check to see what type of structure is used for a particular VALUE in a number

of ways. The macro TYPE(obj) will return a constant representing the C type of the

given object: T_OBJECT, T_STRING, and so on. Constants for the built-in classes are

defined in ruby.h. Note that the type we are referring to here is an implementation

detail—it is not the same as the class of an object.

If you want to ensure that a VALUE pointer points to a particular structure, you can use

the macro Check_Type, which will raise a TypeError exception if value is not of the

expected type (which is one of the constants T_STRING, T_FLOAT, and so on).

Check_Type(VALUE value, int type)

Again, note that we are talking about “type” as the C structure that represents a partic-

ular built-in type. The class of an object is a different beast entirely. The class objects

for the built-in classes are stored in C global variables named rb_cClassname (for

instance, rb_cObject); modules are named rb_mModulename.

Prepared exclusively for Jose Sierra

RUBY OBJECTS IN C 268

Pre 1.8 String Access

Prior to Ruby 1.81.8 , if a VALUE was supposed to contain a string, you’d
access the RSTRING fields directly, and that would be it. In 1.8, how-
ever, the gradual introduction of duck typing, along with various opti-
mizations, mean that this approach probably won’t work the way you’d
like. In particular, the ptr field of a STRING object might be null for
zero-length strings. If you use the 1.8 StringValue method, it handles
this case, resetting null pointers to reference instead a single, shared,
empty string.

So, how do you write an extension that will work with both Ruby 1.6
and 1.8? Carefully, and with macros. Perhaps something such as this.

#if !defined(StringValue)

define StringValue(x) (x)

#endif

#if !defined(StringValuePtr)

define StringValuePtr(x) ((STR2CSTR(x)))

#endif

This code defines the 1.8 StringValue and StringValuePtr macros
in terms of the older 1.6 counterparts. If you then write code in terms
of these macros, it should compile and run on both older and newer
interpreters.

If you want your code to have 1.8 duck-typing behavior, even when
running under 1.6, you may want to define StringValue slightly differ-
ently. The difference between this and the previous implementation is
described on page 280.

#if !defined(StringValue)

define StringValue(x) do { \

if (TYPE(x) != T_STRING) x = rb_str_to_str(x); \

} while (0)

#endif

It isn’t advisable to alter the data in these C structures directly, however—you may look,

but don’t touch. Instead, you’ll normally use the supplied C functions to manipulate

Ruby data (we’ll talk more about this in just a moment).

However, in the interests of efficiency you may need to dig into these structures to

obtain data. To dereference members of these C structures, you have to cast the generic

VALUE to the proper structure type. ruby.h contains a number of macros that perform

the proper casting for you, allowing you to dereference structure members easily. These

macros are named RCLASSNAME, as in RSTRING or RARRAY. We’ve already seen the use

of RSTRING when working with strings. You can do the same with arrays.

Prepared exclusively for Jose Sierra

RUBY OBJECTS IN C 269

VALUE arr;

RARRAY(arr)>len → length of the Ruby array

RARRAY(arr)>capa → capacity of the Ruby array

RARRAY(arr)>ptr → pointer to array storage

There are similar accessors for hashes (RHASH), files (RFILE), and so on. Having said

all this, you need to be careful about building too much dependence on checking types

into your extension code. We have more to say about extensions and the Ruby type

system on page 280.

Global Variables

Most of the time, your extensions will implement classes, and the Ruby code uses those

classes. The data you share between the Ruby code and the C code will be wrapped

tidily inside objects of the class. This is how it should be.

Sometimes, though, you may need to implement a global variable, accessible by both

your C extension and by Ruby code.

The easiest way to do this is to have the variable be a VALUE (that is, a Ruby object).

You then bind the address of this C variable to the name of a Ruby variable. In this case,

the $ prefix is optional, but it helps clarify that this is a global variable. And remember:

making a stack-based variable a Ruby global is not going to work (for long).

static VALUE hardware_list;

static VALUE Init_SysInfo() {

rb_define_class(....);

hardware_list = rb_ary_new();

rb_define_variable("$hardware", &hardware_list);

...

rb_ary_push(hardware_list, rb_str_new2("DVD"));

rb_ary_push(hardware_list, rb_str_new2("CDPlayer1"));

rb_ary_push(hardware_list, rb_str_new2("CDPlayer2"));

}

The Ruby side can then access the C variable hardware_list as $hardware.

$hardware → ["DVD", "CDPlayer1", "CDPlayer2"]

Sometimes, though, life is more complicated. Perhaps you want to define a global vari-

able whose value must be calculated when it is accessed. You do this by defining hooked

and virtual variables. A hooked variable is a real variable that is initialized by a named

function when the corresponding Ruby variable is accessed. Virtual variables are sim-

ilar but are never stored: their value purely comes from evaluating the hook function.

See the API section that begins on page 294 for details.

Prepared exclusively for Jose Sierra

THE JUKEBOX EXTENSION 270

If you create a Ruby object from C and store it in a C global variable without export-

ing it to Ruby, you must at least tell the garbage collector about it, lest ye be reaped

inadvertently.

static VALUE obj;

// ...

obj = rb_ary_new();

rb_global_variable(obj);

The Jukebox Extension
We’ve covered enough of the basics now to return to our jukebox example—interfacing

C code with Ruby and sharing data and behavior between the two worlds.

Wrapping C Structures

We’ve got the vendor’s library that controls the audio CD jukebox units, and we’re

ready to wire it into Ruby. The vendor’s header file looks like this.

typedef struct _cdjb {

int statusf;

int request;

void *data;

char pending;

int unit_id;

void *stats;

} CDJukebox;

// Allocate a new CDJukebox structure

CDJukebox *new_jukebox(void);

// Assign the Jukebox to a player

void assign_jukebox(CDJukebox *jb, int unit_id);

// Deallocate when done (and take offline)

void free_jukebox(CDJukebox *jb);

// Seek to a disc, track and notify progress

void jukebox_seek(CDJukebox *jb,

int disc,

int track,

void (*done)(CDJukebox *jb, int percent));

// ... others...

// Report a statistic

double get_avg_seek_time(CDJukebox *jb);

This vendor has its act together; while they might not admit it, the code is written

with an object-oriented flavor. We don’t know what all those fields mean within the

CDJukeBox structure, but that’s OK—we can treat it as an opaque pile of bits. The

vendor’s code knows what to do with it; we just have to carry it around.

Prepared exclusively for Jose Sierra

THE JUKEBOX EXTENSION 271

Anytime you have a C-only structure that you would like to handle as a Ruby object,

you should wrap it in a special, internal Ruby class called DATA (type T_DATA). Two

macros do this wrapping, and one macro retrieves your structure back out again.

API: C Data Type Wrapping

VALUE Data_Wrap_Struct(VALUE class, void (*mark)(),

void (*free)(), void *ptr)

Wraps the given C data type ptr, registers the two garbage collection

routines (see below), and returns a VALUE pointer to a genuine Ruby

object. The C type of the resulting object is T_DATA, and its Ruby

class is class.

VALUE Data_Make_Struct(VALUE class, ctype, void (*mark)(),

void (*free)(), ctype *)

Allocates and sets to zero a structure of the indicated type first and

then proceeds as Data_Wrap_Struct. c-type is the name of the C

data type that you’re wrapping, not a variable of that type.

Data_Get_Struct(VALUE obj,ctype,ctype *)

Returns the original pointer. This macro is a type-safe wrapper

around the macro DATA_PTR(obj), which evaluates the pointer.

The object created by Data_Wrap_Struct is a normal Ruby object, except that it has

an additional C data type that can’t be accessed from Ruby. As you can see in Fig-

ure 21.1 on the next page, this C data type is separate from any instance variables that

the object contains. But since it’s a separate thing, how do you get rid of it when the

garbage collector claims this object? What if you have to release some resource (close

some file, clean up some lock or IPC mechanism, and so on)?

Ruby uses a mark and sweep garbage collection scheme. During the mark phase, Ruby

looks for pointers to areas of memory. It marks these areas as “in use” (because some-

thing is pointing to them). If those areas themselves contain more pointers, the memory

these pointers reference is also marked, and so on. At the end of the mark phase, all

memory that is referenced will have been marked, and any orphaned areas will not have

a mark. At this point the sweep phase starts, freeing off memory that isn’t marked.

To participate in Ruby’s mark-and-sweep garbage collection process, you must define

a routine to free your structure and possibly a routine to mark any references from

your structure to other structures. Both routines take a void pointer, a reference to your

structure. The mark routine will be called by the garbage collector during its “mark”

phase. If your structure references other Ruby objects, then your mark function needs

to identify these objects using rb_gc_mark(value). If the structure doesn’t reference

other Ruby objects, you can simply pass 0 as a function pointer.

Prepared exclusively for Jose Sierra

THE JUKEBOX EXTENSION 272

Figure 21.1. Wrapping objects around C data types

jukebox1
@unit: 1

C

struct

CDPlayer

jukebox2
@unit: 2

C

struct

CDPlayer

When the object needs to be disposed of, the garbage collector will call the free rou-

tine to free it. If you have allocated any memory yourself (for instance, by using

Data_Make_Struct), you’ll need to pass a free function—even if it’s just the stan-

dard C library’s free routine. For complex structures that you have allocated, your free

function may need to traverse the structure to free all the allocated memory.

Let’s look at our CD player interface. The vendor library passes the information around

between its various functions in a CDJukebox structure. This structure represents the

state of the jukebox and therefore is a good candidate for wrapping within our Ruby

class. You create new instances of this structure by calling the library’s CDPlayerNew

method. You’d then want to wrap that created structure inside a new CDPlayer Ruby

object. A fragment of code to do this may look like the following. (We’ll talk about that

magic klass parameter in a minute.)

CDJukebox *jukebox;

VALUE obj;

// Vendor library creates the Jukebox

jukebox = new_jukebox();

// then we wrap it inside a Ruby CDPlayer object

obj = Data_Wrap_Struct(klass, 0, cd_free, jukebox);

Once this code had executed, obj would hold a reference to a newly allocated CDPlayer

Ruby object, wrapping a new CDJukebox C structure. Of course, to get this code to

compile, we’d need to do some more work. We’d have to define the CDPlayer class

and store a reference to it in the variable cCDPlayer. We’d also have to define the

function to free off our object, cdplayer_free. That’s easy: it just calls the vendor

library dispose method.

static void cd_free(void *p) {

free_jukebox(p);

}

Prepared exclusively for Jose Sierra

THE JUKEBOX EXTENSION 273

However, code fragments do not a program make. We need to package all this stuff in

a way that integrates it into the interpreter. And to do that, we need to look at some of

the conventions the interpreter uses.

Object Creation

Ruby 1.8 has rationalized the creation and initialization of objects.1.8 Although the old

ways still work, the new way, using allocation functions, is much tidier (and is less

likely to be deprecated in the future).

The basic idea is simple. Let’s say you’re creating an object of class CDPlayer in your

Ruby program.

cd = CDPlayer.new

Underneath the covers, the interpreter calls the class method new for CDPlayer. As

CDPlayer hasn’t defined a method new, Ruby looks into its parent, class Class.

The implementation of new in class Class is fairly simple: it allocates memory for the

new object and then calls the object’s initialize method to initialize that memory.

So, if our CDPlayer extension is to be a good Ruby citizen, it should work within this

framework. This means that we’ll need to implement an allocation function and an

initialize method.

Allocation Functions

The allocation function is responsible for creating the memory used by your object. If

the object you’re implementing doesn’t use any data other than Ruby instance variables,

then you don’t need to write an allocation function—Ruby’s default allocator will work

just fine. But if your class wraps a C structure, you’ll need to allocate space for that

structure in the allocation function. The allocation function gets passed the class of the

object being allocated. In our case it will in all likelihood be a cCDPlayer, but we’ll

use the parameter as given, as this means that we’ll work correctly if subclassed.

static VALUE cd_alloc(VALUE klass) {

CDJukebox *jukebox;

VALUE obj;

// Vendor library creates the Jukebox

jukebox = new_jukebox();

// then we wrap it inside a Ruby CDPlayer object

obj = Data_Wrap_Struct(klass, 0, cd_free, jukebox);

return obj;

}

You then need to register your allocation function in your class’s initialization code.

Prepared exclusively for Jose Sierra

THE JUKEBOX EXTENSION 274

void Init_CDPlayer() {

cCDPlayer = rb_define_class("CDPlayer", rb_cObject);

rb_define_alloc_func(cCDPlayer, cd_alloc);

// ...

}

Most objects probably need to define an initializer too. The allocation function creates

an empty, uninitialized object, and we’ll need to fill in specific values. In the case of the

CD player, the constructor is called with the unit number of the player to be associated

with this object.

static VALUE cd_initialize(VALUE self, VALUE unit) {

int unit_id;

CDJukebox *jb;

Data_Get_Struct(self, CDJukebox, jb);

unit_id = NUM2INT(unit);

assign_jukebox(jb, unit_id);

return self;

}

One of the reasons for this multistep object creation protocol is that it lets the interpreter

handle situations where objects have to be created by “back-door means.” One example

is when objects are being deserialized from their marshaled form. Here, the interpreter

needs to create an empty object (by calling the allocator), but it cannot call the initializer

(as it has no knowledge of the parameters to use). Another common situation is when

objects are duplicated or cloned.

One further issue lurks here. Because users can choose to bypass the constructor,

you need to ensure that your allocation code leaves the returned object in a valid

state. It may not contain all the information it would have had, had it been set up by

#initialize, but it at least needs to be usable.

Cloning Objects

All Ruby objects can be copied using one of two methods, dup and clone. The two

methods are similar: Both produce a new instance of their receiver’s class by calling

the allocation function. Then they copy across any instance variables from the original.

clone then goes a bit further and copies the original’s singleton class (if it has one) and

flags (such as the flag that indicates that an object is frozen). You can think of dup as

being a copy of the contents and clone as being a copy of the full object.

However, the Ruby interpreter doesn’t know how to handle copying the internal state of

objects that you write as C extensions. For example, if your object wraps a C structure

that contains an open file descriptor, it’s up to the semantics of your implementation

whether that descriptor should simply be copied to the new object or whether a new file

descriptor should be opened.

Prepared exclusively for Jose Sierra

THE JUKEBOX EXTENSION 275

Pre-1.8 Object Allocation

Prior to Ruby 1.8, if you wanted to allocate additional space in an
object,1.8 either you had to put that code in the initialize method,
or you had to define a new method for your class. Guy Decoux rec-
ommends the following hybrid approach for maximizing compatibility
between 1.6 and 1.8 extensions.

static VALUE cd_alloc(VALUE klass) {

// same as before

}

static VALUE cd_new(int argc, VALUE *argv, VALUE klass) {

VALUE obj = rb_funcall2(klass,

rb_intern("allocate"), 0, 0);

rb_obj_call_init(obj, argc, argv);

return obj;

}

void init_CDPlayer() {

// ...

#if HAVE_RB_DEFINE_ALLOC_FUNC

// 1.8 allocation

rb_define_alloc_func(cCDPlayer, cd_alloc);

#else

// define manual allocation function for 1.6

rb_define_singleton_method(cCDPlayer, "allocate",

cd_alloc, 0);

#endif

rb_define_singleton_method(cCDPlayer, "new", cd_new, 1);

// ...

}

If you’re writing code that should run on both recent and old versions
of Ruby, you’ll need to take an approach similar to this. However, you’ll
probably also need to handle cloning and duplication, and you’ll need
to consider what happens when your object gets marshaled.

To handle this, the interpreter delegates to your code the responsibility of copying the

internal state of objects that you implement. After copying the object’s instance vari-

ables, the interpreter invokes the new object’s initialize_copy method, passing in a

reference to the original object. It’s up to you to implement meaningful semantics in

this method.

For our CDPlayer class we’ll take a fairly simple approach to the cloning issue: we’ll

simply copy across the CDJukebox structure from the original object.

Prepared exclusively for Jose Sierra

THE JUKEBOX EXTENSION 276

There’s a wee chunk of strange code in this example. To test that the original object

is indeed something we can clone the new one from, the code checks to see that the

original

1. has a TYPE of T_DATA (which means that it’s a noncore object), and

2. has a free function with the same address as our free function.

This is a relatively high-performance way of verifying that the original object is com-

patible with our own (as long as you don’t share free functions between classes). An

alternative, which is slower, would be to use rb_obj_is_kind_of and do a direct test

on the class.

static VALUE cd_init_copy(VALUE copy, VALUE orig) {

CDJukebox *orig_jb;

CDJukebox *copy_jb;

if (copy == orig)

return copy;

// we can initialize the copy from other CDPlayers

// or their subclasses only

if (TYPE(orig) != T_DATA ||

RDATA(orig)>dfree != (RUBY_DATA_FUNC)cd_free) {

rb_raise(rb_eTypeError, "wrong argument type");

}

// copy all the fields from the original

// object's CDJukebox structure to the

// new object

Data_Get_Struct(orig, CDJukebox, orig_jb);

Data_Get_Struct(copy, CDJukebox, copy_jb);

MEMCPY(copy_jb, orig_jb, CDJukebox, 1);

return copy;

}

Our copy method does not have to allocate a wrapped structure to receive the original

objects CDJukebox structure: the cd_alloc method has already taken care of that.

Note that in this case it’s correct to do type checking based on classes: we need the

original object to have a wrapped CDJukebox structure, and the only objects that have

one of these are derived from class CDPlayer.

Putting It All Together

OK, finally we’re ready to write all the code for our CDPlayer class.

#include "ruby.h"

#include "cdjukebox.h"

static VALUE cCDPlayer;

Prepared exclusively for Jose Sierra

THE JUKEBOX EXTENSION 277

// Helper function to free a vendor CDJukebox

static void cd_free(void *p) {

free_jukebox(p);

}

// Allocate a new CDPlayer object, wrapping

// the vendor's CDJukebox structure

static VALUE cd_alloc(VALUE klass) {

CDJukebox *jukebox;

VALUE obj;

// Vendor library creates the Jukebox

jukebox = new_jukebox();

// then we wrap it inside a Ruby CDPlayer object

obj = Data_Wrap_Struct(klass, 0, cd_free, jukebox);

return obj;

}

// Assign the newly created CDPLayer to a

// particular unit

static VALUE cd_initialize(VALUE self, VALUE unit) {

int unit_id;

CDJukebox *jb;

Data_Get_Struct(self, CDJukebox, jb);

unit_id = NUM2INT(unit);

assign_jukebox(jb, unit_id);

return self;

}

// Copy across state (used by clone and dup). For jukeboxes, we

// actually create a new vendor object and set its unit number from

// the old

static VALUE cd_init_copy(VALUE copy, VALUE orig) {

CDJukebox *orig_jb;

CDJukebox *copy_jb;

if (copy == orig)

return copy;

// we can initialize the copy from other CDPlayers or their

// subclasses only

if (TYPE(orig) != T_DATA ||

RDATA(orig)>dfree != (RUBY_DATA_FUNC)cd_free) {

rb_raise(rb_eTypeError, "wrong argument type");

}

// copy all the fields from the original object's CDJukebox

// structure to the new object

Data_Get_Struct(orig, CDJukebox, orig_jb);

Data_Get_Struct(copy, CDJukebox, copy_jb);

MEMCPY(copy_jb, orig_jb, CDJukebox, 1);

return copy;

}

Prepared exclusively for Jose Sierra

THE JUKEBOX EXTENSION 278

// The progress callback yields to the caller the percent complete

static void progress(CDJukebox *rec, int percent) {

if (rb_block_given_p()) {

if (percent > 100) percent = 100;

if (percent < 0) percent = 0;

rb_yield(INT2FIX(percent));

}

}

// Seek to a given part of the track, invoking the progress callback

// as we go

static VALUE

cd_seek(VALUE self, VALUE disc, VALUE track) {

CDJukebox *jb;

Data_Get_Struct(self, CDJukebox, jb);

jukebox_seek(jb,

NUM2INT(disc),

NUM2INT(track),

progress);

return Qnil;

}

// Return the average seek time for this unit

static VALUE

cd_seek_time(VALUE self)

{

double tm;

CDJukebox *jb;

Data_Get_Struct(self, CDJukebox, jb);

tm = get_avg_seek_time(jb);

return rb_float_new(tm);

}

// Return this player's unit number

static VALUE

cd_unit(VALUE self) {

CDJukebox *jb;

Data_Get_Struct(self, CDJukebox, jb);

return INT2NUM(jb>unit_id);

}

void Init_CDPlayer() {

cCDPlayer = rb_define_class("CDPlayer", rb_cObject);

rb_define_alloc_func(cCDPlayer, cd_alloc);

rb_define_method(cCDPlayer, "initialize", cd_initialize, 1);

rb_define_method(cCDPlayer, "initialize_copy", cd_init_copy, 1);

rb_define_method(cCDPlayer, "seek", cd_seek, 2);

rb_define_method(cCDPlayer, "seek_time", cd_seek_time, 0);

rb_define_method(cCDPlayer, "unit", cd_unit, 0);

}

Prepared exclusively for Jose Sierra

MEMORY ALLOCATION 279

Now we can control our jukebox from Ruby in a nice, object-oriented way.

require 'CDPlayer'

p = CDPlayer.new(13)

puts "Unit is #{p.unit}"

p.seek(3, 16) {|x| puts "#{x}% done" }

puts "Avg. time was #{p.seek_time} seconds"

p1 = p.dup

puts "Cloned unit = #{p1.unit}"

produces:

Unit is 13

26% done

79% done

100% done

Avg. time was 1.2 seconds

Cloned unit = 13

This example demonstrates most of what we’ve talked about so far, with one additional

neat feature. The vendor’s library provided a callback routine—a function pointer that

is called every so often while the hardware is grinding its way to the next disc. We’ve

set that up here to run a code block passed as an argument to seek. In the progress

function, we check to see if there is an iterator in the current context and, if there is,

run it with the current percent done as an argument.

Memory Allocation
You may sometimes need to allocate memory in an extension that won’t be used for

object storage—perhaps you’ve got a giant bitmap for a Bloom filter, an image, or a

whole bunch of little structures that Ruby doesn’t use directly.

To work correctly with the garbage collector, you should use the following memory

allocation routines. These routines do a little bit more work than the standard malloc.

For instance, if ALLOC_N determines that it cannot allocate the desired amount of mem-

ory, it will invoke the garbage collector to try to reclaim some space. It will raise a

NoMemError if it can’t or if the requested amount of memory is invalid.

API: Memory Allocation

type * ALLOC_N(ctype, n)

Allocates n c-type objects, where c-type is the literal name of the C

type, not a variable of that type.

type * ALLOC(ctype)

Allocates a c-type and casts the result to a pointer of that type.

Prepared exclusively for Jose Sierra

RUBY TYPE SYSTEM 280

REALLOC_N(var, ctype, n)

Reallocates n c-types and assigns the result to var, a pointer to a

variable of type c-type.

type * ALLOCA_N(ctype, n)

Allocates memory for n objects of c-type on the stack—this memory

will be automatically freed when the function that invokes ALLOCA_N

returns.

Ruby Type System
In Ruby, we1.8 rely less on the type (or class) of an object and more on its capabilities.

This is called duck typing. We describe it in more detail in Chapter 23 on page 349.

You’ll find many examples of this if you examine the source code for the interpreter

itself. For example, the following code implements the Kernel.exec method.

VALUE

rb_f_exec(argc, argv)

int argc;

VALUE *argv;

{

VALUE prog = 0;

VALUE tmp;

if (argc == 0) {

rb_raise(rb_eArgError, "wrong number of arguments");

}

tmp = rb_check_array_type(argv[0]);

if (!NIL_P(tmp)) {

if (RARRAY(tmp)>len != 2) {

rb_raise(rb_eArgError, "wrong first argument");

}

prog = RARRAY(tmp)>ptr[0];

SafeStringValue(prog);

argv[0] = RARRAY(tmp)>ptr[1];

}

if (argc == 1 && prog == 0) {

VALUE cmd = argv[0];

SafeStringValue(cmd);

rb_proc_exec(RSTRING(cmd)>ptr);

}

else {

proc_exec_n(argc, argv, prog);

}

rb_sys_fail(RSTRING(argv[0])>ptr);

return Qnil; /* dummy */

}

Prepared exclusively for Jose Sierra

RUBY TYPE SYSTEM 281

The first parameter to this method may be a string or an array containing two strings.

However, the code doesn’t explicitly check the type of the argument. Instead, it first

calls rb_check_array_type, passing in the argument. What does this method do?

Let’s see.

VALUE

rb_check_array_type(ary)

VALUE ary;

{

return rb_check_convert_type(ary, T_ARRAY, "Array", "to_ary");

}

The plot thickens. Let’s track down rb_check_convert_type.

VALUE

rb_check_convert_type(val, type, tname, method)

VALUE val;

int type;

const char *tname, *method;

{

VALUE v;

/* always convert T_DATA */

if (TYPE(val) == type && type != T_DATA) return val;

v = convert_type(val, tname, method, Qfalse);

if (NIL_P(v)) return Qnil;

if (TYPE(v) != type) {

rb_raise(rb_eTypeError, "%s#%s should return %s",

rb_obj_classname(val), method, tname);

}

return v;

}

Now we’re getting somewhere. If the object is the correct type (T_ARRAY in our exam-

ple), then the original object is returned. Otherwise, we don’t give up quite yet. Instead

we call our original object and ask if it can represent itself as an array (we call its

to_ary method). If it can, we’re happy and continue. The code is saying “I don’t need

an Array, I just need something that can be represented as an array.” This means that

Kernel.exec will accept as an array any parameter that implements a to_ary method.

We discuss these conversion protocols in more detail (but from the Ruby perspective)

starting on page 355.

What does all this mean to you as an extension writer? There are two messages. First,

try to avoid checking the types of parameters passed to you. Instead, see if there’s a

rb_check_xxx_type method that will convert the parameter into the type that you

need. If not, look for an existing conversion function (such as rb_Array, rb_Float,

or rb_Integer) that’ll do the trick for you. Second, if you’re writing an extension

that implements something that may be meaningfully used as a Ruby string or array,

consider implementing to_str or to_ary methods, allowing objects implemented by

your extension to be used in string or array contexts.

Prepared exclusively for Jose Sierra

CREATING AN EXTENSION 282

Creating an Extension
Having written the source code for an extension, we now need to compile it so Ruby

can use it. We can either do this as a shared object, which is dynamically loaded at

runtime, or statically link the extension into the main Ruby interpreter itself. The basic

procedure is the same.

1. Create the C source code file(s) in a given directory.

2. Optionally create any supporting Ruby files in a lib subdirectory.

3. Create extconf.rb.

4. Run extconf.rb to create a Makefile for the C files in this directory.

5. Run make.

6. Run make install.

Creating a Makefile with extconf.rb

Figure 21.2 on the following page shows the overall workflow when building an exten-

sion. The key to the whole process is the extconf.rb program that you, as a developer,

create. In extconf.rb, you write a simple program that determines what features are

available on the user’s system and where those features may be located. Executing

extconf.rb builds a customized Makefile, tailored for both your application and the

system on which it’s being compiled. When you run the make command against this

Makefile, your extension is built and (optionally) installed.

The simplest extconf.rb may be just two lines long, and for many extensions this is

sufficient.

require 'mkmf'

create_makefile("Test")

The first line brings in the mkmf library module (described starting on page 755). This

contains all the commands we’ll be using. The second line creates a Makefile for an

extension called “Test.” (Note that “Test” is the name of the extension; the makefile

will always be called Makefile.) Test will be built from all the C source files in the

current directory. When your code is loaded, Ruby will call its Init_Test method.

Let’s say that we run this extconf.rb program in a directory containing a single source

file, main.c. The result is a makefile that will build our extension. On a Linux box, this

executes the following commands.

gcc fPIC I/usr/local/lib/ruby/1.8/i686linux g O2 \

c main.c o main.o

gcc shared o Test.so main.o lc

The result of this compilation is Test.so, which may be dynamically linked into Ruby

at runtime with require.

Prepared exclusively for Jose Sierra

CREATING AN EXTENSION 283

Figure 21.2. Building an extension

extconf.rb

ruby extconf.rb

Produces

Makefile

make

Produces

Test.so

mkmf

libraries*.c

Under Mac OS X, the commands are different, but the result is the same: a shared

object (a bundle on the Mac) is created.

gcc fnocommon g O2 pipe fnocommon \

I/usr/lib/ruby/1.8/powerpcdarwin \

I/usr/lib/ruby/1.8/powerpcdarwin c main.c

cc dynamic bundle undefined suppress flat_namespace \

L'/usr/lib' o Test.bundle main.o ldl lobjc

See how the mkmf commands have automatically located platform-specific libraries and

used options specific to the local compiler. Pretty neat, eh?

Although this basic extconf.rb program works for many simple extensions, you may

have to do some more work if your extension needs header files or libraries that aren’t

included in the default compilation environment or if you conditionally compile code

based on the presence of libraries or functions.

A common requirement is to specify nonstandard directories where include files and

libraries may be found. This is a two-step process. First, your extconf.rb should

contain one or more dir_config commands. This specifies a tag for a set of directories.

Then, when you run the extconf.rb program, you tell mkmf where the corresponding

physical directories are on the current system.

Prepared exclusively for Jose Sierra

CREATING AN EXTENSION 284

Dividing Up the Namespace

Increasingly, extension writers are being good citizens. Rather than
install their work directory into one of Ruby’s library directories,
they’re using subdirectories to group their files together. This is easy
with extconf.rb. If the parameter to the create_makefile call con-
tains forward slashes, mkmf assumes that everything before the last
slash is a directory name and that the remainder is the extension
name. The extension will be installed into the given directory (relative
to the Ruby directory tree). In the following example, the extension
will still be named Test.

require 'mkmf'

create_makefile("wibble/Test")

However, when you require this class in a Ruby program, you’d write

require 'wibble/Test'

If extconf.rb contains the line dir_config(name), then you give the location of the

corresponding directories with the command-line options

withnameinclude=directory

Add directory/include to the compile command.

withnamelib=directory

Add directory/lib to the link command.

If (as is common) your include and library directories are subdirectories called include

and lib of some other directory, you can take a shortcut.

withnamedir=directory

Add directory/lib and directory/include to the link command and compile com-

mand, respectively.

As well as specifying all these with options when you run extconf.rb, you can also

use the with options that were specified when Ruby was built for your machine. This

means you can discover and use the locations of libraries that are used by Ruby itself.

To make all this concrete, let’s say you need to use the vendor’s CDJukebox libraries

and include files for the CD player we’re developing. Your extconf.rb may contain

require 'mkmf'

dir_config('cdjukebox')

.. more stuff

create_makefile("CDPlayer")

Prepared exclusively for Jose Sierra

CREATING AN EXTENSION 285

You’d then run extconf.rb with something like

% ruby extconf.rb withcdjukeboxdir=/usr/local/cdjb

The generated Makefile would assume that /usr/local/cdjb/lib contained the

libraries and /usr/local/cdjb/include the include files.

The dir_config command adds to the list of places to search for libraries and include

files. It does not, however, link the libraries into your application. To do that, you’ll

need to use one or more have_library or find_library commands.

have_library looks for a given entry point in a named library. If it finds the entry

point, it adds the library to the list of libraries to be used when linking your extension.

find_library is similar but allows you to specify a list of directories to search for the

library. Here are the contents of the extconf.rb that we use to link our CD player.

require 'mkmf'

dir_config("cdjukebox")

have_library("cdjukebox", "new_jukebox")

create_makefile("CDPlayer")

A particular library may be in different places depending on the host system. The X

Window system, for example, is notorious for living in different directories on differ-

ent systems. The find_library command will search a list of supplied directories to

find the right one (this is different from have_library, which uses only configuration

information for the search). For example, to create a Makefile that uses X Windows

and a JPEG library, extconf.rb may contain

require 'mkmf'

if have_library("jpeg","jpeg_mem_init") and

find_library("X11", "XOpenDisplay",

"/usr/X11/lib", # list of directories

"/usr/X11R6/lib", # to check

"/usr/openwin/lib") # for library

then

create_makefile("XThing")

else

puts "No X/JPEG support available"

end

We’ve added some additional functionality to this program. All the mkmf commands

return false if they fail. This means we can write an extconf.rb that generates a

Makefile only if everything it needs is present. The Ruby distribution does this so that

it will try to compile only those extensions that are supported on your system.

You also may want your extension code to be able to configure the features it uses

depending on the target environment. For example, our CD jukebox may be able to use

a high-performance MP3 decoder if the end user has one installed. We can check by

looking for its header file.

Prepared exclusively for Jose Sierra

CREATING AN EXTENSION 286

require 'mkmf'

dir_config('cdjukebox')

have_library('cdjb', 'CDPlayerNew')

have_header('hp_mp3.h')

create_makefile("CDJukeBox")

We can also check to see if the target environment has a particular function in any of

the libraries we’ll be using. For example, the setpriority call would be useful but

isn’t always available. We can check for it with

require 'mkmf'

dir_config('cdjukebox')

have_func('setpriority')

create_makefile("CDJukeBox")

Both have_header and have_func define preprocessor constants if they find their tar-

gets. The names are formed by converting the target name to uppercase and prepending

HAVE_. Your C code can take advantage of this using constructs such as

#if defined(HAVE_HP_MP3_H)

include <hp_mp3.h>

#endif

#if defined(HAVE_SETPRIORITY)

err = setpriority(PRIOR_PROCESS, 0, 10)

#endif

If you have special requirements that can’t be met with all these mkmf commands, your

program can directly add to the global variables $CFLAGS and $LFLAGS, which are

passed to the compiler and linker, respectively.

Sometimes you’ll create an extconf.rb, and it just doesn’t seem to work. You give it

the name of a library, and it swears that no such library has ever existed on the entire

planet. You tweak and tweak, but mkmf still can’t find the library you need. It would

be nice if you could find out exactly what it’s doing behind the scenes. Well, you can.

Each time you run your extconf.rb script, mkmf generates a log file containing details

of what it did. If you look in mkmf.log, you’ll be able to see what steps the program

used to try to find the libraries you requested. Sometimes trying these steps manually

will help you track down the problem.

Installation Target

The Makefile produced by your extconf.rb will include an “install” target. This will

copy your shared library object into the correct place on your (or your users’) local

file system. The destination is tied to the installation location of the Ruby interpreter

you used to run extconf.rb in the first place. If you have multiple Ruby interpreters

installed on your box, your extension will be installed into the directory tree of the one

that ran extconf.rb.

Prepared exclusively for Jose Sierra

EMBEDDING A RUBY INTERPRETER 287

In addition to installing the shared library, extconf.rb will check for the presence of a

lib/ subdirectory. If it finds one, it will arrange for any Ruby files there to be installed

along with your shared object. This is useful if you want to split the work of writing

your extension between low-level C code and higher-level Ruby code.

Static Linking

Finally, if your system doesn’t support dynamic linking, or if you have an extension

module that you want to have statically linked into Ruby itself, edit the file ext/Setup

in the distribution and add your directory to the list of extensions in the file. In your

extension’s directory, create a file named MANIFEST containing a list of all the files

in your extension (source, extconf.rb, lib/, and so on). Then rebuild Ruby. The

extensions listed in Setup will be statically linked into the Ruby executable. If you

want to disable any dynamic linking, and link all extensions statically, edit ext/Setup

to contain the following option.

option nodynamic

A Shortcut

If you are extending an existing library written in C or C++, you may want to investigate

SWIG (http://www.swig.org). SWIG is an interface generator: it takes a library def-

inition (typically from a header file) and automatically generates the glue code needed

to access that library from another language. SWIG supports Ruby, meaning that it can

generate the C source files that wrap external libraries in Ruby classes.

Embedding a Ruby Interpreter
In addition to extending Ruby by adding C code, you can also turn the problem around

and embed Ruby itself within your application. You have two ways to do this. The first

is to let the interpreter take control by calling ruby_run. This is the easiest approach,

but it has one significant drawback—the interpreter never returns from a ruby_run call.

Here’s an example.

#include "ruby.h"

int main(void) {

/* ... our own application stuff ... */

ruby_init();

ruby_init_loadpath();

ruby_script("embedded");

rb_load_file("start.rb");

ruby_run();

exit(0);

}

Prepared exclusively for Jose Sierra

http://www.swig.org

EMBEDDING A RUBY INTERPRETER 288

To initialize the Ruby interpreter, you need to call ruby_init(). But on some plat-

forms, you may need to take special steps before that.

#if defined(NT)

NtInitialize(&argc, &argv);

#endif

#if defined(__MACOS__) && defined(__MWERKS__)

argc = ccommand(&argv);

#endif

See main.c in the Ruby distribution for any other special defines or setup needed for

your platform.

You need the Ruby include and library files accessible to compile this embedded code.

On my box (Mac OS X) I have the Ruby 1.8 interpreter installed in a private directory,

so my Makefile looks like this.

WHERE=/Users/dave/ruby1.8/lib/ruby/1.8/powerpcdarwin/

CFLAGS=I$(WHERE) g

LDFLAGS=L$(WHERE) lruby ldl lobjc

embed: embed.o

$(CC) o embed embed.o $(LDFLAGS)

The second way of embedding Ruby allows Ruby code and your C code to engage in

more of a dialogue: the C code calls some Ruby code, and the Ruby code responds.

You do this by initializing the interpreter as normal. Then, rather than entering the

interpreter’s main loop, you instead invoke specific methods in your Ruby code. When

these methods return, your C code gets control back.

There’s a wrinkle, though. If the Ruby code raises an exception and it isn’t caught, your

C program will terminate. To overcome this, you need to do what the interpreter does

and protect all calls that could raise an exception. This can get messy. The rb_protect

method call wraps the call to another C function. That second function should invoke

our Ruby method. However, the method wrapped by rb_protect is defined to take just

a single parameter. To pass more involves some ugly C casting.

Let’s look at an example. Here’s a simple Ruby class that implements a method to

return the sum of the numbers from one to max.

class Summer

def sum(max)

raise "Invalid maximum #{max}" if max < 0

(max*max + max)/2

end

end

Let’s write a C program that calls an instance of this class multiple times. To create

the instance, we’ll get the class object (by looking for a top-level constant whose name

is the name of our class). We’ll then ask Ruby to create an instance of that class—

rb_class_new_instance is actually a call to Class.new. (The two initial 0 parame-

Prepared exclusively for Jose Sierra

EMBEDDING A RUBY INTERPRETER 289

ters are the argument count and a dummy pointer to the arguments themselves.) Once

we have that object, we can invoke its sum method using rb_funcall.

#include "ruby.h"

static int id_sum;

int Values[] = { 5, 10, 15, 1, 20, 0 };

static VALUE wrap_sum(VALUE args) {

VALUE *values = (VALUE *)args;

VALUE summer = values[0];

VALUE max = values[1];

return rb_funcall(summer, id_sum, 1, max);

}

static VALUE protected_sum(VALUE summer, VALUE max) {

int error;

VALUE args[2];

VALUE result;

args[0] = summer;

args[1] = max;

result = rb_protect(wrap_sum, (VALUE)args, &error);

return error ? Qnil : result;

}

int main(void) {

int value;

int *next = Values;

ruby_init();

ruby_init_loadpath();

ruby_script("embedded");

rb_require("sum.rb");

// get an instance of Summer

VALUE summer = rb_class_new_instance(0, 0,

rb_const_get(rb_cObject, rb_intern("Summer")));

id_sum = rb_intern("sum");

while (value = *next++) {

VALUE result = protected_sum(summer, INT2NUM(value));

if (NIL_P(result))

printf("Sum to %d doesn't compute!\n", value);

else

printf("Sum to %d is %d\n", value, NUM2INT(result));

}

ruby_finalize();

exit(0);

}

One last thing: the Ruby interpreter was not originally written with embedding in mind.

Probably the biggest problem is that it maintains state in global variables, so it isn’t

thread-safe. You can embed Ruby—just one interpreter per process.

Prepared exclusively for Jose Sierra

BRIDGING RUBY TO OTHER LANGUAGES 290

A good resource for embedding Ruby in C++ programs is at

http://metaeditor.sourceforge.net/embed/ . This page also contains links to

other examples of embedding Ruby.

API: Embedded Ruby API

void ruby_init()

Sets up and initializes the interpreter. This function should be called

before any other Ruby-related functions.

void ruby_init_loadpath()

Initializes the $: (load path) variable; necessary if your code loads

any library modules.

void ruby_options(int argc, char **argv)

Gives the Ruby interpreter the command-line options.

void ruby_script(char *name)

Sets the name of the Ruby script (and $0) to name.

void rb_load_file(char *file)

Loads the given file into the interpreter.

void ruby_run()

Runs the interpreter.

void ruby_finalize()

Shuts down the interpreter.

For another example of embedding a Ruby interpreter within another program, see also

eruby, which is described beginning on page 229.

Bridging Ruby to Other Languages
So far, we’ve discussed extending Ruby by adding routines written in C. However, you

can write extensions in just about any language, as long as you can bridge the two

languages with C. Almost anything is possible, including awkward marriages of Ruby

and C++, Ruby and Java, and so on.

But you may be able to accomplish the same thing without resorting to C code. For

example, you could bridge to other languages using middleware such as SOAP or

COM. See the section on SOAP (page 236) and the section on Windows Automation

beginning on page 255 for more details.

Prepared exclusively for Jose Sierra

http://metaeditor.sourceforge.net/embed/

RUBY C LANGUAGE API 291

Ruby C Language API
Last, but by no means least, here are some C-level functions that you may find useful

when writing an extension.

Some functions require an ID: you can obtain an ID for a string by using rb_intern

and reconstruct the name from an ID by using rb_id2name.

As most of these C functions have Ruby equivalents that are already described in detail

elsewhere in this book, the descriptions here will be brief.

The following listing is not complete. Many more functions are available—too many

to document them all, as it turns out. If you need a method that you can’t find here,

check ruby.h or intern.h for likely candidates. Also, at or near the bottom of each

source file is a set of method definitions that describes the binding from Ruby methods

to C functions. You may be able to call the C function directly or search for a wrap-

per function that calls the function you need. The following list, based on the list in

README.EXT, shows the main source files in the interpreter.

Ruby Language Core

class.c, error.c, eval.c, gc.c, object.c, parse.y, variable.c

Utility Functions

dln.c, regex.c, st.c, util.c

Ruby Interpreter

dmyext.c, inits.c, keywords main.c, ruby.c, version.c

Base Library

array.c, bignum.c, compar.c, dir.c, enum.c, file.c, hash.c, io.c,

marshal.c, math.c, numeric.c, pack.c, prec.c, process.c,

random.c, range.c, re.c, signal.c, sprintf.c, string.c, struct.c,

time.c

API: Defining Classes

VALUE rb_define_class(char *name, VALUE superclass)

Defines a new class at the top level with the given name and super-

class (for class Object, use rb_cObject).

VALUE rb_define_module(char *name)

Defines a new module at the top level with the given name.

VALUE rb_define_class_under(VALUE under, char *name,

VALUE superclass)

Defines a nested class under the class or module under.

Prepared exclusively for Jose Sierra

RUBY C LANGUAGE API 292

VALUE rb_define_module_under(VALUE under, char *name)

Defines a nested module under the class or module under.

void rb_include_module(VALUE parent, VALUE module)

Includes the given module into the class or module parent.

void rb_extend_object(VALUE obj, VALUE module)

Extends obj with module.

VALUE rb_require(const char *name)

Equivalent to require name. Returns Qtrue or Qfalse.

API: Defining Structures

VALUE rb_struct_define(char *name, char *attribute..., NULL)

Defines a new structure with the given attributes.

VALUE rb_struct_new(VALUE sClass, VALUE args..., NULL)

Creates an instance of sClass with the given attribute values.

VALUE rb_struct_aref(VALUE struct, VALUE idx)

Returns the element named or indexed by idx.

VALUE rb_struct_aset(VALUE struct, VALUE idx, VALUE val)

Sets the attribute named or indexed by idx to val.

API: Defining Methods

In some of the function definitions that follow, the parameter argc specifies how many

arguments a Ruby method takes. It may have the following values.

argc Function Prototype

0..17 VALUE func(VALUE self, VALUE arg...)

The C function will be called with this many actual arguments.

−1 VALUE func(int argc, VALUE *argv, VALUE self)

The C function will be given a variable number of arguments passed as a C

array.

−2 VALUE func(VALUE self, VALUE args)

The C function will be given a variable number of arguments passed as a Ruby

array.

In a function that has been given a variable number of arguments, you can use the C

function rb_scan_args to sort things out (see below).

Prepared exclusively for Jose Sierra

RUBY C LANGUAGE API 293

void rb_define_method(VALUE classmod, char *name,

VALUE(*func)(), int argc)

Defines an instance method in the class or module classmod with

the given name, implemented by the C function func and taking argc

arguments.

void rb_define_alloc_func(VALUE classmod, VALUE(*func)())

Identifies the allocator for classmod.

void rb_define_module_function(VALUE module, char *name,

VALUE(*func)(), int argc))

Defines a method in class module with the given name, implemented

by the C function func and taking argc arguments.

void rb_define_global_function(char *name, VALUE(*func)(),

int argc)

Defines a global function (a private method of Kernel) with the

given name, implemented by the C function func and taking argc

arguments.

void rb_define_singleton_method(VALUE classmod, char *name,

VALUE(*func)(), int argc)

Defines a singleton method in class classmod with the given name,

implemented by the C function func and taking argc arguments.

int rb_scan_args(int argcount, VALUE *argv, char *fmt, ...)

Scans the argument list and assigns to variables similar to scanf:

fmt is a string containing zero, one, or two digits followed by some

flag characters. The first digit indicates the count of mandatory argu-

ments; the second is the count of optional arguments. A * means to

pack the rest of the arguments into a Ruby array. A & means that

an attached code block will be taken and assigned to the given vari-

able (if no code block was given, Qnil will be assigned). After the

fmt string, pointers to VALUE are given (as with scanf) to which the

arguments are assigned.

VALUE name, one, two, rest;

rb_scan_args(argc, argv, "12", &name, &one, &two);

rb_scan_args(argc, argv, "1*", &name, &rest);

void rb_undef_method(VALUE classmod, const char *name)

Undefines the given method name in the given classmod class or

module.

void rb_define_alias(VALUE classmod, const char *newname,

const char *oldname)

Defines an alias for oldname in class or module classmod.

Prepared exclusively for Jose Sierra

RUBY C LANGUAGE API 294

API: Defining Variables and Constants

void rb_define_const(VALUE classmod, char *name, VALUE value)

Defines a constant in the class or module classmod, with the given

name and value.

void rb_define_global_const(char *name, VALUE value)

Defines a global constant with the given name and value.

void rb_define_variable(const char *name, VALUE *object)

Exports the address of the given object that was created in C to the

Ruby namespace as name. From Ruby, this will be a global variable,

so name should start with a leading dollar sign. Be sure to honor

Ruby’s rules for allowed variable names; illegally named variables

will not be accessible from Ruby.

void rb_define_class_variable(VALUE class, const char *name,

VALUE val)

Defines a class variable name (which must be specified with a @@

prefix) in the given class, initialized to value.

void rb_define_virtual_variable(const char *name,

VALUE(*getter)(),

void(*setter)())

Exports a virtual variable to a Ruby namespace as the global $name.

No actual storage exists for the variable; attempts to get and set the

value will call the given functions with the prototypes.

VALUE getter(ID id, VALUE *data,

struct global_entry *entry);

void setter(VALUE value, ID id, VALUE *data,

struct global_entry *entry);

You will likely not need to use the entry parameter and can safely

omit it from your function declarations.

void rb_define_hooked_variable(const char *name,

VALUE *variable,

VALUE(*getter)(),

void(*setter)())

Defines functions to be called when reading or writing to variable.

See also rb_define_virtual_variable.

void rb_define_readonly_variable(const char *name,

VALUE *value)

Same as rb_define_variable, but read-only from Ruby.

Prepared exclusively for Jose Sierra

RUBY C LANGUAGE API 295

void rb_define_attr(VALUE variable, const char *name, int read,

int write)

Creates accessor methods for the given variable, with the given

name. If read is nonzero, create a read method; if write is nonzero,

create a write method.

void rb_global_variable(VALUE *obj)

Registers the given address with the garbage collector.

API: Calling Methods

VALUE rb_class_new_instance((int argc, VALUE *argv,

VALUE klass))

Return a new instance of class klass. argv is a pointer to an array of

argc parameters.

VALUE rb_funcall(VALUE recv, ID id, int argc, ...)

Invokes the method given by id in the object recv with the given

number of arguments argc and the arguments themselves (possibly

none).

VALUE rb_funcall2(VALUE recv, ID id, int argc, VALUE *args)

Invokes the method given by id in the object recv with the given

number of arguments argc and the arguments themselves given in

the C array args.

VALUE rb_funcall3(VALUE recv, ID id, int argc, VALUE *args)

Same as rb_funcall2 but will not call private methods.

VALUE rb_apply(VALUE recv, ID name, int argc, VALUE args)

Invokes the method given by id in the object recv with the given

number of arguments argc and the arguments themselves given in

the Ruby Array args.

ID rb_intern(char *name)

Returns an ID for a given name. If the name does not exist, a symbol

table entry will be created for it.

char * rb_id2name(ID id)

Returns a name for the given id.

VALUE rb_call_super(int argc, VALUE *args)

Calls the current method in the superclass of the current object.

Prepared exclusively for Jose Sierra

RUBY C LANGUAGE API 296

API: Exceptions

void rb_raise(VALUE exception, const char *fmt, ...)

Raises an exception. The given string fmt and remaining arguments

are interpreted as with printf.

void rb_fatal(const char *fmt, ...)

Raises a Fatal exception, terminating the process. No rescue blocks

are called, but ensure blocks will be called. The given string fmt and

remaining arguments are interpreted as with printf.

void rb_bug(const char *fmt, ...)

Terminates the process immediately—no handlers of any sort will be

called. The given string fmt and remaining arguments are interpreted

as with printf. You should call this function only if a fatal bug has

been exposed. You don’t write fatal bugs, do you?

void rb_sys_fail(const char *msg)

Raises a platform-specific exception corresponding to the last known

system error, with the given msg.

VALUE rb_rescue(VALUE (*body)(), VALUE args, VALUE(*rescue)(),

VALUE rargs)

Executes body with the given args. If a StandardError exception is

raised, then execute rescue with the given rargs.

VALUE rb_ensure(VALUE(*body)(), VALUE args, VALUE(*ensure)(),

VALUE eargs)

Executes body with the given args. Whether or not an exception is

raised, execute ensure with the given eargs after body has completed.

VALUE rb_protect(VALUE (*body)(), VALUE args, int *result)

Executes body with the given args and returns nonzero in result if

any exception was raised.

void rb_notimplement()

Raises a NotImpError exception to indicate that the enclosed func-

tion is not implemented yet or not available on this platform.

void rb_exit(int status)

Exits Ruby with the given status. Raises a SystemExit exception

and calls registered exit functions and finalizers.

Prepared exclusively for Jose Sierra

RUBY C LANGUAGE API 297

void rb_warn(const char *fmt, ...)

Unconditionally issues a warning message to standard error. The

given string fmt and remaining arguments are interpreted as with

printf.

void rb_warning(const char *fmt, ...)

Conditionally issues a warning message to standard error if Ruby

was invoked with the w flag. The given string fmt and remaining

arguments are interpreted as with printf.

API: Iterators

void rb_iter_break()

Breaks out of the enclosing iterator block.

VALUE rb_each(VALUE obj)

Invokes the each method of the given obj.

VALUE rb_yield(VALUE arg)

Transfers execution to the iterator block in the current context, pass-

ing arg as an argument. Multiple values may be passed in an array.

int rb_block_given_p()

Returns true if yield would execute a block in the current context—

that is, if a code block was passed to the current method and is avail-

able to be called.

VALUE rb_iterate(VALUE (*method)(), VALUE args,

VALUE (*block)(), VALUE arg2)

Invokes method with argument args and block block. A yield from

that method will invoke block with the argument given to yield and

a second argument arg2.

VALUE rb_catch(const char *tag, VALUE (*proc)(), VALUE value)

Equivalent to Ruby catch.

void rb_throw(const char *tag , VALUE value)

Equivalent to Ruby throw.

API: Accessing Variables

VALUE rb_iv_get(VALUE obj, char *name)

Returns the instance variable name (which must be specified with a

@ prefix) from the given obj.

Prepared exclusively for Jose Sierra

RUBY C LANGUAGE API 298

VALUE rb_ivar_get(VALUE obj, ID name)

Returns the instance variable name from the given obj.

VALUE rb_iv_set(VALUE obj, char *name, VALUE value)

Sets the value of the instance variable name (which must be specified

with a @ prefix) in the given obj to value. Returns value.

VALUE rb_ivar_set(VALUE obj, ID name, VALUE value)

Sets the value of the instance variable name in the given obj to value.

Returns value.

VALUE rb_gv_set(const char *name, VALUE value)

Sets the global variable name (the $ prefix is optional) to value.

Returns value.

VALUE rb_gv_get(const char *name)

Returns the global variable name (the $ prefix is optional).

void rb_cvar_set(VALUE class, ID name, VALUE val, int unused)

Sets the class variable name in the given class to value.

VALUE rb_cvar_get(VALUE class, ID name)

Returns the class variable name from the given class.

int rb_cvar_defined(VALUE class, ID name)

Returns Qtrue if the given class variable name has been defined for

class; otherwise, returns Qfalse.

void rb_cv_set(VALUE class, const char *name, VALUE val)

Sets the class variable name (which must be specified with a @@ pre-

fix) in the given class to value.

VALUE rb_cv_get(VALUE class, const char *name)

Returns the class variable name (which must be specified with a @@

prefix) from the given class.

API: Object Status

OBJ_TAINT(VALUE obj)

Marks the given obj as tainted.

int OBJ_TAINTED(VALUE obj)

Returns nonzero if the given obj is tainted.

OBJ_FREEZE(VALUE obj)

Marks the given obj as frozen.

Prepared exclusively for Jose Sierra

RUBY C LANGUAGE API 299

int OBJ_FROZEN(VALUE obj)

Returns nonzero if the given obj is frozen.

SafeStringValue(VALUE str)

Raises1.8 SecurityError if current safe level > 0 and str is tainted, or

raises a TypeError if str is not a T_STRING or if $SAFE >= 4.

int rb_safe_level()

Returns the current safe level.

void rb_secure(int level)

Raises SecurityError if level <= current safe level.

void rb_set_safe_level(int newlevel)

Sets the current safe level to newlevel.

API: Commonly Used Methods

VALUE rb_ary_new()

Returns a new Array with default size.

VALUE rb_ary_new2(long length)

Returns a new Array of the given length.

VALUE rb_ary_new3(long length, ...)

Returns a new Array of the given length and populated with the

remaining arguments.

VALUE rb_ary_new4(long length, VALUE *values)

Returns a new Array of the given length and populated with the C

array values.

void rb_ary_store(VALUE self, long index, VALUE value)

Stores value at index in array self.

VALUE rb_ary_push(VALUE self, VALUE value)

Pushes value onto the end of array self. Returns value.

VALUE rb_ary_pop(VALUE self)

Removes and returns the last element from the array self.

VALUE rb_ary_shift(VALUE self)

Removes and returns the first element from the array self.

Prepared exclusively for Jose Sierra

RUBY C LANGUAGE API 300

VALUE rb_ary_unshift(VALUE self, VALUE value)

Pushes value onto the front of array self. Returns value.

VALUE rb_ary_entry(VALUE self, long index)

Returns array self ’s element at index.

int rb_respond_to(VALUE self, ID method)

Returns nonzero if self responds to method.

VALUE rb_thread_create(VALUE (*func)(), void *data)

Runs func in a new thread, passing data as an argument.

VALUE rb_hash_new()

Returns a new, empty Hash.

VALUE rb_hash_aref(VALUE self, VALUE key)

Returns the element corresponding to key in self.

VALUE rb_hash_aset(VALUE self, VALUE key, VALUE value)

Sets the value for key to value in self. Returns value.

VALUE rb_obj_is_instance_of(VALUE obj, VALUE klass)

Returns Qtrue if obj is an instance of klass.

VALUE rb_obj_is_kind_of(VALUE obj, VALUE klass)

Returns Qtrue if klass is the class of obj or class is one of the super-

classes of the class of obj.

VALUE rb_str_new(const char *src, long length)

Returns a new String initialized with length characters from src.

VALUE rb_str_new2(const char *src)

Returns a new String initialized with the null-terminated C string

src.

VALUE rb_str_dup(VALUE str)

Returns a new String object duplicated from str.

VALUE rb_str_cat(VALUE self, const char *src, long length)

Concatenates length characters from the string src onto the String

self. Returns self.

VALUE rb_str_concat(VALUE self, VALUE other)

Concatenates other onto the String self. Returns self.

VALUE rb_str_split(VALUE self, const char *delim)

Returns an array of String objects created by splitting self on delim.

Prepared exclusively for Jose Sierra

Part III

Ruby Crystallized

301Prepared exclusively for Jose Sierra

Chapter 22

The Ruby Language

This chapter is a bottom-up look at the Ruby language. Most of what appears here is the

syntax and semantics of the language itself—we mostly ignore the built-in classes and

modules (these are covered in depth starting on page 402). However, Ruby sometimes

implements features in its libraries that in most languages would be part of the basic

syntax. We’ve included these methods here and have tried to flag them with “Library”

in the margin.

The contents of this chapter may look familiar—with good reason. We’ve covered just

about all of this in the earlier tutorial chapters. Consider this chapter to be a self-

contained reference to the core Ruby language.

Source Layout
Ruby programs are written in 7-bit ASCII, Kanji (using EUC or SJIS), or UTF-8. If

a code set other than 7-bit ASCII is used, the KCODE option must be set appropriately,

as shown on page 169.

Ruby is a line-oriented language. Ruby expressions and statements are terminated at

the end of a line unless the parser can determine that the statement is incomplete—for

example if the last token on a line is an operator or comma. A semicolon can be used to

separate multiple expressions on a line. You can also put a backslash at the end of a line

to continue it onto the next. Comments start with # and run to the end of the physical

line. Comments are ignored during syntax analysis.

a = 1

b = 2; c = 3

d = 4 + 5 +

6 + 7 # no '\' needed

e = 8 + 9 \

+ 10 # '\' needed

302Prepared exclusively for Jose Sierra

SOURCE LAYOUT 303

Physical lines between a line starting with =begin and a line starting with =end are

ignored by Ruby and may be used to comment out sections of code or to embed docu-

mentation.

Ruby reads its program input in a single pass, so you can pipe programs to the Ruby

interpreter’s standard input stream.

echo 'puts "Hello"' | ruby

If Ruby comes across a line anywhere in the source containing just “__END_ _”, with

no leading or trailing whitespace, it treats that line as the end of the program—any

subsequent lines will not be treated as program code. However, these lines can be read

into the running program using the global IO object DATA, described on page 322.

BEGIN and END Blocks

Every Ruby source file can declare blocks of code to be run as the file is being loaded

(the BEGIN blocks) and after the program has finished executing (the END blocks).

BEGIN {

begin code

}

END {

end code

}

A program may include multiple BEGIN and END blocks. BEGIN blocks are executed in

the order they are encountered. END blocks are executed in reverse order.

General Delimited Input

As well as the normal quoting mechanism, alternative forms of literal strings, arrays,

regular expressions, and shell commands are specified using a generalized delimited

syntax. All these literals start with a percent character, followed by a single character

that identifies the literal’s type. These characters are summarized in Table 22.1; the

actual literals are described in the corresponding sections later in this chapter.

Table 22.1. General delimited input

Type Meaning See Page

%q Single-quoted string 305

%Q, % Double-quoted string 305

%w, %W Array of strings 307

%r Regular expression pattern 309

%x Shell command 323

Prepared exclusively for Jose Sierra

THE BASIC TYPES 304

Following the type character is a delimiter, which can be any nonalphabetic or non-

multibyte character.1.8 If the delimiter is one of the characters (, [, {, or <, the literal

consists of the characters up to the matching closing delimiter, taking account of nested

delimiter pairs. For all other delimiters, the literal comprises the characters up to the

next occurrence of the delimiter character.

%q/this is a string/

%qstring

%q(a (nested) string)

Delimited strings may continue over multiple lines; the line endings and all spaces at

the start of continuation lines will be included in the string.

meth = %q{def fred(a)

a.each {|i| puts i }

end}

The Basic Types
The basic types in Ruby are numbers, strings, arrays, hashes, ranges, symbols, and

regular expressions.

Integer and Floating-Point Numbers

Ruby integers are objects of class Fixnum or Bignum. Fixnum objects hold integers that

fit within the native machine word minus 1 bit. Whenever a Fixnum exceeds this range,

it is automatically converted to a Bignum object, whose range is effectively limited only

by available memory. If an operation with a Bignum result has a final value that will fit

in a Fixnum, the result will be returned as a Fixnum.

Integers are written using an optional leading sign, an optional base indicator (0 for

octal, 0d for decimal,1.8 0x for hex, or 0b for binary), followed by a string of digits in the

appropriate base. Underscore characters are ignored in the digit string.

123456 => 123456 # Fixnum

0d123456 => 123456 # Fixnum

123_456 => 123456 # Fixnum underscore ignored

543 => 543 # Fixnum negative number

0xaabb => 43707 # Fixnum hexadecimal

0377 => 255 # Fixnum octal

0b10_1010 => 42 # Fixnum binary (negated)

123_456_789_123_456_789 => 123456789123456789 # Bignum

You can get the integer value corresponding to an ASCII character by preceding that

character with a question mark. Control characters can be generated using ?\Cx and

Prepared exclusively for Jose Sierra

THE BASIC TYPES 305

?\cx (the control version of x is x&0x9f). Meta characters (x | 0x80) can be gener-

ated using ?\Mx. The combination of meta and control is generated using and ?\M\Cx.

You can get the integer value of a backslash character using the sequence ?\\.

?a => 97 # ASCII character

?\n => 10 # code for a newline (0x0a)

?\Ca => 1 # control a = ?A & 0x9f = 0x01

?\Ma => 225 # meta sets bit 7

?\M\Ca => 129 # meta and control a

?\C? => 127 # delete character

A numeric literal with a decimal point and/or an exponent is turned into a Float object,

corresponding to the native architecture’s double data type. You must follow the dec-

imal point with a digit, as 1.e3 tries to invoke the method e3 in class Fixnum. As of

Ruby 1.81.8 you must also place at least one digit before the decimal point.

12.34 → 12.34

0.1234e2 → 12.34

1234e2 → 12.34

Strings

Ruby provides a number of mechanisms for creating literal strings. Each generates

objects of type String. The different mechanisms vary in terms of how a string is

delimited and how much substitution is done on the literal’s content.

Single-quoted string literals ('stuff' and %q/stuff /) undergo the least substitution. Both

convert the sequence \\ into a single backslash, and the form with single quotes con-

verts \' into a single quote. All other backslashes appear literally in the string.

'hello' → hello

'a backslash \'\\\'' → a backslash '\'

%q/simple string/ → simple string

%q(nesting (really) works) → nesting (really) works

%q no_blanks_here ; → no_blanks_here

Double-quoted strings ("stuff ", %Q/stuff /, and %/stuff /) undergo additional substitu-

tions, shown in Table 22.2 on the following page.

a = 123

"\123mile" → Smile

"Say \"Hello\"" → Say "Hello"

%Q!"I said 'nuts'," I said! → "I said 'nuts'," I said

%Q{Try #{a + 1}, not #{a 1}} → Try 124, not 122

%<Try #{a + 1}, not #{a 1}> → Try 124, not 122

"Try #{a + 1}, not #{a 1}" → Try 124, not 122

%{ #{ a = 1; b = 2; a + b } } → 3

Strings can continue across multiple input lines, in which case they will contain newline

characters. It is also possible to use here documents to express long string literals.

Whenever Ruby parses the sequence <<identifier or <<quoted string, it replaces it with

Prepared exclusively for Jose Sierra

THE BASIC TYPES 306

Table 22.2. Substitutions in double-quoted strings

\a Bell/alert (0x07) \nnn Octal nnn

\b Backspace (0x08) \xnn Hex nn

\e Escape (0x1b) \cx Control-x

\f Formfeed (0x0c) \Cx Control-x

\n Newline (0x0a) \Mx Meta-x

\r Return (0x0d) \M\Cx Meta-control-x

\s Space (0x20) \x x

\t Tab (0x09) #{code} Value of code

\v Vertical tab (0x0b)

a string literal built from successive logical input lines. It stops building the string

when it finds a line that starts with identifier or quoted string. You can put a minus sign

immediately after the << characters, in which case the terminator can be indented from

the left margin. If a quoted string was used to specify the terminator, its quoting rules

will be applied to the here document; otherwise, double-quoting rules apply.

print <<HERE

Double quoted \

here document.

It is #{Time.now}

HERE

print <<'THERE'

This is single quoted.

The above used #{Time.now}

THERE

produces:

Double quoted here document.

It is Wed Sep 20 16:05:08 CDT 2006

This is single quoted.

The above used #{Time.now}

Adjacent single- and double-quoted strings in the input are concatenated to form a

single String object.

'Con' "cat" 'en' "ate" → "Concatenate"

Strings are stored as sequences of 8-bit bytes,1 and each byte may contain any of the

256 8-bit values, including null and newline. The substitution sequences in Table 22.2

allow nonprinting characters to be inserted conveniently and portably.

1. For use in Japan, the jcode library supports a set of operations of strings written with EUC, SJIS, or

UTF-8 encoding. The underlying string, however, is still accessed as a series of bytes.

Prepared exclusively for Jose Sierra

THE BASIC TYPES 307

Every time a string literal is used in an assignment or as a parameter, a new String

object is created.

3.times do

print 'hello'.object_id, " "

end

produces:

938948 938918 938888

The documentation for class String starts on page 585.

Ranges

Outside the context of a conditional expression, expr..expr and expr...expr construct

Range objects. The two-dot form is an inclusive range; the one with three dots is a

range that excludes its last element. See the description of class Range on page 576 for

details. Also see the description of conditional expressions on page 327 for other uses

of ranges.

Arrays

Literals of class Array are created by placing a comma-separated series of object ref-

erences between square brackets. A trailing comma is ignored.

arr = [fred, 10, 3.14, "This is a string", barney("pebbles"),]

Arrays of strings can be constructed using the shortcut notations %w and %W.1.8 The low-

ercase form extracts space-separated tokens into successive elements of the array. No

substitution is performed on the individual strings. The uppercase version also converts

the words to an array, but performs all the normal double-quoted string substitutions on

each individual word. A space between words can be escaped with a backslash. This is

a form of general delimited input, described on pages 303–304.

arr = %w(fred wilma barney betty great\ gazoo)

arr → ["fred", "wilma", "barney", "betty", "great gazoo"]

arr = %w(Hey!\tIt is now #{Time.now})

arr → ["Hey!\\tIt", "is", "now", "\#{Time.now}"]

arr = %W(Hey!\tIt is now #{Time.now})

arr → ["Hey!\tIt", "is", "now", "Wed Sep 20 16:05:08 CDT 2006"]

Hashes

A literal Ruby Hash is created by placing a list of key/value pairs between braces, with

either a comma or the sequence => between the key and the value. A trailing comma is

ignored.

Prepared exclusively for Jose Sierra

THE BASIC TYPES 308

colors = { "red" => 0xf00,

"green" => 0x0f0,

"blue" => 0x00f

}

There is no requirement for the keys and/or values in a particular hash to have the same

type.

Requirements for a Hash Key

Hash keys must respond to the message hash by returning a hash code, and the hash

code for a given key must not change. The keys used in hashes must also be comparable

using eql?. If eql? returns true for two keys, then those keys must also have the same

hash code. This means that certain classes (such as Array and Hash) can’t conveniently

be used as keys, because their hash values can change based on their contents.

If you keep an external reference to an object that is used as a key, and use that reference

to alter the object, thus changing its hash code, the hash lookup based on that key may

not work.

Because strings are the most frequently used keys, and because string contents are often

changed, Ruby treats string keys specially. If you use a String object as a hash key,

the hash will duplicate the string internally and will use that copy as its key. The copy

will be frozen.1.8 Any changes made to the original string will not affect the hash.

If you write your own classes and use instances of them as hash keys, you need to

make sure that either (a) the hashes of the key objects don’t change once the objects

have been created or (b) you remember to call the Hash#rehash method to reindex the

hash whenever a key hash is changed.

Symbols

A Ruby symbol is an identifier corresponding to a string of characters, often a name.

You construct the symbol for a name by preceding the name with a colon, and you can

construct the symbol for an arbitrary string by preceding a string literal with a colon.1.8
Substitution occurs in double-quoted strings. A particular name or string will always

generate the same symbol, regardless of how that name is used within the program.

:Object

:my_variable

:"Ruby rules"

a = "cat"

:'catsup' → :catsup

:"#{a}sup" → :catsup

:'#{a}sup' → :"\#{a}sup"

Other languages call this process interning, and call symbols atoms.

Prepared exclusively for Jose Sierra

THE BASIC TYPES 309

Regular Expressions

Regular expression literals are objects of type Regexp. They are created explicitly by

calling the Regexp.new constructor or implicitly by using the literal forms, /pattern/

and %r{pattern}. The %r construct is a form of general delimited input (described on

pages 303–304).

/pattern/

/pattern/options

%r{pattern}

%r{pattern}options

Regexp.new('pattern' [, options])

Regular Expression Options

A regular expression may include one or more options that modify the way the pattern

matches strings. If you’re using literals to create the Regexp object, then the options

are one or more characters placed immediately after the terminator. If you’re using

Regexp.new, the options are constants used as the second parameter of the constructor.

i Case Insensitive. The pattern match will ignore the case of letters in the pattern and

string. Setting $=1.8 to make matches case insensitive is now deprecated.

o Substitute Once. Any #... substitutions in a particular regular expression literal

will be performed just once, the first time it is evaluated. Otherwise, the substitu-

tions will be performed every time the literal generates a Regexp object.

m Multiline Mode. Normally, “.” matches any character except a newline. With the

/m option, “.” matches any character.

x Extended Mode. Complex regular expressions can be difficult to read. The x option

allows you to insert spaces, newlines, and comments in the pattern to make it more

readable.

Another set of options allows you to set the language encoding of the regular expres-

sion. If none of these options is specified, the interpreter’s default encoding (set using

K or $KCODE) is used.

n: no encoding (ASCII) e: EUC

s: SJIS u: UTF-8

Regular Expression Patterns

regular characters

All characters except ., |, (,), [, \, ^, {, +, $, *, and ? match themselves.

To match one of these characters, precede it with a backslash.

^ Matches the beginning of a line.

$ Matches the end of a line.

\A Matches the beginning of the string.

Prepared exclusively for Jose Sierra

THE BASIC TYPES 310

\z Matches the end of the string.

\Z Matches the end of the string unless the string ends with a \n, in which

case it matches just before the \n.

\b, \B Match word boundaries and nonword boundaries respectively.

\G The position where a previous repetitive search completed (but only in

some situations). See the additional information on the following page.

[characters] A bracket expression matches any of a list of characters between the

brackets. The characters .|()[{+^$*?, which have special meanings

elsewhere in patterns, lose their special significance between brackets.

The sequences \nnn, \xnn, \cx, \Cx, \Mx, and \M\Cx have the

meanings shown in Table 22.2 on page 306. The sequences \d, \D, \s,

\S, \w, and \W are abbreviations for groups of characters, as shown

in Table 5.1 on page 68. The sequence [:class:] matches a POSIX

character class, also shown in Table 5.1 on page 68. (Note that the open

and close brackets are part of the class, so the pattern /[_[:digit:]]/

would match a digit or an underscore.) The sequence c1-c2 represents

all the characters between c1 and c2, inclusive. Literal] or characters

must appear immediately after the opening bracket. A caret character

(^) immediately following the opening bracket negates the sense of the

match—the pattern matches any character that isn’t in the character

class.

\d, \s, \w Abbreviations for character classes that match digits, whitespace, and

word characters, respectively. These abbreviations are summarized in

Table 5.1 on page 68.

\D, \S, \W The negated forms of \d, \s, and \w, matching characters that are not

digits, whitespace, or word characters.

. (period) Appearing outside brackets, matches any character except a newline.

(With the /m option, it matches newline, too).

re* Matches zero or more occurrences of re.

re+ Matches one or more occurrences of re.

re{m,n} Matches at least “m” and at most “n” occurrences of re.

re{m,} Matches at least “m” occurrences of re.

re{m} Matches exactly “m” occurrences of re.

re? Matches zero or one occurrence of re. The *, +, and {m,n} modifiers

are greedy by default. Append a question mark to make them minimal.

re1|re2 Matches either re1 or re2. | has a low precedence.

Prepared exclusively for Jose Sierra

THE BASIC TYPES 311

(...) Parentheses are used to group regular expressions. For example, the

pattern /abc+/ matches a string containing an a, a b, and one or more

c’s. /(abc)+/ matches one or more sequences of abc. Parentheses are

also used to collect the results of pattern matching. For each opening

parenthesis, Ruby stores the result of the partial match between it and

the corresponding closing parenthesis as successive groups. Within the

same pattern, \1 refers to the match of the first group, \2 the second

group, and so on. Outside the pattern, the special variables $1, $2, and

so on, serve the same purpose.

The anchor \G1.8 works with the repeating match methods String#gsub, String#gsub!,

String#index, and String#scan. In a repetitive match, it represents the position in

the string where the last match in the iteration ended. \G initially points to the start of

the string (or to the character referenced by the second parameter of String#index).

"a01b23c45 d56".scan(/[az]\d+/) → ["a01", "b23", "c45", "d56"]

"a01b23c45 d56".scan(/\G[az]\d+/) → ["a01", "b23", "c45"]

"a01b23c45 d56".scan(/\A[az]\d+/) → ["a01"]

Substitutions

#{...} Performs an expression substitution, as with strings. By default, the

substitution is performed each time a regular expression literal is eval-

uated. With the /o option, it is performed just the first time.

\0, \1, \2, ... \9, \&, \`, \', \+

Substitutes the value matched by the nth grouped subexpression, or by

the entire match, pre- or postmatch, or the highest group.

Regular Expression Extensions

In common with Perl and Python, Ruby regular expressions offer some extensions over

traditional Unix regular expressions. All the extensions are entered between the char-

acters (? and). The parentheses that bracket these extensions are groups, but they do

not generate back references: they do not set the values of \1 and $1 etc.

(?# comment)

Inserts a comment into the pattern. The content is ignored during pat-

tern matching.

(?:re) Makes re into a group without generating backreferences. This is often

useful when you need to group a set of constructs but don’t want the

group to set the value of $1 or whatever. In the example that follows,

both patterns match a date with either colons or spaces between the

month, day, and year. The first form stores the separator character in $2

and $4, but the second pattern doesn’t store the separator in an external

variable.

Prepared exclusively for Jose Sierra

THE BASIC TYPES 312

date = "12/25/01"

date =~ %r{(\d+)(/|:)(\d+)(/|:)(\d+)}

[$1,$2,$3,$4,$5] → ["12", "/", "25", "/", "01"]

date =~ %r{(\d+)(?:/|:)(\d+)(?:/|:)(\d+)}

[$1,$2,$3] → ["12", "25", "01"]

(?=re) Matches re at this point, but does not consume it (also known charm-

ingly as zero-width positive lookahead). This lets you look forward for

the context of a match without affecting $&. In this example, the scan

method matches words followed by a comma, but the commas are not

included in the result.

str = "red, white, and blue"

str.scan(/[az]+(?=,)/) → ["red", "white"]

(?!re) Matches if re does not match at this point. Does not consume the match

(zero-width negative lookahead). For example, /hot(?!dog)(\w+)/

matches any word that contains the letters hot that aren’t followed by

dog, returning the end of the word in $1.

(?>re) Nests an independent regular expression within the first regular expres-

sion.anchored at the current match position. If it consumes characters,

these will no longer be available to the higher-level regular expression.

This construct therefore inhibits backtracking, which can be a perfor-

mance enhancement. For example, the pattern /a.*b.*a/ takes expo-

nential time when matched against a string containing an a followed

by a number of b’s, but with no trailing a. However, in some cases this

can be avoided by using a nested regular expression /a(?>.*b).*a/.

In this form, the nested expression consumes all the input string up to

the last possible b character. When the check for a trailing a then fails,

there is no need to backtrack, and the pattern match fails promptly.

(This pattern has different semantics than the original if the match

shouldn’t go up to the last b.)

require 'benchmark'

include Benchmark

str = "a" + ("b" * 5000)

bm(8) do |test|

test.report("Normal:") { str =~ /^a.*b.*a/ }

test.report("Nested:") { str =~ /^a(?>.*b).*a/ }

end

produces:

user system total real

Normal: 0.450000 0.000000 0.450000 (0.456447)

Nested: 0.000000 0.000000 0.000000 (0.000412)

(?imx) Turns on the corresponding i, m, or x option. If used inside a group,

the effect is limited to that group.

Prepared exclusively for Jose Sierra

NAMES 313

(?imx) Turns off the i, m, or x option.

(?imx:re) Turns on the i, m, or x option for re.

(?imx:re) Turns off the i, m, or x option for re.

Names
Ruby names are used to refer to constants, variables, methods, classes, and modules.

The first character of a name helps Ruby to distinguish its intended use. Certain names,

listed in Table 22.3 on the next page, are reserved words and should not be used as

variable, method, class, or module names.

Method names are described in the section beginning on page 330.

In these descriptions, lowercase letter means the characters a though z, as well as _, the

underscore. Uppercase letter means A though Z, and digit means 0 through 9. A name

is an uppercase letter, lowercase letter, or an underscore, followed by name characters:

any combination of upper- and lowercase letters, underscores, and digits.

A local variable name consists of a lowercase letter followed by name characters. It is

conventional to use underscores rather than camelCase to write multiword names, but

the interpreter does not enforce this.

fred anObject _x three_two_one

An instance variable name starts with an “at” sign (@) followed by a name. It is gen-

erally a good idea to use a lowercase letter after the @.

@name @_ @size

A class variable name starts with two “at” signs (@@) followed by a name.

@@name @@_ @@Size

A constant name starts with an uppercase letter followed by name characters. Class

names and module names are constants and follow the constant naming conventions.

By convention, constant object references are normally spelled using uppercase letters

and underscores throughout, while class and module names are MixedCase.

module Math

ALMOST_PI = 22.0/7.0

end

class BigBlob

end

Global variables, and some special system variables, start with a dollar sign ($) fol-

lowed by name characters. In addition, Ruby defines a set of two-character global vari-

able names in which the second character is a punctuation character. These predefined

Prepared exclusively for Jose Sierra

NAMES 314

Table 22.3. Reserved words

__FILE__ and def end in or self unless

__LINE__ begin defined? ensure module redo super until

BEGIN break do false next rescue then when

END case else for nil retry true while

alias class elsif if not return undef yield

variables are listed starting on page 318. Finally, a global variable name can be formed

using $ followed by a single letter or underscore.1.8 These latter variables typically mir-

ror the setting of the corresponding command-line option (see the table starting on

page 320 for details).

$params $PROGRAM $! $_ $a $K

Variable/Method Ambiguity

When Ruby sees a name such as a in an expression, it needs to determine if it is a local

variable reference or a call to a method with no parameters. To decide which is the case,

Ruby uses a heuristic. As Ruby parses a source file, it keeps track of symbols that have

been assigned to. It assumes that these symbols are variables. When it subsequently

comes across a symbol that could be a variable or a method call, it checks to see if

it has seen a prior assignment to that symbol. If so, it treats the symbol as a variable;

otherwise it treats it as a method call. As a somewhat pathological case of this, consider

the following code fragment, submitted by Clemens Hintze.

def a

print "Function 'a' called\n"

99

end

for i in 1..2

if i == 2

print "a=", a, "\n"

else

a = 1

print "a=", a, "\n"

end

end

produces:

a=1

Function 'a' called

a=99

During the parse, Ruby sees the use of a in the first print statement and, as it hasn’t yet

seen any assignment to a, assumes that it is a method call. By the time it gets to the

second print statement, though, it has seen an assignment, and so treats a as a variable.

Prepared exclusively for Jose Sierra

VARIABLES AND CONSTANTS 315

Note that the assignment does not have to be executed—Ruby just has to have seen it.

This program does not raise an error.

a = 1 if false; a

Variables and Constants
Ruby variables and constants hold references to objects. Variables themselves do not

have an intrinsic type. Instead, the type of a variable is defined solely by the messages

to which the object referenced by the variable responds.2

A Ruby constant is also a reference to an object. Constants are created when they are

first assigned to (normally in a class or module definition). Ruby, unlike less flexible

languages, lets you alter the value of a constant, although this will generate a warning

message.

MY_CONST = 1

MY_CONST = 2 # generates a warning

produces:

prog.rb:2: warning: already initialized constant MY_CONST

Note that although constants should not be changed, you can alter the internal states of

the objects they reference.

MY_CONST = "Tim"

MY_CONST[0] = "J" # alter string referenced by constant

MY_CONST → "Jim"

Assignment potentially aliases objects, giving the same object different names.

Scope of Constants and Variables

Constants defined within a class or module may be accessed unadorned anywhere

within the class or module. Outside the class or module, they may be accessed using the

scope operator, :: prefixed by an expression that returns the appropriate class or mod-

ule object. Constants defined outside any class or module may be accessed unadorned

or by using the scope operator :: with no prefix. Constants may not be defined in meth-

ods. Constants may be added1.8 to existing classes and modules from the outside by using

the class or module name and the scope operator before the constant name.

OUTER_CONST = 99

2. When we say that a variable is not typed, we mean that any given variable can at different times hold

references to objects of many different types.

Prepared exclusively for Jose Sierra

VARIABLES AND CONSTANTS 316

class Const

def get_const

CONST

end

CONST = OUTER_CONST + 1

end

Const.new.get_const → 100

Const::CONST → 100

::OUTER_CONST → 99

Const::NEW_CONST = 123

Global variables are available throughout a program. Every reference to a particu-

lar global name returns the same object. Referencing an uninitialized global variable

returns nil.

Class variables are available throughout a class or module body. Class variables must

be initialized before use. A class variable is shared among all instances of a class and

is available within the class itself.

class Song

@@count = 0

def initialize

@@count += 1

end

def Song.get_count

@@count

end

end

Class variables belong to the innermost enclosing class or module. Class variables used

at the top level are defined in Object and behave like global variables. Class variables

defined within singleton methods belong to the top level (although this usage is dep-

recated and generates a warning). In Ruby 1.9, class variables will be private to the

defining class.1.8

class Holder

@@var = 99

def Holder.var=(val)

@@var = val

end

def var

@@var

end

end

@@var = "top level variable"

a = Holder.new

a.var → 99

Holder.var = 123

a.var → 123

Prepared exclusively for Jose Sierra

VARIABLES AND CONSTANTS 317

This references the toplevel object

def a.get_var

@@var

end

a.get_var → "top level variable"

Class variables are shared by children of the class in which they are first defined.

class Top

@@A = 1

def dump

puts values

end

def values

"#{self.class.name}: A = #@@A"

end

end

class MiddleOne < Top

@@B = 2

def values

super + ", B = #@@B"

end

end

class MiddleTwo < Top

@@B = 3

def values

super + ", B = #@@B"

end

end

class BottomOne < MiddleOne; end

class BottomTwo < MiddleTwo; end

Top.new.dump

MiddleOne.new.dump

MiddleTwo.new.dump

BottomOne.new.dump

BottomTwo.new.dump

produces:

Top: A = 1

MiddleOne: A = 1, B = 2

MiddleTwo: A = 1, B = 3

BottomOne: A = 1, B = 2

BottomTwo: A = 1, B = 3

Instance variables are available within instance methods throughout a class body. Ref-

erencing an uninitialized instance variable returns nil. Each instance of a class has a

unique set of instance variables. Instance variables are not available to class methods

(although classes (and modules) also may have instance variables—see page 371).

Local variables are unique in that their scopes are statically determined but their exis-

tence is established dynamically.

Prepared exclusively for Jose Sierra

VARIABLES AND CONSTANTS 318

A local variable is created dynamically when it is first assigned a value during program

execution. However, the scope of a local variable is statically determined to be the

immediately enclosing block, method definition, class definition, module definition, or

top-level program. Referencing a local variable that is in scope but that has not yet

been created generates a NameError exception. Local variables with the same name

are different variables if they appear in disjoint scopes.

Method parameters are considered to be variables local to that method.

Block parameters are assigned values when the block is invoked.

a = [1, 2, 3]

a.each {|i| puts i } # i local to block

a.each {|$i| puts $i } # assigns to global $i

a.each {|@i| puts @i } # assigns to instance variable @i

a.each {|I| puts I } # generates warning assigning to constant

a.each {|b.meth| } # invokes meth= in object b

sum = 0

var = nil

a.each {|var| sum += var } # uses sum and var from enclosing scope

If a local variable (including a block parameter) is first assigned in a block, it is local to

the block. If instead a variable of the same name is already established at the time the

block executes, the block will inherit that variable.

A block takes on the set of local variables in existence at the time that it is created.

This forms part of its binding. Note that although the binding of the variables is fixed

at this point, the block will have access to the current values of these variables when it

executes. The binding preserves these variables even if the original enclosing scope is

destroyed.

The bodies of while, until, and for loops are part of the scope that contains them;

previously existing locals can be used in the loop, and any new locals created will be

available outside the bodies afterward.

Predefined Variables

The following variables are predefined in the Ruby interpreter. In these descriptions,

the notation [r/o] indicates that the variables are read-only; an error will be raised if a

program attempts to modify a read-only variable. After all, you probably don’t want to

change the meaning of true halfway through your program (except perhaps if you’re

a politician). Entries marked [thread] are thread local.

Many global variables look something like Snoopy swearing: $_, $!, $&, and so on.

This is for “historical” reasons, as most of these variable names come from Perl. If

you find memorizing all this punctuation difficult, you may want to have a look at the

library file called English, documented on page 650, which gives the commonly used

global variables more descriptive names.

Prepared exclusively for Jose Sierra

VARIABLES AND CONSTANTS 319

In the tables of variables and constants that follow, we show the variable name, the type

of the referenced object, and a description.

Exception Information

$! Exception The exception object passed to raise. [thread]

$@ Array The stack backtrace generated by the last exception. See Kernel#caller

on page 497 for details. [thread]

Pattern Matching Variables

These variables (except $=) are set to nil after an unsuccessful pattern match.

$& String The string matched (following a successful pattern match). This variable is

local to the current scope. [r/o, thread]

$+ String The contents of the highest-numbered group matched following a successful

pattern match. Thus, in "cat" =~/(c|a)(t|z)/, $+ will be set to “t”. This

variable is local to the current scope. [r/o, thread]

$` String The string preceding the match in a successful pattern match. This variable

is local to the current scope. [r/o, thread]

$' String The string following the match in a successful pattern match. This variable

is local to the current scope. [r/o, thread]

$= Object Deprecated.1.8 If set to any value apart from nil or false, all pattern matches

will be case insensitive, string comparisons will ignore case, and string hash

values will be case insensitive.

$1 to $9 String The contents of successive groups matched in a successful pattern match. In

"cat" =~/(c|a)(t|z)/, $1 will be set to “a” and $2 to “t”. This variable

is local to the current scope. [r/o, thread]

$~ MatchData An object that encapsulates the results of a successful pattern match. The

variables $&, $`, $', and $1 to $9 are all derived from $~. Assigning to $~

changes the values of these derived variables. This variable is local to the

current scope. [thread]

Input/Output Variables

$/ String The input record separator (newline by default). This is the value that rou-

tines such as Kernel#gets use to determine record boundaries. If set to

nil, gets will read the entire file.

$0 String Synonym for $/.

$\ String The string appended to the output of every call to methods such as

Kernel#print and IO#write. The default value is nil.

$, String The separator string output between the parameters to methods such as

Kernel#print and Array#join. Defaults to nil, which adds no text.

$. Fixnum The number of the last line read from the current input file.

$; String The default separator pattern used by String#split. May be set from the

command line using the F flag.

Prepared exclusively for Jose Sierra

VARIABLES AND CONSTANTS 320

$< Object An object that provides access to the concatenation of the contents of all

the files given as command-line arguments or $stdin (in the case where

there are no arguments). $< supports methods similar to a File object:

binmode, close, closed?, each, each_byte, each_line, eof, eof?,

file, filename, fileno, getc, gets, lineno, lineno=, path, pos, pos=,

read, readchar, readline, readlines, rewind, seek, skip, tell, to_a,

to_i, to_io, to_s, along with the methods in Enumerable. The method

file returns a File object for the file currently being read. This may change

as $< reads through the files on the command line. [r/o]

$> IO The destination of output for Kernel#print and Kernel#printf. The

default value is $stdout.

$_ String The last line read by Kernel#gets or Kernel#readline. Many string-

related functions in the Kernel module operate on $_ by default. The vari-

able is local to the current scope. [thread]

$defout IO Synonym for $>. Obsolete: use $stdout.1.8

$deferr IO Synonym for STDERR.1.8 Obsolete: use $stderr.

$F String Synonym for $;.

$stderr IO The current standard error output.

$stdin IO The current standard input.

$stdout IO The current standard output. Assignment to $stdout1.8 is deprecated: use

$stdout.reopen instead.

Execution Environment Variables

$0 String The name of the top-level Ruby program being executed. Typically this will

be the program’s filename. On some operating systems, assigning to this

variable will change the name of the process reported (for example) by the

ps(1) command.

$* Array An array of strings containing the command-line options from the invoca-

tion of the program. Options used by the Ruby interpreter will have been

removed. [r/o]

$" Array An array containing the filenames of modules loaded by require. [r/o]

$$ Fixnum The process number of the program being executed. [r/o]

$? Process::Status

The exit status of the last child process to terminate. [r/o, thread]

$: Array An array of strings, where each string specifies a directory to be searched for

Ruby scripts and binary extensions used by the load and require methods.

The initial value is the value of the arguments passed via the I command-

line option, followed by an installation-defined standard library location, fol-

lowed by the current directory (“.”). This variable may be set from within a

program to alter the default search path; typically, programs use $: << dir

to append dir to the path. [r/o]

$a Object True if the a option is specified on the command line. [r/o]

Prepared exclusively for Jose Sierra

VARIABLES AND CONSTANTS 321

$d Object Synonym for $DEBUG.

$DEBUG Object Set to true if the d command-line option is specified.

__FILE__ String The name of the current source file. [r/o]

$F Array The array that receives the split input line if the a command-line option is

used.

$FILENAME String The name of the current input file. Equivalent to $<.filename. [r/o]

$i String If in-place edit mode is enabled (perhaps using the i command-line

option), $i holds the extension used when creating the backup file. If you

set a value into $i, enables in-place edit mode. See page 168.

$I Array Synonym for $:. [r/o]

$K String Sets the multibyte coding system for strings and regular expressions. Equiv-

alent to the K command-line option. See page 169.

$l Object Set to true if the l option (which enables line-end processing) is present

on the command line. See page 169. [r/o]

__LINE__ String The current line number in the source file. [r/o]

$LOAD_PATH Array A synonym for $:. [r/o]

$p Object Set to true if the p option (which puts an implicit while gets . . . end

loop around your program) is present on the command line. See page 169.

[r/o]

$SAFE Fixnum The current safe level (see page 380). This variable’s value may never be

reduced by assignment. [thread]

$VERBOSE Object Set to true if the v, version, W, or w option is specified on the com-

mand line. Set to false1.8 if no option, or W1 is given. Set to nil if W0

was specified. Setting this option to true causes the interpreter and some

library routines to report additional information. Setting to nil suppresses

all warnings (including the output of Kernel.warn).

$v Object Synonym for $VERBOSE.

$w Object Synonym for $VERBOSE.

Standard Objects

ARGF Object A synonym for $<.

ARGV Array A synonym for $*.

ENV Object A hash-like object containing the program’s environment variables. An

instance of class Object, ENV implements the full set of Hash methods. Used

to query and set the value of an environment variable, as in ENV["PATH"]

and ENV["term"]="ansi".

false FalseClass Singleton instance of class FalseClass. [r/o]

nil NilClass The singleton instance of class NilClass. The value of uninitialized

instance and global variables. [r/o]

Prepared exclusively for Jose Sierra

VARIABLES AND CONSTANTS 322

self Object The receiver (object) of the current method. [r/o]

true TrueClass Singleton instance of class TrueClass. [r/o]

Global Constants

The following constants are defined by the Ruby interpreter.

DATA IO If the main program file contains the directive __END__, then

the constant DATA will be initialized so that reading from it will

return lines following __END__ from the source file.

FALSE FalseClass Synonym for false.

NIL NilClass Synonym for nil.

RUBY_PLATFORM String The identifier of the platform running this program. This string

is in the same form as the platform identifier used by the GNU

configure utility (which is not a coincidence).

RUBY_RELEASE_DATE String The date of this release.

RUBY_VERSION String The version number of the interpreter.

STDERR IO The actual standard error stream for the program. The initial

value of $stderr.

STDIN IO The actual standard input stream for the program. The initial

value of $stdin.

STDOUT IO The actual standard output stream for the program. The initial

value of $stdout.

SCRIPT_LINES__ Hash If a constant SCRIPT_LINES__ is defined and references a Hash,

Ruby will store an entry containing the contents of each file it

parses, with the file’s name as the key and an array of strings as

the value. See Kernel.require on page 507 for an example.

TOPLEVEL_BINDING Binding A Binding object representing the binding at Ruby’s top level—

the level where programs are initially executed.

TRUE TrueClass Synonym for true.

The constant __FILE__ and the variable $0 are often used together to run code only if

it appears in the file run directly by the user. For example, library writers often use this

to include tests in their libraries that will be run if the library source is run directly, but

not if the source is required into another program.

library code

...

if __FILE__ == $0

tests...

end

Prepared exclusively for Jose Sierra

EXPRESSIONS 323

Expressions
Single terms in an expression may be any of the following.

• Literal. Ruby literals are numbers, strings, arrays, hashes, ranges, symbols, and

regular expressions. These are described starting on page 304.

• Shell command. A shell command is a string enclosed in backquotes or in a

general delimited string (page 303) starting with %x. The value of the string is the

standard output of running the command represented by the string under the host

operating system’s standard shell. The execution also sets the $? variable with the

command’s exit status.

filter = "*.c"

files = `ls #{filter}`

files = %x{ls #{filter}}

• Symbol generator. A Symbol object is created by prefixing an operator, string,1.8
variable, constant, method, class, module name with a colon. The symbol object

will be unique for each different name but does not refer to a particular instance

of the name, so the symbol for (say) :fred will be the same regardless of context.

A symbol is similar to the concept of atoms in other high-level languages.

• Variable reference or constant reference. A variable is referenced by citing its

name. Depending on scope (see page 315), a constant is referenced either by cit-

ing its name or by qualifying the name, using the name of the class or module

containing the constant and the scope operator (::).

barney # variable reference

APP_NAMR # constant reference

Math::PI # qualified constant reference

• Method invocation. The various ways of invoking a method are described starting

on page 333.

Operator Expressions

Expressions may be combined using operators. Table 22.4 on the following page lists

the Ruby operators in precedence order. The operators with a 3 in the Method column

are implemented as methods, and may be overridden.

More on Assignment

The assignment operator assigns one or more rvalues (the r stands for “right,” as rvalues

tend to appear on the right side of assignments) to one or more lvalues (“left” values).

What is meant by assignment depends on each individual lvalue.

Prepared exclusively for Jose Sierra

EXPRESSIONS 324

Table 22.4. Ruby operators (high to low precedence)

Method Operator Description

3 [] []= Element reference, element set

3 ** Exponentiation

3 ! ~ + Not, complement, unary plus and minus

(method names for the last two are +@ and

@)

3 * / % Multiply, divide, and modulo

3 + Plus and minus

3 >> << Right and left shift

3 & “And” (bitwise for integers)

3 ^ | Exclusive “or” and regular “or” (bitwise for

integers)

3 <= < > >= Comparison operators

3 <=> == === != =~ !~ Equality and pattern match operators (!=

and !~ may not be defined as methods)

&& Logical “and”

|| Logical “or”

.. ... Range (inclusive and exclusive)

? : Ternary if-then-else

= %= /= = += |= &=

>>= <<= *= &&= ||= **=

Assignment

defined? Check if symbol defined

not Logical negation

or and Logical composition

if unless while until Expression modifiers

begin/end Block expression

If an lvalue is a variable or constant name, that variable or constant receives a reference

to the corresponding rvalue.

a = /regexp/

b, c, d = 1, "cat", [3, 4, 5]

If the lvalue is an object attribute, the corresponding attribute setting method will be

called in the receiver, passing as a parameter the rvalue.

obj = A.new

obj.value = "hello" # equivalent to obj.value=("hello")

If the lvalue is an array element reference, Ruby calls the element assignment oper-

ator ([]=) in the receiver, passing as parameters any indices that appear between the

brackets followed by the rvalue. This is illustrated in the following table.

Prepared exclusively for Jose Sierra

EXPRESSIONS 325

Element Reference Actual Method Call

obj[] = "one" obj.[]=("one")

obj[1] = "two" obj.[]=(1, "two")

obj["a", /^cat/] = "three" obj.[]=("a", /^cat/, "three")

The value of an assignment expression is its rvalue.1.8 This is true even if the assignment

is to an attribute method that returns something different.

Parallel Assignment

An assignment expression may have one or more lvalues and one or more rvalues.

This section explains how Ruby handles assignment with different combinations of

arguments.

1. If the last rvalue is prefixed with an asterisk and implements to_ary, the rvalue is

replaced with the elements of the array, with each element forming its own rvalue.

2. If the assignment contains multiple lvalues and one rvalue, the rvalue is converted

into an Array, and this array is expanded into a set of rvalues as described in (1).

3. Successive rvalues are assigned to the lvalues. This assignment effectively hap-

pens in parallel, so that (for example) a,b=b,a swaps the values in a and b.

4. If there are more lvalues than rvalues, the excess will have nil assigned to them.

5. If there are more rvalues than lvalues, the excess will be ignored.

6. These rules are modified slightly if the last lvalue is preceded with an asterisk. This

lvalue will always receive an array during the assignment. The array will consist

of whatever rvalue would normally have been assigned to this lvalue, followed by

the excess rvalues (if any).

7. If an lvalue contains a parenthesized list, the list is treated as a nested assignment

statement, and then it is assigned from the corresponding rvalue as described by

these rules.

The tutorial has examples starting on page 85.

Block Expressions

begin

body

end

Expressions may be grouped between begin and end. The value of the block expres-

sion is the value of the last expression executed.

Block expressions also play a role in exception handling, which is discussed starting

on page 345.

Prepared exclusively for Jose Sierra

EXPRESSIONS 326

Boolean Expressions

Ruby predefines the globals false and nil. Both of these values are treated as being

false in a boolean context. All other values are treated as being true. The constant true

is available for when you need an explicit “true” value.

And, Or, Not, and Defined?

The and and && operators evaluate their first operand. If false, the expression returns

the value of the first operand; otherwise, the expression returns the value of the second

operand.

expr1 and expr2

expr1 && expr2

The or and || operators evaluate their first operand. If true, the expression returns the

value of their first operand; otherwise, the expression returns the value of the second

operand.

expr1 or expr2

expr1 || expr2

The not and ! operators evaluate their operand. If true, the expression returns false. If

false, the expression returns true. For historical reasons, a string, regexp, or range may

not appear as the single argument to not or !.

The word forms of these operators (and, or, and not) have a lower precedence than the

corresponding symbol forms (&&, ||, and !). See Table 22.4 on page 324 for details.

The defined? operator returns nil if its argument, which can be an arbitrary expres-

sion, is not defined. Otherwise, it returns a description of that argument. For examples,

see page 88 in the tutorial.

Comparison Operators

The Ruby syntax defines the comparison operators ==, ===, <=>, <, <=, >, >=, =~. All of

these operators are implemented as methods. By convention, the language also uses the

standard methods eql? and equal? (see Table 7.1 on page 89). Although the operators

have intuitive meaning, it is up to the classes that implement them to produce mean-

ingful comparison semantics. The library reference starting on page 402 describes the

comparison semantics for the built-in classes. The module Comparable provides sup-

port for implementing the operators ==, <, <=, >, >=, and the method between? in terms

of <=>. The operator === is used in case expressions, described on page 328.

Both == and =~ have negated forms, != and !~. Ruby converts these during syntax anal-

ysis: a != b is mapped to !(a == b), and a !~ b is mapped to !(a =~ b). No methods

correspond to != and !~.

Prepared exclusively for Jose Sierra

EXPRESSIONS 327

Figure 22.1. State transitions for boolean range

start unset set

expr1 is true

expr2 is true
expr1 is false expr2 is false

Ranges in Boolean Expressions

if expr1 .. expr2

while expr1 ... expr2

A range used in a boolean expression acts as a flip-flop. It has two states, set and unset,

and is initially unset. On each call, the range executes a transition in the state machine

shown in Figure 22.1. The range expression returns true if the state machine is in the

set state at the end of the call, and false otherwise.

The two-dot form of a range behaves slightly differently than the three-dot form. When

the two-dot form first makes the transition from unset to set, it immediately evaluates

the end condition and makes the transition accordingly. This means that if expr1 and

expr2 both evaluate to true on the same call, the two-dot form will finish the call in

the unset state. However, it still returns true for this call.

The three-dot form does not evaluate the end condition immediately upon entering the

set state.

The difference is illustrated by the following code.

a = (11..20).collect {|i| (i%4 == 0)..(i%3 == 0) ? i : nil}

a → [nil, 12, nil, nil, nil, 16, 17, 18, nil, 20]

a = (11..20).collect {|i| (i%4 == 0)...(i%3 == 0) ? i : nil}

a → [nil, 12, 13, 14, 15, 16, 17, 18, nil, 20]

Regular Expressions in Boolean Expressions

In versions of Ruby prior to 1.81.8 , a single regular expression in boolean expression

was matched against the current value of the variable $_. This behavior is now only

supported if the condition appears in a command-line e parameter. In regular code,

the use of implicit operands and $_ is being slowly phased out, so it is better to use an

explicit match against a variable. If a match against $_ is required, use

if ~/re/ ... or if $_ =~ /re/ ...

Prepared exclusively for Jose Sierra

EXPRESSIONS 328

if and unless Expressions

if boolean-expression [then | :]
body

[elsif boolean-expression [then | :]
body , ...]

[else

body]
end

unless boolean-expression [then | :]
body

[else

body]
end

The then keyword (or a colon) separates the body from the condition. It is not required

if the body starts on a new line. The value of an if or unless expression is the value

of the last expression evaluated in whichever body is executed.

if and unless Modifiers

expression if boolean-expression

expression unless boolean-expression

evaluates expression only if boolean-expression is true (for if) or false (for unless).

Ternary Operator

boolean-expression ? expr1 : expr2

returns expr1 if boolean expression is true and expr2 otherwise.

case Expressions

Ruby has two forms of case statement. The first allows a series of conditions to be

evaluated, executing code corresponding to the first condition that is true.

case

when condition [, condition]... [then | :]
body

when condition [, condition]... [then | :]
body

...

[else

body]
end

The second form of a case expression takes a target expression following the case key-

word. It searches for a match by starting at the first (top left) comparison, performing

comparison === target.

Prepared exclusively for Jose Sierra

EXPRESSIONS 329

case target

when comparison [, comparison]... [then | :]
body

when comparison [, comparison]... [then | :]
body

...

[else

body]
end

A comparison can be an array reference preceded by an asterisk, in which case it is

expanded into that array’s elements before the tests are performed on each. When a

comparison returns true, the search stops, and the body associated with the comparison

is executed (no break is required). case then returns the value of the last expression

executed. If no comparison matches: if an else clause is present, its body will be

executed; otherwise, case silently returns nil.

The then keyword (or a colon) separates the when comparisons from the bodies and is

not needed if the body starts on a new line.

Loops

while boolean-expression [do | :]
body

end

executes body zero or more times as long as boolean-expression is true.

until boolean-expression [do | :]
body

end

executes body zero or more times as long as boolean-expression is false.

In both forms, the do or colon separates boolean-expression from the body and can be

omitted when the body starts on a new line.

for name [, name]... in expression [do | :]
body

end

The for loop is executed as if it were the following each loop, except that local vari-

ables defined in the body of the for loop will be available outside the loop, and those

defined within an iterator block will not.

expression.each do | name [, name]... |

body

end

loop, which iterates its associated block, is not a language construct—it is a method in Library

module Kernel.

Prepared exclusively for Jose Sierra

METHOD DEFINITION 330

loop do

print "Input: "

break unless line = gets

process(line)

end

while and until Modifiers

expression while boolean-expression

expression until boolean-expression

If expression is anything other than a begin/end block, executes expression zero or

more times while boolean-expression is true (for while) or false (for until).

If expression is a begin/end block, the block will always be executed at least one time.

break, redo, next, and retry

break, redo, next, and retry alter the normal flow through a while, until, for, or

iterator controlled loop.

break terminates the immediately enclosing loop—control resumes at the statement

following the block. redo repeats the loop from the start, but without reevaluating

the condition or fetching the next element (in an iterator). The next keyword skips

to the end of the loop, effectively starting the next iteration. retry restarts the loop,

reevaluating the condition.

break and next may optionally take one or more arguments.1.8 If used within a block,

the given argument(s) are returned as the value of the yield. If used within a while,

until, or for loop, the value given to break is returned as the value of the statement,

and the value given to next is silently ignored. If break is never called, or if it is called

with no value, the loop returns nil.

match = while line = gets

next if line =~ /^#/

break line if line =~ /ruby/

end

match = for line in ARGF.readlines

next if line =~ /^#/

break line if line =~ /ruby/

end

Method Definition
def defname [([arg [=val], ...] [, *vararg] [, &blockarg])]

body

end

defname is both the name of the method and optionally the context in which it is valid.

Prepared exclusively for Jose Sierra

METHOD DEFINITION 331

defname ← methodname

constant.methodname

(expr).methodname

A methodname is either a redefinable operator (see Table 22.4 on page 324) or a name.

If methodname is a name, it should start with a lowercase letter (or underscore) option-

ally followed by upper- and lowercase letters, underscores, and digits. A methodname

may optionally end with a question mark (?), exclamation point (!), or equals sign (=).

The question mark and exclamation point are simply part of the name. The equals sign

is also part of the name but additionally signals that this method may be used as an

lvalue (described on page 29).

A method definition using an unadorned method name within a class or module defini-

tion creates an instance method. An instance method may be invoked only by sending

its name to a receiver that is an instance of the class that defined it (or one of that class’s

subclasses).

Outside a class or module definition, a definition with an unadorned method name is

added as a private method to class Object, and hence may be called in any context

without an explicit receiver.

A definition using a method name of the form constant.methodname or the more general

(expr).methodname creates a method associated with the object that is the value of

the constant or expression; the method will be callable only by supplying the object

referenced by the expression as a receiver. This style of definition creates per object or

singleton methods.

class MyClass

def MyClass.method # definition

end

end

MyClass.method # call

obj = Object.new

def obj.method # definition

end

obj.method # call

def (1.class).fred # receiver may be an expression

end

Fixnum.fred # call

Method definitions may not contain class or module definitions. They may contain

nested instance or singleton method definitions.1.8 The internal method is defined when

the enclosing method is executed. The internal method does not act as a closure in the

context of the nested method—it is self contained.

Prepared exclusively for Jose Sierra

METHOD DEFINITION 332

def toggle

def toggle

"subsequent times"

end

"first time"

end

toggle → "first time"

toggle → "subsequent times"

toggle → "subsequent times"

The body of a method acts as if it were a begin/end block, in that it may contain

exception handling statements (rescue, else, and ensure).

Method Arguments

A method definition may have zero or more regular arguments, an optional array argu-

ment, and an optional block argument. Arguments are separated by commas, and the

argument list may be enclosed in parentheses.

A regular argument is a local variable name, optionally followed by an equals sign and

an expression giving a default value. The expression is evaluated at the time the method

is called. The expressions are evaluated from left to right. An expression may reference

a parameter that precedes it in the argument list.

def options(a=99, b=a+1)

[a, b]

end

options → [99, 100]

options 1 → [1, 2]

options 2, 4 → [2, 4]

The optional array argument must follow any regular arguments and may not have

a default. When the method is invoked, Ruby sets the array argument to reference a

new object of class Array. If the method call specifies any parameters in excess of

the regular argument count, all these extra parameters will be collected into this newly

created array.

def varargs(a, *b)

[a, b]

end

varargs 1 → [1, []]

varargs 1, 2 → [1, [2]]

varargs 1, 2, 3 → [1, [2, 3]]

If an array argument follows arguments with default values, parameters will first be

used to override the defaults. The remainder will then be used to populate the array.

Prepared exclusively for Jose Sierra

INVOKING A METHOD 333

def mixed(a, b=99, *c)

[a, b, c]

end

mixed 1 → [1, 99, []]

mixed 1, 2 → [1, 2, []]

mixed 1, 2, 3 → [1, 2, [3]]

mixed 1, 2, 3, 4 → [1, 2, [3, 4]]

The optional block argument must be the last in the list. Whenever the method is called,

Ruby checks for an associated block. If a block is present, it is converted to an object

of class Proc and assigned to the block argument. If no block is present, the argument

is set to nil.

def example(&block)

puts block.inspect

end

example

example { "a block" }

produces:

nil

#<Proc:0x001ca760@:6>

Invoking a Method

[receiver.] name [parameters] [block]
[receiver::] name [parameters] [block]

parameters ← ([param, ...] [, hashlist] [*array] [&a_proc])

block ← { blockbody }

do blockbody end

Initial parameters are assigned to the actual arguments of the method. Following these

parameters may be a list of key => value pairs. These pairs are collected into a single

new Hash object and passed as a single parameter.

Following these parameters may be a single parameter prefixed with an asterisk. If this

parameter is an array, Ruby replaces it with zero or more parameters corresponding to

the elements of the array.

def regular(a, b, *c)

..

end

regular 1, 2, 3, 4

regular(1, 2, 3, 4)

regular(1, *[2, 3, 4])

Prepared exclusively for Jose Sierra

INVOKING A METHOD 334

A block may be associated with a method call using either a literal block (which must

start on the same source line as the last line of the method call) or a parameter con-

taining a reference to a Proc or Method object prefixed with an ampersand character.

Regardless of the presence of a block argument, Ruby arranges for the value of the

global function Kernel.block_given? to reflect the availability of a block associated

with the call.

a_proc = lambda { 99 }

an_array = [98, 97, 96]

def block

yield

end

block { }

block do

end

block(&a_proc)

def all(a, b, c, *d, &e)

puts "a = #{a.inspect}"

puts "b = #{b.inspect}"

puts "c = #{c.inspect}"

puts "d = #{d.inspect}"

puts "block = #{yield(e).inspect}"

end

all('test', 1 => 'cat', 2 => 'dog', *an_array, &a_proc)

produces:

a = "test"

b = {1=>"cat", 2=>"dog"}

c = 98

d = [97, 96]

block = 99

A method is called by passing its name to a receiver. If no receiver is specified, self

is assumed. The receiver checks for the method definition in its own class and then

sequentially in its ancestor classes. The instance methods of included modules act as

if they were in anonymous superclasses of the class that includes them. If the method

is not found, Ruby invokes the method method_missing in the receiver. The default

behavior defined in Kernel.method_missing is to report an error and terminate the Library

program.

When a receiver is explicitly specified in a method invocation, it may be separated from

the method name using either a period “.” or two colons “::”. The only difference

between these two forms occurs if the method name starts with an uppercase letter.

In this case, Ruby will assume that a receiver::Thing method call is actually an

attempt to access a constant called Thing in the receiver unless the method invocation

has a parameter list between parentheses.

Prepared exclusively for Jose Sierra

INVOKING A METHOD 335

Foo.Bar() # method call

Foo.Bar # method call

Foo::Bar() # method call

Foo::Bar # constant access

The return value of a method is the value of the last expression executed.

return [expr, ...]

A return expression immediately exits a method. The value of a return is nil if it is

called with no parameters, the value of its parameter if it is called with one parameter,

or an array containing all of its parameters if it is called with more than one parameter.

super

super [([param, ...] [*array])] [block]

Within the body of a method, a call to super acts just like a call to that original method,

except that the search for a method body starts in the superclass of the object that was

found to contain the original method. If no parameters (and no parentheses) are passed

to super, the original method’s parameters will be passed; otherwise, the parameters

to super will be passed.

Operator Methods

expr1 operator

operator expr1

expr1 operator expr2

If the operator in an operator expression corresponds to a redefinable method (see the

Table 22.4 on page 324), Ruby will execute the operator expression as if it had been

written

(expr1).operator() or

(expr1).operator(expr2)

Attribute Assignment

receiver.attrname = rvalue

When the form receiver.attrname appears as an lvalue, Ruby invokes a method named

attrname= in the receiver, passing rvalue as a single parameter. The value returned by

this assignment1.8 is always rvalue—the return value of the method attrname= is dis-

carded. If you want to access the return value (in the unlikely event that it isn’t the

rvalue anyway), send an explicit message to the method.

Prepared exclusively for Jose Sierra

ALIASING 336

class Demo

attr_reader :attr

def attr=(val)

@attr = val

"return value"

end

end

d = Demo.new

In all these cases, @attr is set to 99

d.attr = 99 → 99

d.attr=(99) → 99

d.send(:attr=, 99) → "return value"

d.attr → 99

Element Reference Operator

receiver[expr [, expr]...]

receiver[expr [, expr]...] = rvalue

When used as an rvalue, element reference invokes the method [] in the receiver,

passing as parameters the expressions between the brackets.

When used as an lvalue, element reference invokes the method []= in the receiver,

passing as parameters the expressions between the brackets, followed by the rvalue

being assigned.

Aliasing
alias new_name old_name

creates a new name that refers to an existing method, operator, global variable, or reg-

ular expression backreference ($&, $`, $', and $+). Local variables, instance variables,

class variables, and constants may not be aliased. The parameters to alias may be

names or symbols.

class Fixnum

alias plus +

end

1.plus(3) → 4

alias $prematch $`

"string" =~ /i/ → 3

$prematch → "str"

alias :cmd :`

cmd "date" → "Wed Sep 20 16:05:10 CDT 2006\n"

Prepared exclusively for Jose Sierra

CLASS DEFINITION 337

When a method is aliased, the new name refers to a copy of the original method’s body.

If the method is subsequently redefined, the aliased name will still invoke the original

implementation.

def meth

"original method"

end

alias original meth

def meth

"new and improved"

end

meth → "new and improved"

original → "original method"

Class Definition
class [scope::] classname [< superexpr]

body

end

class << obj

body

end

A Ruby class definition creates or extends an object of class Class by executing the

code in body. In the first form, a named class is created or extended. The resulting

Class object is assigned to a constant named classname (see below for scoping rules).

This name should start with an uppercase letter. In the second form, an anonymous

(singleton) class is associated with the specific object.

If present, superexpr should be an expression that evaluates to a Class object that will

be the superclass of the class being defined. If omitted, it defaults to class Object.

Within body, most Ruby expressions are executed as the definition is read. However:

• Method definitions will register the methods in a table in the class object.

• Nested class and module definitions will be stored in constants within the class,

not as global constants. These nested classes and modules can be accessed from

outside the defining class using “::” to qualify their names.

module NameSpace

class Example

CONST = 123

end

end

obj = NameSpace::Example.new

a = NameSpace::Example::CONST

• The Module#include method will add the named modules as anonymous super-

classes of the class being defined.

Prepared exclusively for Jose Sierra

CLASS DEFINITION 338

The classname in a class definition may be prefixed by the names of existing classes

or modules using the scope operator (::).1.8 This syntax inserts the new definition into

the namespace of the prefixing module(s) and/or class(es) but does not interpret the

definition in the scope of these outer classes. A classname with a leading scope operator

places that class or module in the top-level scope.

In the following example, class C is inserted into module A’s namespace but is not

interpreted in the context of A. As a result, the reference to CONST resolves to the top-

level constant of that name, not A’s version. We also have to fully qualify the singleton

method name, as C on its own is not a known constant in the context of A::C.

CONST = "outer"

module A

CONST = "inner" # This is A::CONST

end

module A

class B

def B.get_const

CONST

end

end

end

A::B.get_const → "inner"

class A::C

def (A::C).get_const

CONST

end

end

A::C.get_const → "outer"

It is worth emphasizing that a class definition is executable code. Many of the directives

used in class definition (such as attr and include) are actually simply private instance

methods of class Module (documented starting on page 533).

Chapter 24, which begins on page 362, describes in more detail how Class objects

interact with the rest of the environment.

Creating Objects from Classes

obj = classexpr.new [([args, ...])]

Class Class defines the instance method Class#new, which creates an object of the

class of the receiver (classexpr in the syntax example). This is done by calling the

method classexpr.allocate.1.8 You can override this method, but your implementation

must return an object of the correct class. It then invokes initialize in the newly

created object, and passes it any arguments originally passed to new.

Prepared exclusively for Jose Sierra

MODULE DEFINITIONS 339

If a class definition overrides the class method new without calling super, no objects

of that class can be created, and calls to new will silently return nil.

Like any other method, initialize should call super if it wants to ensure that parent

classes have been properly initialized. This is not necessary when the parent is Object,

as class Object does no instance-specific initialization.

Class Attribute Declarations

Class attribute declarations are not part of the Ruby syntax: they are simply methods Library

defined in class Module that create accessor methods automatically.

class name

attr attribute [, writable]
attr_reader attribute [, attribute]...
attr_writer attribute [, attribute]...
attr_accessor attribute [, attribute]...

end

Module Definitions
module name

body

end

A module is basically a class that cannot be instantiated. Like a class, its body is

executed during definition and the resulting Module object is stored in a constant. A

module may contain class and instance methods and may define constants and class

variables. As with classes, module methods are invoked using the Module object as a

receiver, and constants are accessed using the “::” scope resolution operator. The name

in a module definition may optionally be preceded by the names of enclosing class(es)

and/or module(s).

CONST = "outer"

module Mod

CONST = 1

def Mod.method1 # module method

CONST + 1

end

end

module Mod::Inner

def (Mod::Inner).method2

CONST + " scope"

end

end

Mod::CONST → 1

Mod.method1 → 2

Mod::Inner::method2 → "outer scope"

Prepared exclusively for Jose Sierra

MODULE DEFINITIONS 340

Mixins—Including Modules

class|module name

include expr

end

A module may be included within the definition of another module or class using the

include method. The module or class definition containing the include gains access Library

to the constants, class variables, and instance methods of the module it includes.

If a module is included within a class definition, the module’s constants, class vari-

ables, and instance methods are effectively bundled into an anonymous (and inaccess-

ible) superclass for that class. Objects of the class will respond to messages sent to the

module’s instance methods. Calls to methods not defined in the class will be passed to

the module(s) mixed into the class before being passed to any parent class. A module

may choose to define an initialize method, which will be called upon the creation

of an object of a class that mixes in the module if either: (a) the class does not define

its own initialize method, or (b) the class’s initialize method invokes super.

A module may also be included at the top level, in which case the module’s constants,

class variables, and instance methods become available at the top level.

Module Functions

Although include is useful for providing mixin functionality, it is also a way of bring-

ing the constants, class variables, and instance methods of a module into another name-

space. However, functionality defined in an instance method will not be available as a

module method.

module Math

def sin(x)

#

end

end

Only way to access Math.sin is...

include Math

sin(1)

The method Module#module_function solves this problem by taking one or more Library

module instance methods and copying their definitions into corresponding module

methods.

module Math

def sin(x)

#

end

module_function :sin

end

Math.sin(1)

include Math

sin(1)

Prepared exclusively for Jose Sierra

ACCESS CONTROL 341

The instance method and module method are two different methods: the method defi-

nition is copied by module_function, not aliased.

Access Control
Ruby defines three levels of protection for module and class constants and methods:

• Public. Accessible to anyone.

• Protected. Can be invoked only by objects of the defining class and its subclasses.

• Private. Can be called only in functional form (that is, with an implicit self as the

receiver). Private methods therefore can be called only in the defining class and

by direct descendents within the same object. See discussion starting on page 35

for examples.

private [symbol, ...]
protected [symbol, ...]
public [symbol, ...]

Each function can be used in two different ways. Library

1. If used with no arguments, the three functions set the default access control of

subsequently defined methods.

2. With arguments, the functions set the access control of the named methods and

constants.

Access control is enforced when a method is invoked.

Blocks, Closures, and Proc Objects
A code block is a set of Ruby statements and expressions between braces or a do/end

pair. The block may start with an argument list between vertical bars. A code block may

appear only immediately after a method invocation. The start of the block (the brace or

the do) must be on the same logical line as the end of the invocation.

invocation do | a1, a2, ... |

end

invocation { | a1, a2, ... |

}

Braces have a high precedence; do has a low precedence. If the method invocation has

parameters that are not enclosed in parentheses, the brace form of a block will bind to

the last parameter, not to the overall invocation. The do form will bind to the invocation.

Prepared exclusively for Jose Sierra

BLOCKS, CLOSURES, AND PROC OBJECTS 342

Within the body of the invoked method, the code block may be called using the yield

keyword. Parameters passed to the yield will be assigned to arguments in the block.1.8
A warning will be generated if yield passes multiple parameters to a block that takes

just one. The return value of the yield is the value of the last expression evaluated in

the block or the value passed to a next1.8 statement executed in the block.

A block is a closure; it remembers the context in which it was defined, and it uses that

context whenever it is called. The context includes the value of self, the constants, class

variables, local variables, and any captured block.

class Holder

CONST = 100

def call_block

a = 101

@a = 102

@@a = 103

yield

end

end

class Creator

CONST = 0

def create_block

a = 1

@a = 2

@@a = 3

proc do

puts "a = #{a}"

puts "@a = #@a"

puts "@@a = #@@a"

puts yield

end

end

end

block = Creator.new.create_block { "original" }

Holder.new.call_block(&block)

produces:

a = 1

@a = 2

@@a = 3

original

Proc Objects, break, and next

Ruby’s blocks are chunks of code attached to a method that operate in the context in

which they were defined. Blocks are not objects, but they can be converted into objects

of class Proc. There are three ways of converting a block into a Proc object.

Prepared exclusively for Jose Sierra

BLOCKS, CLOSURES, AND PROC OBJECTS 343

1. By passing a block to a method whose last parameter is prefixed with an amper-

sand. That parameter will receive the block as a Proc object.

def meth1(p1, p2, &block)

puts block.inspect

end

meth1(1,2) { "a block" }

meth1(3,4)

produces:

#<Proc:0x001ca760@:4>

nil

2. By calling Proc.new, again associating it with a block. Library

block = Proc.new { "a block" }

block → #<Proc:0x001ca904@:1>

3. By calling the method Kernel.lambda (or the equivalent, if mildly deprecated, Library

method Kernel.proc1.8), associating a block with the call.

block = lambda { "a block" }

block → #<Proc:0x001ca92c@:1>

The first two styles of Proc object are identical in use. We’ll call these objects raw

procs. The third style, generated by lambda, adds some additional functionality to the

Proc object, as we’ll see in a minute. We’ll call these objects lambdas.

Within either kind of block, executing next causes the block to exit. The value of the

block is the value (or values) passed to next, or it’s nil if no values are passed.

def meth

res = yield

"The block returns #{res}"

end

meth { next 99 } → "The block returns 99"

pr = Proc.new { next 99 }

pr.call → 99

pr = lambda { next 99 }

pr.call → 99

Within a raw proc, a break terminates the method that invoked the block. The return

value of the method is any parameters passed to the break.

Return and Blocks

A return from inside a block that’s still in scope acts as a return from that scope.

A return from a block whose original context is not longer valid raises an exception

Prepared exclusively for Jose Sierra

BLOCKS, CLOSURES, AND PROC OBJECTS 344

(LocalJumpError or ThreadError depending on the context). The following example

illustrates the first case.

def meth1

(1..10).each do |val|

return val # returns from method

end

end

meth1 → 1

This example shows a return failing because the context of its block no longer exists.

def meth2(&b)

b

end

res = meth2 { return }

res.call

produces:

prog.rb:5: unexpected return (LocalJumpError)

from prog.rb:5:in `call'

from prog.rb:6

And here’s a return failing because the block is created in one thread and called in

another.

def meth3

yield

end

t = Thread.new do

meth3 { return }

end

t.join

produces:

prog.rb:6: return can't jump across threads (ThreadError)

from prog.rb:9:in `join'

from prog.rb:9

The situation with Proc objects is slightly more complicated. If you use Proc.new to

create a proc from a block, that proc acts like a block, and the previous rules apply.

def meth4

p = Proc.new { return 99 }

p.call

puts "Never get here"

end

meth4 → 99

Prepared exclusively for Jose Sierra

EXCEPTIONS 345

If the Proc object is created using Kernel.proc or Kernel.lambda, it behaves more

like a free-standing method body: a return simply returns from the block to the caller

of the block.

def meth5

p = lambda { return 99 }

res = p.call

"The block returned #{res}"

end

meth5 → "The block returned 99"

Because of this, if you use Module#define_method, you’ll probably want to pass it

a proc created using lambda, not Proc.new, as return will work as expected in the

former and will generate a LocalJumpError in the latter.

Exceptions
Ruby exceptions are objects of class Exception and its descendents (a full list of the

built-in exceptions is given in Figure 27.1 on page 441).

Raising Exceptions

The Kernel.raise method raises an exception. Library

raise

raise string

raise thing [, string [stack trace]]

The first form reraises the exception in $! or a new RuntimeError if $! is nil.

The second form creates a new RuntimeError exception, setting its message to the

given string.

The third form creates an exception object by invoking the method exception on its

first argument. It then sets this exception’s message and backtrace to its second and

third arguments.

Class Exception and objects of class Exception contain a factory method called

exception, so an exception class name or instance can be used as the first parame-

ter to raise.

When an exception is raised, Ruby places a reference to the Exception object in the

global variable $!.

Prepared exclusively for Jose Sierra

EXCEPTIONS 346

Handling Exceptions

Exceptions may be handled

• within the scope of a begin/end block,

begin

code...

code...

[rescue [parm, ...] [=> var] [then]
error handling code... , ...]

[else

no exception code...]
[ensure

always executed code...]
end

• within the body of a method,

def method and args

code...

code...

[rescue [parm, ...] [=> var] [then]
error handling code... , ...]

[else

no exception code...]
[ensure

always executed code...]
end

• and after the execution of a single statement.1.8

statement [rescue statement, ...]

A block or method may have multiple rescue clauses, and each rescue clause may

specify zero or more exception parameters. A rescue clause with no parameter is

treated as if it had a parameter of StandardError. This means that some lower-level

exceptions will not be caught by a parameterless rescue class. If you want to rescue

every exception, use

rescue Exception => e

When an exception is raised, Ruby scans up the call stack until it finds an enclosing

begin/end block, method body, or statement with a rescue modifier. For each rescue

clause in that block, Ruby compares the raised exception against each of the rescue

clause’s parameters in turn; each parameter is tested using parameter===$!.1.8 If the

raised exception matches a rescue parameter, Ruby executes the body of the rescue

and stops looking. If a matching rescue clause ends with => and a variable name, the

variable is set to $!.

Prepared exclusively for Jose Sierra

CATCH AND THROW 347

Although the parameters to the rescue clause are typically the names of Exception

classes, they can actually be arbitrary expressions (including method calls) that return

an appropriate class.

If no rescue clause matches the raised exception, Ruby moves up the stack looking for

a higher-level begin/end block that matches. If an exception propagates to the top level

of the main thread without being rescued, the program terminates with a message.

If an else clause is present, its body is executed if no exceptions were raised in code.

Exceptions raised during the execution of the else clause are not captured by rescue

clauses in the same block as the else.

If an ensure clause is present, its body is always executed as the block is exited (even

if an uncaught exception is in the process of being propagated).

Within a rescue clause, raise with no parameters will reraise the exception in $!.

Rescue Statement Modifier

A statement may have an optional rescue modifier followed by another statement

(and by extension another rescue modifier, and so on). The rescue modifier takes no

exception parameter and rescues StandardError and its children.

If an exception is raised to the left of a rescue modifier, the statement on the left is

abandoned, and the value of the overall line is the value of the statement on the right.

values = ["1", "2.3", /pattern/]

result = values.map {|v| Integer(v) rescue Float(v) rescue String(v) }

result → [1, 2.3, "(?mix:pattern)"]

Retrying a Block

The retry statement can be used within a rescue clause to restart the enclosing

begin/end block from the beginning.

Catch and Throw
The method Kernel.catch executes its associated block. Library

catch (symbol | string) do

block...

end

The method Kernel.throw interrupts the normal processing of statements. Library

throw(symbol | string [, obj])

Prepared exclusively for Jose Sierra

CATCH AND THROW 348

When a throw is executed, Ruby searches up the call stack for the first catch block

with a matching symbol or string. If it is found, the search stops, and execution resumes

past the end of the catch’s block. If the throw was passed a second parameter, that

value is returned as the value of the catch. Ruby honors the ensure clauses of any

block expressions it traverses while looking for a corresponding catch.

If no catch block matches the throw, Ruby raises a NameError exception at the loca-

tion of the throw.

Prepared exclusively for Jose Sierra

Chapter 23

Duck Typing

You’ll have noticed that in Ruby we don’t declare the types of variables or methods—

everything is just some kind of object.

Now, it seems like folks react to this in two ways. Some like this kind of flexibility and

feel comfortable writing code with dynamically typed variables and methods. If you’re

one of those people, you might want to skip to the section called “Classes Aren’t Types”

on the next page. Some, though, get nervous when they think about all those objects

floating around unconstrained. If you’ve come to Ruby from a language such as C# or

Java, where you’re used to giving all your variables and methods a type, you may feel

that Ruby is just too sloppy to use to write “real” applications.

It isn’t.

We’d like to spend a couple of paragraphs trying to convince you that the lack of static

typing is not a problem when it comes to writing reliable applications. We’re not trying

to criticize other languages here. Instead, we’d just like to contrast approaches.

The reality is that the static type systems in most mainstream languages don’t really

help that much in terms of program security. If Java’s type system were reliable, for

example, it wouldn’t need to implement ClassCastException. The exception is nec-

essary, though, because there is runtime type uncertainty in Java (as there is in C++,

C#, and others). Static typing can be good for optimizing code, and it can help IDEs

do clever things with tooltip help, but we haven’t seen much evidence that it promotes

more reliable code.

On the other hand, once you use Ruby for a while, you realize that dynamically typed

variables actually add to your productivity in many ways. You’ll also be surprised to

discover that your fears about the type chaos were unfounded. Large, long-running,

Ruby programs run significant applications and just don’t throw any type-related errors.

Why is this?

Partly, it’s a question of common sense. If you coded in Java (pre Java 1.5), all your

containers were effectively untyped: everything in a container was just an Object, and

349Prepared exclusively for Jose Sierra

CLASSES AREN’T TYPES 350

you cast it to the required type when you extracted an element. And yet you probably

never saw a ClassCastException when you ran these programs. The structure of the

code just didn’t permit it: you put Person objects in, and you later took Person objects

out. You just don’t write programs that would work in another way.

Well, it’s the same in Ruby. If you use a variable for some purpose, the chances are

very good that you’ll be using it for the same purpose when you access it again three

lines later. The kind of chaos that could happen just doesn’t happen.

On top of that, folks who code Ruby a lot tend to adopt a certain style of coding. They

write lots of short methods and tend to test as they go along. The short methods mean

that the scope of most variables is limited: there just isn’t that much time for things to

go wrong with their type. And the testing catches the silly errors when they happen:

typos and the like just don’t get a chance to propagate through the code.

The upshot is that the “safety” in “type safety” is often illusory and that coding in a

more dynamic language such as Ruby is both safe and productive. So, if you’re nervous

about the lack of static typing in Ruby, we suggest you try to put those concerns on the

back burner for a little while, and give Ruby a try. We think you’ll be surprised at how

rarely you see errors because of type issues, and at how much more productive you feel

once you start to exploit the power of dynamic typing.

Classes Aren’t Types
The issue of types is actually somewhat deeper than an ongoing debate between strong

typing advocates and the hippie-freak dynamic typing crowd. The real issue is the ques-

tion, what is a type in the first place?

If you’ve been coding in conventional typed languages, you’ve probably been taught

that the type of an object is its class—all objects are instances of some class, and that

class is the object’s type. The class defines the operations (methods) that the object can

support, along with the state (instance variables) on which those methods operate. Let’s

look at some Java code.

Customer c;

c = database.findCustomer("dave"); /* Java */

This fragment declares the variable c to be of type Customer and sets it to reference the

customer object for Dave that we’ve created from some database record. So the type of

the object in c is Customer, right?

Maybe. However, even in Java, the issue is slightly deeper. Java supports the concept

of interfaces, which are a kind of emasculated abstract base class. A Java class can be

declared as implementing multiple interfaces. Using this facility, you may have defined

your classes as follows.

Prepared exclusively for Jose Sierra

CLASSES AREN’T TYPES 351

public interface Customer {

long getID();

Calendar getDateOfLastContact();

// ...

}

public class Person

implements Customer {

public long getID() { ... }

public Calendar getDateOfLastContact() { ... }

// ...

}

So even in Java, the class is not always the type—sometimes the type is a subset of the

class, and sometimes objects implement multiple types.

In Ruby, the class is never (OK, almost never) the type. Instead, the type of an object is

defined more by what that object can do. In Ruby, we call this duck typing. If an object

walks like a duck and talks like a duck, then the interpreter is happy to treat it as if it

were a duck.

Let’s look at an example. Perhaps we’ve written a method to write our customer’s name

to the end of an open file.

class Customer

def initialize(first_name, last_name)

@first_name = first_name

@last_name = last_name

end

def append_name_to_file(file)

file << @first_name << " " << @last_name

end

end

Being good programmers, we’ll write a unit test for this. Be warned, though—it’s

messy (and we’ll improve on it shortly).

require 'test/unit'

require 'addcust'

class TestAddCustomer < Test::Unit::TestCase

def test_add

c = Customer.new("Ima", "Customer")

f = File.open("tmpfile", "w") do |f|

c.append_name_to_file(f)

end

f = File.open("tmpfile") do |f|

assert_equal("Ima Customer", f.gets)

end

ensure

File.delete("tmpfile") if File.exist?("tmpfile")

end

end

Prepared exclusively for Jose Sierra

CLASSES AREN’T TYPES 352

produces:

Finished in 0.00151 seconds.

1 tests, 1 assertions, 0 failures, 0 errors

We have to do all that work to create a file to write to, then reopen it, and read in the

contents to verify the correct string was written. We also have to delete the file when

we’ve finished (but only if it exists).

Instead, though, we could rely on duck typing. All we need is something that walks

like a file and talks like a file that we can pass in to the method under test. And all that

means in this circumstance is that we need an object that responds to the << method

by appending something. Do we have something that does this? How about a humble

String?

require 'test/unit'

require 'addcust'

class TestAddCustomer < Test::Unit::TestCase

def test_add

c = Customer.new("Ima", "Customer")

f = ""

c.append_name_to_file(f)

assert_equal("Ima Customer", f)

end

end

produces:

Finished in 0.000401 seconds.

1 tests, 1 assertions, 0 failures, 0 errors

The method under test thinks it’s writing to a file, but instead it’s just appending to a

string. At the end, we can then just test that the content is correct.

We didn’t have to use a string—for the object we’re testing here, an array would work

just as well.

require 'test/unit'

require 'addcust'

class TestAddCustomer < Test::Unit::TestCase

def test_add

c = Customer.new("Ima", "Customer")

f = []

c.append_name_to_file(f)

assert_equal(["Ima", " ", "Customer"], f)

end

end

produces:

Finished in 0.000423 seconds.

1 tests, 1 assertions, 0 failures, 0 errors

Prepared exclusively for Jose Sierra

CLASSES AREN’T TYPES 353

Indeed, this form may be more convenient if we wanted to check that the correct indi-

vidual things were inserted.

So duck typing is convenient for testing, but what about in the body of applications

themselves? Well, it turns out that the same thing that made the tests easy in the previ-

ous example also makes it easy to write flexible application code.

In fact, Dave had an interesting experience where duck typing dug him (and a client)

out of a hole. He’d written a large Ruby-based Web application that (among other

things) kept a database table full of details of participants in a competition. The system

provided a comma-separated value (CSV) download capability, allowing administrators

to import this information into their local spreadsheets.

Just before competition time, the phone starts ringing. The download, which had been

working fine up to this point, was now taking so long that requests were timing out.

The pressure was intense, as the administrators had to use this information to build

schedules and send out mailings.

A little experimentation showed that the problem was in the routine that took the results

of the database query and generated the CSV download. The code looked something

like

def csv_from_row(op, row)

res = ""

until row.empty?

entry = row.shift.to_s

if /[,"]/ =~ entry

entry = entry.gsub(/"/, '""')

res << '"' << entry << '"'

else

res << entry

end

res << "," unless row.empty?

end

op << res << CRLF

end

result = ""

query.each_row {|row| csv_from_row(result, row)}

http.write result

When this code ran against moderate-size data sets, it performed fine. But at a cer-

tain input size, it suddenly slowed right down. The culprit? Garbage collection. The

approach was generating thousands of intermediate strings and building one big result

string, one line at a time. As the big string grew, it needed more space, and garbage

collection was invoked, which necessitated scanning and removing all the intermediate

strings.

The answer was simple and surprisingly effective. Rather than build the result string

as it went along, the code was changed to store each CSV row as an element in an

Prepared exclusively for Jose Sierra

CODING LIKE A DUCK 354

array. This meant that the intermediate lines were still referenced and hence were no

longer garbage. It also meant that we were no longer building an ever-growing string

that forced garbage collection. Thanks to duck typing, the change was trivial.

def csv_from_row(op, row)

as before

end

result = []

query.each_row {|row| csv_from_row(result, row)}

http.write result.join

All that changed is that we passed an array into the csv_from_row method. Because

it (implicitly) used duck typing, the method itself was not modified: it continued to

append the data it generated to its parameter, not caring what type that parameter was.

After the method returned its result, we joined all those individual lines into one big

string. This one change reduced the time to run from more than 3 minutes to a few

seconds.

Coding like a Duck
If you want to write your programs using the duck typing philosophy, you really only

need to remember one thing: an object’s type is determined by what it can do, not

by its class. (In fact, Ruby 1.8 now deprecates the method Object#type1.8 in favor of

Object#class for just this reason: the method returns the class of the receiver, so the

name type was misleading.)

What does this mean in practice? At one level, it simply means that there’s often little

value testing the class of an object.

For example, you may be writing a routine to add song information to a string. If you

come from a C# or Java background, you may be tempted to write:

def append_song(result, song)

test we're given the right parameters

unless result.kind_of?(String)

fail TypeError.new("String expected")

end

unless song.kind_of?(Song)

fail TypeError.new("Song expected")

end

result << song.title << " (" << song.artist << ")"

end

result = ""

append_song(result, song) → "I Got Rhythm (Gene Kelly)"

Embrace Ruby’s duck typing and you’d write something far simpler.

Prepared exclusively for Jose Sierra

STANDARD PROTOCOLS AND COERCIONS 355

def append_song(result, song)

result << song.title << " (" << song.artist << ")"

end

result = ""

append_song(result, song) → "I Got Rhythm (Gene Kelly)"

You don’t need to check the type of the arguments. If they support << (in the case of

result) or title and artist (in the case of song), everything will just work. If they

don’t, your method will throw an exception anyway (just as it would have done if you’d

checked the types). But without the check, your method is suddenly a lot more flexible:

you could pass it an array, a string, a file, or any other object that appends using <<, and

it would just work.

Now sometimes you may want more than this style of laissez-faire programming. You

may have good reasons to check that a parameter can do what you need. Will you get

thrown out of the duck typing club if you check the parameter against a class? No,

you won’t.1 But you may want to consider checking based on the object’s capabilities,

rather than its class.

def append_song(result, song)

test we're given the right parameters

unless result.respond_to?(:<<)

fail TypeError.new("'result' needs `<<' capability")

end

unless song.respond_to?(:artist) && song.respond_to?(:title)

fail TypeError.new("'song' needs 'artist' and 'title'")

end

result << song.title << " (" << song.artist << ")"

end

result = ""

append_song(result, song) → "I Got Rhythm (Gene Kelly)"

However, before going down this path, make sure you’re getting a real benefit—it’s a

lot of extra code to write and to maintain.

Standard Protocols and Coercions
Although not technically part of the language, the interpreter and standard library use

various protocols to handle issues that other languages would deal with using types.

Some objects have more than one natural representation. For example, you may be

writing a class to represent Roman numbers (I, II, III, IV, V, and so on). This class

1. The duck typing club doesn’t check to see if you’re a member anyway. . . .

Prepared exclusively for Jose Sierra

STANDARD PROTOCOLS AND COERCIONS 356

is not necessarily a subclass of Integer, because its objects are representations of

numbers, not numbers in their own right. At the same time they do have an integer-like

quality. It would be nice to be able to use objects of our Roman number class wherever

Ruby was expecting to see an integer.

To do this, Ruby has the concept of conversion protocols—an object may elect to have

itself converted to an object of another class. Ruby has three standard ways of doing

this.

We’ve already come across the first. Methods such as to_s and to_i convert their

receiver into strings and integers. These conversion methods are not particularly strict:

if an object has some kind of decent representation as a string, for example, it will

probably have a to_s method. Our Roman class would probably implement to_s in

order to return the string representation of a number (VII, for instance).

The second form of conversion function uses methods with names such as to_str and

to_int. These are strict conversion functions: you implement them only if your object

can naturally be used every place a string or an integer could be used. For example, our

Roman number objects have a clear representation as an integer and so should imple-

ment to_int. When it comes to stringiness, however, we have to think a bit harder.

Roman numbers clearly have a string representation, but are they strings? Should we

be able to use them wherever we can use a string itself? No, probably not. Logi-

cally, they’re a representation of a number. You can represent them as strings, but they

aren’t plug-compatible with strings. For this reason, a Roman number won’t implement

to_str—it isn’t really a string. Just to drive this home: Roman numerals can be con-

verted to strings using to_s, but they aren’t inherently strings, so they don’t implement

to_str.

To see how this works in practice, let’s look at opening a file. The first parameter

to File.new can be either an existing file descriptor (represented by an integer) or

a file name to open. However, Ruby doesn’t simply look at the first parameter and

check whether its type is Fixnum or String. Instead, it gives the object passed in the

opportunity to represent itself as a number or a string. If it were written in Ruby, it may

look something like

class File

def File.new(file, *args)

if file.respond_to?(:to_int)

IO.new(file.to_int, *args)

else

name = file.to_str

call operating system to open file 'name'

end

end

end

Prepared exclusively for Jose Sierra

STANDARD PROTOCOLS AND COERCIONS 357

So let’s see what happens if we want to pass a file descriptor integer stored as a Roman

number into File.new. Because our class implements to_int, the first respond_to?

test will succeed. We’ll pass an integer representation of our number to IO.open, and

the file descriptor will be returned, all wrapped up in a new IO object.

A small number of strict conversion functions are built into the standard library.

to_ary→ Array

Used when interpreter needs to convert a object into an array for parameter passing

or multiple assignment.

class OneTwo

def to_ary

[1, 2]

end

end

ot = OneTwo.new

a, b = ot

puts "a = #{a}, b = #{b}"

printf("%d %d\n", *ot)

produces:

a = 1, b = 2

1 2

to_hash→ Hash

Used when the interpreter expects to see Hash. (The only known use is the second

parameter to Hash#replace.)

to_int→ Integer

Used when the interpreter expects to see an integer value (such as a file descriptor

or as a parameter to Kernel.Integer).

to_io→ IO

Used when the interpreter is expecting IO objects (for example, as parameters to

IO#reopen or IO.select).

to_proc→ Proc

Used to convert an object prefixed with an ampersand in a method call.

class OneTwo

def to_proc

proc { "onetwo" }

end

end

def silly

yield

end

ot = OneTwo.new

silly(&ot) → "onetwo"

Prepared exclusively for Jose Sierra

STANDARD PROTOCOLS AND COERCIONS 358

to_str→ String

Used pretty much any place the interpreter is looking for a String value.

class OneTwo

def to_str

"onetwo"

end

end

ot = OneTwo.new

puts("count: " + ot)

File.open(ot) rescue puts $!.message

produces:

count: onetwo

No such file or directory onetwo

Note, however, that the use of to_str is not universal—some methods that want

string arguments do not call to_str.

File.join("/user", ot) → "/user/#<OneTwo:0x1ca56c>"

to_sym→ Symbol

Express the receiver as a symbol. Not used by the interpreter for conversions and

probably not useful in user code.

One last point: classes such as Integer and Fixnum implement the to_int method,

and String implements to_str. That way you can call the strict conversion functions

polymorphically:

it doesn't matter if obj is a Fixnum or a

Roman number, the conversion still succeeds

num = obj.to_int

Numeric Coercion

Back on page 356 we said there were three types of conversion performed by the inter-

preter. We covered loose and strict conversion. The third is numeric coercion.

Here’s the problem. When you write “1+2”, Ruby knows to call the + on the object 1

(a Fixnum), passing it the Fixnum 2 as a parameter. However, when you write “1+2.3”,

the same + method now receives a Float parameter. How can it know what to do

(particularly as checking the classes of your parameters is against the spirit of duck

typing)?

The answer lies in Ruby’s coercion protocol, based on the method coerce. The basic

operation of coerce is simple. It takes two numbers (one as its receiver, the other as

a parameter). It returns a two-element array containing representations of these two

numbers (but with the parameter first, followed by the receiver). The coerce method

Prepared exclusively for Jose Sierra

STANDARD PROTOCOLS AND COERCIONS 359

guarantees that these two objects will have the same class and therefore that they can

be added (or multiplied, or compared, or whatever).

1.coerce(2) → [2, 1]

1.coerce(2.3) → [2.3, 1.0]

(4.5).coerce(2.3) → [2.3, 4.5]

(4.5).coerce(2) → [2.0, 4.5]

The trick is that the receiver calls the coerce method of its parameter to generate this

array. This technique, called double dispatch, allows a method to change its behavior

based not only on its class but also on the class of its parameter. In this case, we’re

letting the parameter decide exactly what classes of objects should get added (or mul-

tiplied, divided, and so on).

Let’s say that we’re writing a new class that’s intended to take part in arithmetic. To

participate in coercion, we need to implement a coerce method. This takes some other

kind of number as a parameter and returns an array containing two objects of the same

class, whose values are equivalent to its parameter and itself.

For our Roman number class, it’s fairly easy. Internally, each Roman number object

holds its real value as a Fixnum in an instance variable, @value. The coerce method

checks to see if the class of its parameter is also an Integer. If so, it returns its param-

eter and its internal value. If not, it first converts both to floating point.

class Roman

def initialize(value)

@value = value

end

def coerce(other)

if Integer === other

[other, @value]

else

[Float(other), Float(@value)]

end

end

.. other Roman stuff

end

iv = Roman.new(4)

xi = Roman.new(11)

3 * iv → 12

1.1 * xi → 12.1

Of course, class Roman as implemented doesn’t know how to do addition itself: you

couldn’t have written “xi + 3” in the previous example, as Roman doesn’t have a “plus”

method. And that’s probably as it should be. But let’s go wild and implement addition

for Roman numbers.

Prepared exclusively for Jose Sierra

STANDARD PROTOCOLS AND COERCIONS 360

class Roman

MAX_ROMAN = 4999

attr_reader :value

protected :value

def initialize(value)

if value <= 0 || value > MAX_ROMAN

fail "Roman values must be > 0 and <= #{MAX_ROMAN}"

end

@value = value

end

def coerce(other)

if Integer === other

[other, @value]

else

[Float(other), Float(@value)]

end

end

def +(other)

if Roman === other

other = other.value

end

if Fixnum === other && (other + @value) < MAX_ROMAN

Roman.new(@value + other)

else

x, y = other.coerce(@value)

x + y

end

end

FACTORS = [["m", 1000], ["cm", 900], ["d", 500], ["cd", 400],

["c", 100], ["xc", 90], ["l", 50], ["xl", 40],

["x", 10], ["ix", 9], ["v", 5], ["iv", 4],

["i", 1]]

def to_s

value = @value

roman = ""

for code, factor in FACTORS

count, value = value.divmod(factor)

roman << (code * count)

end

roman

end

end

iv = Roman.new(4)

xi = Roman.new(11)

iv + 3 → vii

iv + 3 + 4 → xi

iv + 3.14159 → 7.14159

xi + 4900 → mmmmcmxi

xi + 4990 → 5001

Prepared exclusively for Jose Sierra

WALK THE WALK, TALK THE TALK 361

Finally, be careful with coerce—try always to coerce into a more general type, or you

may end up generating coercion loops, where A tries to coerce to B, and B tries to

coerce back to A.

Walk the Walk, Talk the Talk
Duck typing can generate controversy. Every now and then a thread flares on the mail-

ing lists, or someone blogs for or against the concept. Many of the contributors to these

discussions have some fairly extreme positions.

Ultimately, though, duck typing isn’t a set of rules; it’s just a style of programming.

Design your programs to balance paranoia and flexibility. If you feel the need to con-

strain the types of objects that the users of a method pass in, ask yourself why. Try

to determine what could go wrong if you were expecting a String and instead get an

Array. Sometimes, the difference is crucially important. Often, though, it isn’t. Try

erring on the more permissive side for a while, and see if bad things happen. If not,

perhaps duck typing isn’t just for the birds.

Prepared exclusively for Jose Sierra

Chapter 24

Classes and Objects

Classes and objects are obviously central to Ruby, but at first sight they can seem a little

confusing. There seem to be a lot of concepts: classes, objects, class objects, instance

methods, class methods, singleton classes, and virtual classes. In reality, however, Ruby

has just a single underlying class and object structure, which we’ll discuss in this chap-

ter. In fact, the basic model is so simple, we can describe it in a single paragraph.

A Ruby object has three components: a set of flags, some instance variables, and an

associated class. A Ruby class is an object of class Class, which contains all the object

things plus a list of methods and a reference to a superclass (which is itself another

class). All method calls in Ruby nominate a receiver (which is by default self, the

current object). Ruby finds the method to invoke by looking at the list of methods in

the receiver’s class. If it doesn’t find the method there, it looks in any included modules,

then in its superclass, modules in the superclass, and then in the superclass’s superclass,

and so on. If the method cannot be found in the receiver’s class or any of its ancestors,

Ruby invokes the method method_missing on the original receiver.

And that’s it—the entire explanation. On to the next chapter.

“But wait,” you cry, “I spent good money on this chapter. What about all this other

stuff—virtual classes, class methods, and so on. How do they work?” Good question.

How Classes and Objects Interact
All class/object interactions are explained using the simple model given above: objects

reference classes, and classes reference zero or more superclasses. However, the imple-

mentation details can get a tad tricky.

We’ve found that the simplest way of visualizing all this is to draw the actual structures

that Ruby implements. So, in the following pages we’ll look at all the possible combi-

nations of classes and objects. Note that these are not class diagrams in the UML sense;

we’re showing structures in memory and pointers between them.

362Prepared exclusively for Jose Sierra

HOW CLASSES AND OBJECTS INTERACT 363

Figure 24.1. A basic object, with its class and superclass

class Guitar
def play()
...

end
...

end

lucille = Guitar.new
lucille

flags: ...
iv_tbl:

klass:

Guitar

flags: ...

super:

iv_tbl:

klass:

methods:
- play

Class
Guitar

flags: ...

super:

iv_tbl:

klass:

methods:
- clone
- display
- dup

Class
Object

Your Basic, Everyday Object

Let’s start by looking at an object created from a simple class. Figure 24.1 shows an

object referenced by a variable, lucille; the object’s class, Guitar; and that class’s

superclass, Object. Notice how the object’s class reference, klass, points to the class

object and how the super pointer from that class references the parent class.

If we invoke the method lucille.play(), Ruby goes to the receiver, lucille, and

follows the klass reference to the class object for Guitar. It searches the method table,

finds play, and invokes it.

If instead we call lucille.display(), Ruby starts off the same way but cannot find

display in the method table in class Guitar. It then follows the super reference to

Guitar’s superclass, Object, where it finds and executes the method.

What’s the Meta?

Astute readers (yup, that’s all of you) will have noticed that the klass members of

Class objects point to nothing meaningful in Figure 24.1. We now have all the infor-

mation we need to work out what they should reference.

When you say lucille.play(), Ruby follows lucille’s klass pointer to find a class

object in which to search for methods. So what happens when you invoke a class

Prepared exclusively for Jose Sierra

HOW CLASSES AND OBJECTS INTERACT 364

Figure 24.2. Adding a metaclass to Guitar

class Guitar
def Guitar.strings()
return 6

end
def play()
...

end
...

end

lucille = Guitar.new

lucille
flags: ...

iv_tbl:

klass:

Guitar

flags: ...

super:

iv_tbl:

klass:

methods:
- play

Class
Guitar

Guitar

flags: ...

super:

iv_tbl:

klass:

methods:
- clone
- display
- dup

Class
Object

flags: V

super:

iv_tbl:

klass:

methods:
- strings

Class
Guitar′

flags: V

super:

iv_tbl:

klass:

methods:

Class
Object′

method, such as Guitar.strings(...)? Here the receiver is the class object itself,

Guitar. So, to be consistent, we need to stick the methods in some other class, refer-

enced from Guitar’s klass pointer. This new class will contain all of Guitar’s class

methods. Although the terminology is slightly dubious, we’ll call this a metaclass (see

the sidebar on the following page). We’ll denote the metaclass of Guitar as Guitar′.

But that’s not the whole story. Because Guitar is a subclass of Object, its metaclass

Guitar′ will be a subclass of Object’s metaclass, Object′. In Figure 24.2, we show

these additional metaclasses.

When Ruby executes Guitar.strings(), it follows the same process as before: it

goes to the receiver, class Guitar; follows the klass reference to class Guitar′; and

finds the method.

Finally, note that a V has crept into the flags in class Guitar′ . The classes that Ruby

creates automatically are marked internally as virtual classes. Virtual classes are treated

Prepared exclusively for Jose Sierra

HOW CLASSES AND OBJECTS INTERACT 365

Metaclasses and Singleton Classes

During the review of this book, the use of the term metaclass gener-
ated a fair amount of discussion, as Ruby’s metaclasses are different
from those in languages such as Smalltalk. Eventually, Matz weighed
in with the following

You can call it metaclass but, unlike Smalltalk, it’s not a class of a
class; it’s a singleton class of a class.

• Every object in Ruby has its own attributes (methods, constants,
and so on) that in other languages are held by classes. It’s just
like each object having its own class.

• To handle per-object attributes, Ruby provides a classlike some-
thing for each object that is sometimes called a singleton class.

• In the current implementation, singleton classes are specially
flagged class objects between objects and their class. These can
be “virtual” classes if the language implementer chooses.

• Singleton classes for classes behave just like Smalltalk’s meta-
classes.

slightly differently within Ruby. The most obvious difference from the outside is that

they are effectively invisible: they will never appear in a list of objects returned from

methods such as Module#ancestors or ObjectSpace.each_object, and you cannot

create instances of them using new.

Object-Specific Classes

Ruby allows you to create a class tied to a particular object. In the following example,

we create two String objects. We then associate an anonymous class with one of them,

overriding one of the methods in the object’s base class and adding a new method.

a = "hello"

b = a.dup

class <<a

def to_s

"The value is '#{self}'"

end

def two_times

self + self

end

end

Prepared exclusively for Jose Sierra

HOW CLASSES AND OBJECTS INTERACT 366

a.to_s → "The value is 'hello'"

a.two_times → "hellohello"

b.to_s → "hello"

This example uses the class <<obj notation, which basically says “build me a new

class just for object obj.” We could also have written it as

a = "hello"

b = a.dup

def a.to_s

"The value is '#{self}'"

end

def a.two_times

self + self

end

a.to_s → "The value is 'hello'"

a.two_times → "hellohello"

b.to_s → "hello"

The effect is the same in both cases: a class is added to the object a. This gives us a

strong hint about the Ruby implementation: a virtual class is created and inserted as

a’s direct class. a’s original class, String, is made this virtual class’s superclass. The

before and after pictures are shown in Figure 24.3 on the following page.

Remember that in Ruby classes are never closed; you can always open a class and add

new methods to it. The same applies to virtual classes. If an object’s klass reference

already points to a virtual class, a new one will not be created. This means that the first

of the two method definitions in the previous example will create a virtual class, but the

second will simply add a method to it.

The Object#extend method adds the methods in its parameter to its receiver, so it also

creates a virtual class if needed. obj.extend(Mod) is basically equivalent to

class <<obj

include Mod

end

Mixin Modules

When a class includes a module, that module’s instance methods become available as

instance methods of the class. It’s almost as if the module becomes a superclass of

the class that uses it. Not surprisingly, that’s about how it works. When you include

a module, Ruby creates an anonymous proxy class that references that module and

inserts that proxy as the direct superclass of the class that did the including. The proxy

class contains references to the instance variables and methods of the module. This is

important: the same module may be included in many different classes and will appear

in many different inheritance chains. However, thanks to the proxy class, there is still

Prepared exclusively for Jose Sierra

HOW CLASSES AND OBJECTS INTERACT 367

Figure 24.3. Adding a virtual class to an object

a = 'hello'

a
flags: ...

iv_tbl:

klass:

String

flags: ...

super:

iv_tbl:

klass:

methods:
- : :
- to_s
- : :

Class
String

flags: ...

super:

iv_tbl:

klass:

methods:
- clone
- display
- dup

Class
Object

class <<a
def to_s
"The value is '#{self}'"

end
def two_times
self + self

end
end

a
flags: ...

iv_tbl:

klass:

String

flags: V

super:

iv_tbl:

klass:

methods:
- to_s
- two_times

virtual

flags: ...

super:

iv_tbl:

klass:

methods:
- : :
- to_s
- : :

Class
String

flags: ...

super:

iv_tbl:

klass:

methods:
- clone
- display
- dup

Class
Object

Prepared exclusively for Jose Sierra

HOW CLASSES AND OBJECTS INTERACT 368

only one underlying module: change a method definition in that module, and it will

change in all classes that include that module, both past and future.

module SillyModule

def hello

"Hello."

end

end

class SillyClass

include SillyModule

end

s = SillyClass.new

s.hello → "Hello."

module SillyModule

def hello

"Hi, there!"

end

end

s.hello → "Hi, there!"

The relationship between classes and the mixin modules they include is shown in Fig-

ure 24.4 on the next page. If multiple modules are included, they are added to the chain

in order.

If a module itself includes other modules, a chain of proxy classes will be added to any

class that includes that module, one proxy for each module that is directly or indirectly

included.

Extending Objects

Just as you can define an anonymous class for an object using class <<obj, you can

mix a module into an object using Object#extend. For example:

module Humor

def tickle

"hee, hee!"

end

end

a = "Grouchy"

a.extend Humor

a.tickle → "hee, hee!"

There is an interesting trick with extend. If you use it within a class definition, the

module’s methods become class methods. This is because calling extend is equivalent

to self.extend, so the methods are added to self, which in a class definition is the

class itself.

Prepared exclusively for Jose Sierra

HOW CLASSES AND OBJECTS INTERACT 369

Figure 24.4. An included module and its proxy class

class Guitar
include Enumerable
def play()
...

end
...

end

lucille = Guitar.newlucille
flags: ...

iv_tbl:

klass:

Guitar

flags: ...

super:

iv_tbl:

klass:

methods:
- play

Class
Guitar

flags: ...

super:

iv_tbl:

klass:

methods:

Proxy

flags: ...

super:

iv_tbl:

klass:

methods:
- clone
- display
- dup

Class
Object

flags: ...

super:

iv_tbl:

klass:

methods:
- collect
- detect

Module
Enum...

Here’s an example of adding a module’s methods at the class level.

module Humor

def tickle

"hee, hee!"

end

end

class Grouchy

include Humor

extend Humor

end

Grouchy.tickle → "hee, hee!"

a = Grouchy.new

a.tickle → "hee, hee!"

Prepared exclusively for Jose Sierra

CLASS AND MODULE DEFINITIONS 370

Class and Module Definitions
Having exhausted the combinations of classes and objects, we can (thankfully) get back

to programming by looking at the nuts and bolts of class and module definitions.

In languages such as C++ and Java, class definitions are processed at compile time:

the compiler creates symbol tables, works out how much storage to allocate, constructs

dispatch tables, and does all those other obscure things we’d rather not think too hard

about.

Ruby is different. In Ruby, class and module definitions are executable code. Although

parsed at compile time, the classes and modules are created at runtime, when the def-

inition is encountered. (The same is also true of method definitions.) This allows you

to structure your programs far more dynamically than in most conventional languages.

You can make decisions once, when the class is being defined, rather than each time

those objects of the class are used. The class in the following example decides as it is

being defined what version of a decryption routine to create.

module Tracing

...

end

class MediaPlayer

include Tracing if $DEBUG

if ::EXPORT_VERSION

def decrypt(stream)

raise "Decryption not available"

end

else

def decrypt(stream)

...

end

end

end

If class definitions are executable code, this implies that they execute in the context of

some object: self must reference something. Let’s find out what it is.

class Test

puts "Class of self = #{self.class}"

puts "Name of self = #{self.name}"

end

produces:

Class of self = Class

Name of self = Test

This means that a class definition is executed with that class as the current object.

Referring back to the section about metaclasses on page 363, we can see that this means

Prepared exclusively for Jose Sierra

CLASS AND MODULE DEFINITIONS 371

that methods in the metaclass and its superclasses will be available during the execution

of the method definition. We can check this out.

class Test

def Test.say_hello

puts "Hello from #{name}"

end

say_hello

end

produces:

Hello from Test

In this example we define a class method, Test.say_hello, and then call it in the body

of the class definition. Within say_hello, we call name, an instance method of class

Module. Because Module is an ancestor of Class, its instance methods can be called

without an explicit receiver within a class definition.

Class Instance Variables

If a class definition is executed in the context of some object, that implies that a class

may have instance variables.

class Test

@cls_var = 123

def Test.inc

@cls_var += 1

end

end

Test.inc → 124

Test.inc → 125

If classes have their own instance variables, can we use attr_reader and friends to

access them? We can, but we have to run these methods in the correct place. For reg-

ular instance variables, the attribute accessors are defined at the class level. For class

instance variables, we have to define the accessors in the metaclass.

class Test

@cls_var = 123

class <<self

attr_reader :cls_var

end

end

Test.cls_var → 123

This leads us to an interesting point. Many of the directives that you use when defin-

ing a class or module, things such as alias_method, attr, and public, are simply

methods in class Module. This creates some intriguing possibilities—you can extend

Prepared exclusively for Jose Sierra

CLASS AND MODULE DEFINITIONS 372

the functionality of class and module definitions by writing Ruby code. Let’s look at a

couple of examples.

As a first example, let’s look at adding a basic documentation facility to modules and

classes. This would allow us to associate a string with modules and classes that we

write, a string that is accessible as the program is running. We’ll choose a simple syntax.

class Example

doc "This is a sample documentation string"

.. rest of class

end

We need to make doc available to any module or class, so we need to make it an

instance method of class Module.

class Module

@@docs = {}

Invoked during class definitions

def doc(str)

@@docs[self.name] = self.name + ":\n" + str.gsub(/^\s+/, '')

end

invoked to get documentation

def Module::doc(aClass)

If we're passed a class or module, convert to string

('<=' for classes checks for same class or subtype)

aClass = aClass.name if aClass.class <= Module

@@docs[aClass] || "No documentation for #{aClass}"

end

end

class Example

doc "This is a sample documentation string"

.. rest of class

end

module Another

doc <<edoc

And this is a documentation string

in a module

edoc

rest of module

end

puts Module::doc(Example)

puts Module::doc("Another")

produces:

Example:

This is a sample documentation string

Another:

And this is a documentation string

in a module

Prepared exclusively for Jose Sierra

CLASS AND MODULE DEFINITIONS 373

The second example is a performance enhancement based on Tadayoshi Funaba’s date

module (described beginning on page 644). Say we have a class that represents some

underlying quantity (in this case, a date). The class may have many attributes that

present the same underlying date in different ways: as a Julian day number, as a string,

as a [year, month, day] triple, and so on. Each value represents the same date and may

involve a fairly complex calculation to derive. We therefore would like to calculate each

attribute only once, when it is first accessed.

The manual way would be to add a test to each accessor.

class ExampleDate

def initialize(day_number)

@day_number = day_number

end

def as_day_number

@day_number

end

def as_string

unless @string

complex calculation

@string = result

end

@string

end

def as_YMD

unless @ymd

another calculation

@ymd = [y, m, d]

end

@ymd

end

...

end

This is a clunky technique—let’s see if we can come up with something sexier.

What we’re aiming for is a directive that indicates that the body of a particular method

should be invoked only once. The value returned by that first call should be cached.

Thereafter, calling that same method should return the cached value without reevaluat-

ing the method body again. This is similar to Eiffel’s once modifier for routines. We’d

like to be able to write something such as

class ExampleDate

def as_day_number

@day_number

end

def as_string

complex calculation

end

Prepared exclusively for Jose Sierra

CLASS AND MODULE DEFINITIONS 374

def as_YMD

another calculation

[y, m, d]

end

once :as_string, :as_YMD

end

We can use once as a directive by writing it as a class method of ExampleDate, but

what should it look like internally? The trick is to have it rewrite the methods whose

names it is passed. For each method, it creates an alias for the original code, and then

creates a new method with the same name. Here’s Tadayoshi Funaba’s code, slightly

reformatted.

def once(*ids) # :nodoc:

for id in ids

module_eval <<"end;"

alias_method :__#{id.to_i}__, :#{id.to_s}

private :__#{id.to_i}__

def #{id.to_s}(*args, &block)

(@__#{id.to_i}__ ||= [__#{id.to_i}__(*args, &block)])[0]

end

end;

end

end

This code uses module_eval to execute a block of code in the context of the calling

module (or, in this case, the calling class). The original method is renamed __nnn__,

where the nnn part is the integer representation of the method name’s symbol ID. The

code uses the same name for the caching instance variable. A method with the original

name is then defined. If the caching instance variable has a value, that value is returned;

otherwise the original method is called, and its return value cached and returned.

Understand this code, and you’ll be well on the way to true Ruby mastery.

However, we can take it further. Look in the date module, and you’ll see method once

written slightly differently.

class Date

class << self

def once(*ids)

...

end

end

...

end

The interesting thing here is the inner class definition, class << self. This defines a

class based on the object self, and self happens to be the class object for Date. The

result? Every method within the inner class definition is automatically a class method

of Date.

Prepared exclusively for Jose Sierra

CLASS AND MODULE DEFINITIONS 375

The once feature is generally applicable—it should work for any class. If you took

once and made it a private instance method of class Module, it would be available for

use in any Ruby class. (And of course you could do this, as class Module is open, and

you are free to add methods to it.)

Class Names Are Constants

We’ve said that when you invoke a class method, all you’re doing is sending a message

to the Class object itself. When you say something such as String.new("gumby"),

you’re sending the message new to the object that is class String. But how does Ruby

know to do this? After all, the receiver of a message should be an object reference,

which implies that there must be a constant called String somewhere containing a ref-

erence to the String object.1 And in fact, that’s exactly what happens. All the built-in

classes, along with the classes you define, have a corresponding global constant with

the same name as the class. This is both straightforward and subtle. The subtlety comes

from the fact that two things are named (for example) String in the system. There’s a

constant that references class String (an object of class Class), and there’s the (class)

object itself.

The fact that class names are just constants means that you can treat classes just like

any other Ruby object: you can copy them, pass them to methods, and use them in

expressions.

def factory(klass, *args)

klass.new(*args)

end

factory(String, "Hello") → "Hello"

factory(Dir, ".") → #<Dir:0x1c9f04>

flag = true

(flag ? Array : Hash)[1, 2, 3, 4] → [1, 2, 3, 4]

flag = false

(flag ? Array : Hash)[1, 2, 3, 4] → {1=>2, 3=>4}

This has another facet: if a class with no name is assigned to a constant, Ruby gives the

class the name of the constant.

var = Class.new

var.name → ""

Wibble = var

var.name → "Wibble"

1. It will be a constant, not a variable, because String starts with an uppercase letter.

Prepared exclusively for Jose Sierra

TOP-LEVEL EXECUTION ENVIRONMENT 376

Top-Level Execution Environment
Many times in this book we’ve claimed that everything in Ruby is an object. However,

we’ve used one thing time and time again that appears to contradict this—the top-level

Ruby execution environment.

puts "Hello, World"

Not an object in sight. We may as well be writing some variant of Fortran or BASIC.

But dig deeper, and you’ll come across objects and classes lurking in even the simplest

code.

We know that the literal "Hello, World" generates a Ruby String, so that’s one

object. We also know that the bare method call to puts is effectively the same as

self.puts. But what is self?

self.class → Object

At the top level, we’re executing code in the context of some predefined object. When

we define methods, we’re actually creating (private) instance methods for class Object.

This is fairly subtle; as they are in class Object, these methods are available every-

where. And because we’re in the context of Object, we can use all of Object’s meth-

ods (including those mixed-in from Kernel) in function form. This explains why we

can call Kernel methods such as puts at the top level (and indeed throughout Ruby):

these methods are part of every object.

Top-level instance variables also belong to this top-level object.

Inheritance and Visibility
The one last wrinkle to class inheritance is fairly obscure.

Within a class definition, you can change the visibility of a method in an ancestor class.

For example, you can do something like

class Base

def aMethod

puts "Got here"

end

private :aMethod

end

class Derived1 < Base

public :aMethod

end

class Derived2 < Base

end

Prepared exclusively for Jose Sierra

FREEZING OBJECTS 377

In this example, you would be able to invoke aMethod in instances of class Derived1

but not via instances of Base or Derived2.

So how does Ruby pull off this feat of having one method with two different visibilities?

Simply put, it cheats.

If a subclass changes the visibility of a method in a parent, Ruby effectively inserts a

hidden proxy method in the subclass that invokes the original method using super. It

then sets the visibility of that proxy to whatever you requested. This means that the

code

class Derived1 < Base

public :aMethod

end

is effectively the same as

class Derived1 < Base

def aMethod(*args)

super

end

public :aMethod

end

The call to super can access the parent’s method regardless of its visibility, so the

rewrite allows the subclass to override its parent’s visibility rules. Pretty scary, eh?

Freezing Objects
Sometimes you’ve worked hard to make your object exactly right, and you’ll be damned

if you’ll let anyone just change it. Perhaps you need to pass some kind of opaque object

between two of your classes via some third-party object, and you want to make sure it

arrives unmodified. Perhaps you want to use an object as a hash key and need to make

sure that no one modifies it while it’s being used. Perhaps something is corrupting one

of your objects, and you’d like Ruby to raise an exception as soon as the change occurs.

Ruby provides a very simple mechanism to help with this. Any object can be frozen by

invoking Object#freeze. A frozen object may not be modified: you can’t change its

instance variables (directly or indirectly), you can’t associate singleton methods with

it, and, if it is a class or module, you can’t add, delete, or modify its methods. Once

frozen, an object stays frozen: there is no Object#thaw. You can test to see if an object

is frozen using Object#frozen?.

What happens when you copy a frozen object? That depends on the method you use.

If you call an object’s clone method, the entire object state (including whether it is

frozen) is copied to the new object. On the other hand, dup typically copies only the

object’s contents—the new copy will not inherit the frozen status.

Prepared exclusively for Jose Sierra

FREEZING OBJECTS 378

str1 = "hello"

str1.freeze → "hello"

str1.frozen? → true

str2 = str1.clone

str2.frozen? → true

str3 = str1.dup

str3.frozen? → false

Although freezing objects may initially seem like a good idea, you may want to hold

off doing it until you come across a real need. Freezing is one of those ideas that looks

essential on paper but isn’t used much in practice.

Prepared exclusively for Jose Sierra

Chapter 25

Locking Ruby in the Safe

Walter Webcoder has a great idea for a portal site: the Web Arithmetic Page. Sur-

rounded by all sorts of cool mathematical links and banner ads that will make him rich

is a simple Web form containing a text field and a button. Users type an arithmetic

expression into the field, click the button, and the answer is displayed. All the world’s

calculators become obsolete overnight; Walter cashes in and retires to devote his life to

his collection of car license plate numbers.

Implementing the calculator is easy, thinks Walter. He accesses the contents of the form

field using Ruby’s CGI library and uses the eval method to evaluate the string as an

expression.

require 'cgi'

cgi = CGI.new("html4")

Fetch the value of the form field "expression"

expr = cgi["expression"].to_s

begin

result = eval(expr)

rescue Exception => detail

handle bad expressions

end

display result back to user...

Roughly seven seconds after Walter puts the application online, a twelve-year-old from

Waxahachie with glandular problems and no real life types system("rm *") into the

form and, like his computer’s files, Walter’s dreams come tumbling down.

Walter learned an important lesson: All external data is dangerous. Don’t let it close to

interfaces that can modify your system. In this case, the content of the form field was

the external data, and the call to eval was the security breach.

Fortunately, Ruby provides support for reducing this risk. All information from the

outside world can be marked as tainted. When running in a safe mode, potentially

dangerous methods will raise a SecurityError if passed a tainted object.

379Prepared exclusively for Jose Sierra

SAFE LEVELS 380

Safe Levels
The variable $SAFE determines Ruby’s level of paranoia. Table 25.1 on page 383 gives

more details of the checks performed at each safe level.

$SAFE Constraints

0 No checking of the use of externally supplied (tainted) data is performed.

This is Ruby’s default mode.

≥ 1 Ruby disallows the use of tainted data by potentially dangerous operations.

≥ 2 Ruby prohibits the loading of program files from globally writable locations.

≥ 3 All newly created objects are considered tainted.

≥ 4 Ruby effectively partitions the running program in two. Nontainted objects

may not be modified.

The default value of $SAFE is zero under most circumstances. However, if a Ruby

script is run setuid or setgid,1 or if it run under mod_ruby, its safe level is automatically

set to 1. The safe level may also be set by using the T command-line option and by

assigning to $SAFE within the program. It is not possible to lower the value of $SAFE

by assignment.

The current value of $SAFE is inherited when new threads are created. However, within

each thread, the value of $SAFE may be changed without affecting the value in other

threads. This facility may be used to implement secure “sandboxes,” areas where exter-

nal code may run safely without risk to the rest of your application or system. Do this

by wrapping code that you load from a file in its own, anonymous module. This will

protect your program’s namespace from any unintended alteration.

f=open(filename,"w")

f.print ... # write untrusted program into file.

f.close

Thread.start do

$SAFE = 4

load(filename, true)

end

With a $SAFE level of 4, you can load only wrapped files. See the description of

Kernel.load on page 503 for details.

This concept is used by Clemens Wyss on Ruby CHannel (http://www.ruby.ch). On

this site, you can run the code from the first edition of this book. You can also type

1. A Unix script may be flagged to be run under a different user or group ID than the person running it.

This allows the script to have privileges that the user does not have; the script can access resources that the

user would otherwise be prohibited from using. These scripts are called setuid or setgid.

Prepared exclusively for Jose Sierra

http://www.ruby.ch

TAINTED OBJECTS 381

Ruby code into a window and execute it. And yet he doesn’t lose sleep at night, as his

site runs your code in a sandbox.

You can find a listing of the Ruby source code for this sandbox on the Web at

http://www.approximity.com/cgibin/rubybuch_wiki/wpage.rb?nd=214 .

The safe level in effect when a Proc object is created is1.8 stored with that object. A Proc

may not be passed to a method if it is tainted and the current safe level is greater than

that in effect when the block was created.

Tainted Objects
Any Ruby object derived from some external source (for example, a string read from

a file or an environment variable) is automatically marked as being tainted. If your

program uses a tainted object to derive a new object, then that new object will also be

tainted, as shown in the code below. Any object with external data somewhere in its

past will be tainted. This tainting process is performed regardless of the current safe

level. You can see if an object is tainted using Object#tainted?.

internal data

=============

x1 = "a string"

x1.tainted? → false

x2 = x1[2, 4]

x2.tainted? → false

x1 =~ /([az])/ → 0

$1.tainted? → false

external data

=============

y1 = ENV["HOME"]

y1.tainted? → true

y2 = y1[2, 4]

y2.tainted? → true

y1 =~ /([az])/ → 2

$1.tainted? → true

You can force any object to become tainted by invoking its taint method. If the safe

level is less than 3, you can remove the taint from an object by invoking untaint.2

This is not something to do lightly.

Clearly, Walter should have run his CGI script at a safe level of 1. This would have

raised an exception when the program tried to pass form data to eval. Once this had

happened, Walter would have had a number of choices. He could have chosen to imple-

ment a proper expression parser, bypassing the risks inherent in using eval. However,

being lazy, it’s more likely he’d have performed some simple sanity check on the form

data and untaint it if it looked innocuous.

2. You can also use some devious tricks to do this without using untaint. We’ll leave it up to your darker

side to find them.

Prepared exclusively for Jose Sierra

http://www.approximity.com/cgi-bin/rubybuch_wiki/wpage.rb?nd=214

TAINTED OBJECTS 382

require 'cgi';

$SAFE = 1

cgi = CGI.new("html4")

expr = cgi["expression"].to_s

if expr =~ %r{\A[+*/\d\seE.()]*\z}

expr.untaint

result = eval(expr)

display result back to user...

else

display error message...

end

Personally, we think Walter is still taking undue risks. We’d probably prefer to see a

real parser here, but implementing one here has nothing to teach us about tainting, so

we’ll move onto other topics.

Prepared exclusively for Jose Sierra

TAINTED OBJECTS 383

Table 25.1. Definition of the safe levels
$SAFE >= 1

• The environment variables RUBYLIB and RUBYOPT are not processed, and the current directory

is not added to the path.

• The command-line options e, i, I, r, s, S, and x are not allowed.

• Can’t start processes from $PATH if any directory in it is world-writable.

• Can’t manipulate or chroot to a directory whose name is a tainted string.

• Can’t glob tainted strings.

• Can’t eval tainted strings.

• Can’t load or require a file whose name is a tainted string (unless the load is wrapped1.8).

• Can’t manipulate or query the status of a file or pipe whose name is a tainted string.

• Can’t execute a system command or exec a program from a tainted string.

• Can’t pass trap a tainted string.

$SAFE >= 2

• Can’t change, make, or remove directories, or use chroot.

• Can’t load a file from a world-writable directory.

• Can’t load a file from a tainted filename starting with ~.

• Can’t use File#chmod, File#chown, File#lstat, File.stat, File#truncate,

File.umask, File#flock, IO#ioctl, IO#stat, Kernel#fork, Kernel#syscall,

Kernel#trap. Process.setpgid, Process.setsid, Process.setpriority, or

Process.egid=.

• Can’t handle signals using trap.

$SAFE >= 3

• All objects are tainted when they are created.

• Can’t untaint objects.

$SAFE >= 4

• Can’t modify a nontainted array, hash, or string.

• Can’t modify a global variable.

• Can’t access instance variables of nontainted objects.

• Can’t change an environment variable.

• Can’t close or reopen nontainted files.

• Can’t freeze nontainted objects.

• Can’t change visibility of methods (private/public/protected).

• Can’t make an alias in a nontainted class or module.

• Can’t get meta-information (such as method or variable lists).

• Can’t define, redefine, remove, or undef a method in a nontainted class or module.

• Can’t modify Object.

• Can’t remove instance variables or constants from nontainted objects.

• Can’t manipulate threads, terminate a thread other than the current thread, or set

abort_on_exception.

• Can’t have thread local variables.

• Can’t raise an exception in a thread with a lower $SAFE value.

• Can’t move threads between ThreadGroups.

• Can’t invoke exit, exit!, or abort.

• Can load only wrapped files, and can’t include modules in untainted classes and modules.

• Can’t convert symbol identifiers to object references.

• Can’t write to files or pipes.

• Can’t use autoload.

• Can’t taint objects.

Prepared exclusively for Jose Sierra

Chapter 26

Reflection,

ObjectSpace, and

Distributed Ruby

One of the many advantages of dynamic languages such as Ruby is the ability to

introspect—to examine aspects of the program from within the program itself. Java,

for one, calls this feature reflection but Ruby’s capabilities go beyond Java’s.

The word reflection conjures up an image of looking at oneself in the mirror—perhaps

investigating the relentless spread of that bald spot on the top of one’s head. That’s

a pretty apt analogy: we use reflection to examine parts of our programs that aren’t

normally visible from where we stand.

In this deeply introspective mood, while we are contemplating our navels and burning

incense (being careful not to swap the two tasks), what can we learn about our program?

We might discover

• what objects it contains,

• the class hierarchy,

• the attributes and methods of objects, and

• information on methods.

Armed with this information, we can look at particular objects and decide which of their

methods to call at runtime—even if the class of the object didn’t exist when we first

wrote the code. We can also start doing clever things, perhaps modifying the program

as it’s running.

Sound scary? It needn’t be. In fact, these reflection capabilities let us do some very

useful things. Later in this chapter we’ll look at distributed Ruby and marshaling, two

reflection-based technologies that let us send objects around the world and through

time.

384Prepared exclusively for Jose Sierra

LOOKING AT OBJECTS 385

Looking at Objects
Have you ever craved the ability to traverse all the living objects in your program? We

have! Ruby lets you perform this trick with ObjectSpace.each_object. We can use

it to do all sorts of neat tricks.

For example, to iterate over all objects of type Numeric, you’d write the following.

a = 102.7

b = 95.1

ObjectSpace.each_object(Numeric) {|x| p x }

produces:

95.1

102.7

2.71828182845905

3.14159265358979

2.22044604925031e16

1.79769313486232e+308

2.2250738585072e308

Hey, where did all those extra numbers come from? We didn’t define them in our

program. If you look on pages 466 and 519, you’ll see that the Float class defines

constants for the maximum and minimum float, as well as epsilon, the smallest distin-

guishable difference between two floats. The Math module defines constants for e and

π. Since we are examining all living objects in the system, these turn up as well.

Let’s try the same example with different numbers.

a = 102

b = 95

ObjectSpace.each_object(Numeric) {|x| p x }

produces:

2.71828182845905

3.14159265358979

2.22044604925031e16

1.79769313486232e+308

2.2250738585072e308

Neither of the Fixnum objects we created showed up. That’s because ObjectSpace

doesn’t know about objects with immediate values: Fixnum, Symbol, true, false,

and nil.

Looking Inside Objects

Once you’ve found an interesting object, you may be tempted to find out just what it

can do. Unlike static languages, where a variable’s type determines its class, and hence

the methods it supports, Ruby supports liberated objects. You really cannot tell exactly

Prepared exclusively for Jose Sierra

LOOKING AT CLASSES 386

what an object can do until you look under its hood.1 We talk about this in the Duck

Typing chapter starting on page 349.

For instance, we can get a list of all the methods to which an object will respond.

r = 1..10 # Create a Range object

list = r.methods

list.length → 68

list[0..3] → ["collect", "to_a", "instance_eval", "all?"]

Or, we can check to see if an object supports a particular method.

r.respond_to?("frozen?") → true

r.respond_to?(:has_key?) → false

"me".respond_to?("==") → true

We can determine our object’s class and its unique object ID and test its relationship to

other classes.

num = 1

num.object_id → 3

num.class → Fixnum

num.kind_of? Fixnum → true

num.kind_of? Numeric → true

num.instance_of? Fixnum → true

num.instance_of? Numeric → false

Looking at Classes
Knowing about objects is one part of reflection, but to get the whole picture, you also

need to be able to look at classes—the methods and constants that they contain.

Looking at the class hierarchy is easy. You can get the parent of any particular class

using Class#superclass. For classes and modules, Module#ancestors lists both

superclasses and mixed-in modules.

klass = Fixnum

begin

print klass

klass = klass.superclass

print " < " if klass

end while klass

puts

p Fixnum.ancestors

produces:

Fixnum < Integer < Numeric < Object

[Fixnum, Integer, Precision, Numeric, Comparable, Object, Kernel]

1. Or under its bonnet, for objects created to the east of the Atlantic.

Prepared exclusively for Jose Sierra

LOOKING AT CLASSES 387

If you want to build a complete class hierarchy, just run that code for every class in the

system. We can use ObjectSpace to iterate over all Class objects.

ObjectSpace.each_object(Class) do |klass|

...

end

Looking Inside Classes

We can find out a bit more about the methods and constants in a particular object.

Instead of just checking to see whether the object responds to a given message, we can

ask for methods by access level, and we can ask for just singleton methods. We can

also have a look at the object’s constants, local, and instance variables.1.8

class Demo

@@var = 99

CONST = 1.23

private

def private_method

end

protected

def protected_method

end

public

def public_method

@inst = 1

i = 1

j = 2

local_variables

end

def Demo.class_method

end

end

Demo.private_instance_methods(false) → ["private_method"]

Demo.protected_instance_methods(false) → ["protected_method"]

Demo.public_instance_methods(false) → ["public_method"]

Demo.singleton_methods(false) → ["class_method"]

Demo.class_variables → ["@@var"]

Demo.constants Demo.superclass.constants → ["CONST"]

demo = Demo.new

demo.instance_variables → []

Get 'public_method' to return its local variables

and set an instance variable

demo.public_method → ["i", "j"]

demo.instance_variables → ["@inst"]

Prepared exclusively for Jose Sierra

CALLING METHODS DYNAMICALLY 388

Module.constants returns all the constants available via a module, including con-

stants from the module’s superclasses. We’re not interested in those just at the moment,

so we’ll subtract them from our list.

You may be wondering what all the false parameters were in the previous code. As of

Ruby 1.81.8 , these reflection methods will by default recurse into parent classes, and their

parents, and so on up the ancestor chain. Passing in false stops this kind of prying.

Given a list of method names, we may now be tempted to try calling them. Fortunately,

that’s easy with Ruby.

Calling Methods Dynamically
C and Java programmers often find themselves writing some kind of dispatch table:

functions that are invoked based on a command. Think of a typical C idiom where you

have to translate a string to a function pointer.

typedef struct {

char *name;

void (*fptr)();

} Tuple;

Tuple list[]= {

{ "play", fptr_play },

{ "stop", fptr_stop },

{ "record", fptr_record },

{ 0, 0 },

};

...

void dispatch(char *cmd) {

int i = 0;

for (; list[i].name; i++) {

if (strncmp(list[i].name,cmd,strlen(cmd)) == 0) {

list[i].fptr();

return;

}

}

/* not found */

}

In Ruby, you can do all this in one line. Stick all your command functions into a class,

create an instance of that class (we called it commands), and ask that object to execute

a method called the same name as the command string.

commands.send(command_string)

Oh, and by the way, it does much more than the C version—it’s dynamic. The Ruby

version will find new methods added at runtime just as easily.

Prepared exclusively for Jose Sierra

CALLING METHODS DYNAMICALLY 389

You don’t have to write special command classes for send: it works on any object.

"John Coltrane".send(:length) → 13

"Miles Davis".send("sub", /iles/, '.') → "M. Davis"

Another way of invoking methods dynamically uses Method objects. A Method object

is like a Proc object: it represents a chunk of code and a context in which it executes. In

this case, the code is the body of the method, and the context is the object that created

the method. Once we have our Method object, we can execute it sometime later by

sending it the message call.

trane = "John Coltrane".method(:length)

miles = "Miles Davis".method("sub")

trane.call → 13

miles.call(/iles/, '.') → "M. Davis"

You can pass the Method object around as you would any other object, and when you

invoke Method#call, the method is run just as if you had invoked it on the original

object. It’s like having a C-style function pointer but in a fully object-oriented style.

You can also use Method objects with iterators.

def double(a)

2*a

end

mObj = method(:double)

[1, 3, 5, 7].collect(&mObj) → [2, 6, 10, 14]

Method objects are bound to one particular object. You can create unbound methods (of

class UnboundMethod)1.8 and then subsequently bind them to one or more objects. The

binding creates a new Method object. As with aliases, unbound methods are references

to the definition of the method at the time they are created.

unbound_length = String.instance_method(:length)

class String

def length

99

end

end

str = "cat"

str.length → 99

bound_length = unbound_length.bind(str)

bound_length.call → 3

As good things come in threes, here’s yet another way to invoke methods dynami-

cally. The eval method (and its variations such as class_eval, module_eval, and

instance_eval) will parse and execute an arbitrary string of legal Ruby source code.

Prepared exclusively for Jose Sierra

CALLING METHODS DYNAMICALLY 390

trane = %q{"John Coltrane".length}

miles = %q{"Miles Davis".sub(/iles/, '.')}

eval trane → 13

eval miles → "M. Davis"

When using eval, it can be helpful to state explicitly the context in which the expres-

sion should be evaluated, rather than using the current context. You can obtain a context

by calling Kernel#binding at the desired point.

def get_a_binding

val = 123

binding

end

val = "cat"

the_binding = get_a_binding

eval("val", the_binding) → 123

eval("val") → "cat"

The first eval evaluates val in the context of the binding as it was as the method

get_a_binding was executing. In this binding, the variable val had a value of 123.

The second eval evaluates val in the toplevel binding, where it has the value "cat".

Performance Considerations

As we’ve seen in this section, Ruby gives us several ways to invoke an arbitrary method

of some object: Object#send, Method#call, and the various flavors of eval.

You may prefer to use any one of these techniques depending on your needs, but be

aware that eval is significantly slower than the others (or, for optimistic readers, send

and call are significantly faster than eval).

require 'benchmark'

include Benchmark

test = "Stormy Weather"

m = test.method(:length)

n = 100000

bm(12) {|x|

x.report("call") { n.times { m.call } }

x.report("send") { n.times { test.send(:length) } }

x.report("eval") { n.times { eval "test.length" } }

}

produces:

user system total real

call 0.050000 0.000000 0.050000 (0.045034)

send 0.050000 0.000000 0.050000 (0.052471)

eval 0.480000 0.000000 0.480000 (0.489345)

Prepared exclusively for Jose Sierra

SYSTEM HOOKS 391

System Hooks
A hook is a technique that lets you trap some Ruby event, such as object creation. The

simplest hook technique in Ruby is to intercept calls to methods in system classes.

Perhaps you want to log all the operating system commands your program executes.

Simply rename the method Kernel.system and substitute it with one of your own that

both logs the command and calls the original Kernel method.

module Kernel

alias_method :old_system, :system

def system(*args)

result = old_system(*args)

puts "system(#{args.join(', ')}) returned #{result}"

result

end

end

system("date")

system("kangaroo", "hop 10", "skippy")

produces:

Wed Sep 20 16:05:12 CDT 2006

system(date) returned true

system(kangaroo, hop 10, skippy) returned false

A more powerful hook is catching objects as they are created. If you can be present

when every object is born, you can do all sorts of interesting things: you can wrap

them, add methods to them, remove methods from them, add them to containers to

implement persistence, you name it. We’ll show a simple example here: we’ll add a

time stamp to every object as it’s created. First, we’ll add a timestamp attribute to

every object in the system. We can do this by hacking class Object itself.

class Object

attr_accessor :timestamp

end

Then we need to hook object creation to add this time stamp. One way to do this is to do

our method renaming trick on Class#new, the method that’s called to allocate space for

a new object. The technique isn’t perfect—some built-in objects, such as literal strings,

are constructed without calling new—but it’ll work just fine for objects we write.

class Class

alias_method :old_new, :new

def new(*args)

result = old_new(*args)

result.timestamp = Time.now

result

end

end

Prepared exclusively for Jose Sierra

SYSTEM HOOKS 392

Finally, we can run a test. We’ll create a couple of objects a few milliseconds apart and

check their time stamps.

class Test

end

obj1 = Test.new

sleep(0.002)

obj2 = Test.new

obj1.timestamp.to_f → 1158786312.38914

obj2.timestamp.to_f → 1158786312.39919

All this method renaming is fine, and it really does work, but be aware that it can cause

problems. If a subclass does the same thing, and renames the methods using the same

names, you’ll end up with an infinite loop. You can avoid this by aliasing your methods

to a unique symbol name or by using a consistent naming convention.

There are other, more refined ways to get inside a running program. Ruby provides

several callback methods that let you trap certain events in a controlled way.

Runtime Callbacks

You can be notified whenever one of the following events occurs.

Event Callback Method

Adding an instance method Module#method_added
1.8 Removing an instance method Module#method_removed
1.8 Undefining an instance method Module#method_undefined

Adding a singleton method Kernel.singleton_method_added
1.8 Removing a singleton method Kernel.singleton_method_removed
1.8 Undefining a singleton method Kernel.singleton_method_undefined

Subclassing a class Class#inherited

Mixing in a module Module#extend_object

By default, these methods do nothing. If you define the callback method in your class,

it’ll be invoked automatically. The actual call sequences are illustrated in the library

descriptions for each callback method.

Keeping track of method creation and class and module usage lets you build an accurate

picture of the dynamic state of your program. This can be important. For example, you

may have written code that wraps all the methods in a class, perhaps to add transactional

support or to implement some form of delegation. This is only half the job: the dynamic

nature of Ruby means that users of this class could add new methods to it at any time.

Using these callbacks, you can write code that wraps these new methods as they are

created.

Prepared exclusively for Jose Sierra

TRACING YOUR PROGRAM’S EXECUTION 393

Tracing Your Program’s Execution
While we’re having fun reflecting on all the objects and classes in our programs, let’s

not forget about the humble statements that make our code actually do things. It turns

out that Ruby lets us look at these statements, too.

First, you can watch the interpreter as it executes code. set_trace_func executes a

Proc with all sorts of juicy debugging information whenever a new source line is exe-

cuted, methods are called, objects are created, and so on. You’ll find a full description

on page 508, but here’s a taste.

class Test

def test

a = 1

b = 2

end

end

set_trace_func proc {|event, file, line, id, binding, classname|

printf "%8s %s:%2d %10s %8s\n", event, file, line, id, classname

}

t = Test.new

t.test

produces:

line prog.rb:11 false

ccall prog.rb:11 new Class

ccall prog.rb:11 initialize Object

creturn prog.rb:11 initialize Object

creturn prog.rb:11 new Class

line prog.rb:12 false

call prog.rb:2 test Test

line prog.rb:3 test Test

line prog.rb:4 test Test

return prog.rb:4 test Test

The method trace_var (described on page 511) lets you add a hook to a global vari-

able; whenever an assignment is made to the global, your Proc object is invoked.

How Did We Get Here?

A fair question, and one we ask ourselves regularly. Mental lapses aside, in Ruby at

least you can find out exactly “how you got there” by using the method caller, which

returns an Array of String objects representing the current call stack.

def cat_a

puts caller.join("\n")

end

def cat_b

cat_a

end

Prepared exclusively for Jose Sierra

TRACING YOUR PROGRAM’S EXECUTION 394

def cat_c

cat_b

end

cat_c

produces:

prog.rb:5:in `cat_b'

prog.rb:8:in `cat_c'

prog.rb:10

Once you’ve figured out how you got there, where you go next is up to you.

Source Code

Ruby executes programs from plain old files. You can look at these files to examine the

source code that makes up your program using one of a number of techniques.

The special variable __FILE__ contains the name of the current source file. This leads

to a fairly short (if cheating) Quine—a program that outputs its own source code.

print File.read(__FILE__)

The method Kernel.caller returns the call stack—the list of stack frames in existence

at the time the method was called. Each entry in this list starts off with a filename, a

colon, and a line number in that file. You can parse this information to display source.

In the following example, we have a main program, main.rb, that calls a method in a

separate file, sub.rb. That method in turns invokes a block, where we traverse the call

stack and write out the source lines involved. Notice the use of a hash of file contents,

indexed by the filename.

Here’s the code that dumps out the call stack, including source information.

def dump_call_stack

file_contents = {}

puts "File Line Source Line"

puts "++"

caller.each do |position|

next unless position =~ /\A(.*?):(\d+)/

file = $1

line = Integer($2)

file_contents[file] ||= File.readlines(file)

printf("%25s:%3d %s", file, line,

file_contents[file][line1].lstrip)

end

end

The (trivial) file sub.rb contains a single method.

def sub_method(v1, v2)

main_method(v1*3, v2*6)

end

Prepared exclusively for Jose Sierra

MARSHALING AND DISTRIBUTED RUBY 395

And here’s the main program, which invokes the stack dumper after being called back

by the submethod.

require 'sub'

require 'stack_dumper'

def main_method(arg1, arg2)

dump_call_stack

end

sub_method(123, "cat")

produces:

File Line Source Line

++

code/caller/main.rb : 5 dump_call_stack

./code/caller/sub.rb : 2 main_method(v1*3, v2*6)

code/caller/main.rb : 8 sub_method(123, "cat")

The SCRIPT_LINES__ constant is closely related to this technique. If a program initial-

izes a constant called SCRIPT_LINES__ with a hash, that hash will receive the source

code of every file subsequently loaded into the interpreter using require or load. See

Kernel.require on page 507 for an example.

Marshaling and Distributed Ruby
Java features the ability to serialize objects, letting you store them somewhere and

reconstitute them when needed. You can use this facility, for instance, to save a tree of

objects that represent some portion of application state—a document, a CAD drawing,

a piece of music, and so on.

Ruby calls this kind of serialization marshaling (think of railroad marshaling yards

where individual cars are assembled in sequence into a complete train, which is then

dispatched somewhere). Saving an object and some or all of its components is done

using the method Marshal.dump. Typically, you will dump an entire object tree starting

with some given object. Later, you can reconstitute the object using Marshal.load.

Here’s a short example. We have a class Chord that holds a collection of musical notes.

We’d like to save away a particularly wonderful chord so we can e-mail it to a couple

of hundred of our closest friends. They can then load it into their copy of Ruby and

savor it too. Let’s start with the classes for Note and Chord.

Note = Struct.new(:value)

class Note

def to_s

value.to_s

end

end

Prepared exclusively for Jose Sierra

MARSHALING AND DISTRIBUTED RUBY 396

class Chord

def initialize(arr)

@arr = arr

end

def play

@arr.join('')

end

end

Now we’ll create our masterpiece and use Marshal.dump to save a serialized version

of it to disk.

c = Chord.new([Note.new("G"),

Note.new("Bb"),

Note.new("Db"),

Note.new("E")])

File.open("posterity", "w+") do |f|

Marshal.dump(c, f)

end

Finally, our grandchildren read it in and are transported by our creation’s beauty.

File.open("posterity") do |f|

chord = Marshal.load(f)

end

chord.play → "GBbDbE"

Custom Serialization Strategy

Not all objects can be dumped: bindings, procedure objects, instances of class IO, and

singleton objects cannot be saved outside the running Ruby environment (a TypeError

will be raised if you try). Even if your object doesn’t contain one of these problematic

objects, you may want to take control of object serialization yourself.

Marshal provides the hooks you need. In the objects that require custom serialization,

simply implement two instance methods: one called marshal_dump1.8 , which writes the

object out to a string, and one called marshal_load, which reads a string that you’d

previously created and uses it to initialize a newly allocated object. (In earlier Ruby

versions you’d use methods called _dump and _load, but the new versions play better

with Ruby 1.8’s new allocation scheme.) The instance method marshal_dump should

return an object representing the state to be dumped. When the object is subsequently

reconstituted using Marshal.load, the method marshal_load will be called with this

object and will use it to set the state of its receiver—it will be run in the context of an

allocated but not initialized object of the class being loaded.

For instance, here is a sample class that defines its own serialization. For whatever

reasons, Special doesn’t want to save one of its internal data members, @volatile.

The author has decided to serialize the two other instance variables in an array.

Prepared exclusively for Jose Sierra

MARSHALING AND DISTRIBUTED RUBY 397

class Special

def initialize(valuable, volatile, precious)

@valuable = valuable

@volatile = volatile

@precious = precious

end

def marshal_dump

[@valuable, @precious]

end

def marshal_load(variables)

@valuable = variables[0]

@precious = variables[1]

@volatile = "unknown"

end

def to_s

"#@valuable #@volatile #@precious"

end

end

obj = Special.new("Hello", "there", "World")

puts "Before: obj = #{obj}"

data = Marshal.dump(obj)

obj = Marshal.load(data)

puts "After: obj = #{obj}"

produces:

Before: obj = Hello there World

After: obj = Hello unknown World

For more details, see the reference section on Marshal beginning on page 514.

YAML for Marshaling1.8

The Marshal module is built into the interpreter and uses a binary format to store

objects externally. While fast, this binary format has one major disadvantage: if the

interpreter changes significantly, the marshal binary format may also change, and old

dumped files may no longer be loadable.

An alternative is to use a less fussy external format, preferably one using text rather

than binary files. One option, supplied as a standard library as of Ruby 1.8, is YAML.2

We can adapt our previous marshal example to use YAML. Rather than implement spe-

cific loading and dumping methods to control the marshal process, we simply define the

method to_yaml_properties, which returns a list of instance variables to be saved.

2. http://www.yaml.org. YAML stands for YAML Ain’t Markup Language, but that hardly seems

important.

Prepared exclusively for Jose Sierra

http://www.yaml.org

MARSHALING AND DISTRIBUTED RUBY 398

require 'yaml'

class Special

def initialize(valuable, volatile, precious)

@valuable = valuable

@volatile = volatile

@precious = precious

end

def to_yaml_properties

%w{ @precious @valuable }

end

def to_s

"#@valuable #@volatile #@precious"

end

end

obj = Special.new("Hello", "there", "World")

puts "Before: obj = #{obj}"

data = YAML.dump(obj)

obj = YAML.load(data)

puts "After: obj = #{obj}"

produces:

Before: obj = Hello there World

After: obj = Hello World

We can have a look at what YAML creates as the serialized form of the object—it’s

pretty simple.

obj = Special.new("Hello", "there", "World")

puts YAML.dump(obj)

produces:

 !ruby/object:Special

precious: World

valuable: Hello

Distributed Ruby

Since we can serialize an object or a set of objects into a form suitable for out-of-

process storage, we can use this capability for the transmission of objects from one

process to another. Couple this capability with the power of networking, and voilà: you

have a distributed object system. To save you the trouble of having to write the code, we

suggest using Masatoshi Seki’s Distributed Ruby library (drb), which is now1.8 available

as a standard Ruby library.

Using drb, a Ruby process may act as a server, as a client, or as both. A drb server acts

as a source of objects, while a client is a user of those objects. To the client, it appears

that the objects are local, but in reality the code is still being executed remotely.

Prepared exclusively for Jose Sierra

MARSHALING AND DISTRIBUTED RUBY 399

A server starts a service by associating an object with a given port. Threads are created

internally to handle incoming requests on that port, so remember to join the drb thread

before exiting your program.

require 'drb'

class TestServer

def add(*args)

args.inject {|n,v| n + v}

end

end

server = TestServer.new

DRb.start_service('druby://localhost:9000', server)

DRb.thread.join # Don't exit just yet!

A simple drb client simply creates a local drb object and associates it with the object

on the remote server; the local object is a proxy.

require 'drb'

DRb.start_service()

obj = DRbObject.new(nil, 'druby://localhost:9000')

Now use obj

puts "Sum is: #{obj.add(1, 2, 3)}"

The client connects to the server and calls the method add, which uses the magic of

inject to sum its arguments. It returns the result, which the client prints out.

Sum is: 6

The initial nil argument to DRbObject indicates that we want to attach to a new dis-

tributed object. We could also use an existing object.

Ho hum, you say. This sounds like Java’s RMI, or CORBA, or whatever. Yes, it is a

functional distributed object mechanism—but it is written in just a few hundred lines of

Ruby code. No C, nothing fancy, just plain old Ruby code. Of course, it has no naming

service or trader service, or anything like you’d see in CORBA, but it is simple and

reasonably fast. On my 2.5GHz Power Mac system, this sample code runs at about

1,300 remote message calls per second.

And, if you like the look of Sun’s JavaSpaces, the basis of the JINI architecture, you’ll

be interested to know that drb is distributed with a short module that does the same kind

of thing. JavaSpaces is based on a technology called Linda. To prove that its Japanese

author has a sense of humor, Ruby’s version of Linda is known as Rinda.

If you like your remote messaging fat, dumb, and interoperable, you could also look

into the SOAP libraries distributed with Ruby.1.8 3

3. This is a comment on SOAP, which long-ago abandoned the Simple part of its acronym. The Ruby

implementation of SOAP is a wonderful piece of work.

Prepared exclusively for Jose Sierra

COMPILE TIME? RUNTIME? ANYTIME! 400

Compile Time? Runtime? Anytime!
The important thing to remember about Ruby is that there isn’t a big difference between

“compile time” and “runtime.” It’s all the same. You can add code to a running process.

You can redefine methods on the fly, change their scope from public to private, and

so on. You can even alter basic types, such as Class and Object.

Once you get used to this flexibility, it is hard to go back to a static language such as

C++ or even to a half-static language such as Java.

But then, why would you want to do that?

Prepared exclusively for Jose Sierra

Part IV

Ruby Library Reference

401Prepared exclusively for Jose Sierra

Chapter 27

Built-in Classes and Modules

This chapter documents the classes and modules built into the standard Ruby language.

They are available to every Ruby program automatically; no require is required. This

section does not contain the various predefined variables and constants; these are listed

starting on page 318.

In the descriptions starting on page 406, we show sample invocations for each method.

new String.new(some_string)→ new_string

This description shows a class method that is called as String.new. The italic parame-

ter indicates that a single string is passed in, and the arrow indicates that another string

is returned from the method. Because this return value has a different name than that of

the parameter, it represents a different object.

When we illustrate instance methods, we show a sample call with a dummy object

name in italics as the receiver.

each str.each(sep=$/) {| record | block } → str

The parameter to String#each is shown to have a default value; call each with no

parameter, and the value of $/ will be used. This method is an iterator, so the call is

followed by a block. String#each returns its receiver, so the receiver’s name (str in

this case) appears again after the arrow.

Some methods have optional parameters. We show these parameters between angle

brackets, 〈 xxx 〉. (Additionally, we use the notation 〈 xxx 〉∗ to indicate zero or more

occurrences of xxx and use 〈 xxx 〉+ to indicate one or more occurrences of xxx.)

index self.index(str 〈 , offset 〉)→ pos or nil

Finally, for methods that can be called in several different forms, we list each form on

a separate line.

402Prepared exclusively for Jose Sierra

ALPHABETICAL LISTING 403

Alphabetical Listing
Standard classes are listed alphabetically, followed by the standard modules. Within

each, we list the class (or module) methods, followed by its instance methods.

Summary of Built-in Classes

Array (page 406): Class: [], new. Instance: &, *, +, –, <<, <=>, ==, [], []=, |, assoc, at, clear,

collect!, compact, compact!, concat, delete, delete_at, delete_if, each, each_index, empty?, eql?,

fetch, fill, first, flatten, flatten!, include?, index, indexes, indices, insert, join, last, length, map!,

nitems, pack, pop, push, rassoc, reject!, replace, reverse, reverse!, reverse_each, rindex, shift,

size, slice, slice!, sort, sort!, to_a, to_ary, to_s, transpose, uniq, uniq!, unshift, values_at.

Bignum (page 420): Instance: Arithmetic operations, Bit operations, <=>, ==, [], abs, div,

divmod, eql?, modulo, quo, remainder, size, to_f, to_s.

Binding (page 423)

Class (page 424): Class: inherited, new. Instance: allocate, new, superclass.

Continuation (page 427): Instance: call.

Dir (page 428): Class: [], chdir, chroot, delete, entries, foreach, getwd, glob, mkdir, new, open,

pwd, rmdir, unlink. Instance: close, each, path, pos, pos=, read, rewind, seek, tell.

Exception (page 440): Class: exception, new. Instance: backtrace, exception, message,

set_backtrace, status, success?, to_s, to_str.

FalseClass (page 443): Instance: &, ^, |.

File (page 444): Class: atime, basename, blockdev?, chardev?, chmod, chown, ctime, delete,

directory?, dirname, executable?, executable_real?, exist?, exists?, expand_path, extname, file?,

fnmatch, fnmatch?, ftype, grpowned?, join, lchmod, lchown, link, lstat, mtime, new, open, owned?,

pipe?, readable?, readable_real?, readlink, rename, setgid?, setuid?, size, size?, socket?, split,

stat, sticky?, symlink, symlink?, truncate, umask, unlink, utime, writable?, writable_real?, zero?.

Instance: atime, chmod, chown, ctime, flock, lchmod, lchown, lstat, mtime, path, truncate.

File::Stat (page 456): Instance: <=>, atime, blksize, blockdev?, blocks, chardev?, ctime, dev,

dev_major, dev_minor, directory?, executable?, executable_real?, file?, ftype, gid, grpowned?, ino,

mode, mtime, nlink, owned?, pipe?, rdev, rdev_major, rdev_minor, readable?, readable_real?,

setgid?, setuid?, size, size?, socket?, sticky?, symlink?, uid, writable?, writable_real?, zero?.

Fixnum (page 463): Class: . Instance: Arithmetic operations, Bit operations, <=>, [], abs, div,

divmod, id2name, modulo, quo, size, to_f, to_s, to_sym, zero?.

Float (page 466): Instance: Arithmetic operations, <=>, ==, abs, ceil, divmod, eql?, finite?, floor,

infinite?, modulo, nan?, round, to_f, to_i, to_int, to_s, truncate, zero?.

Hash (page 471): Class: [], new. Instance: ==, [], []=, clear, default, default=, default_proc,

delete, delete_if, each, each_key, each_pair, each_value, empty?, fetch, has_key?, has_value?,

include?, index, indexes, indices, invert, key?, keys, length, member?, merge, merge!, rehash,

reject, reject!, replace, select, shift, size, sort, store, to_a, to_hash, to_s, update, value?, values,

values_at.

Integer (page 480): Instance: ceil, chr, downto, floor, integer?, next, round, succ, times, to_i,

to_int, truncate, upto.

Prepared exclusively for Jose Sierra

ALPHABETICAL LISTING 404

IO (page 482): Class: for_fd, foreach, new, open, pipe, popen, read, readlines, select, sysopen.

Instance: <<, binmode, clone, close, close_read, close_write, closed?, each, each_byte,

each_line, eof, eof?, fcntl, fileno, flush, fsync, getc, gets, ioctl, isatty, lineno, lineno=, pid, pos,

pos=, print, printf, putc, puts, read, readchar, readline, readlines, reopen, rewind, seek, stat, sync,

sync=, sysread, sysseek, syswrite, tell, to_i, to_io, tty?, ungetc, write.

MatchData (page 516): Instance: [], begin, captures, end, length, offset, post_match,

pre_match, select, size, string, to_a, to_s, values_at.

Method (page 522): Instance: [], ==, arity, call, eql?, to_proc, unbind.

Module (page 524): Class: constants, nesting, new. Instance: <, <=, >, >=, <=>, ===,

ancestors, autoload, autoload?, class_eval, class_variables, clone, const_defined?, const_get,

const_missing, const_set, constants, include?, included_modules, instance_method,

instance_methods, method_defined?, module_eval, name, private_class_method,

private_instance_methods, private_method_defined?, protected_instance_methods,

protected_method_defined?, public_class_method, public_instance_methods,

public_method_defined?. Private: alias_method, append_features, attr, attr_accessor, attr_reader,

attr_writer, define_method, extend_object, extended, include, included, method_added,

method_removed, method_undefined, module_function, private, protected, public,

remove_class_variable, remove_const, remove_method, undef_method.

NilClass (page 540): Instance: &, ^, |, nil?, to_a, to_f, to_i, to_s.

Numeric (page 541): Instance: +@, -@, <=>, abs, ceil, coerce, div, divmod, eql?, floor,

integer?, modulo, nonzero?, quo, remainder, round, step, to_int, truncate, zero?.

Object (page 546): Instance: ==, ===, =~, _ _id_ _, _ _send_ _, class, clone, display, dup, eql?,

equal?, extend, freeze, frozen?, hash, id, initialize_copy, inspect, instance_eval, instance_of?,

instance_variable_get, instance_variable_set, instance_variables, is_a?, kind_of?, method,

method_missing, methods, nil?, object_id, private_methods, protected_methods, public_methods,

respond_to?, send, singleton_methods, taint, tainted?, to_a, to_s, type, untaint. Private: initialize,

remove_instance_variable, singleton_method_added, singleton_method_removed,

singleton_method_undefined.

Proc (page 559): Class: new. Instance: [], ==, arity, binding, call, to_proc, to_s.

Process::Status (page 570): Instance: ==, &, >>, coredump?, exited?, exitstatus, pid,

signaled?, stopped?, success?, stopsig, termsig, to_i, to_int, to_s.

Range (page 576): Class: new. Instance: ==, ===, begin, each, end, eql?, exclude_end?, first,

include?, last, member?, step.

Regexp (page 579): Class: compile, escape, last_match, new, quote. Instance: ==, ===, =~, ~,

casefold?, inspect, kcode, match, options, source, to_s.

String (page 585): Class: new. Instance: %, *, +, <<, <=>, ==, ===, =~, [], []=, ~, capitalize,

capitalize!, casecmp, center, chomp, chomp!, chop, chop!, concat, count, crypt, delete, delete!,

downcase, downcase!, dump, each_byte, each_line, empty?, gsub, gsub!, hex, include?, index,

insert, intern, length, ljust, lstrip, lstrip!, match, next, next!, oct, replace, reverse, reverse!, rindex,

rjust, rstrip, rstrip!, scan, size, slice, slice!, split, squeeze, squeeze!, strip, strip!, sub, sub!, succ,

succ!, sum, swapcase, swapcase!, to_f, to_i, to_s, to_str, to_sym, tr, tr!, tr_s, tr_s!, unpack,

upcase, upcase!, upto.

Struct (page 605): Class: new, new, [], members. Instance: ==, [], []=, each, each_pair, length,

members, size, to_a, values, values_at.

Struct::Tms (page 609)

Prepared exclusively for Jose Sierra

ALPHABETICAL LISTING 405

Symbol (page 610): Class: all_symbols. Instance: id2name, inspect, to_i, to_int, to_s, to_sym.

Thread (page 612): Class: abort_on_exception, abort_on_exception=, critical, critical=, current,

exit, fork, kill, list, main, new, pass, start, stop. Instance: [], []=, abort_on_exception,

abort_on_exception=, alive?, exit, group, join, keys, key?, kill, priority, priority=, raise, run,

safe_level, status, stop?, terminate, value, wakeup.

ThreadGroup (page 619): Class: new. Instance: add, enclose, enclosed?, freeze, list.

Time (page 621): Class: at, gm, local, mktime, new, now, times, utc. Instance: +, –, <=>,

asctime, ctime, day, dst?, getgm, getlocal, getutc, gmt?, gmtime, gmt_offset, gmtoff, hour, isdst,

localtime, mday, min, mon, month, sec, strftime, to_a, to_f, to_i, to_s, tv_sec, tv_usec, usec, utc,

utc?, utc_offset, wday, yday, year, zone.

TrueClass (page 629): Instance: &, ^, |.

UnboundMethod (page 630): Instance: arity, bind.

Summary of Built-in Modules

Comparable (page 426): Instance: Comparisons, between?.

Enumerable (page 433): Instance: all?, any?, collect, detect, each_with_index, entries, find,

find_all, grep, include?, inject, map, max, member?, min, partition, reject, select, sort, sort_by,

to_a, zip.

Errno (page 439)

FileTest (page 462)

GC (page 470): Class: disable, enable, start. Instance: garbage_collect.

Kernel (page 495): Class: Array, Float, Integer, String, ` (backquote), abort, at_exit, autoload,

autoload?, binding, block_given?, callcc, caller, catch, chomp, chomp!, chop, chop!, eval, exec,

exit, exit!, fail, fork, format, gets, global_variables, gsub, gsub!, iterator?, lambda, load,

local_variables, loop, open, p, print, printf, proc, putc, puts, raise, rand, readline, readlines, require,

scan, select, set_trace_func, sleep, split, sprintf, srand, sub, sub!, syscall, system, test, throw,

trace_var, trap, untrace_var, warn.

Marshal (page 514): Class: dump, load, restore.

Math (page 519): Class: acos, acosh, asin, asinh, atan, atanh, atan2, cos, cosh, erf, erfc, exp,

frexp, hypot, ldexp, log, log10, sin, sinh, sqrt, tan, tanh.

ObjectSpace (page 557): Class: _id2ref, define_finalizer, each_object, garbage_collect,

undefine_finalizer.

Process (page 562): Class: abort, detach, egid, egid=, euid, euid=, exit, exit!, fork, getpgid,

getpgrp, getpriority, gid, gid=, groups, groups=, initgroups, kill, maxgroups, maxgroups=, pid, ppid,

setpgid, setpgrp, setpriority, setsid, times, uid, uid=, wait, waitall, wait2, waitpid, waitpid2.

Process::GID (page 568): Class: change_privilege, eid, eid=, grant_privilege, re_exchange,

re_exchangeable?, rid, sid_available?, switch.

Process::Sys (page 573): Class: getegid, geteuid, getgid, getuid, issetugid, setegid, seteuid,

setgid, setregid, setresgid, setresuid, setreuid, setrgid, setruid, setuid.

Process::UID (page 575): Class: change_privilege, eid, eid=, grant_privilege, re_exchange,

re_exchangeable?, rid, sid_available?, switch.

Signal (page 583): Class: list, trap.

Prepared exclusively for Jose Sierra

ARRAY 406

A
rr

a
y

Class
Array < Object

Arrays are ordered, integer-indexed collections of any object. Array indexing starts at

0, as in C or Java. A negative index is assumed to be relative to the end of the array; that

is, an index of −1 indicates the last element of the array,−2 is the next to last element

in the array, and so on.

Mixes in

Enumerable:

all?, any?, collect, detect, each_with_index, entries, find, find_all,

grep, include?, inject, map, max, member?, min, partition, reject,

select, sort, sort_by, to_a, zip

Class methods

[] Array[〈 obj 〉∗]→ an_array

Returns a new array populated with the given objects. Equivalent to the operator form

Array.[](. . .).

Array.[](1, 'a', /^A/) → [1, "a", /^A/]

Array[1, 'a', /^A/] → [1, "a", /^A/]

[1, 'a', /^A/] → [1, "a", /^A/]

new Array.new→ an_array

Array.new (size=0, obj=nil)→ an_array

Array.new(array)→ an_array

Array.new(size) {| i | block } → an_array

Returns a new array. In the first form, the new array is empty. In the second it is created

with size copies of obj (that is, size references to the same obj). The third form1.8 creates

a copy of the array passed as a parameter (the array is generated by calling to_ary on

the parameter). In the last form,1.8 an array of the given size is created. Each element in

this array is calculated by passing the element’s index to the given block and storing

the return value.

Array.new → []

Array.new(2) → [nil, nil]

Array.new(5, "A") → ["A", "A", "A", "A", "A"]

only one instance of the default object is created

a = Array.new(2, Hash.new)

a[0]['cat'] = 'feline'

a → [{"cat"=>"feline"}, {"cat"=>"feline"}]

a[1]['cat'] = 'Felix'

a → [{"cat"=>"Felix"}, {"cat"=>"Felix"}]

Prepared exclusively for Jose Sierra

ARRAY 407

A
rr

a
y

a = Array.new(2) { Hash.new } # Multiple instances

a[0]['cat'] = 'feline'

a → [{"cat"=>"feline"}, {}]

squares = Array.new(5) {|i| i*i}

squares → [0, 1, 4, 9, 16]

copy = Array.new(squares) # initialized by copying

squares[5] = 25

squares → [0, 1, 4, 9, 16, 25]

copy → [0, 1, 4, 9, 16]

Instance methods

& arr & other_array→ an_array

Set Intersection—Returns a new array containing elements common to the two arrays,

with no duplicates. The rules for comparing elements are the same as for hash keys. If

you need setlike behavior, see the library class Set on page 710.

[1, 1, 3, 5] & [1, 2, 3] → [1, 3]

* arr * int→ an_array

arr * str→ a_string

Repetition—With an argument that responds to to_str, equivalent to arr.join(str).

Otherwise, returns a new array built by concatenating int copies of arr.

[1, 2, 3] * 3 → [1, 2, 3, 1, 2, 3, 1, 2, 3]

[1, 2, 3] * "" → "123"

+ arr + other_array→ an_array

Concatenation—Returns a new array built by concatenating the two arrays together to

produce a third array.

[1, 2, 3] + [4, 5] → [1, 2, 3, 4, 5]

– arr - other_array→ an_array

Array Difference—Returns a new array that is a copy of the original array, removing

any items that also appear in other_array. If you need setlike behavior, see the library

class Set on page 710.

[1, 1, 2, 2, 3, 3, 4, 5] [1, 2, 4] → [3, 3, 5]

<< arr << obj→ arr

Append—Pushes the given object on to the end of this array. This expression returns

the array itself, so several appends may be chained together. See also Array#push.

[1, 2] << "c" << "d" << [3, 4] → [1, 2, "c", "d", [3, 4]]

Prepared exclusively for Jose Sierra

ARRAY 408

A
rr

a
y

<=> arr <=> other_array→−1, 0, +1

Comparison—Returns an integer −1, 0, or +1 if this array is less than, equal to, or

greater than other_array. Each object in each array is compared (using <=>). If any

value isn’t equal, then that inequality is the return value. If all the values found are

equal, then the return is based on a comparison of the array lengths. Thus, two arrays

are “equal” according to Array#<=> if and only if they have the same length and the

value of each element is equal to the value of the corresponding element in the other

array.

["a", "a", "c"] <=> ["a", "b", "c"] → 1

[1, 2, 3, 4, 5, 6] <=> [1, 2] → 1

== arr == obj→ true or false

Equality—Two arrays are equal if they contain the same number of elements and if each

element is equal to (according to Object#==) the corresponding element in the other

array. If obj is not an array, attempt to convert it using to_ary and return obj==arr.

["a", "c"] == ["a", "c", 7] → false

["a", "c", 7] == ["a", "c", 7] → true

["a", "c", 7] == ["a", "d", "f"] → false

[] arr[int]→ obj or nil

arr[start, length]→ an_array or nil

arr[range]→ an_array or nil

Element Reference—Returns the element at index int, returns a subarray starting at

index start and continuing for length elements, or returns a subarray specified by range.

Negative indices count backward from the end of the array (−1 is the last element).

Returns nil if the index of the first element selected1.8 is greater than the array size. If

the start index equals the array size and a length or range parameter is given, an empty

array is returned. Equivalent to Array#slice.

a = ["a", "b", "c", "d", "e"]

a[2] + a[0] + a[1] → "cab"

a[6] → nil

a[1, 2] → ["b", "c"]

a[1..3] → ["b", "c", "d"]

a[4..7] → ["e"]

a[6..10] → nil

a[3, 3] → ["c", "d", "e"]

special cases

a[5] → nil

a[5, 1] → []

a[5..10] → []

Prepared exclusively for Jose Sierra

ARRAY 409

A
rr

a
y

[]= arr[int] = obj→ obj

arr[start, length] = obj→ obj

arr[range] = obj→ obj

Element Assignment—Sets the element at index int, replaces a subarray starting at

index start and continuing for length elements, or replaces a subarray specified by

range. If int is greater than the current capacity of the array, the array grows automati-

cally. A negative int will count backward from the end of the array. Inserts elements if

length is zero. If obj is nil, deletes elements from arr. If obj is an array, the form with

the single index will insert that array into arr, and the forms with a length or with a

range will replace the given elements in arr with the array contents. An IndexError is

raised if a negative index points past the beginning of the array. See also Array#push

and Array#unshift.

a = Array.new → []

a[4] = "4"; a → [nil, nil, nil, nil, "4"]

a[0] = [1, 2, 3]; a → [[1, 2, 3], nil, nil, nil, "4"]

a[0, 3] = ['a', 'b', 'c']; a → ["a", "b", "c", nil, "4"]

a[1..2] = [1, 2]; a → ["a", 1, 2, nil, "4"]

a[0, 2] = "?"; a → ["?", 2, nil, "4"]

a[0..2] = "A"; a → ["A", "4"]

a[1] = "Z"; a → ["A", "Z"]

a[1..1] = nil; a → ["A"]

| arr | other_array→ an_array

Set Union—Returns a new array by joining this array with other_array, removing

duplicates. The rules for comparing elements are the same as for hash keys. If you

need setlike behavior, see the library class Set on page 710.

["a", "b", "c"] | ["c", "d", "a"] → ["a", "b", "c", "d"]

assoc arr.assoc(obj)→ an_array or nil

Searches through an array whose elements are also arrays comparing obj with the

first element of each contained array using obj.== . Returns the first contained array

that matches (that is, the first associated array) or nil if no match is found. See also

Array#rassoc.

s1 = ["colors", "red", "blue", "green"]

s2 = ["letters", "a", "b", "c"]

s3 = "foo"

a = [s1, s2, s3]

a.assoc("letters") → ["letters", "a", "b", "c"]

a.assoc("foo") → nil

at arr.at(int)→ obj or nil

Returns the element at index int. A negative index counts from the end of arr. Returns

Prepared exclusively for Jose Sierra

ARRAY 410

A
rr

a
y

nil if the index is out of range. See also Array#[]. (Array#at is slightly faster than

Array#[], as it does not accept ranges, and so on.)

a = ["a", "b", "c", "d", "e"]

a.at(0) → "a"

a.at(1) → "e"

clear arr.clear→ arr

Removes all elements from arr.

a = ["a", "b", "c", "d", "e"]

a.clear → []

collect! arr.collect! {| obj | block } → arr

Invokes block once for each element of arr, replacing the element with the value

returned by block. See also Enumerable#collect.

a = ["a", "b", "c", "d"]

a.collect! {|x| x + "!" } → ["a!", "b!", "c!", "d!"]

a → ["a!", "b!", "c!", "d!"]

compact arr.compact→ an_array

Returns a copy of arr with all nil elements removed.

["a", nil, "b", nil, "c", nil].compact → ["a", "b", "c"]

compact! arr.compact!→ arr or nil

Removes nil elements from arr. Returns nil if no changes were made.

["a", nil, "b", nil, "c"].compact! → ["a", "b", "c"]

["a", "b", "c"].compact! → nil

concat arr.concat(other_array)→ arr

Appends the elements in other_array to arr.

["a", "b"].concat(["c", "d"]) → ["a", "b", "c", "d"]

delete arr.delete(obj)→ obj or nil

arr.delete(obj) { block } → obj or nil

Deletes items from arr that are equal to obj. If the item is not found, returns nil. If the

optional code block is given, returns the result of block if the item is not found.

a = ["a", "b", "b", "b", "c"]

a.delete("b") → "b"

a → ["a", "c"]

a.delete("z") → nil

a.delete("z") { "not found" } → "not found"

Prepared exclusively for Jose Sierra

ARRAY 411

A
rr

a
y

delete_at arr.delete_at(index)→ obj or nil

Deletes the element at the specified index, returning that element, or nil if the index is

out of range. See also Array#slice!.

a = %w(ant bat cat dog)

a.delete_at(2) → "cat"

a → ["ant", "bat", "dog"]

a.delete_at(99) → nil

delete_if arr.delete_if {| item | block } → arr

Deletes every element of arr for which block evaluates to true.

a = ["a", "b", "c"]

a.delete_if {|x| x >= "b" } → ["a"]

each arr.each {| item | block } → arr

Calls block once for each element in arr, passing that element as a parameter.

a = ["a", "b", "c"]

a.each {|x| print x, " " }

produces:

a b c

each_index arr.each_index {| index | block } → arr

Same as Array#each but passes the index of the element instead of the element itself.

a = ["a", "b", "c"]

a.each_index {|x| print x, " " }

produces:

0 1 2

empty? arr.empty?→ true or false

Returns true if arr array contains no elements.

[].empty? → true

[1, 2, 3].empty? → false

eql? arr.eql?(other)→ true or false

Returns true if arr and other are the same object or if other is an object of class Array

with the same length and content as arr. Elements in the arrays are compared using

Object#eql?. See also Array#<=>.

["a", "b", "c"].eql?(["a", "b", "c"]) → true

["a", "b", "c"].eql?(["a", "b"]) → false

["a", "b", "c"].eql?(["b", "c", "d"]) → false

Prepared exclusively for Jose Sierra

ARRAY 412

A
rr

a
y

fetch arr.fetch(index)→ obj

arr.fetch(index, default)→ obj

arr.fetch(index) {| i | block } → obj

1.8 Tries to return the element at position index. If the index lies outside the array, the first

form throws an IndexError exception, the second form returns default, and the third

form returns the value of invoking the block, passing in the index. Negative values of

index count from the end of the array.

a = [11, 22, 33, 44]

a.fetch(1) → 22

a.fetch(1) → 44

a.fetch(1, 'cat') → 44

a.fetch(4, 'cat') → "cat"

a.fetch(4) {|i| i*i } → 16

fill arr.fill(obj)→ arr

arr.fill(obj, start 〈 , length 〉)→ arr

arr.fill(obj, range)→ arr

arr.fill {| i | block } → arr

arr.fill(start 〈 , length 〉) {| i | block } → arr

arr.fill(range) {| i | block } → arr

The first three forms set the selected elements of arr (which may be the entire array) to

obj. A start of nil is equivalent to zero. A length of nil is equivalent to arr.length.

The last three forms1.8 fill the array with the value of the block. The block is passed the

absolute index of each element to be filled.

a = ["a", "b", "c", "d"]

a.fill("x") → ["x", "x", "x", "x"]

a.fill("z", 2, 2) → ["x", "x", "z", "z"]

a.fill("y", 0..1) → ["y", "y", "z", "z"]

a.fill {|i| i*i} → [0, 1, 4, 9]

a.fill(3) {|i| i+100} → [0, 101, 102, 103]

first arr.first→ obj or nil

arr.first(count)→ an_array

1.8 Returns the first element, or the first count elements, of arr. If the array is empty, the

first form returns nil, and the second returns an empty array.

a = ["q", "r", "s", "t"]

a.first → "q"

a.first(1) → ["q"]

a.first(3) → ["q", "r", "s"]

flatten arr.flatten→ an_array

Returns a new array that is a one-dimensional flattening of this array (recursively). That

is, for every element that is an array, extract its elements into the new array. à

Prepared exclusively for Jose Sierra

ARRAY 413

A
rr

a
y

s = [1, 2, 3] → [1, 2, 3]

t = [4, 5, 6, [7, 8]] → [4, 5, 6, [7, 8]]

a = [s, t, 9, 10] → [[1, 2, 3], [4, 5, 6, [7, 8]], 9, 10]

a.flatten → [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

flatten! arr.flatten!→ arr or nil

Same as Array#flatten but modifies the receiver in place. Returns nil if no modifi-

cations were made (i.e., arr contains no subarrays).

a = [1, 2, [3, [4, 5]]]

a.flatten! → [1, 2, 3, 4, 5]

a.flatten! → nil

a → [1, 2, 3, 4, 5]

include? arr.include?(obj)→ true or false

Returns true if the given object is present in arr (that is, if any object == obj), false

otherwise.

a = ["a", "b", "c"]

a.include?("b") → true

a.include?("z") → false

index arr.index(obj)→ int or nil

Returns the index of the first object in arr that is == to obj. Returns nil if no match is

found.

a = ["a", "b", "c"]

a.index("b") → 1

a.index("z") → nil

indexes arr.indexes(i1, i2, ... iN)→ an_array

Deprecated; use Array#values_at.1.8

indices arr.indices(i1, i2, ... iN)→ an_array

Deprecated; use Array#values_at.1.8

insert arr.insert(index, 〈 obj 〉+)→ arr

1.8 If index is not negative, inserts the given values before the element with the given index.

If index is−1, appends the values to arr. Otherwise inserts the values after the element

with the given index.

a = %w{ a b c d }

a.insert(2, 99) → ["a", "b", 99, "c", "d"]

a.insert(2, 1, 2, 3) → ["a", "b", 99, "c", 1, 2, 3, "d"]

a.insert(1, "e") → ["a", "b", 99, "c", 1, 2, 3, "d", "e"]

Prepared exclusively for Jose Sierra

ARRAY 414

A
rr

a
y

Table 27.1. Template characters for Array#pack

Directive Meaning

@ Moves to absolute position

A ASCII string (space padded, count is width)

a ASCII string (null padded, count is width)

B Bit string (descending bit order)

b Bit string (ascending bit order)

C Unsigned char

c Char

D, d Double-precision float, native format

E Double-precision float, little-endian byte order

e Single-precision float, little-endian byte order

F, f Single-precision float, native format

G Double-precision float, network (big-endian) byte order

g Single-precision float, network (big-endian) byte order

H Hex string (high nibble first)

h Hex string (low nibble first)

I Unsigned integer

i Integer

L Unsigned long

l Long

M Quoted printable, MIME encoding (see RFC2045)

m Base64 encoded string

N Long, network (big-endian) byte order

n Short, network (big-endian) byte order

P Pointer to a structure (fixed-length string)

p Pointer to a null-terminated string

Q, q 64-bit number1.8
S Unsigned short

s Short

U UTF-8

u UU-encoded string

V Long, little-endian byte order

v Short, little-endian byte order

w BER-compressed integer1.8 1

X Back up a byte

x Null byte

Z Same as A

1 The octets of a BER-compressed integer represent an unsigned integer in base 128, most significant digit

first, with as few digits as possible. Bit eight (the high bit) is set on each byte except the last (Self-Describing

Binary Data Representation, MacLeod)

Prepared exclusively for Jose Sierra

ARRAY 415

A
rr

a
y

join arr.join(separator=$,)→ str

Returns a string created by concatenating each element of the array to a string, separat-

ing each by separator.

["a", "b", "c"].join → "abc"

["a", "b", "c"].join("") → "abc"

last arr.last→ obj or nil

arr.last(count)→ an_array

1.8 Returns the last element, or last count elements, of arr. If the array is empty, the first

form returns nil, the second an empty array.

["w", "x", "y", "z"].last → "z"

["w", "x", "y", "z"].last(1) → ["z"]

["w", "x", "y", "z"].last(3) → ["x", "y", "z"]

length arr.length→ int

Returns the number of elements in arr. See also Array#nitems.

[1, nil, 3, nil, 5].length → 5

map! arr.map! {| obj | block } → arr

Synonym for Array#collect!.

nitems arr.nitems→ int

Returns the number of non-nil elements in arr. See also Array#length.

[1, nil, 3, nil, 5].nitems → 3

pack arr.pack (template)→ binary_string

1.8 Packs the contents of arr into a binary sequence according to the directives in template

(see Table 27.1 on the preceding page). Directives A, a, and Z may be followed by

a count, which gives the width of the resulting field. The remaining directives also

may take a count, indicating the number of array elements to convert. If the count is

an asterisk (*), all remaining array elements will be converted. Any of the directives

“sSiIlL” may be followed by an underscore (_) to use the underlying platform’s native

size for the specified type; otherwise, they use a platform-independent size. Spaces are

ignored in the template string. Comments1.8 starting with # to the next newline or end of

string are also ignored. See also String#unpack on page 602.

a = ["a", "b", "c"]

n = [65, 66, 67]

a.pack("A3A3A3") → "a b c "

a.pack("a3a3a3") → "a\000\000b\000\000c\000\000"

n.pack("ccc") → "ABC"

Prepared exclusively for Jose Sierra

ARRAY 416

A
rr

a
y

pop arr.pop→ obj or nil

Removes the last element from arr and returns it or returns nil if the array is empty.

a = ["a", "m", "z"]

a.pop → "z"

a → ["a", "m"]

push arr.push(〈 obj 〉∗)→ arr

Appends the given argument(s) to arr.

a = ["a", "b", "c"]

a.push("d", "e", "f") → ["a", "b", "c", "d", "e", "f"]

rassoc arr.rassoc(key)→ an_array or nil

Searches through the array whose elements are also arrays. Compares key with the

second element of each contained array using ==. Returns the first contained array that

matches. See also Array#assoc.

a = [[1, "one"], [2, "two"], [3, "three"], ["ii", "two"]]

a.rassoc("two") → [2, "two"]

a.rassoc("four") → nil

reject! arr.reject! { block } item→ arr or nil

Equivalent to Array#delete_if, but returns nil if no changes were made. Also see

Enumerable#reject.

replace arr.replace(other_array)→ arr

Replaces the contents of arr with the contents of other_array, truncating or expanding

if necessary.

a = ["a", "b", "c", "d", "e"]

a.replace(["x", "y", "z"]) → ["x", "y", "z"]

a → ["x", "y", "z"]

reverse arr.reverse→ an_array

Returns a new array using arr’s elements in reverse order.

["a", "b", "c"].reverse → ["c", "b", "a"]

[1].reverse → [1]

reverse! arr.reverse!→ arr

1.8 Reverses arr in place.

a = ["a", "b", "c"]

a.reverse! → ["c", "b", "a"]

a → ["c", "b", "a"]

[1].reverse! → [1]

Prepared exclusively for Jose Sierra

ARRAY 417

A
rr

a
y

reverse_each arr.reverse_each {| item | block } → arr

Same as Array#each, but traverses arr in reverse order.

a = ["a", "b", "c"]

a.reverse_each {|x| print x, " " }

produces:

c b a

rindex arr.rindex(obj)→ int or nil

Returns the index of the last object in arr such that the object == obj. Returns nil if no

match is found.

a = ["a", "b", "b", "b", "c"]

a.rindex("b") → 3

a.rindex("z") → nil

shift arr.shift→ obj or nil

Returns the first element of arr and removes it (shifting all other elements down by

one). Returns nil if the array is empty.

args = ["m", "q", "filename"]

args.shift → "m"

args → ["q", "filename"]

size arr.size→ int

Synonym for Array#length.

slice arr.slice(int)→ obj

arr.slice(start, length)→ an_array

arr.slice(range)→ an_array

Synonym for Array#[].

a = ["a", "b", "c", "d", "e"]

a.slice(2) + a.slice(0) + a.slice(1) → "cab"

a.slice(6) → nil

a.slice(1, 2) → ["b", "c"]

a.slice(1..3) → ["b", "c", "d"]

a.slice(4..7) → ["e"]

a.slice(6..10) → nil

a.slice(3, 3) → ["c", "d", "e"]

special cases

a.slice(5) → nil

a.slice(5, 1) → []

a.slice(5..10) → []

Prepared exclusively for Jose Sierra

ARRAY 418

A
rr

a
y

slice! arr.slice!(int)→ obj or nil

arr.slice!(start, length)→ an_array or nil

arr.slice!(range)→ an_array or nil

Deletes the element(s) given by an index (optionally with a length) or by a range.

Returns the deleted object, subarray, or nil if the index is out of range. Equivalent to

def slice!(*args)

result = self[*args]

self[*args] = nil

result

end

a = ["a", "b", "c"]

a.slice!(1) → "b"

a → ["a", "c"]

a.slice!(1) → "c"

a → ["a"]

a.slice!(100) → nil

a → ["a"]

sort arr.sort→ an_array

arr.sort {| a,b | block } → an_array

Returns a new array created by sorting arr. Comparisons for the sort will be done using

the <=> operator or using an optional code block. The block implements a comparison

between a and b, returning−1, 0, or +1. See also Enumerable#sort_by.

a = ["d", "a", "e", "c", "b"]

a.sort → ["a", "b", "c", "d", "e"]

a.sort {|x,y| y <=> x } → ["e", "d", "c", "b", "a"]

sort! arr.sort!→ arr

arr.sort! {| a,b | block } → arr

Sorts arr in place (see Array#sort). arr is effectively frozen while a sort is in progress.

a = ["d", "a", "e", "c", "b"]

a.sort! → ["a", "b", "c", "d", "e"]

a → ["a", "b", "c", "d", "e"]

to_a arr.to_a→ arr

array_subclass.to_a→ array

If arr is an array, returns arr. If arr is a subclass of Array, invokes to_ary, and uses

the result to create a new array object.

to_ary arr.to_ary→ arr

Returns arr.

Prepared exclusively for Jose Sierra

ARRAY 419

A
rr

a
y

to_s arr.to_s→ str

Returns arr.join.

["a", "e", "i", "o"].to_s → "aeio"

transpose arr.transpose→ an_array

1.8 Assumes that arr is an array of arrays and transposes the rows and columns.

a = [[1,2], [3,4], [5,6]]

a.transpose → [[1, 3, 5], [2, 4, 6]]

uniq arr.uniq→ an_array

Returns a new array by removing duplicate values in arr, where duplicates are detected

by comparing using eql? and hash.

a = ["a", "a", "b", "b", "c"]

a.uniq → ["a", "b", "c"]

uniq! arr.uniq!→ arr or nil

Same as Array#uniq, but modifies the receiver in place. Returns nil if no changes are

made (that is, no duplicates are found).

a = ["a", "a", "b", "b", "c"]

a.uniq! → ["a", "b", "c"]

b = ["a", "b", "c"]

b.uniq! → nil

unshift arr.unshift(〈 obj 〉+)→ arr

Prepends object(s) to arr.

a = ["b", "c", "d"]

a.unshift("a") → ["a", "b", "c", "d"]

a.unshift(1, 2) → [1, 2, "a", "b", "c", "d"]

values_at arr.values_at(〈 selector 〉∗)→ an_array

1.8 Returns an array containing the elements in arr corresponding to the given selector(s).

The selectors may be either integer indices or ranges.

a = %w{ a b c d e f }

a.values_at(1, 3, 5) → ["b", "d", "f"]

a.values_at(1, 3, 5, 7) → ["b", "d", "f", nil]

a.values_at(1, 3, 5, 7) → ["f", "d", "b", nil]

a.values_at(1..3, 2...5) → ["b", "c", "d", "c", "d", "e"]

Prepared exclusively for Jose Sierra

BIGNUM 420

B
ig

n
u

m

Class
Bignum < Integer

Bignum objects hold integers outside the range of Fixnum. Bignum objects are created

automatically when integer calculations would otherwise overflow a Fixnum. When a

calculation involving Bignum objects returns a result that will fit in a Fixnum, the result

is automatically converted.

For the purposes of the bitwise operations and [], a Bignum is treated as if it were an

infinite-length bitstring with 2’s complement representation.

While Fixnum values are immediate, Bignum objects are not—assignment and param-

eter passing work with references to objects, not the objects themselves.

Instance methods

Arithmetic operations

Performs various arithmetic operations on big.

big + number Addition

big – number Subtraction

big * number Multiplication

big / number Division

big % number Modulo

big ** number Exponentiation

big -@ Unary minus

Bit operations

Performs various operations on the binary representations of the Bignum.

~ big Invert bits

big | number Bitwise OR

big & number Bitwise AND

big ^ number Bitwise EXCLUSIVE OR

big << number Left-shift number bits

big >> number Right-shift number bits (with sign extension)

<=> big <=> number→−1, 0, +1

Comparison—Returns−1, 0, or +1 depending on whether big is less than, equal to, or

greater than number. This is the basis for the tests in Comparable.

== big == obj→ true or false

Returns true only if obj has the same value as big. Contrast this with Bignum#eql?,

which requires obj to be a Bignum.

68719476736 == 68719476736.0 → true

Prepared exclusively for Jose Sierra

BIGNUM 421

B
ig

n
u

m[] big[n]→ 0, 1

Bit Reference—Returns the nth bit in the (assumed) binary representation of big, where

big[0] is the least significant bit.

a = 9**15

50.downto(0) do |n|

print a[n]

end

produces:

000101110110100000111000011110010100111100010111001

abs big.abs→ bignum

Returns the absolute value of big.

1234567890987654321.abs → 1234567890987654321

1234567890987654321.abs → 1234567890987654321

div big.div(number)→ other_number

1.8 Synonym for Bignum#/.

1234567890987654321.div(13731) → 89910996357706

1234567890987654321.div(13731.0) → 89910996357705.5

1234567890987654321.div(987654321) → 1249999989

divmod big.divmod(number)→ array

See Numeric#divmod on page 544.

eql? big.eql?(obj)→ true or false

Returns true only if obj is a Bignum with the same value as big. Contrast this with

Bignum#==, which performs type conversions.

68719476736.eql? 68719476736 → true

68719476736 == 68719476736 → true

68719476736.eql? 68719476736.0 → false

68719476736 == 68719476736.0 → true

modulo big.modulo(number)→ number

1.8 Synonym for Bignum#%.

quo big.quo(number)→ float

1.8 Returns the floating-point result of dividing big by number.

1234567890987654321.quo(13731) → 89910996357705.5

1234567890987654321.quo(13731.0) → 89910996357705.5

1234567890987654321.quo(987654321) → 1249999989.60938

Prepared exclusively for Jose Sierra

BIGNUM 422

B
ig

n
u

mremainder big.remainder(number)→ other_number

1.8 Returns the remainder after dividing big by number.

1234567890987654321.remainder(13731) → 6966

1234567890987654321.remainder(13731.24) → 9906.22531493148

size big.size→ integer

Returns the number of bytes in the machine representation of big.

(256**10 1).size → 12

(256**20 1).size → 20

(256**40 1).size → 40

to_f big.to_f→ float

Converts big to a Float. If big doesn’t fit in a Float, the result is infinity.

to_s big.to_s(base=10)→ str

1.8 Returns a string containing the representation of big radix base (2 to 36).

12345654321.to_s → "12345654321"

12345654321.to_s(2) → "1011011111110110111011110000110001"

12345654321.to_s(8) → "133766736061"

12345654321.to_s(16) → "2dfdbbc31"

12345654321.to_s(26) → "1dp1pc6d"

78546939656932.to_s(36) → "rubyrules"

Prepared exclusively for Jose Sierra

BINDING 423

B
in

d
in

g

Class
Binding < Object

Objects of class Binding encapsulate the execution context at some particular place in

the code and retain this context for future use. The variables, methods, value of self,

and possibly an iterator block that can be accessed in this context are all retained.

Binding objects can be created using Kernel#binding and are made available to the

callback of Kernel#set_trace_func.

These binding objects can be passed as the second argument of the Kernel#eval

method, establishing an environment for the evaluation.

class Demo

def initialize(n)

@secret = n

end

def get_binding

return binding()

end

end

k1 = Demo.new(99)

b1 = k1.get_binding

k2 = Demo.new(3)

b2 = k2.get_binding

eval("@secret", b1) → 99

eval("@secret", b2) → 3

eval("@secret") → nil

Binding objects have no class-specific methods.

Prepared exclusively for Jose Sierra

CLASS 424

C
la

s
s

Class
Class < Module

Classes in Ruby are first-class objects—each is an instance of class Class.

When a new class is defined (typically using class Name ... end), an object of type

Class is created and assigned to a constant (Name, in this case). When Name.new is

called to create a new object, the new instance method in Class is run by default, which

in turn invokes allocate1.8 to allocate memory for the object, before finally calling the

new object’s initialize method.

Class methods

inherited cls.inherited(sub_class)

Invoked by Ruby when a subclass of cls is created. The new subclass is passed as a

parameter.

class Top

def Top.inherited(sub)

puts "New subclass: #{sub}"

end

end

class Middle < Top

end

class Bottom < Middle

end

produces:

New subclass: Middle

New subclass: Bottom

new Class.new(super_class=Object) 〈 { block } 〉 → cls

1.8 Creates a new anonymous (unnamed) class with the given superclass (or Object if no

parameter is given). If passed a block, that block is used as the body of the class.

p = lambda do

def hello

"Hello, Dave"

end

end

FriendlyClass = Class.new(&p)

f = FriendlyClass.new

f.hello → "Hello, Dave"

Prepared exclusively for Jose Sierra

CLASS 425

C
la

s
s

Instance methods

allocate cls.allocate→ obj

1.8 Allocates space for a new object of cls’s class. The returned object must be an instance

of cls. Calling new is basically the same as calling the class method allocate to create

an object, followed by calling initialize on that new object. You cannot override

allocate in normal programs; Ruby invokes it without going through conventional

method dispatch.

class MyClass

def MyClass.another_new(*args)

o = allocate

o.send(:initialize, *args)

o

end

def initialize(a, b, c)

@a, @b, @c = a, b, c

end

end

mc = MyClass.another_new(4, 5, 6)

mc.inspect → "#<MyClass:0x1ca198 @a=4, @c=6, @b=5>"

new cls.new(〈 args 〉∗)→ obj

Calls allocate to create a new object of cls’s class and then invokes the newly created

object’s initialize method, passing it args.

superclass cls.superclass→ super_class or nil

Returns the superclass of cls or returns nil.

Class.superclass → Module

Object.superclass → nil

Prepared exclusively for Jose Sierra

COMPARABLE 426

C
o

m
p

a
ra

b
le

Module
Comparable

Relies on: <=>

The Comparable mixin is used by classes whose objects may be ordered. The class

must define the <=> operator, which compares the receiver against another object,

returning −1, 0, or +1 depending on whether the receiver is less than, equal to, or

greater than the other object. Comparable uses <=> to implement the conventional

comparison operators (<, <=, ==, >=, and >) and the method between?.

class CompareOnSize

include Comparable

attr :str

def <=>(other)

str.length <=> other.str.length

end

def initialize(str)

@str = str

end

end

s1 = CompareOnSize.new("Z")

s2 = CompareOnSize.new([1,2])

s3 = CompareOnSize.new("XXX")

s1 < s2 → true

s2.between?(s1, s3) → true

s3.between?(s1, s2) → false

[s3, s2, s1].sort → ["Z", [1, 2], "XXX"]

Instance methods

Comparisons obj < other_object→ true or false

obj <= other_object→ true or false

obj == other_object→ true or false

obj >= other_object→ true or false

obj > other_object→ true or false

Compares two objects based on the receiver’s <=> method.

between? obj.between?(min, max)→ true or false

Returns false if obj <=> min is less than zero or if obj <=> max is greater than zero,

true otherwise.

3.between?(1, 5) → true

6.between?(1, 5) → false

'cat'.between?('ant', 'dog') → true

'gnu'.between?('ant', 'dog') → false

Prepared exclusively for Jose Sierra

CONTINUATION 427

C
o

n
ti
n
u

a
ti
o

nClass
Continuation < Object

Continuation objects are generated by Kernel#callcc. They hold a return address

and execution context, allowing a nonlocal return to the end of the callcc block from

anywhere within a program. Continuations are somewhat analogous to a structured ver-

sion of C’s setjmp/longjmp (although they contain more state, so you may consider

them closer to threads).

This (somewhat contrived) example allows the inner loop to abandon processing early.

callcc do |cont|

for i in 0..4

print "\n#{i}: "

for j in i*5...(i+1)*5

cont.call() if j == 7

printf "%3d", j

end

end

end

print "\n"

produces:

0: 0 1 2 3 4

1: 5 6

This example shows that the call stack for methods is preserved in continuations.

def strange

callcc {|continuation| return continuation}

print "Back in method, "

end

print "Before method. "

continuation = strange()

print "After method. "

continuation.call if continuation

produces:

Before method. After method. Back in method, After method.

Instance methods

call cont.call(〈 args 〉∗)

Invokes the continuation. The program continues from the end of the callcc block.

If no arguments are given, the original callcc returns nil. If one argument is given,

callcc returns it. Otherwise, an array containing args is returned.

callcc {|cont| cont.call } → nil

callcc {|cont| cont.call 1 } → 1

callcc {|cont| cont.call 1, 2, 3 } → [1, 2, 3]

Prepared exclusively for Jose Sierra

DIR 428

D
ir

Class
Dir < Object

Objects of class Dir are directory streams representing directories in the underlying

filesystem. They provide a variety of ways to list directories and their contents. See

also File, page 444.

The directory used in these examples contains the two regular files (config.h and

main.rb), the parent directory (..), and the directory itself (.).

Mixes in

Enumerable:

all?, any?, collect, detect, each_with_index, entries, find, find_all,

grep, include?, inject, map, max, member?, min, partition, reject,

select, sort, sort_by, to_a, zip

Class methods

[] Dir[glob_pattern]→ array

1.8 Equivalent to calling Dir.glob(glob_pattern, 0).

chdir Dir.chdir(〈 dir 〉)→ 0

Dir.chdir(〈 dir 〉) {| path | block } → obj

Changes the current working directory of the process to the given string. When called

without an argument, changes the directory to the value of the environment variable

HOME or LOGDIR. Raises a SystemCallError (probably Errno::ENOENT) if the target

directory does not exist.

If a block is given, it is passed the1.8 name of the new current directory, and the block is

executed with that as the current directory. The original working directory is restored

when the block exits. The return value of chdir is the value of the block. chdir blocks

can be nested, but in a multithreaded program an error will be raised if a thread attempts

to open a chdir block while another thread has one open. This is because the underly-

ing operating system only understands the concept of a single current working directory

at any one time.

Dir.chdir("/var/log")

puts Dir.pwd

Dir.chdir("/tmp") do

puts Dir.pwd

Dir.chdir("/usr") do

puts Dir.pwd

end

puts Dir.pwd

end

puts Dir.pwd

Prepared exclusively for Jose Sierra

DIR 429

D
ir

produces:

/var/log

/tmp

/usr

/tmp

/var/log

chroot Dir.chroot(dirname)→ 0

Changes this process’s idea of the file system root. Only a privileged process may make

this call. Not available on all platforms. On Unix systems, see chroot(2) for more

information.

Dir.chdir("/production/secure/root")

Dir.chroot("/production/secure/root") → 0

Dir.pwd → "/"

delete Dir.delete(dirname)→ 0

Deletes the named directory. Raises a subclass of SystemCallError if the directory

isn’t empty.

entries Dir.entries(dirname)→ array

Returns an array containing all of the filenames in the given directory. Will raise a

SystemCallError if the named directory doesn’t exist.

Dir.entries("testdir") → [".", "..", "config.h", "main.rb"]

foreach Dir.foreach(dirname) {| filename | block } → nil

Calls the block once for each entry in the named directory, passing the filename of each

entry as a parameter to the block.

Dir.foreach("testdir") {|x| puts "Got #{x}" }

produces:

Got .

Got ..

Got config.h

Got main.rb

getwd Dir.getwd→ dirname

Returns a string containing the canonical path to the current working directory of this

process. Note that on some operating systems this name may not be the name you gave

to Dir.chdir. On OS X, for example, /tmp is a symlink.

Dir.chdir("/tmp") → 0

Dir.getwd → "/private/tmp"

Prepared exclusively for Jose Sierra

DIR 430

D
ir

glob Dir.glob(glob_pattern, 〈 flags 〉)→ array

Dir.glob(glob_pattern, 〈 flags 〉) {| filename | block } → false

1.8 Returns the filenames found by expanding the pattern given in glob_pattern, either as

elements in array or as parameters to the block. Note that this pattern is not a regexp

(it’s closer to a shell glob). See File.fnmatch on page 447 for the meaning of the

flags parameter. Case sensitivity depends on your system (so File::FNM_CASEFOLD is

ignored). Metacharacters in the pattern are

* Any sequence of characters in a filename: “*” will match all files, “c*”

will match all files beginning with “c”, “*c” will match all files ending

with “c”, and “*c*” will match all files that have “c” in their name.

** Matches zero of more directories (so “**/fred”) matches a file named

“fred” in or below the current directory).

? Matches any one character in a filename.

[chars] Matches any one of chars. If the first character in chars is ^, matches

any character not in the remaining set.

{patt,...} Matches one of the patterns specified between braces. These patterns

may contain other metacharacters.

\ Removes any special significance in the next character.

Dir.chdir("testdir") → 0

Dir["config.?"] → ["config.h"]

Dir.glob("config.?") → ["config.h"]

Dir.glob("*.[az][az]") → ["main.rb"]

Dir.glob("*.[^r]*") → ["config.h"]

Dir.glob("*.{rb,h}") → ["main.rb", "config.h"]

Dir.glob("*") → ["config.h", "main.rb"]

Dir.glob("*", File::FNM_DOTMATCH) → [".", "..", "config.h",

"main.rb"]

Dir.chdir("..") → 0

Dir.glob("code/**/fib*.rb") → ["code/fib_up_to.rb",

"code/rdoc/fib_example.rb"]

Dir.glob("**/rdoc/fib*.rb") → ["code/rdoc/fib_example.rb"]

mkdir Dir.mkdir(dirname 〈 , permissions 〉)→ 0

Makes a new directory named dirname, with permissions specified by the optional

parameter permissions. The permissions may be modified by the value of File.umask

and are ignored on Windows. Raises a SystemCallError if the directory cannot be

created. See also the discussion of permissions on page 444.

new Dir.new(dirname)→ dir

Returns a new directory object for the named directory.

Prepared exclusively for Jose Sierra

DIR 431

D
ir

open Dir.open(dirname)→ dir

Dir.open(dirname) {| dir | block } → obj

With no block, open is a synonym for Dir.new. If a block is present, it is passed dir as

a parameter. The directory is closed at the end of the block, and Dir.open returns the

value of the block.1.8

pwd Dir.pwd→ dirname

Synonym for Dir.getwd.

rmdir Dir.rmdir(dirname)→ 0

Synonym for Dir.delete.

unlink Dir.unlink(dirname)→ 0

Synonym for Dir.delete.

Instance methods

close dir.close→ nil

Closes the directory stream. Any further attempts to access dir will raise an IOError.

d = Dir.new("testdir")

d.close → nil

each dir.each {| filename | block } → dir

Calls the block once for each entry in this directory, passing the filename of each entry

as a parameter to the block.

d = Dir.new("testdir")

d.each {|name| puts "Got #{name}" }

produces:

Got .

Got ..

Got config.h

Got main.rb

path dir.path→ dirname

1.8 Returns the path parameter passed to dir’s constructor.

d = Dir.new("..")

d.path → ".."

pos dir.pos→ int

1.8 Synonym for Dir#tell.

Prepared exclusively for Jose Sierra

DIR 432

D
ir

pos= dir.pos(int)→ int

1.8 Synonym for Dir#seek, but returns the position parameter.

d = Dir.new("testdir") → #<Dir:0x1ca198>

d.read → "."

i = d.pos → 1

d.read → ".."

d.pos = i → 1

d.read → ".."

read dir.read→ filename or nil

Reads the next entry from dir and returns it as a string. Returns nil at the end of the

stream.

d = Dir.new("testdir")

d.read → "."

d.read → ".."

d.read → "config.h"

rewind dir.rewind→ dir

Repositions dir to the first entry.

d = Dir.new("testdir")

d.read → "."

d.rewind → #<Dir:0x1ca508>

d.read → "."

seek dir.seek(int)→ dir

Seeks to a particular location in dir. int must be a value returned by Dir#tell (it is not

necessarily a simple index into the entries).

d = Dir.new("testdir") → #<Dir:0x1ca198>

d.read → "."

i = d.tell → 1

d.read → ".."

d.seek(i) → #<Dir:0x1ca198>

d.read → ".."

tell dir.tell→ int

Returns the current position in dir. See also Dir#seek.

d = Dir.new("testdir")

d.tell → 1

d.read → "."

d.tell → 2

Prepared exclusively for Jose Sierra

ENUMERABLE 433

E
n
u

m
e

ra
b
le

Module
Enumerable

Relies on: each, <=>

The Enumerable mixin provides collection classes with several traversal and searching

methods and with the ability to sort. The class must provide a method each, which

yields successive members of the collection. If Enumerable#max, #min, #sort, or

#sort_by is used, the objects in the collection must also implement a meaningful <=>

operator, as these methods rely on an ordering between members of the collection.

Instance methods

all? enum.all? 〈 {| obj | block } 〉 → true or false

1.8 Passes each element of the collection to the given block. The method returns true if

the block never returns false or nil. If the block is not given, Ruby adds an implicit

block of {|obj| obj} (that is all? will return true only if none of the collection

members is false or nil.)

%w{ ant bear cat}.all? {|word| word.length >= 3} → true

%w{ ant bear cat}.all? {|word| word.length >= 4} → false

[nil, true, 99].all? → false

any? enum.any? 〈 {| obj | block } 〉 → true or false

1.8 Passes each element of the collection to the given block. The method returns true if

the block ever returns a value other than false or nil. If the block is not given, Ruby

adds an implicit block of {|obj| obj} (that is, any? will return true if at least one of

the collection members is not false or nil).

%w{ ant bear cat}.any? {|word| word.length >= 3} → true

%w{ ant bear cat}.any? {|word| word.length >= 4} → true

[nil, true, 99].any? → true

collect enum.collect {| obj | block } → array

Returns a new array containing the results of running block once for every element in

enum.

(1..4).collect {|i| i*i } → [1, 4, 9, 16]

(1..4).collect { "cat" } → ["cat", "cat", "cat", "cat"]

detect enum.detect(ifnone = nil) {| obj | block } → obj or nil

Passes each entry in enum to block. Returns the first for which block is not false. Returns

nil if no object matches unless the proc ifnone1.8 is given, in which case it is called and

its result returned.

Prepared exclusively for Jose Sierra

ENUMERABLE 434

E
n
u

m
e

ra
b
le

(1..10).detect {|i| i % 5 == 0 and i % 7 == 0 } → nil

(1..100).detect {|i| i % 5 == 0 and i % 7 == 0 } → 35

sorry = lambda { "not found" }

(1..10).detect(sorry) {|i| i > 50} → "not found"

each_with_index enum.each_with_index {| obj, i | block } → enum

Calls block with two arguments, the item and its index, for each item in enum.

hash = Hash.new

%w(cat dog wombat).each_with_index do |item, index|

hash[item] = index

end

hash → {"cat"=>0, "wombat"=>2, "dog"=>1}

entries enum.entries→ array

Synonym for Enumerable#to_a.

find enum.find(ifnone = nil) {| obj | block } → obj or nil

Synonym for Enumerable#detect.

find_all enum.find_all {| obj | block } → array

Returns an array containing all elements of enum for which block is not false (see also

Enumerable#reject).

(1..10).find_all {|i| i % 3 == 0 } → [3, 6, 9]

grep enum.grep(pattern)→ array

enum.grep(pattern) {| obj | block } → array

Returns an array of every element in enum for which pattern === element. If the

optional block is supplied, each matching element is passed to it, and the block’s result

is stored in the output array.

(1..100).grep 38..44 → [38, 39, 40, 41, 42, 43, 44]

c = IO.constants

c.grep(/SEEK/) → ["SEEK_CUR", "SEEK_SET", "SEEK_END"]

res = c.grep(/SEEK/) {|v| IO.const_get(v) }

res → [1, 0, 2]

include? enum.include?(obj)→ true or false

Returns true if any member of enum equals obj. Equality is tested using ==.

IO.constants.include? "SEEK_SET" → true

IO.constants.include? "SEEK_NO_FURTHER" → false

Prepared exclusively for Jose Sierra

ENUMERABLE 435

E
n
u

m
e

ra
b
le

inject enum.inject(initial) {| memo, obj | block } → obj

enum.inject {| memo, obj | block } → obj

1.8 Combines the elements of enum by applying the block to an accumulator value (memo)

and each element in turn. At each step, memo is set to the value returned by the block.

The first form lets you supply an initial value for memo. The second form uses the first

element of the collection as the initial value (and skips that element while iterating).

Sum some numbers

(5..10).inject {|sum, n| sum + n } → 45

Multiply some numbers

(5..10).inject(1) {|product, n| product * n } → 151200

find the longest word

longest = %w{ cat sheep bear }.inject do |memo, word|

memo.length > word.length ? memo : word

end

longest → "sheep"

find the length of the longest word

longest = %w{ cat sheep bear }.inject(0) do |memo, word|

memo >= word.length ? memo : word.length

end

longest → 5

map enum.map {| obj | block } → array

Synonym for Enumerable#collect.

max enum.max→ obj

enum.max {| a,b | block } → obj

Returns the object in enum with the maximum value. The first form assumes all objects

implement <=>; the second uses the block to return a <=> b.

a = %w(albatross dog horse)

a.max → "horse"

a.max {|a,b| a.length <=> b.length } → "albatross"

member? enum.member?(obj)→ true or false

Synonym for Enumerable#include?.

min enum.min→ obj

enum.min {| a,b | block } → obj

Returns the object in enum with the minimum value. The first form assumes all objects

implement Comparable; the second uses the block to return a <=> b.

a = %w(albatross dog horse)

a.min → "albatross"

a.min {|a,b| a.length <=> b.length } → "dog"

Prepared exclusively for Jose Sierra

ENUMERABLE 436

E
n
u

m
e

ra
b
le

partition enum.partition {| obj | block } → [true_array, false_array]

1.8 Returns two arrays, the first containing the elements of enum for which the block eval-

uates to true, the second containing the rest.

(1..6).partition {|i| (i&1).zero?} → [[2, 4, 6], [1, 3, 5]]

reject enum.reject {| obj | block } → array

Returns an array containing the elements of enum for which block is false (see also

Enumerable#find_all).

(1..10).reject {|i| i % 3 == 0 } → [1, 2, 4, 5, 7, 8, 10]

select enum.select {| obj | block } → array

Synonym for Enumerable#find_all.

sort enum.sort→ array

enum.sort {| a, b | block } → array

Returns an array containing the items in enum sorted, either according to their own

<=> method or by using the results of the supplied block. The block should return −1,

0, or +1 depending on the comparison between a and b. As of Ruby 1.8, the method

Enumerable#sort_by implements a built-in Schwartzian Transform, useful when key

computation or comparison is expensive.

%w(rhea kea flea).sort → ["flea", "kea", "rhea"]

(1..10).sort {|a,b| b <=> a} → [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

sort_by enum.sort_by {| obj | block } → array

1.8 Sorts enum using keys generated by mapping the values in enum through the given

block, using the result of that block for element comparison.

sorted = %w{ apple pear fig }.sort_by {|word| word.length}

sorted → ["fig", "pear", "apple"]

Internally, sort_by generates an array of tuples containing the original collection ele-

ment and the mapped value. This makes sort_by fairly expensive when the keysets are

simple.

require 'benchmark'

include Benchmark

a = (1..100000).map {rand(100000)}

bm(10) do |b|

b.report("Sort") { a.sort }

b.report("Sort by") { a.sort_by {|a| a} }

end

Prepared exclusively for Jose Sierra

ENUMERABLE 437

E
n
u

m
e

ra
b
le

produces:

user system total real

Sort 0.030000 0.000000 0.030000 (0.036672)

Sort by 0.350000 0.010000 0.360000 (0.350194)

However, consider the case where comparing the keys is a nontrivial operation. The

following code sorts some files on modification time using the basic sort method.

files = Dir["*"]

sorted = files.sort {|a,b| File.new(a).mtime <=> File.new(b).mtime}

sorted → ["mon", "tues", "wed", "thurs"]

This sort is inefficient: it generates two new File objects during every comparison. A

slightly better technique is to use the Kernel#test method to generate the modification

times directly.

files = Dir["*"]

sorted = files.sort do |a,b|

test(?M, a) <=> test(?M, b)

end

sorted → ["mon", "tues", "wed", "thurs"]

This still generates many unnecessary Time objects. A more efficient technique is to

cache the sort keys (modification times in this case) before the sort. Perl users often call

this approach a Schwartzian Transform, named after Randal Schwartz. We construct a

temporary array, where each element is an array containing our sort key along with the

filename. We sort this array and then extract the filename from the result.

sorted = Dir["*"].collect {|f|

[test(?M, f), f]

}.sort.collect {|f| f[1] }

sorted → ["mon", "tues", "wed", "thurs"]

This is exactly what sort_by does internally.

sorted = Dir["*"].sort_by {|f| test(?M, f)}

sorted → ["mon", "tues", "wed", "thurs"]

sort_by can also be useful for multilevel sorts. One trick, which relies on the fact that

arrays are compared element by element, is to have the block return an array of each of

the comparison keys. For example, to sort a list of words first on their length and then

alphabetically, you could write.

words = %w{ puma cat bass ant aardvark gnu fish }

sorted = words.sort_by {|w| [w.length, w] }

sorted → ["ant", "cat", "gnu", "bass", "fish", "puma", "aardvark"]

Prepared exclusively for Jose Sierra

ENUMERABLE 438

E
n
u

m
e

ra
b
le

to_a enum.to_a→ array

Returns an array containing the items in enum.

(1..7).to_a → [1, 2, 3, 4, 5, 6, 7]

{ 'a'=>1, 'b'=>2, 'c'=>3 }.to_a → [["a", 1], ["b", 2], ["c", 3]]

zip enum.zip(〈 arg 〉+)→ array

enum.zip(〈 arg 〉+) {| arr | block } → nil

1.8 Converts any arguments to arrays and then merges elements of enum with correspond-

ing elements from each argument. The result is an array containing the same number

of elements as enum. Each element is a n-element array, where n is one more than the

count of arguments. If the size of any argument is less than the number of elements

in enum, nil values are supplied. If a block given, it is invoked for each output array,

otherwise an array of arrays is returned.

a = [4, 5, 6]

b = [7, 8, 9]

(1..3).zip(a, b) → [[1, 4, 7], [2, 5, 8], [3, 6, 9]]

"cat\ndog".zip([1]) → [["cat\n", 1], ["dog", nil]]

(1..3).zip → [[1], [2], [3]]

Prepared exclusively for Jose Sierra

ERRNO 439

E
rr

n
o

Module
Errno

Ruby exception objects are subclasses of Exception. However, operating systems typ-

ically report errors using plain integers. Module Errno is created dynamically to map

these operating system errors to Ruby classes, with each error number generating its

own subclass of SystemCallError. As the subclass is created in module Errno, its

name will start Errno::.

Exception

StandardError

SystemCallError

Errno::xxx

The names of the Errno:: classes depend on the environment in which Ruby runs.

On a typical Unix or Windows platform, you’ll find Ruby has Errno classes such as

Errno::EACCES, Errno::EAGAIN, Errno::EINTR, and so on.

The integer operating system error number corresponding to a particular error is avail-

able as the class constant Errno::error::Errno.

Errno::EACCES::Errno → 13

Errno::EAGAIN::Errno → 35

Errno::EINTR::Errno → 4

The full list of operating system errors on your particular platform is available as the

constants of Errno. Any user-defined exceptions in this module (including subclasses

of existing exceptions) must also define an Errno constant.

Errno.constants → E2BIG, EACCES, EADDRINUSE, EADDRNOTAVAIL,

EAFNOSUPPORT, EAGAIN, EALREADY, ...

As of Ruby 1.81.8 , exceptions are matched in rescue clauses using Module#===. The

=== method is overridden for class SystemCallError to compare based on the Errno

value. Thus if two distinct Errno classes have the same underlying Errno value, they

will be treated as the same exception by a rescue clause.

Prepared exclusively for Jose Sierra

EXCEPTION 440

E
x
c
e

p
ti
o

n

Class
Exception < Object

Descendents of class Exception are used to communicate between raise methods and

rescue statements in begin/end blocks. Exception objects carry information about

the exception—its type (the exception’s class name), an optional descriptive string, and

optional traceback information.

The standard library defines the exceptions shown in Figure 27.1 on the next page. See

also the description of Errno on the preceding page.

Class methods

exception Exception.exception(〈 message 〉)→ exc

Creates and returns a new exception object, optionally setting the message to message.

new Exception.new(〈 message 〉)→ exc

Creates and returns a new exception object, optionally setting the message to message.

Instance methods

backtrace exc.backtrace→ array

Returns any backtrace associated with the exception. The backtrace is an array of

strings, each containing either filename:line: in ‘method’ or filename:line.

def a

raise "boom"

end

def b

a()

end

begin

b()

rescue => detail

print detail.backtrace.join("\n")

end

produces:

prog.rb:2:in `a'

prog.rb:6:in `b'

prog.rb:10

exception exc.exception(〈 message 〉)→ exc or exception

With no argument, returns the receiver. Otherwise, creates a new exception object of

the same class as the receiver but with a different message.

Prepared exclusively for Jose Sierra

EXCEPTION 441

E
x
c
e

p
ti
o

n

Figure 27.1. Standard exception hierarchy

Exception

fatal (used internally by Ruby)

NoMemoryError

ScriptError

LoadError

NotImplementedError

SyntaxError

SignalException

Interrupt

StandardError

ArgumentError

IOError

EOFError

IndexError

LocalJumpError

NameError

NoMethodError

RangeError

FloatDomainError

RegexpError

RuntimeError

SecurityError

SystemCallError

system-dependent exceptions (Errno::xxx)

ThreadError

TypeError

ZeroDivisionError

SystemExit

SystemStackError

message exc.message→ msg

Returns the message associated with this exception.

set_backtrace exc.set_backtrace(array)→ array

Sets the backtrace information associated with exc. The argument must be an array of

String objects in the format described in Exception#backtrace.

status exc.status→ status

(SystemExit only)1.8 Returns the exit status associated with this SystemExit exception.

Normally this status is set using the Kernel#exit.

Prepared exclusively for Jose Sierra

EXCEPTION 442

E
x
c
e

p
ti
o

n

begin

exit(99)

rescue SystemExit => e

puts "Exit status is: #{e.status}"

end

produces:

Exit status is: 99

success? exc.success?→ true or false

(SystemExit only)1.8 Returns true is the exit status if nil or zero.

begin

exit(99)

rescue SystemExit => e

print "This program "

if e.success?

print "did"

else

print "did not"

end

puts " succeed"

end

produces:

This program did not succeed

to_s exc.to_s→ msg

Returns the message associated with this exception (or the name of the exception if no

message is set).

begin

raise "The message"

rescue Exception => e

puts e.to_s

end

produces:

The message

to_str exc.to_str→ msg

Returns the message associated with this exception (or the name of the exception if no

message is set). Implementing to_str gives exceptions a stringlike behavior.

Prepared exclusively for Jose Sierra

FALSECLASS 443

F
a

ls
e

C
la

s
s

Class
FalseClass < Object

The global value false is the only instance of class FalseClass and represents a log-

ically false value in boolean expressions. The class provides operators allowing false

to participate correctly in logical expressions.

Instance methods

& false & obj→ false

And—Returns false. obj is always evaluated as it is the argument to a method call—

no short-circuit evaluation is performed in this case. In other words, the following code,

which uses &&, will not invoke the lookup method.

def lookup(val)

puts "Looking up #{val}"

return true

end

false && lookup("cat")

However, this code, using &, will:

false & lookup("cat")

produces:

Looking up cat

^ false ^ obj→ true or false

Exclusive Or—If obj is nil or false, returns false; otherwise, returns true.

| false | obj→ true or false

Or—Returns false if obj is nil or false; true otherwise.

Prepared exclusively for Jose Sierra

FILE 444

F
ile

Class
File < IO

A File is an abstraction of any file object accessible by the program and is closely

associated with class IO, page 482. File includes the methods of module FileTest as

class methods, allowing you to write (for example) File.exist?("foo").

In this section, permission bits are a platform-specific set of bits that indicate permis-

sions of a file. On Unix-based systems, permissions are viewed as a set of three octets,

for the owner, the group, and the rest of the world. For each of these entities, permis-

sions may be set to read, write, or execute the file.

Owner Group Other

r w x r w x r w x

4 2 1 4 2 1 4 2 1

The permission bits 0644 (in octal) would thus be interpreted as read/write for owner

and read-only for group and other. Higher-order bits may also be used to indicate the

type of file (plain, directory, pipe, socket, and so on) and various other special features.

If the permissions are for a directory, the meaning of the execute bit changes; when set,

the directory can be searched.

Each file has three associated times. The atime is the time the file was last accessed.

The ctime is the time that the file status (not necessarily the file contents) were last

changed. Finally, the mtime is the time the file’s data was last modified. In Ruby, all

these times are returned as Time objects.

On non-POSIX operating systems, there may be only the ability to make a file read-

only or read/write. In this case, the remaining permission bits will be synthesized to

resemble typical values. For instance, on Windows the default permission bits are 0644,

which means read/write for owner, read-only for all others. The only change that can

be made is to make the file read-only, which is reported as 0444.

See also Pathname on page 693.

Class methods

atime File.atime(filename)→ time

Returns a Time object containing the last access time for the named file, or returns

epoch if the file has not been accessed.

File.atime("testfile") → Wed Sep 20 16:05:05 CDT 2006

basename File.basename(filename 〈 , suffix 〉)→ string

Returns the last component of the filename given in filename. If suffix is given and

present at the end of filename, it is removed. Any extension can be removed by giving

an extension of ".*".1.8 à

Prepared exclusively for Jose Sierra

FILE 445

F
ile

File.basename("/home/gumby/work/ruby.rb") → "ruby.rb"

File.basename("/home/gumby/work/ruby.rb", ".rb") → "ruby"

File.basename("/home/gumby/work/ruby.rb", ".*") → "ruby"

blockdev? File.blockdev?(filename)→ true or false

Returns true if the named file is a block device, and returns false if it isn’t or if the

operating system doesn’t support this feature.

File.blockdev?("testfile") → false

chardev? File.chardev?(filename)→ true or false

Returns true if the named file is a character device, and returns false if it isn’t or if

the operating system doesn’t support this feature.

File.chardev?("/dev/tty") → true

chmod File.chmod(permission 〈 , filename 〉+)→ int

Changes permission bits on the named file(s) to the bit pattern represented by permis-

sion. Actual effects are operating system dependent (see the beginning of this section).

On Unix systems, see chmod(2) for details. Returns the number of files processed.

File.chmod(0644, "testfile", "out") → 2

chown File.chown(owner, group 〈 , filename 〉+)→ int

Changes the owner and/or group of the named file(s) to the given numeric owner and

group IDs. Only a process with superuser privileges may change the owner of a file.

The current owner of a file may change the file’s group to any group to which the

owner belongs. A nil or−1 owner or group ID is ignored. Returns the number of files

processed.

File.chown(nil, 100, "testfile")

ctime File.ctime(filename)→ time

Returns a Time object containing the time that the file status associated with the named

file was changed.

File.ctime("testfile") → Wed Sep 20 16:05:16 CDT 2006

delete File.delete(〈 filename 〉+)→ int

Deletes the named file(s). Returns the number of files processed. See also Dir.rmdir.

File.open("testrm", "w+") {}

File.delete("testrm") → 1

Prepared exclusively for Jose Sierra

FILE 446

F
ile

directory? File.directory?(path)→ true or false

Returns true if the named file is a directory, false otherwise.

File.directory?(".") → true

dirname File.dirname(filename)→ filename

Returns all components of the filename given in filename except the last one.

File.dirname("/home/gumby/work/ruby.rb") → "/home/gumby/work"

File.dirname("ruby.rb") → "."

executable? File.executable?(filename)→ true or false

Returns true if the named file is executable. The tests are made using the effective

owner of the process.

File.executable?("testfile") → false

executable_real? File.executable_real?(filename)→ true or false

Same as File#executable?, but tests using the real owner of the process.

exist? File.exist?(filename)→ true or false

Returns true if the named file or directory exists.

File.exist?("testfile") → true

exists? File.exists? (filename)→ true or false

Synonym for File.exist?.

expand_path File.expand_path(filename 〈 , dirstring 〉)→ filename

Converts a pathname to an absolute pathname. Relative paths are referenced from the

current working directory of the process unless dirstring is given, in which case it will

be used as the starting point. The given pathname may start with a ~, which expands

to the process owner’s home directory (the environment variable HOME must be set

correctly). ~user expands to the named user’s home directory.

File.expand_path("~testuser/bin") → "/Users/testuser/bin"

File.expand_path("../../bin", "/tmp/x") → "/bin"

extname File.extname(path)→ string

1.8 Returns the extension (the portion of filename in path after the period).

File.extname("test.rb") → ".rb"

File.extname("a/b/d/test.rb") → ".rb"

File.extname("test") → ""

Prepared exclusively for Jose Sierra

FILE 447

F
ile

Table 27.2. Match-mode constants

FNM_NOESCAPE Backslash does not escape special characters in globs, and a back-

slash in the pattern must match a backslash in the filename.

FNM_PATHNAME Forward slashes in the filename are treated as separating parts of a

path and so must be explicitly matched in the pattern.

FNM_DOTMATCH If this option is not specified, filenames containing leading periods

must be matched by an explicit period in the pattern. A leading

period is one at the start of the filename or (if FNM_PATHNAME is spec-

ified) following a slash.

FNM_CASEFOLD Filename matches are case insensitive

file? File.file?(filename)→ true or false

Returns true if the named file is a regular file (not a device file, directory, pipe, socket,

and so on).

File.file?("testfile") → true

File.file?(".") → false

fnmatch File.fnmatch(glob_pattern, path, 〈 flags 〉)→ true or false

1.8 Returns true if path matches against glob_pattern. The pattern is not a regular expres-

sion; instead it follows rules similar to shell filename globbing. Because fnmatch in

implemented by the underlying operating system, it may have different semantics to

Dir.glob. A glob_pattern may contain the following metacharacters.

** Matches subdirectories recursively.

* Matches zero or more characters.

? Matches any single character.

[charset] Matches any character from the given set of characters. A range of

characters is written as fromto. The set may be negated with an initial

caret (^).

\ Escapes any special meaning of the next character.

flags is a bitwise OR of the FNM_xxx parameters listed on this page. See also Dir.glob

on page 430.

File.fnmatch('cat', 'cat') → true

File.fnmatch('cat', 'category') → false

File.fnmatch('c{at,ub}s', 'cats') → false

File.fnmatch('c{at,ub}s', 'cubs') → false

File.fnmatch('c{at,ub}s', 'cat') → false

File.fnmatch('c?t', 'cat') → true

File.fnmatch('c\?t', 'cat') → false

Prepared exclusively for Jose Sierra

FILE 448

F
ile

File.fnmatch('c??t', 'cat') → false

File.fnmatch('c*', 'cats') → true

File.fnmatch('c/**/t', 'c/a/b/c/t') → true

File.fnmatch('c*t', 'cat') → true

File.fnmatch('c\at', 'cat') → true

File.fnmatch('c\at', 'cat', File::FNM_NOESCAPE) → false

File.fnmatch('a?b', 'a/b') → true

File.fnmatch('a?b', 'a/b', File::FNM_PATHNAME) → false

File.fnmatch('*', '.profile') → false

File.fnmatch('*', '.profile', File::FNM_DOTMATCH) → true

File.fnmatch('*', 'dave/.profile') → true

File.fnmatch('*', 'dave/.profile', File::FNM_DOTMATCH) → true

File.fnmatch('*', 'dave/.profile', File::FNM_PATHNAME) → false

File.fnmatch('*/*', 'dave/.profile', File::FNM_PATHNAME) → false

STRICT = File::FNM_PATHNAME | File::FNM_DOTMATCH

File.fnmatch('*/*', 'dave/.profile', STRICT) → true

fnmatch? File.fnmatch?(glob_pattern, path, 〈 flags 〉)→ (true or false)

1.8 Synonym for File#fnmatch.

ftype File.ftype(filename)→ filetype

Identifies the type of the named file. The return string is one of file, directory,

characterSpecial, blockSpecial, fifo, link, socket, or unknown.

File.ftype("testfile") → "file"

File.ftype("/dev/tty") → "characterSpecial"

system("mkfifo wibble") → true

File.ftype("wibble") → "fifo"

grpowned? File.grpowned?(filename)→ true or false

Returns true if the effective group ID of the process is the same as the group ID of the

named file. On Windows, returns false.

File.grpowned?("/etc/passwd") → false

join File.join(〈 string 〉+)→ filename

Returns a new string formed by joining the strings using File::SEPARATOR. The vari-

ous separators are listed in Table 27.3 on the following page.

File.join("usr", "mail", "gumby") → "usr/mail/gumby"

lchmod File.lchmod(permission, 〈 filename 〉+)→ 0

1.8 Equivalent to File.chmod, but does not follow symbolic links (so it will change the

permissions associated with the link, not the file referenced by the link). Often not

available.

Prepared exclusively for Jose Sierra

FILE 449

F
ile

Table 27.3. Path separator constants (platform specific)

ALT_SEPARATOR Alternate path separator.

PATH_SEPARATOR Separator for filenames in a search path (such as : or ;).

SEPARATOR Separator for directory components in a filename (such as \ or /).

Separator Alias for SEPARATOR.

lchown File.lchown(owner, group, 〈 filename 〉+)→ 0

1.8 Equivalent to File.chown, but does not follow symbolic links (so it will change the

owner associated with the link, not the file referenced by the link). Often not available.

link File.link(oldname, newname)→ 0

Creates a new name for an existing file using a hard link. Will not overwrite newname

if it already exists (in which case link raises a subclass of SystemCallError). Not

available on all platforms.

File.link("testfile", "testfile.2") → 0

f = File.open("testfile.2")

f.gets → "This is line one\n"

File.delete("testfile.2")

lstat File.lstat(filename)→ stat

Returns status information for file as an object of type File::Stat. Same as IO#stat

(see page 492), but does not follow the last symbolic link. Instead, reports on the link

itself.

File.symlink("testfile", "link2test") → 0

File.stat("testfile").size → 66

File.lstat("link2test").size → 8

File.stat("link2test").size → 66

mtime File.mtime(filename)→ time

Returns a Time object containing the modification time for the named file.

File.mtime("testfile") → Wed Sep 20 15:23:20 CDT 2006

File.mtime("/tmp") → Wed Sep 20 16:04:53 CDT 2006

new File.new(filename, modestring="r")→ file

File.new(filename 〈 , modenum 〈 , permission 〉 〉)→ file

File.new(fd 〈 , modenum 〈 , permission 〉 〉)→ file

Opens the file named by filename (or associates the already-open file given by fd)

according to modestring (the default is r) and returns a new File object. The mode-

string is described in Table 27.6 on page 483. The file mode may optionally be specified

as a Fixnum by or-ing together the flags described in Table 27.4 on page 451. Optional

Prepared exclusively for Jose Sierra

FILE 450

F
ile

permission bits may be given in permission. These mode and permission bits are plat-

form dependent; on Unix systems, see open(2) for details.

f = File.new("testfile", "r")

f = File.new("newfile", "w+")

f = File.new("newfile", File::CREAT|File::TRUNC|File::RDWR, 0644)

open File.open(filename, modestring="r")→ file

File.open(filename 〈 , modenum 〈 , permission 〉 〉)→ file

File.open(fd 〈 , modenum 〈 , permission 〉 〉)→ file

File.open(filename, modestring="r") {| file | block } → obj

File.open(filename 〈 , modenum 〈 , permission 〉 〉) {| file | block } → obj

File.open(fd 〈 , modenum 〈 , permission 〉 〉) {| file | block } → obj

With no associated block, open is a synonym for File.new. If the optional code block

is given, it will be passed file as an argument, and the file will automatically be closed

when the block terminates. In this instance, File.open returns the value of the block.

owned? File.owned?(filename)→ true or false

Returns true if the effective user ID of the process is the same as the owner of the

named file.

File.owned?("/etc/passwd") → false

pipe? File.pipe?(filename)→ true or false

Returns true if the operating system supports pipes and the named file is a pipe, false

otherwise.

File.pipe?("testfile") → false

readable? File.readable?(filename)→ true or false

Returns true if the named file is readable by the effective user ID of this process.

File.readable?("testfile") → true

readable_real? File.readable_real?(filename)→ true or false

Returns true if the named file is readable by the real user ID of this process.

File.readable_real?("testfile") → true

readlink File.readlink(filename)→ filename

Returns the given symbolic link as a string. Not available on all platforms.

File.symlink("testfile", "link2test") → 0

File.readlink("link2test") → "testfile"

Prepared exclusively for Jose Sierra

FILE 451

F
ile

Table 27.4. Open-mode constants

APPEND Open the file in append mode; all writes will occur at end of file.

CREAT Create the file on open if it does not exist.

EXCL When used with CREAT, open will fail if the file exists.

NOCTTY When opening a terminal device (see IO#isatty on page 489), do not

allow it to become the controlling terminal.

NONBLOCK Open the file in nonblocking mode.

RDONLY Open for reading only.

RDWR Open for reading and writing.

TRUNC Open the file and truncate it to zero length if the file exists.

WRONLY Open for writing only.

rename File.rename(oldname, newname)→ 0

Renames the given file or directory to the new name. Raises a SystemCallError if the

file cannot be renamed.

File.rename("afile", "afile.bak") → 0

setgid? File.setgid?(filename)→ true or false

Returns true if the named file’s set-group-id permission bit is set, and returns false

if it isn’t or if the operating system doesn’t support this feature.

File.setgid?("/usr/sbin/lpc") → false

setuid? File.setuid?(filename)→ true or false

Returns true if the named file’s set-user-id permission bit is set, and returns false if

it isn’t or if the operating system doesn’t support this feature.

File.setuid?("/bin/su") → false

size File.size(filename)→ int

Returns the size of the file in bytes.

File.size("testfile") → 66

size? File.size?(filename)→ int or nil

Returns nil if the named file is of zero length; otherwise, returns the size. Usable as a

condition in tests.

File.size?("testfile") → 66

File.size?("/dev/zero") → nil

Prepared exclusively for Jose Sierra

FILE 452

F
ile

socket? File.socket?(filename)→ true or false

Returns true if the named file is a socket, and returns false if it isn’t or if the operating

system doesn’t support this feature.

split File.split(filename)→ array

Splits the given string into a directory and a file component and returns them in a two-

element array. See also File.dirname and File.basename.

File.split("/home/gumby/.profile") → ["/home/gumby", ".profile"]

File.split("ruby.rb") → [".", "ruby.rb"]

stat File.stat(filename)→ stat

Returns a File::Stat object for the named file (see File::Stat, page 456).

stat = File.stat("testfile")

stat.mtime → Wed Sep 20 15:23:20 CDT 2006

stat.blockdev? → false

stat.ftype → "file"

sticky? File.sticky?(filename)→ true or false

Returns true if the named file has its sticky bit set, and returns false if it doesn’t or if

the operating system doesn’t support this feature.

symlink File.symlink(oldname, newname)→ 0 or nil

Creates a symbolic link called newname for the file oldname. Returns nil on all plat-

forms that do not support symbolic links.

File.symlink("testfile", "link2test") → 0

symlink? File.symlink?(filename)→ true or false

Returns true if the named file is a symbolic link, and returns false if it isn’t or if the

operating system doesn’t support this feature.

File.symlink("testfile", "link2test") → 0

File.symlink?("link2test") → true

truncate File.truncate(filename, int)→ 0

Truncates the file filename to be at most int bytes long. Not available on all platforms.

f = File.new("out", "w")

f.write("1234567890") → 10

f.close → nil

File.truncate("out", 5) → 0

File.size("out") → 5

Prepared exclusively for Jose Sierra

FILE 453

F
ile

umask File.umask(〈 int 〉)→ int

Returns the current umask value for this process. If the optional argument is given, set

the umask to that value and return the previous value. Umask values are excluded from

the default permissions; so a umask of 0222 would make a file read-only for everyone.

See also the discussion of permissions on page 444.

File.umask(0006) → 18

File.umask → 6

unlink File.unlink(〈 filename 〉+)→ int

Synonym for File.delete. See also Dir.rmdir.

File.open("testrm", "w+") {} → nil

File.unlink("testrm") → 1

utime File.utime(accesstime, modtime 〈 , filename 〉+)→ int

Changes the access and modification times on a number of files. The times must be

instances of class Time or integers representing the number of seconds since epoch.

Returns the number of files processed. Not available on all platforms.

File.utime(0, 0, "testfile") → 1

File.mtime("testfile") → Wed Dec 31 18:00:00 CST 1969

File.utime(0, Time.now, "testfile") → 1

File.mtime("testfile") → Wed Sep 20 16:05:17 CDT 2006

writable? File.writable?(filename)→ true or false

Returns true if the named file is writable by the effective user ID of this process.

File.writable?("/etc/passwd") → false

File.writable?("testfile") → true

writable_real? File.writable_real?(filename)→ true or false

Returns true if the named file is writable by the real user ID of this process.

zero? File.zero?(filename)→ true or false

Returns true if the named file is of zero length, and returns false otherwise.

File.zero?("testfile") → false

File.open("zerosize", "w") {}

File.zero?("zerosize") → true

Prepared exclusively for Jose Sierra

FILE 454

F
ile

Instance methods

atime file.atime→ time

Returns a Time object containing the last access time for file, or returns epoch if the file

has not been accessed.

File.new("testfile").atime → Wed Dec 31 18:00:00 CST 1969

chmod file.chmod(permission)→ 0

Changes permission bits on file to the bit pattern represented by permission. Actual

effects are platform dependent; on Unix systems, see chmod(2) for details. Follows

symbolic links. See the discussion of permissions on page 444. Also see File#lchmod.

f = File.new("out", "w");

f.chmod(0644) → 0

chown file.chown(owner, group)→ 0

Changes the owner and group of file to the given numeric owner and group IDs. Only

a process with superuser privileges may change the owner of a file. The current owner

of a file may change the file’s group to any group to which the owner belongs. A nil

or −1 owner or group id is ignored. Follows symbolic links. See also File#lchown.

File.new("testfile").chown(502, 1000)

ctime file.ctime→ time

Returns a Time object containing the time that the file status associated with file was

changed.

File.new("testfile").ctime → Wed Sep 20 16:05:17 CDT 2006

flock file.flock (locking_constant)→ 0 or false

Locks or unlocks a file according to locking_constant (a logical or of the values in

Table 27.5 on the following page). Returns false if File::LOCK_NB is specified and

the operation would otherwise have blocked. Not available on all platforms.

File.new("testfile").flock(File::LOCK_UN) → 0

lchmod file.lchmod(permission)→ 0

1.8 Equivalent to File#chmod, but does not follow symbolic links (so it will change the

permissions associated with the link, not the file referenced by the link). Often not

available.

lchown file.lchown(owner, group)→ 0

1.8 Equivalent to File#chown, but does not follow symbolic links (so it will change the

owner associated with the link, not the file referenced by the link). Often not available.

Prepared exclusively for Jose Sierra

FILE 455

F
ile

Table 27.5. Lock-mode constants

LOCK_EX Exclusive lock. Only one process may hold an exclusive lock for a given

file at a time.

LOCK_NB Don’t block when locking. May be combined with other lock options using

logical or.

LOCK_SH Shared lock. Multiple processes may each hold a shared lock for a given

file at the same time.

LOCK_UN Unlock.

lstat file.lstat→ stat

Same as IO#stat, but does not follow the last symbolic link. Instead, reports on the

link itself.

File.symlink("testfile", "link2test") → 0

File.stat("testfile").size → 66

f = File.new("link2test")

f.lstat.size → 8

f.stat.size → 66

mtime file.mtime→ time

Returns a Time object containing the modification time for file.

File.new("testfile").mtime → Wed Sep 20 16:05:17 CDT 2006

path file.path→ filename

Returns the pathname used to create file as a string. Does not normalize the name.

File.new("testfile").path → "testfile"

File.new("/tmp/../tmp/xxx", "w").path → "/tmp/../tmp/xxx"

truncate file.truncate(int)→ 0

Truncates file to at most int bytes. The file must be opened for writing. Not available

on all platforms.

f = File.new("out", "w")

f.syswrite("1234567890") → 10

f.truncate(5) → 0

f.close() → nil

File.size("out") → 5

Prepared exclusively for Jose Sierra

FILE::STAT 456

F
ile

::
S

ta
t

Class
File::Stat < Object

Objects of class File::Stat encapsulate common status information for File objects.

The information is recorded at the moment the File::Stat object is created; changes

made to the file after that point will not be reflected. File::Stat objects are returned

by IO#stat, File.stat, File#lstat, and File.lstat. Many of these methods may

return platform-specific values, and not all values are meaningful on all systems. See

also Kernel#test on page 510.

Mixes in

Comparable:

<, <=, ==, >=, >, between?

Instance methods

<=> statfile <=> other_stat→−1, 0, 1

Compares File::Stat objects by comparing their respective modification times.

f1 = File.new("f1", "w")

sleep 1

f2 = File.new("f2", "w")

f1.stat <=> f2.stat → 1

Methods in Comparable are also available

f1.stat > f2.stat → false

f1.stat < f2.stat → true

atime statfile.atime→ time

Returns a Time object containing the last access time for statfile, or returns epoch if the

file has not been accessed.

File.stat("testfile").atime → Wed Dec 31 18:00:00 CST 1969

File.stat("testfile").atime.to_i → 0

blksize statfile.blksize→ int

Returns the native file system’s block size. Will return nil on platforms that don’t

support this information.

File.stat("testfile").blksize → 4096

blockdev? statfile.blockdev?→ true or false

Returns true if the file is a block device, and returns false if it isn’t or if the operating

system doesn’t support this feature.

File.stat("testfile").blockdev? → false

File.stat("/dev/disk0").blockdev? → true

Prepared exclusively for Jose Sierra

FILE::STAT 457

F
ile

::
S

ta
t

blocks statfile.blocks→ int

Returns the number of native file system blocks allocated for this file, or returns nil if

the operating system doesn’t support this feature.

File.stat("testfile").blocks → 8

chardev? statfile.chardev?→ true or false

Returns true if the file is a character device, and returns false if it isn’t or if the

operating system doesn’t support this feature.

File.stat("/dev/tty").chardev? → true

File.stat("testfile").chardev? → false

ctime statfile.ctime→ time

Returns a Time object containing the time that the file status associated with statfile

was changed.

File.stat("testfile").ctime → Wed Sep 20 16:05:17 CDT 2006

dev statfile.dev→ int

Returns an integer representing the device on which statfile resides. The bits in the

device integer will often encode major and minor device information.

File.stat("testfile").dev → 234881026

"%x" % File.stat("testfile").dev → "e000002"

dev_major statfile.dev_major→ int

Returns1.8 the major part of File::Stat#dev or nil if the operating system doesn’t

support this feature.

File.stat("testfile").dev_major → 14

dev_minor statfile.dev_minor→ int

Returns1.8 the minor part of File::Stat#dev or nil if the operating system doesn’t

support this feature.

File.stat("testfile").dev_minor → 2

directory? statfile.directory?→ true or false

Returns true if statfile is a directory, and returns false otherwise.

File.stat("testfile").directory? → false

File.stat(".").directory? → true

Prepared exclusively for Jose Sierra

FILE::STAT 458

F
ile

::
S

ta
t

executable? statfile.executable?→ true or false

Returns true if statfile is executable or if the operating system doesn’t distinguish

executable files from nonexecutable files. The tests are made using the effective owner

of the process.

File.stat("testfile").executable? → false

executable_real? statfile.executable_real?→ true or false

Same as executable?, but tests using the real owner of the process.

file? statfile.file?→ true or false

Returns true if statfile is a regular file (not a device file, pipe, socket, and so on).

File.stat("testfile").file? → true

ftype statfile.ftype→ type_string

Identifies the type of statfile. The return string is one of: file, directory, char

acterSpecial, blockSpecial, fifo, link, socket, or unknown.

File.stat("/dev/tty").ftype → "characterSpecial"

gid statfile.gid→ int

Returns the numeric group ID of the owner of statfile.

File.stat("testfile").gid → 501

grpowned? statfile.grpowned?→ true or false

Returns true if the effective group ID of the process is the same as the group ID of

statfile. On Windows, returns false.

File.stat("testfile").grpowned? → true

File.stat("/etc/passwd").grpowned? → false

ino statfile.ino→ int

Returns the inode number for statfile.

File.stat("testfile").ino → 129289900

mode statfile.mode→ int

Returns an integer representing the permission bits of statfile. The meaning of the bits

is platform dependent; on Unix systems, see stat(2).

File.chmod(0644, "testfile") → 1

File.stat("testfile").mode.to_s(8) → "100644"

Prepared exclusively for Jose Sierra

FILE::STAT 459

F
ile

::
S

ta
t

mtime statfile.mtime→ time

Returns a Time object containing the modification time for statfile.

File.stat("testfile").mtime → Wed Sep 20 16:05:17 CDT 2006

nlink statfile.nlink→ int

Returns the number of hard links to statfile.

File.stat("testfile").nlink → 1

File.link("testfile", "testfile.bak") → 0

File.stat("testfile").nlink → 2

owned? statfile.owned?→ true or false

Returns true if the effective user ID of the process is the same as the owner of statfile.

File.stat("testfile").owned? → true

File.stat("/etc/passwd").owned? → false

pipe? statfile.pipe?→ true or false

Returns true if the operating system supports pipes and statfile is a pipe.

rdev statfile.rdev→ int

Returns an integer representing the device type on which statfile (which should be a

special file) resides. Returns nil if the operating system doesn’t support this feature.

File.stat("/dev/disk0s1").rdev → 234881025

File.stat("/dev/tty").rdev → 33554432

rdev_major statfile.rdev_major→ int

Returns1.8 the major part of File::Stat#rdev or nil if the operating system doesn’t

support this feature.

File.stat("/dev/disk0s1").rdev_major → 14

File.stat("/dev/tty").rdev_major → 2

rdev_minor statfile.rdev_minor→ int

Returns1.8 the minor part of File::Stat#rdev or nil if the operating system doesn’t

support this feature.

File.stat("/dev/disk0s1").rdev_minor → 1

File.stat("/dev/tty").rdev_minor → 0

readable? statfile.readable?→ true or false

Returns true if statfile is readable by the effective user ID of this process.

File.stat("testfile").readable? → true

Prepared exclusively for Jose Sierra

FILE::STAT 460

F
ile

::
S

ta
t

readable_real? statfile.readable_real?→ true or false

Returns true if statfile is readable by the real user ID of this process.

File.stat("testfile").readable_real? → true

File.stat("/etc/passwd").readable_real? → true

setgid? statfile.setgid?→ true or false

Returns true if statfile has the set-group-id permission bit set, and returns false if it

doesn’t or if the operating system doesn’t support this feature.

File.stat("testfile").setgid? → false

File.stat("/usr/sbin/postdrop").setgid? → true

setuid? statfile.setuid?→ true or false

Returns true if statfile has the set-user-id permission bit set, and returns false if it

doesn’t or if the operating system doesn’t support this feature.

File.stat("testfile").setuid? → false

File.stat("/usr/bin/su").setuid? → true

size statfile.size→ int

Returns the size of statfile in bytes.

File.stat("/dev/zero").size → 0

File.stat("testfile").size → 66

size? statfile.size?→ int or nil

Returns nil if statfile is a zero-length file; otherwise, returns the file size. Usable as a

condition in tests.

File.stat("/dev/zero").size? → nil

File.stat("testfile").size? → 66

socket? statfile.socket?→ true or false

Returns true if statfile is a socket, and returns false if it isn’t or if the operating

system doesn’t support this feature.

File.stat("testfile").socket? → false

sticky? statfile.sticky?→ true or false

Returns true if statfile has its sticky bit set, and returns false if it doesn’t or if the

operating system doesn’t support this feature.

File.stat("testfile").sticky? → false

Prepared exclusively for Jose Sierra

FILE::STAT 461

F
ile

::
S

ta
t

symlink? statfile.symlink?→ true or false

Returns true if statfile is a symbolic link, false if it isn’t or if the operating sys-

tem doesn’t support this feature. As File.stat automatically follows symbolic links,

symlink? will always be false for an object returned by File.stat.

File.symlink("testfile", "alink") → 0

File.stat("alink").symlink? → false

File.lstat("alink").symlink? → true

uid statfile.uid→ int

Returns the numeric user ID of the owner of statfile.

File.stat("testfile").uid → 501

writable? statfile.writable?→ true or false

Returns true if statfile is writable by the effective user ID of this process.

File.stat("testfile").writable? → true

writable_real? statfile.writable_real?→ true or false

Returns true if statfile is writable by the real user ID of this process.

File.stat("testfile").writable_real? → true

zero? statfile.zero?→ true or false

Returns true if statfile is a zero-length file; false otherwise.

File.stat("testfile").zero? → false

Prepared exclusively for Jose Sierra

FILETEST 462

F
ile

T
e

s
t

Module
FileTest

FileTest implements file test operations similar to those used in File::Stat. The

methods in FileTest are duplicated in class File. Rather than repeat the documen-

tation here, we list the names of the methods and refer you to the documentation for

File starting on page 444. FileTest appears to be a somewhat vestigial module.

The FileTest methods are

blockdev?, chardev?, directory?, executable?, executable_real?, exist?,

exists?, file?, grpowned?, owned?, pipe?, readable?, readable_real?,

setgid?, setuid?, size, size?, socket?, sticky?, symlink?, world_readable?1.8 ,

world_writable?, writable?, writable_real?, and zero?

Prepared exclusively for Jose Sierra

FIXNUM 463

F
ix

n
u

m

Class
Fixnum < Integer

A Fixnum holds Integer values that can be represented in a native machine word

(minus 1 bit). If any operation on a Fixnum exceeds this range, the value is automati-

cally converted to a Bignum.

Fixnum objects have immediate value. This means that when they are assigned or

passed as parameters, the actual object is passed, rather than a reference to that object.

Assignment does not alias Fixnum objects. As there is effectively only one Fixnum

object instance for any given integer value, you cannot, for example, add a singleton

method to a Fixnum.

Instance methods

Arithmetic operations

Performs various arithmetic operations on fix.

fix + numeric Addition

fix – numeric Subtraction

fix * numeric Multiplication

fix / numeric Division

fix % numeric Modulo

fix ** numeric Exponentiation

fix -@ Unary minus

Bit operations

Performs various operations on the binary representations of the Fixnum.

~ fix Invert bits

fix | numeric Bitwise OR

fix & numeric Bitwise AND

fix ^ numeric Bitwise EXCLUSIVE OR

fix << numeric Left-shift numeric bits

fix >> numeric Right-shift numeric bits (with sign extension)

<=> fix <=> numeric→−1, 0, +1

Comparison—Returns−1, 0, or +1 depending on whether fix is less than, equal to, or

greater than numeric. This is the basis for the tests in Comparable.

42 <=> 13 → 1

13 <=> 42 → 1

1 <=> 1 → 0

Prepared exclusively for Jose Sierra

FIXNUM 464

F
ix

n
u

m

[] fix[n]→ 0, 1

Bit Reference—Returns the nth bit in the binary representation of fix, where fix[0] is

the least significant bit.

a = 0b11001100101010

30.downto(0) {|n| print a[n] }

produces:

0000000000000000011001100101010

abs fix.abs→ int

Returns the absolute value of fix.

12345.abs → 12345

12345.abs → 12345

div fix.div(numeric)→ integer

1.8 Synonym for Fixnum#/. Integer division always yields an integral result.

654321.div(13731) → 47

654321.div(13731.34) → 47

divmod fix.divmod(numeric)→ array

See Numeric#divmod on on page 544.

id2name fix.id2name→ string or nil

Returns the name of the object whose symbol ID is fix. If there is no symbol in the

symbol table with this value, returns nil. id2name has nothing to do with the method

Object.object_id. See Fixnum#to_sym, String#intern on page 594, and class

Symbol on page 610.

symbol = :@inst_var → :@inst_var

id = symbol.to_i → 9938

id.id2name → "@inst_var"

modulo fix.modulo(numeric)→ numeric

1.8 Synonym for Fixnum#%.

654321.modulo(13731) → 8964

654321.modulo(13731.24) → 8952.72000000001

quo fix.quo(numeric)→ float

1.8 Returns the floating-point result of dividing fix by numeric.

654321.quo(13731) → 47.6528293642124

654321.quo(13731.24) → 47.6519964693647

Prepared exclusively for Jose Sierra

FIXNUM 465

F
ix

n
u

m

size fix.size→ int

Returns the number of bytes in the machine representation of a Fixnum.

1.size → 4

1.size → 4

2147483647.size → 4

to_f fix.to_f→ float

Converts fix to a Float.

to_s fix.to_s(base=10)→ string

Returns a string containing the representation of fix radix base (2 to 36).1.8

12345.to_s → "12345"

12345.to_s(2) → "11000000111001"

12345.to_s(8) → "30071"

12345.to_s(10) → "12345"

12345.to_s(16) → "3039"

12345.to_s(36) → "9ix"

84823723233035811745497171.to_s(36) → "anotherrubyhacker"

to_sym fix.to_sym→ symbol

1.8 Returns the symbol whose integer value is fix. See also Fixnum#id2name.

fred = :fred.to_i

fred.id2name → "fred"

fred.to_sym → :fred

zero? fix.zero?→ true or false

Returns true if fix is zero.

42.zero? → false

0.zero? → true

Prepared exclusively for Jose Sierra

FLOAT 466

F
lo

a
t

Class
Float < Numeric

Float objects represent real numbers using the native architecture’s double-precision

floating-point representation.

Class constants

DIG Precision of Float (in decimal digits)

EPSILON The smallest Float such that 1.0+ EPSILON 6= 1.0

MANT_DIG The number of mantissa digits (base RADIX)

MAX The largest Float

MAX_10_EXP The maximum integer x such that 10x is a finite Float

MAX_EXP The maximum integer x such that FLT_RADIX(x−1) is a finite

Float

MIN The smallest Float

MIN_10_EXP The minimum integer x such that 10x is a finite Float

MIN_EXP The minimum integer x such that FLT_RADIX(x−1) is a finite

Float

RADIX The radix of floating-point representations

ROUNDS The rounding mode for floating-point operations. Possible values

include
−1 if the mode is indeterminate

0 if rounding is toward zero

1 if rounding is to nearest representable value

2 if rounding is toward +∞
3 if rounding is toward −∞

Instance methods

Arithmetic operations

Performs various arithmetic operations on flt.

flt + numeric Addition

flt – numeric Subtraction

flt * numeric Multiplication

flt / numeric Division

flt % numeric Modulo

flt ** numeric Exponentiation

flt -@ Unary minus

<=> flt <=> numeric→−1, 0, +1

Returns −1, 0, or +1 depending on whether flt is less than, equal to, or greater than

numeric. This is the basis for the tests in Comparable.

Prepared exclusively for Jose Sierra

FLOAT 467

F
lo

a
t

== flt == obj→ true or false

Returns true only if obj has the same value as flt. Contrast this with Float#eql?,

which requires obj to be a Float.

1.0 == 1.0 → true

(1.0).eql?(1.0) → true

1.0 == 1 → true

(1.0).eql?(1) → false

abs flt.abs→ numeric

Returns the absolute value of flt.

(34.56).abs → 34.56

34.56.abs → 34.56

ceil flt.ceil→ int

Returns the smallest Integer greater than or equal to flt.

1.2.ceil → 2

2.0.ceil → 2

(1.2).ceil → 1

(2.0).ceil → 2

divmod flt.divmod(numeric)→ array

See Numeric#divmod on page 544.

eql? flt.eql?(obj)→ true or false

Returns true only if obj is a Float with the same value as flt. Contrast this with

Float#==, which performs type conversions.

1.0.eql?(1) → false

1.0 == 1 → true

finite? flt.finite?→ true or false

Returns true if flt is a valid IEEE floating-point number (it is not infinite, and nan? is

false).

(42.0).finite? → true

(1.0/0.0).finite? → false

floor flt.floor→ int

Returns the largest integer less than or equal to flt.

1.2.floor → 1

2.0.floor → 2

(1.2).floor → 2

(2.0).floor → 2

Prepared exclusively for Jose Sierra

FLOAT 468

F
lo

a
t

infinite? flt.infinite?→ nil, −1, +1

Returns nil, −1, or +1 depending on whether flt is finite, −∞, or +∞.

(0.0).infinite? → nil

(1.0/0.0).infinite? → 1

(+1.0/0.0).infinite? → 1

modulo flt.modulo(numeric)→ numeric

1.8 Synonym for Float#%.

6543.21.modulo(137) → 104.21

6543.21.modulo(137.24) → 92.9299999999996

nan? flt.nan?→ true or false

Returns true if flt is an invalid IEEE floating-point number.

(1.0).nan? → false

(0.0/0.0).nan? → true

round flt.round→ int

Rounds flt to the nearest integer. Equivalent to

def round

case

when self > 0.0 then (self+0.5).floor

when self < 0.0 then return (self0.5).ceil

else 0

end

end

1.5.round → 2

(1.5).round → 2

to_f flt.to_f→ flt

Returns flt.

to_i flt.to_i→ int

Returns flt truncated to an Integer.

1.5.to_i → 1

(1.5).to_i → 1

to_int flt.to_int→ int

Synonym for Float#to_i.

Prepared exclusively for Jose Sierra

FLOAT 469

F
lo

a
t

to_s flt.to_s→ string

Returns a string containing a representation of self. As well as a fixed or exponential

form of the number, the call may return NaN, Infinity, and Infinity.

truncate flt.truncate→ int

1.8 Synonym for Float#to_i.

zero? flt.zero?→ true or false

Returns true if flt is 0.0.

Prepared exclusively for Jose Sierra

GC 470

G
C

Module
GC

The GC module provides an interface to Ruby’s mark and sweep garbage collection

mechanism. Some of the underlying methods are also available via the ObjectSpace

module, described beginning on page 557.

Module methods

disable GC.disable→ true or false

Disables garbage collection, returning true if garbage collection was already disabled.

GC.disable → false

GC.disable → true

enable GC.enable→ true or false

Enables garbage collection, returning true if garbage collection was disabled.

GC.disable → false

GC.enable → true

GC.enable → false

start GC.start→ nil

Initiates garbage collection, unless manually disabled.

GC.start → nil

Instance methods

garbage_collect garbage_collect→ nil

Equivalent to GC.start.

include GC

garbage_collect → nil

Prepared exclusively for Jose Sierra

HASH 471

H
a

s
h

Class
Hash < Object

A Hash is a collection of key/value pairs. It is similar to an Array, except that indexing

is done via arbitrary keys of any object type, not an integer index. The order in which

keys and/or values are returned by the various iterators over hash contents may seem

arbitrary and will generally not be in insertion order.

Hashes have a default value. This value is returned when an attempt is made to access

keys that do not exist in the hash. By default, this value is nil.

Mixes in

Enumerable:

all?, any?, collect, detect, each_with_index, entries, find, find_all,

grep, include?, inject, map, max, member?, min, partition, reject,

select, sort, sort_by, to_a, zip

Class methods

[] Hash[〈 key => value 〉∗]→ hsh

Creates a new hash populated with the given objects. Equivalent to creating a hash

using the literal { key=>value, ... }. Keys and values occur in pairs, so there must

be an even number of arguments.

Hash["a", 100, "b", 200] → {"a"=>100, "b"=>200}

Hash["a" => 100, "b" => 200] → {"a"=>100, "b"=>200}

{ "a" => 100, "b" => 200 } → {"a"=>100, "b"=>200}

new Hash.new→ hsh

Hash.new(obj)→ hsh

Hash.new {| hash, key | block } → hsh

1.8 Returns a new, empty hash. If this hash is subsequently accessed by a key that doesn’t

correspond to a hash entry, the value returned depends on the style of new used to create

the hash. In the first form, the access returns nil. If obj is specified, this single object

will be used for all default values. If a block is specified, it will be called with the hash

object and the key, and it should return the default value. It is the block’s responsibility

to store the value in the hash if required.

h = Hash.new("Go Fish")

h["a"] = 100

h["b"] = 200

h["a"] → 100

h["c"] → "Go Fish"

The following alters the single default object

h["c"].upcase! → "GO FISH"

h["d"] → "GO FISH"

h.keys → ["a", "b"]

Prepared exclusively for Jose Sierra

HASH 472

H
a

s
h

While this creates a new default object each time

h = Hash.new {|hash, key| hash[key] = "Go Fish: #{key}" }

h["c"] → "Go Fish: c"

h["c"].upcase! → "GO FISH: C"

h["d"] → "Go Fish: d"

h.keys → ["c", "d"]

Instance methods

== hsh == obj→ true or false

Equality—Two hashes are equal if they have the same default value, they contain the

same number of keys, and the value corresponding to each key in the first hash is equal

(using ==) to the value for the same key in the second. If obj is not a hash, attempt to

convert it using to_hash and return obj == hsh.

h1 = { "a" => 1, "c" => 2 }

h2 = { 7 => 35, "c" => 2, "a" => 1 }

h3 = { "a" => 1, "c" => 2, 7 => 35 }

h4 = { "a" => 1, "d" => 2, "f" => 35 }

h1 == h2 → false

h2 == h3 → true

h3 == h4 → false

[] hsh[key]→ value

Element Reference—Retrieves the value stored for key. If not found, returns the default

value (see Hash.new for details).

h = { "a" => 100, "b" => 200 }

h["a"] → 100

h["c"] → nil

[]= hsh[key] = value→ value

Element Assignment—Associates the value given by value with the key given by key.

key should not have its value changed while it is in use as a key (a String passed as a

key will be duplicated and frozen).

h = { "a" => 100, "b" => 200 }

h["a"] = 9

h["c"] = 4

h → {"a"=>9, "b"=>200, "c"=>4}

clear hsh.clear→ hsh

Removes all key/value pairs from hsh.

h = { "a" => 100, "b" => 200 } → {"a"=>100, "b"=>200}

h.clear → {}

Prepared exclusively for Jose Sierra

HASH 473

H
a

s
h

default hsh.default(key=nil)→ obj

1.8 Returns the default value, the value that would be returned by hsh[key] if key did not

exist in hsh. See also Hash.new and Hash#default=.

h = Hash.new → {}

h.default → nil

h.default(2) → nil

h = Hash.new("cat") → {}

h.default → "cat"

h.default(2) → "cat"

h = Hash.new {|h,k| h[k] = k.to_i*10} → {}

h.default → 0

h.default(2) → 20

default= hsh.default = obj→ hsh

Sets the default value, the value returned for a key that does not exist in the hash. It is

not possible to set the a default to a Proc that will be executed on each key lookup.

h = { "a" => 100, "b" => 200 }

h.default = "Go fish"

h["a"] → 100

h["z"] → "Go fish"

This doesn't do what you might hope...

h.default = proc do |hash, key|

hash[key] = key + key

end

h[2] → #<Proc:0x001ca300@:6>

h["cat"] → #<Proc:0x001ca300@:6>

default_proc hsh.default_proc→ obj or nil

1.8 If Hash.new was invoked with a block, return that block; otherwise return nil.

h = Hash.new {|h,k| h[k] = k*k } → {}

p = h.default_proc → #<Proc:0x001ca79c@:1>

a = [] → []

p.call(a, 2)

a → [nil, nil, 4]

delete hsh.delete(key)→ value

hsh.delete(key) {| key | block } → value

Deletes from hsh the entry whose key is to key, returning the corresponding value. If

the key is not found, returns nil.1.8 If the optional code block is given and the key is not

found, pass it the key and return the result of block.

Prepared exclusively for Jose Sierra

HASH 474

H
a

s
h

h = { "a" => 100, "b" => 200 }

h.delete("a") → 100

h.delete("z") → nil

h.delete("z") {|el| "#{el} not found" } → "z not found"

delete_if hsh.delete_if {| key, value | block } → hsh

Deletes every key/value pair from hsh for which block is true.

h = { "a" => 100, "b" => 200, "c" => 300 }

h.delete_if {|key, value| key >= "b" } → {"a"=>100}

each hsh.each {| key, value | block } → hsh

Calls block once for each key in hsh, passing the key and value as parameters.

h = { "a" => 100, "b" => 200 }

h.each {|key, value| puts "#{key} is #{value}" }

produces:

a is 100

b is 200

each_key hsh.each_key {| key | block } → hsh

Calls block once for each key in hsh, passing the key as a parameter.

h = { "a" => 100, "b" => 200 }

h.each_key {|key| puts key }

produces:

a

b

each_pair hsh.each_pair {| key, value | block } → hsh

Synonym for Hash#each.

each_value hsh.each_value {| value | block } → hsh

Calls block once for each key in hsh, passing the value as a parameter.

h = { "a" => 100, "b" => 200 }

h.each_value {|value| puts value }

produces:

100

200

empty? hsh.empty?→ true or false

Returns true if hsh contains no key/value pairs.

{}.empty? → true

Prepared exclusively for Jose Sierra

HASH 475

H
a

s
h

fetch hsh.fetch(key 〈 , default 〉)→ obj

hsh.fetch(key) {| key | block } → obj

Returns a value from the hash for the given key. If the key can’t be found, several

options exist: With no other arguments, it will raise an IndexError exception; if

default is given, then that will be returned; if the optional code block is specified, then

that will be run and its result returned. fetch does not evaluate any default values

supplied when the hash was created—it only looks for keys in the hash.

h = { "a" => 100, "b" => 200 }

h.fetch("a") → 100

h.fetch("z", "go fish") → "go fish"

h.fetch("z") {|el| "go fish, #{el}"} → "go fish, z"

The following example shows that an exception is raised if the key is not found and a

default value is not supplied.

h = { "a" => 100, "b" => 200 }

h.fetch("z")

produces:

prog.rb:2:in `fetch': key not found (IndexError)

from prog.rb:2

has_key? hsh.has_key?(key)→ true or false

Returns true if the given key is present in hsh.

h = { "a" => 100, "b" => 200 }

h.has_key?("a") → true

h.has_key?("z") → false

has_value? hsh.has_value?(value)→ true or false

Returns true if the given value is present for some key in hsh.

h = { "a" => 100, "b" => 200 }

h.has_value?(100) → true

h.has_value?(999) → false

include? hsh.include?(key)→ true or false

Synonym for Hash#has_key?.

index hsh.index(value)→ key

Searches the hash for an entry whose value == value, returning the corresponding key.

If multiple entries have this value, the key returned will be that on one of the entries. If

not found, returns nil.

h = { "a" => 100, "b" => 200 }

h.index(200) → "b"

h.index(999) → nil

Prepared exclusively for Jose Sierra

HASH 476

H
a

s
h

indexes hsh.indexes(〈 key 〉+)→ array

1.8 Deprecated in favor of Hash#values_at.

indices hsh.indices(〈 key 〉+)→ array

1.8 Deprecated in favor of Hash#values_at.

invert hsh.invert→ other_hash

Returns a new hash created by using hsh’s values as keys, and the keys as values. If hsh

has duplicate values, the result will contain only one of them as a key—which one is

not predictable.

h = { "n" => 100, "m" => 100, "y" => 300, "d" => 200, "a" => 0 }

h.invert → {0=>"a", 100=>"n", 200=>"d", 300=>"y"}

key? hsh.key?(key)→ true or false

Synonym for Hash#has_key?.

keys hsh.keys→ array

Returns a new array populated with the keys from this hash. See also Hash#values.

h = { "a" => 100, "b" => 200, "c" => 300, "d" => 400 }

h.keys → ["a", "b", "c", "d"]

length hsh.length→ fixnum

Returns the number of key/value pairs in the hash.

h = { "d" => 100, "a" => 200, "v" => 300, "e" => 400 }

h.length → 4

h.delete("a") → 200

h.length → 3

member? hsh.member?(key)→ true or false

Synonym for Hash#has_key?.

merge hsh.merge(other_hash)→ result_hash

hsh.merge(other_hash) {| key, old_val, new_val | block } → result_hash

1.8 Returns a new hash containing the contents of other_hash and the contents of hsh.

With no block parameter, overwrites entries in hsh with duplicate keys with those from

other_hash. If a block is specified, it is called with each duplicate key and the values

from the two hashes. The value returned by the block is stored in the new hash. à

Prepared exclusively for Jose Sierra

HASH 477

H
a

s
h

h1 = { "a" => 100, "b" => 200 }

h2 = { "b" => 254, "c" => 300 }

h1.merge(h2) → {"a"=>100, "b"=>254, "c"=>300}

h1.merge(h2) {|k,o,n| o} → {"a"=>100, "b"=>200, "c"=>300}

h1 → {"a"=>100, "b"=>200}

merge! hsh.merge!(other_hash)→ hsh

hsh.merge!(other_hash) {| key, old_val, new_val | block } → hsh

1.8 Adds the contents of other_hash to hsh, overwriting entries with duplicate keys with

those from other_hash.

h1 = { "a" => 100, "b" => 200 }

h2 = { "b" => 254, "c" => 300 }

h1.merge!(h2) → {"a"=>100, "b"=>254, "c"=>300}

h1 = { "a" => 100, "b" => 200 }

h1.merge!(h2) {|k,o,n| o} → {"a"=>100, "b"=>200, "c"=>300}

h1 → {"a"=>100, "b"=>200, "c"=>300}

rehash hsh.rehash→ hsh

Rebuilds the hash based on the current hash values for each key. If values of key objects

have changed since they were inserted, this method will reindex hsh. If Hash#rehash

is called while an iterator is traversing the hash, an IndexError will be raised in the

iterator.

a = ["a", "b"]

c = ["c", "d"]

h = { a => 100, c => 300 }

h[a] → 100

a[0] = "z"

h[a] → nil

h.rehash → {["z", "b"]=>100, ["c", "d"]=>300}

h[a] → 100

reject hsh.reject {| key, value | block } → hash

Same as Hash#delete_if, but works on (and returns) a copy of hsh. Equivalent to

hsh.dup.delete_if.

reject! hsh.reject! {| key, value | block } → hsh or nil

Equivalent to Hash#delete_if, but returns nil if no changes were made.

replace hsh.replace(other_hash)→ hsh

Replaces the contents of hsh with the contents of other_hash.

h = { "a" => 100, "b" => 200 }

h.replace({ "c" => 300, "d" => 400 }) → {"c"=>300, "d"=>400}

Prepared exclusively for Jose Sierra

HASH 478

H
a

s
h

select hsh.select {| key, value | block } → array

Returns a new array consisting of [key, value] pairs for which the block returns true.

Also see Hash#values_at.

h = { "a" => 100, "b" => 200, "c" => 300 }

h.select {|k,v| k > "a"} → [["b", 200], ["c", 300]]

h.select {|k,v| v < 200} → [["a", 100]]

shift hsh.shift→ array or nil

Removes a key/value pair from hsh and returns it as the two-item array [key, value].1.8
If the hash is empty, returns the default value, calls the default proc (with a key value

of nil), or returns nil.

h = { 1 => "a", 2 => "b", 3 => "c" }

h.shift → [1, "a"]

h → {2=>"b", 3=>"c"}

size hsh.size→ fixnum

Synonym for Hash#length.

sort hsh.sort→ array

hsh.sort {| a, b | block } → array

Converts hsh to a nested array of [key, value] arrays and sorts it, using Array#sort.

h = { "a" => 20, "b" => 30, "c" => 10 }

h.sort → [["a", 20], ["b", 30], ["c", 10]]

h.sort {|a,b| a[1]<=>b[1]} → [["c", 10], ["a", 20], ["b", 30]]

store hsh.store(key, value)→ value

Synonym for Element Assignment (Hash#[]=).

to_a hsh.to_a→ array

Converts hsh to a nested array of [key, value] arrays.

h = { "c" => 300, "a" => 100, "d" => 400, "c" => 300 }

h.to_a → [["a", 100], ["c", 300], ["d", 400]]

to_hash hsh.to_hash→ hsh

See page 356.

to_s hsh.to_s→ string

Converts hsh to a string by converting the hash to an array of [key, value] pairs and

then converting that array to a string using Array#join with the default separator.

h = { "c" => 300, "a" => 100, "d" => 400, "c" => 300 }

h.to_s → "a100c300d400"

Prepared exclusively for Jose Sierra

HASH 479

H
a

s
h

update hsh.update(other_hash)→ hsh

hsh.update(other_hash) {| key, old_val, new_val | block } → hsh

1.8 Synonym for Hash#merge!.

value? hsh.value?(value)→ true or false

Synonym for Hash#has_value?.

values hsh.values→ array

Returns an array populated with the values from hsh. See also Hash#keys.

h = { "a" => 100, "b" => 200, "c" => 300 }

h.values → [100, 200, 300]

values_at hsh.values_at(〈 key 〉+)→ array

1.8 Returns an array consisting of values for the given key(s). Will insert the default value

for keys that are not found.

h = { "a" => 100, "b" => 200, "c" => 300 }

h.values_at("a", "c") → [100, 300]

h.values_at("a", "c", "z") → [100, 300, nil]

h.default = "cat"

h.values_at("a", "c", "z") → [100, 300, "cat"]

Prepared exclusively for Jose Sierra

INTEGER 480

I
n

te
g

e
r

Class
Integer < Numeric

Subclasses: Bignum, Fixnum

Integer is the basis for the two concrete classes that hold whole numbers, Bignum and

Fixnum. (If you’ve come here looking for the iterator step, it’s on page 545.)

Instance methods

ceil int.ceil→ integer

Synonym for Integer#to_i.

chr int.chr→ string

Returns a string containing the ASCII character represented by the receiver’s value.

65.chr → "A"

?a.chr → "a"

230.chr → "\346"

downto int.downto(integer) {| i | block } → int

Iterates block, passing decreasing values from int down to and including integer.

5.downto(1) {|n| print n, ".. " }

print " Liftoff!\n"

produces:

5.. 4.. 3.. 2.. 1.. Liftoff!

floor int.floor→ integer

Returns the largest integer less than or equal to int. Equivalent to Integer#to_i.

1.floor → 1

(1).floor → 1

integer? int.integer?→ true

Always returns true.

next int.next→ integer

Returns the Integer equal to int + 1.

1.next → 2

(1).next → 0

round int.round→ integer

Synonym for Integer#to_i.

Prepared exclusively for Jose Sierra

INTEGER 481

I
n

te
g

e
r

succ int.succ→ integer

Synonym for Integer#next.

times int.times {| i | block } → int

Iterates block int times, passing in values from zero to int −1.

5.times do |i|

print i, " "

end

produces:

0 1 2 3 4

to_i int.to_i→ int

Returns int.

to_int int.to_int→ integer

Synonym for Integer#to_i.

truncate int.truncate→ integer

Synonym for Integer#to_i.

upto int.upto(integer) {| i | block } → int

Iterates block, passing in integer values from int up to and including integer.

5.upto(10) {|i| print i, " " }

produces:

5 6 7 8 9 10

Prepared exclusively for Jose Sierra

IO 482

I
O

Class
IO < Object

Subclasses: File

Class IO is the basis for all input and output in Ruby. An I/O stream may be duplexed

(that is, bidirectional) and so may use more than one native operating system stream.

Many of the examples in this section use class File, the only standard subclass of IO.

The two classes are closely associated.

As used in this section, portname may take any of the following forms.

• A plain string represents a filename suitable for the underlying operating system.

• A string starting with | indicates a subprocess. The remainder of the string follow-

ing the | is invoked as a process with appropriate input/output channels connected

to it.

• A string equal to | will create another Ruby instance as a subprocess.

The IO class uses the Unix abstraction of file descriptors, small integers that represent

open files. Conventionally, standard input has an fd of 0, standard output an fd of 1, and

standard error an fd of 2.

Ruby will convert pathnames between different operating system conventions if possi-

ble. For instance, on a Windows system the filename /gumby/ruby/test.rb will be

opened as \gumby\ruby\test.rb. When specifying a Windows-style filename in a

double-quoted Ruby string, remember to escape the backslashes.

"c:\\gumby\\ruby\\test.rb"

Our examples here will use the Unix-style forward slashes; File::SEPARATOR can be

used to get the platform-specific separator character.

I/O ports may be opened in any one of several different modes, which are shown in this

section as modestring. This mode string must be one of the values listed in Table 27.6 on

the next page.

Mixes in

Enumerable:

all?, any?, collect, detect, each_with_index, entries, find, find_all,

grep, include?, inject, map, max, member?, min, partition, reject,

select, sort, sort_by, to_a, zip

Prepared exclusively for Jose Sierra

IO 483

I
O

Table 27.6. Mode strings

Mode Meaning

r Read-only, starts at beginning of file (default mode).

r+ Read/write, starts at beginning of file.

w Write-only, truncates an existing file to zero length or creates a new file for

writing.

w+ Read/write, truncates existing file to zero length or creates a new file for read-

ing and writing.

a Write-only, starts at end of file if file exists; otherwise creates a new file for

writing.

a+ Read/write, starts at end of file if file exists; otherwise creates a new file for

reading and writing.

b (DOS/Windows only) Binary file mode (may appear with any of the key letters

listed above).

Class methods

for_fd IO.for_fd(int, modestring)→ io

1.8 Synonym for IO.new.

foreach IO.foreach(portname, separator=$/) {| line | block } → nil

Executes the block for every line in the named I/O port, where lines are separated by

separator.

IO.foreach("testfile") {|x| puts "GOT: #{x}" }

produces:

GOT: This is line one

GOT: This is line two

GOT: This is line three

GOT: And so on...

new IO.new(int, modestring)→ io

Returns a new IO object (a stream) for the given integer file descriptor and mode string.

See also IO#fileno and IO.for_fd.

a = IO.new(2, "w") # '2' is standard error

STDERR.puts "Hello"

a.puts "World"

produces:

Hello

World

Prepared exclusively for Jose Sierra

IO 484

I
O

open IO.open(int, modestring)→ io

IO.open(int, modestring) {| io | block } → obj

With no associated block, open is a synonym for IO.new. If the optional code block

is given, it will be passed io as an argument, and the IO object will automatically be

closed when the block terminates. In this instance, IO.open returns the value of the

block.

IO.open(1, "w") do |io|

io.puts "Writing to stdout"

end

produces:

Writing to stdout

pipe IO.pipe→ array

Creates a pair of pipe endpoints (connected to each other) and returns them as a two-

element array of IO objects: [read_file, write_file]. write_file is automatically placed

into sync mode. Not available on all platforms.

In the example below, the two processes close the ends of the pipe that they are not

using. This is not just a cosmetic nicety. The read end of a pipe will not generate an

end-of-file condition if any writers have the pipe still open. In the case of the parent

process, the rd.read will never return if it does not first issue a wr.close.

rd, wr = IO.pipe

if fork

wr.close

puts "Parent got: <#{rd.read}>"

rd.close

Process.wait

else

rd.close

puts "Sending message to parent"

wr.write "Hi Dad"

wr.close

end

produces:

Sending message to parent

Parent got: <Hi Dad>

popen IO.popen(cmd, modestring="r")→ io

IO.popen(cmd, modestring="r") {| io | block } → obj

Runs the specified command string as a subprocess; the subprocess’s standard input

and output will be connected to the returned IO object. The parameter cmd may be

a string or (in Ruby 1.9) an array of strings. In the latter case, the array is used as the

argv parameter for the new process, and no special shell processing is performed on the

Prepared exclusively for Jose Sierra

IO 485

I
O

strings. If cmd is a string, it will be subject to shell expansion. If the cmd string starts

with a minus sign (), and the operating system supports fork(2), then the current

Ruby process is forked. The default mode for the new file object is r, but modestring

may be set to any of the modes in Table 27.6 on page 483.

If a block is given, Ruby will run the command as a child connected to Ruby with a

pipe. Ruby’s end of the pipe will be passed as a parameter to the block. In this case

IO.popen returns the value of the block.

If a block is given with a cmd_string of "", the block will be run in two separate

processes: once in the parent and once in a child. The parent process will be passed the

pipe object as a parameter to the block, the child version of the block will be passed

nil, and the child’s standard in and standard out will be connected to the parent through

the pipe. Not available on all platforms. Also see the Open3 library on page 687 and

Kernel#exec on page 500.

pipe = IO.popen("uname")

p(pipe.readlines)

puts "Parent is #{Process.pid}"

IO.popen("date") {|pipe| puts pipe.gets }

IO.popen("") {|pipe| STDERR.puts "#{Process.pid} is here, pipe=#{pipe}" }

produces:

["Darwin\n"]

Parent is 15995

Wed Sep 20 16:05:20 CDT 2006

15995 is here, pipe=#<IO:0x1ca238>

15998 is here, pipe=

read IO.read(portname, 〈 length=$/ 〈 , offset 〉 〉)→ string

1.8 Opens the file, optionally seeks to the given offset, and then returns length bytes

(defaulting to the rest of the file). read ensures the file is closed before returning.

IO.read("testfile") → "This is line one\nThis is line

two\nThis is line three\nAnd so

on...\n"

IO.read("testfile", 20) → "This is line one\nThi"

IO.read("testfile", 20, 10) → "ne one\nThis is line "

readlines IO.readlines(portname, separator=$/)→ array

Reads the entire file specified by portname as individual lines, and returns those lines

in an array. Lines are separated by separator.

a = IO.readlines("testfile")

a[0] → "This is line one\n"

Prepared exclusively for Jose Sierra

IO 486

I
O

select IO.select(read_array 〈 , write_array 〈 , error_array 〈 , timeout 〉 〉 〉)→ array

or nil

See Kernel#select on page 507.

sysopen IO.sysopen(path, 〈 mode 〈 , perm 〉 〉)→ int

1.8 Opens the given path, returning the underlying file descriptor as a Fixnum.

IO.sysopen("testfile") → 3

Instance methods

<< io << obj→ io

String Output—Writes obj to io. obj will be converted to a string using to_s.

STDOUT << "Hello " << "world!\n"

produces:

Hello world!

binmode io.binmode→ io

Puts io into binary mode. This is useful only in MS-DOS/Windows environments. Once

a stream is in binary mode, it cannot be reset to nonbinary mode.

clone io.clone→ io

Creates a new I/O stream, copying all the attributes of io. The file position is shared

as well, so reading from the clone will alter the file position of the original, and vice

versa.

close io.close→ nil

Closes io and flushes any pending writes to the operating system. The stream is unavail-

able for any further data operations; an IOError is raised if such an attempt is made.

I/O streams are automatically closed when they are claimed by the garbage collector.

close_read io.close_read→ nil

Closes the read end of a duplex I/O stream (i.e., one that contains both a read and a

write stream, such as a pipe). Will raise an IOError if the stream is not duplexed.

f = IO.popen("/bin/sh","r+")

f.close_read

f.readlines

produces:

prog.rb:3:in `readlines': not opened for reading (IOError)

from prog.rb:3

Prepared exclusively for Jose Sierra

IO 487

I
O

close_write io.close_write→ nil

Closes the write end of a duplex I/O stream (i.e., one that contains both a read and a

write stream, such as a pipe). Will raise an IOError if the stream is not duplexed.

f = IO.popen("/bin/sh","r+")

f.close_write

f.print "nowhere"

produces:

prog.rb:3:in `write': not opened for writing (IOError)

from prog.rb:3:in `print'

from prog.rb:3

closed? io.closed?→ true or false

Returns true if io is completely closed (for duplex streams, both reader and writer),

and returns false otherwise.

f = File.new("testfile")

f.close → nil

f.closed? → true

f = IO.popen("/bin/sh","r+")

f.close_write → nil

f.closed? → false

f.close_read → nil

f.closed? → true

each io.each(separator=$/) {| line | block } → io

Executes the block for every line in io, where lines are separated by separator. io must

be opened for reading or an IOerror will be raised.

f = File.new("testfile")

f.each {|line| puts "#{f.lineno}: #{line}" }

produces:

1: This is line one

2: This is line two

3: This is line three

4: And so on...

each_byte io.each_byte {| byte | block } → nil

Calls the given block once for each byte (a Fixnum in the range 0 to 255) in io, passing

the byte as an argument. The stream must be opened for reading or an IOerror will be

raised.

f = File.new("testfile")

checksum = 0

f.each_byte {|x| checksum ^= x } → #<File:testfile>

checksum → 12

Prepared exclusively for Jose Sierra

IO 488

I
O

each_line io.each_line(separator=$/) {| line | block } → io

Synonym for IO#each.

eof io.eof→ true or false

Returns true if io is at end of file. The stream must be opened for reading or an

IOError will be raised.

f = File.new("testfile")

dummy = f.readlines

f.eof → true

eof? io.eof?→ true or false

Synonym for IO#eof.

fcntl io.fcntl(cmd, arg)→ int

Provides a mechanism for issuing low-level commands to control or query file-oriented

I/O streams. Commands (which are integers), arguments, and the result are platform

dependent. If arg is a number, its value is passed directly. If it is a string, it is inter-

preted as a binary sequence of bytes. On Unix platforms, see fcntl(2) for details.

The Fcntl module provides symbolic names for the first argument (see page 656). Not

implemented on all platforms.

fileno io.fileno→ int

Returns an integer representing the numeric file descriptor for io.

STDIN.fileno → 0

STDOUT.fileno → 1

flush io.flush→ io

Flushes any buffered data within io to the underlying operating system (note that this

is Ruby internal buffering only; the OS may buffer the data as well).

STDOUT.print "no newline"

STDOUT.flush

produces:

no newline

fsync io.fsync→ 0 or nil

1.8 Immediately writes all buffered data in io to disk. Returns nil if the underlying oper-

ating system does not support fsync(2). Note that fsync differs from using IO#sync=.

The latter ensures that data is flushed from Ruby’s buffers but does not guarantee that

the underlying operating system actually writes it to disk.

Prepared exclusively for Jose Sierra

IO 489

I
O

getc io.getc→ int or nil

Gets the next 8-bit byte (0..255) from io. Returns nil if called at end of file.

f = File.new("testfile")

f.getc → 84

f.getc → 104

gets io.gets(separator=$/)→ string or nil

Reads the next “line” from the I/O stream; lines are separated by separator. A separator

of nil reads the entire contents, and a zero-length separator reads the input a paragraph

at a time (two successive newlines in the input separate paragraphs). The stream must

be opened for reading or an IOerror will be raised. The line read in will be returned

and also assigned to $_. Returns nil if called at end of file.

File.new("testfile").gets → "This is line one\n"

$_ → "This is line one\n"

ioctl io.ioctl(cmd, arg)→ int

Provides a mechanism for issuing low-level commands to control or query I/O devices.

The command (which is an integer), arguments, and results are platform dependent. If

arg is a number, its value is passed directly. If it is a string, it is interpreted as a binary

sequence of bytes. On Unix platforms, see ioctl(2) for details. Not implemented on

all platforms.

isatty io.isatty→ true or false

Returns true if io is associated with a terminal device (tty), and returns false other-

wise.

File.new("testfile").isatty → false

File.new("/dev/tty").isatty → true

lineno io.lineno→ int

Returns the current line number in io. The stream must be opened for reading. lineno

counts the number of times gets is called, rather than the number of newlines encoun-

tered. The two values will differ if gets is called with a separator other than newline.

See also the $. variable.

f = File.new("testfile")

f.lineno → 0

f.gets → "This is line one\n"

f.lineno → 1

f.gets → "This is line two\n"

f.lineno → 2

Prepared exclusively for Jose Sierra

IO 490

I
O

lineno= io.lineno = int→ int

Manually sets the current line number to the given value. $. is updated only on the next

read.

f = File.new("testfile")

f.gets → "This is line one\n"

$. → 1

f.lineno = 1000

f.lineno → 1000

$. # lineno of last read → 1

f.gets → "This is line two\n"

$. # lineno of last read → 1001

pid io.pid→ int

Returns the process ID of a child process associated with io. This will be set by

IO.popen.

pipe = IO.popen("")

if pipe

STDERR.puts "In parent, child pid is #{pipe.pid}"

else

STDERR.puts "In child, pid is #{$$}"

end

produces:

In parent, child pid is 16038

In child, pid is 16038

pos io.pos→ int

Returns the current offset (in bytes) of io.

f = File.new("testfile")

f.pos → 0

f.gets → "This is line one\n"

f.pos → 17

pos= io.pos = int→ 0

Seeks to the given position (in bytes) in io.

f = File.new("testfile")

f.pos = 17

f.gets → "This is line two\n"

print io.print(〈 obj=$_ 〉∗)→ nil

Writes the given object(s) to io. The stream must be opened for writing. If the output

record separator ($\) is not nil, it will be appended to the output. If no arguments

are given, prints $_. Objects that aren’t strings will be converted by calling their to_s

method. Returns nil. à

Prepared exclusively for Jose Sierra

IO 491

I
O

STDOUT.print("This is ", 100, " percent.\n")

produces:

This is 100 percent.

printf io.printf(format 〈 , obj 〉∗)→ nil

Formats and writes to io, converting parameters under control of the format string. See

Kernel#sprintf on page 508 for details.

putc io.putc(obj)→ obj

Writes the given character (taken from a String or a Fixnum) on io.

STDOUT.putc "A"

STDOUT.putc 65

produces:

AA

puts io.puts(〈 obj 〉∗)→ nil

Writes the given objects to io as with IO#print. Writes a newline after any that do

not already end with a newline sequence. If called with an array argument, writes each

element on a new line. If called without arguments, outputs a single newline.

STDOUT.puts("this", "is", "a", "test")

produces:

this

is

a

test

read io.read(〈 int 〈 , buffer 〉 〉)→ string or nil

Reads at most int bytes from the I/O stream or to the end of file if int is omitted. Returns

nil if called at end of file. If buffer1.8 (a String) is provided, it is resized accordingly and

input is read directly into it.

f = File.new("testfile")

f.read(16) → "This is line one"

str = "cat"

f.read(10, str) → "\nThis is l"

str → "\nThis is l"

readchar io.readchar→ int

Reads a character as with IO#getc, but raises an EOFError on end of file.

readline io.readline(separator=$/)→ string

Reads a line as with IO#gets, but raises an EOFError on end of file.

Prepared exclusively for Jose Sierra

IO 492

I
O

readlines io.readlines(separator=$/)→ array

Reads all of the lines in io, and returns them in array. Lines are separated by the

optional separator. The stream must be opened for reading or an IOerror will be

raised.

f = File.new("testfile")

f.readlines → ["This is line one\n", "This is line two\n", "This

is line three\n", "And so on...\n"]

reopen io.reopen(other_io)→ io

io.reopen(path, modestring)→ io

Reassociates io with the I/O stream given in other_io or to a new stream opened on

path. This may dynamically change the actual class of this stream.

f1 = File.new("testfile")

f2 = File.new("testfile")

f2.readlines[0] → "This is line one\n"

f2.reopen(f1) → #<File:testfile>

f2.readlines[0] → "This is line one\n"

rewind io.rewind→ 0

Positions io to the beginning of input, resetting lineno to zero.

f = File.new("testfile")

f.readline → "This is line one\n"

f.rewind → 0

f.lineno → 0

f.readline → "This is line one\n"

seek io.seek(int, whence=SEEK_SET)→ 0

Seeks to a given offset int in the stream according to the value of whence.

IO::SEEK_CUR Seeks to int plus current position.

IO::SEEK_END Seeks to int plus end of stream (you probably want a negative value

for int).

IO::SEEK_SET Seeks to the absolute location given by int.

f = File.new("testfile")

f.seek(13, IO::SEEK_END) → 0

f.readline → "And so on...\n"

stat io.stat→ stat

Returns status information for io as an object of type File::Stat. à

Prepared exclusively for Jose Sierra

IO 493

I
O

f = File.new("testfile")

s = f.stat

"%o" % s.mode → "100644"

s.blksize → 4096

s.atime → Wed Sep 20 16:05:21 CDT 2006

sync io.sync→ true or false

Returns the current “sync mode” of io. When sync mode is true, all output is immedi-

ately flushed to the underlying operating system and is not buffered by Ruby internally.

See also IO#fsync.

f = File.new("testfile")

f.sync → false

sync= io.sync = bool→ true or false

Sets the “sync mode” to true or false. When sync mode is true, all output is immedi-

ately flushed to the underlying operating system and is not buffered internally. Returns

the new state. See also IO#fsync.

f = File.new("testfile")

f.sync = true

sysread io.sysread(int 〈 , buffer 〉)→ string

1.8 Reads int bytes from io using a low-level read and returns them as a string. If buffer (a

String) is provided, input is read directly in to it. Do not mix with other methods that

read from io, or you may get unpredictable results. Raises SystemCallError on error

and EOFError at end of file.

f = File.new("testfile")

f.sysread(16) → "This is line one"

str = "cat"

f.sysread(10, str) → "\nThis is l"

str → "\nThis is l"

sysseek io.sysseek(offset, whence=SEEK_SET)→ int

1.8 Seeks to a given offset in the stream according to the value of whence (see IO#seek for

values of whence). Returns the new offset into the file.

f = File.new("testfile")

f.sysseek(13, IO::SEEK_END) → 53

f.sysread(10) → "And so on."

syswrite io.syswrite(string)→ int

Writes the given string to io using a low-level write. Returns the number of bytes writ-

ten. Do not mix with other methods that write to io, or you may get unpredictable

results. Raises SystemCallError on error.

Prepared exclusively for Jose Sierra

IO 494

I
O

f = File.new("out", "w")

f.syswrite("ABCDEF") → 6

tell io.tell→ int

Synonym for IO#pos.

to_i io.to_i→ int

Synonym for IO#fileno.

to_io io.to_io→ io

Returns io.

tty? io.tty?→ true or false

Synonym for IO#isatty.

ungetc io.ungetc(int)→ nil

Pushes back one character onto io, such that a subsequent buffered read will return it.

Only one character may be pushed back before a subsequent read operation (that is,

you will be able to read only the last of several characters that have been pushed back).

Has no effect with unbuffered reads (such as IO#sysread).

f = File.new("testfile") → #<File:testfile>

c = f.getc → 84

f.ungetc(c) → nil

f.getc → 84

write io.write(string)→ int

Writes the given string to io. The stream must be opened for writing. If the argument

is not a string, it will be converted to a string using to_s. Returns the number of bytes

written.

count = STDOUT.write("This is a test\n")

puts "That was #{count} bytes of data"

produces:

This is a test

That was 15 bytes of data

Prepared exclusively for Jose Sierra

KERNEL 495

K
e

rn
e

l

Module
Kernel

The Kernel module is included by class Object, so its methods are available in every

Ruby object. The Kernel instance methods are documented in class Object beginning

on page 546. This section documents the module methods. These methods are called

without a receiver and thus can be called in functional form.

Module methods

Array Array(arg)→ array

Returns arg as an Array. First tries to call arg.to_ary, then arg.to_a. If both fail,

creates a single element array containing arg (unless arg is nil).

Array(1..5) → [1, 2, 3, 4, 5]

Float Float(arg)→ float

Returns arg converted to a float. Numeric types are converted directly, the rest are

converted using arg.to_f. As of Ruby 1.8,1.8 converting nil generates a TypeError.

Float(1) → 1.0

Float("123.456") → 123.456

Integer Integer(arg)→ int

Converts arg to a Fixnum or Bignum. Numeric types are converted directly (floating-

point numbers are truncated). If arg is a String, leading radix indicators (0, 0b, and 0x)

are honored. Others are converted using to_int and to_i. This behavior is different

from that of String#to_i.

Integer(123.999) → 123

Integer("0x1a") → 26

Integer(Time.new) → 1158786331

Integer(nil) → 0

String String(arg)→ string

Converts arg to a String by calling its to_s method.

String(self) → "main"

String(self.class) → "Object"

String(123456) → "123456"

` (backquote) `cmd ` → string

Returns the standard output of running cmd in a subshell. The built-in syntax %x{...}

described on page 83 uses this method. Sets $? to the process status.

Prepared exclusively for Jose Sierra

KERNEL 496

K
e

rn
e

l

`date` → "Wed Sep 20 16:05:31 CDT 2006\n"

`ls testdir`.split[1] → "main.rb"

`echo oops && exit 99` → "oops\n"

$?.exitstatus → 99

abort abort

abort(msg)

1.8 Terminates execution immediately with an exit code of 1. The optional String param-

eter is written to standard error before the program terminates.

at_exit at_exit { block }→ proc

Converts block to a Proc object (and therefore binds it at the point of call), and registers

it for execution when the program exits. If multiple handlers are registered, they are

executed in reverse order of registration.

def do_at_exit(str1)

at_exit { print str1 }

end

at_exit { puts "cruel world" }

do_at_exit("goodbye ")

exit

produces:

goodbye cruel world

autoload autoload(name, file_name)→ nil

Registers file_name to be loaded (using Kernel.require) the first time that the module

name (which may be a String or a symbol) is accessed.

autoload(:MyModule, "/usr/local/lib/modules/my_module.rb")

Prior to Ruby 1.8, the name parameter was assumed to be in the top-level namespace.1.8
In Ruby 1.8, the new method Module.autoload lets you define namespace-specific

autoload hooks. In the following code, Ruby 1.6 will load xxx.rb on references to

::XXX whereas Ruby 1.8 will autoload on references to X::XXX.

module X

autoload :XXX, "xxx.rb"

end

Note that xxx.rb should define a class in the correct namespace. That is, in this exam-

ple xxx.rb should contain

class X::XXX

...

end

Prepared exclusively for Jose Sierra

KERNEL 497

K
e

rn
e

l

autoload? autoload?(name)→ file_name or nil

1.8 Returns the name of the file that will be autoloaded when the string or symbol name is

referenced in the top-level context, or returns nil if there is no associated autoload.

autoload(:Fred, "module_fred") → nil

autoload?(:Fred) → "module_fred"

autoload?(:Wilma) → nil

binding binding→ a_binding

Returns a Binding object, describing the variable and method bindings at the point of

call. This object can be used when calling eval to execute the evaluated command in

this environment. Also see the description of class Binding beginning on page 423.

def get_binding(param)

return binding

end

b = get_binding("hello")

eval("param", b) → "hello"

block_given? block_given?→ true or false

Returns true if yield would execute a block in the current context.

def try

if block_given?

yield

else

"no block"

end

end

try → "no block"

try { "hello" } → "hello"

try do "hello" end → "hello"

callcc callcc {| cont | block } → obj

Generates a Continuation object, which it passes to the associated block. Performing

a cont.call will cause the callcc to return (as will falling through the end of the

block). The value returned by the callcc is the value of the block or the value passed to

cont.call. See Continuation on page 427 for more details. Also see Kernel.throw

for an alternative mechanism for unwinding a call stack.

caller caller(〈 int 〉)→ array

Returns the current execution stack—an array containing strings in the form file:line or

file:line: in ‘method’. The optional int parameter determines the number of initial stack

entries to omit from the result.

Prepared exclusively for Jose Sierra

KERNEL 498

K
e

rn
e

l

def a(skip)

caller(skip)

end

def b(skip)

a(skip)

end

def c(skip)

b(skip)

end

c(0) → ["prog:2:in `a'", "prog:5:in `b'", "prog:8:in `c'",

"prog:10"]

c(1) → ["prog:5:in `b'", "prog:8:in `c'", "prog:11"]

c(2) → ["prog:8:in `c'", "prog:12"]

c(3) → ["prog:13"]

catch catch(symbol) { block } → obj

catch executes its block. If a throw is encountered, Ruby searches up its stack for

a catch block with a tag corresponding to the throw’s symbol. If found, that block

is terminated, and catch returns the value given to throw. If throw is not called, the

block terminates normally, and the value of catch is the value of the last expression

evaluated. catch expressions may be nested, and the throw call need not be in lexical

scope.

def routine(n)

puts n

throw :done if n <= 0

routine(n1)

end

catch(:done) { routine(4) }

produces:

4

3

2

1

0

chomp chomp(〈 rs 〉)→ $_ or string

Equivalent to $_ = $_.chomp(rs), except no assignment is made if chomp doesn’t

change $_. See String#chomp on page 589.

$_ = "now\n"

chomp → "now"

chomp "ow" → "n"

chomp "xxx" → "n"

$_ → "n"

chomp! chomp!(〈 rs 〉)→ $_ or nil

Equivalent to $_.chomp!(rs). See String#chomp! à

Prepared exclusively for Jose Sierra

KERNEL 499

K
e

rn
e

l

$_ = "now\n"

chomp! → "now"

$_ → "now"

chomp! "x" → nil

$_ → "now"

chop chop→ string

(Almost) equivalent to ($_.dup).chop!, except that if chop would perform no action,

$_ is unchanged and nil is not returned. See String#chop! on page 589.

$_ = a = "now\r\n"

chop → "now"

$_ → "now"

chop → "no"

chop → "n"

chop → ""

a → "now\r\n"

chop! chop!→ $_ or nil

Equivalent to $_.chop!.

$_ = a = "now\r\n"

chop! → "now"

chop! → "no"

chop! → "n"

chop! → ""

chop! → nil

$_ → ""

a → ""

eval eval(string 〈 , binding 〈 , file 〈 , line 〉 〉 〉)→ obj

Evaluates the Ruby expression(s) in string. If binding is given, the evaluation is per-

formed in its context. The binding may be a Binding object or a Proc object. If the

optional file and line parameters are present, they will be used when reporting syntax

errors.

def get_binding(str)

return binding

end

str = "hello"

eval "str + ' Fred'" → "hello Fred"

eval "str + ' Fred'", get_binding("bye") → "bye Fred"

As of Ruby 1.8,1.8 local variables assigned within an eval are available after the eval

only if they were defined at the outer scope before the eval executed. In this way eval

has the same scoping rules as blocks.

a = 1

eval "a = 98; b = 99"

puts a

puts b

Prepared exclusively for Jose Sierra

KERNEL 500

K
e

rn
e

l

produces:

98

prog.rb:4: undefined local variable or method `b' for

main:Object (NameError)

exec exec(command 〈 , args 〉)
Replaces the current process by running the given external command. If exec is given

a single argument, that argument is taken as a line that is subject to shell expan-

sion before being executed. If command contains a newline or any of the characters

*?{}[]<>()~\&|\$;'`", or under Windows if command looks like a shell-internal com-

mand (for example dir), command is run under a shell. On Unix system, Ruby does this

by prepending sh c. Under Windows, it uses the name of a shell in either RUBYSHELL

or COMSPEC.

If multiple arguments are given, the second and subsequent arguments are passed as

parameters to command with no shell expansion. If the first argument is a two-element

array, the first element is the command to be executed, and the second argument is

used as the argv[0] value, which may show up in process listings. In MSDOS envi-

ronments, the command is executed in a subshell; otherwise, one of the exec(2) sys-

tem calls is used, so the running command may inherit some of the environment of

the original program (including open file descriptors). Raises SystemCallError if the

command couldn’t execute (typically Errno::ENOENT).

exec "echo *" # echoes list of files in current directory

never get here

exec "echo", "*" # echoes an asterisk

never get here

exit exit(true | false | status=1)

1.8 Initiates the termination of the Ruby script. If called in the scope of an exception han-

dler, raises a SystemExit exception. This exception may be caught. Otherwise exits

the process using exit(2). The optional parameter is used to return a status code to

the invoking environment. With an argument of true, exits with a status of zero. With

an argument that is false (or no argument), exits with a status of 1, otherwise exits with

the given status. Note1.8 that the default exit value has changed from –1 to +1 in Ruby

1.8.

fork { exit 99 }

Process.wait

puts "Child exits with status: #{$?.exitstatus}"

begin

exit

puts "never get here"

rescue SystemExit

puts "rescued a SystemExit exception"

end

puts "after begin block"

Prepared exclusively for Jose Sierra

KERNEL 501

K
e

rn
e

l

produces:

Child exits with status: 99

rescued a SystemExit exception

after begin block

Just prior to termination, Ruby executes any at_exit functions and runs any object

finalizers (see ObjectSpace beginning on page 557).

at_exit { puts "at_exit function" }

ObjectSpace.define_finalizer("string", lambda { puts "in finalizer" })

exit

produces:

at_exit function

in finalizer

exit! exit!(true | false | status=1)

1.8 Similar to Kernel.exit, but exception handling, at_exit functions, and finalizers are

bypassed.

fail fail

fail(message)

fail(exception 〈 , message 〈 , array 〉 〉)

Synonym for Kernel.raise.

fork fork 〈 { block } 〉 → int or nil

Creates a subprocess. If a block is specified, that block is run in the subprocess, and the

subprocess terminates with a status of zero. Otherwise, the fork call returns twice, once

in the parent, returning the process ID of the child, and once in the child, returning nil.

The child process can exit using Kernel.exit! to avoid running any at_exit func-

tions. The parent process should use Process.wait to collect the termination statuses

of its children or use Process.detach to register disinterest in their status; otherwise,

the operating system may accumulate zombie processes.

fork do

3.times {|i| puts "Child: #{i}" }

end

3.times {|i| puts "Parent: #{i}" }

Process.wait

produces:

Parent: 0

Child: 0

Parent: 1

Child: 1

Parent: 2

Child: 2

Prepared exclusively for Jose Sierra

KERNEL 502

K
e

rn
e

l

format format(format_string 〈 , arg 〉∗)→ string

Synonym for Kernel.sprintf.

gets gets(separator=$/)→ string or nil

Returns (and assigns to $_) the next line from the list of files in ARGV (or $*) or from

standard input if no files are present on the command line. Returns nil at end of file.

The optional argument specifies the record separator. The separator is included with the

contents of each record. A separator of nil reads the entire contents, and a zero-length

separator reads the input one paragraph at a time, where paragraphs are divided by two

consecutive newlines. If multiple filenames are present in ARGV, gets(nil) will read

the contents one file at a time.

ARGV << "testfile"

print while gets

produces:

This is line one

This is line two

This is line three

And so on...

The style of programming using $_ as an implicit parameter is gradually losing favor

in the Ruby community.

global_variables global_variables→ array

Returns an array of the names of global variables.

global_variables.grep /std/ → ["$stdin", "$stderr", "$stdout"]

gsub gsub(pattern, replacement)→ string

gsub(pattern) { block } → string

Equivalent to $_.gsub(...), except that $_ will be updated if substitution occurs.

$_ = "quick brown fox"

gsub /[aeiou]/, '*' → "q**ck br*wn f*x"

$_ → "q**ck br*wn f*x"

gsub! gsub!(pattern, replacement)→ string or nil

gsub!(pattern) { block } → string or nil

Equivalent to $_.gsub!(...).

$_ = "quick brown fox"

gsub! /cat/, '*' → nil

$_ → "quick brown fox"

Prepared exclusively for Jose Sierra

KERNEL 503

K
e

rn
e

l

iterator? iterator?→ true or false

Deprecated synonym for Kernel.block_given?.

lambda lambda { block } → proc

Creates a new procedure object from the given block. See page 342 for an explanation

of the difference between procedure objects created using lambda and those created

using Proc.new. Note that lambda is now preferred over proc.1.8

prc = lambda { "hello" }

prc.call → "hello"

load load(file_name, wrap=false)→ true

Loads and executes the Ruby program in the file file_name. If the filename does not

resolve to an absolute path, the file is searched for in the library directories listed in

$:. If the optional wrap parameter is true, the loaded script will be executed under an

anonymous module, protecting the calling program’s global namespace. In no circum-

stance will any local variables in the loaded file be propagated to the loading environ-

ment.

local_variables local_variables→ array

Returns the names of the current local variables.

fred = 1

for i in 1..10

...

end

local_variables → ["fred", "i"]

Note that local variables are associated with bindings.

def fred

a = 1

b = 2

binding

end

freds_binding = fred

eval("local_variables", freds_binding) → ["a", "b"]

loop loop { block }

Repeatedly executes the block.

loop do

print "Input: "

break if (line = gets).nil? or (line =~ /^[qQ]/)

...

end

Prepared exclusively for Jose Sierra

KERNEL 504

K
e

rn
e

l

open open(name 〈 , modestring 〈 , permission 〉 〉)→ io or nil

open(name 〈 , modestring 〈 , permission 〉 〉) {| io | block } → obj

Creates an IO object connected to the given stream, file, or subprocess.

If name does not start with a pipe character (|), treat it as the name of a file to open

using the specified mode defaulting to "r" (see the table of valid modes on page 483). If

a file is being created, its initial permissions may be set using the integer third parame-

ter. If1.8 this third parameter is present, the file will be opened using the low-level open(2)

rather than fopen(3) call.

If a block is specified, it will be invoked with the IO object as a parameter, which will

be automatically closed when the block terminates. The call1.8 returns the value of the

block in this case.

If name starts with a pipe character, a subprocess is created, connected to the caller

by a pair of pipes. The returned IO object may be used to write to the standard input

and read from the standard output of this subprocess. If the command following the |

is a single minus sign, Ruby forks, and this subprocess is connected to the parent. In

the subprocess, the open call returns nil. If the command is not "", the subprocess

runs the command. If a block is associated with an open("|") call, that block will

be run twice—once in the parent and once in the child. The block parameter will be an

IO object in the parent and nil in the child. The parent’s IO object will be connected

to the child’s STDIN and STDOUT. The subprocess will be terminated at the end of the

block.

open("testfile") do |f|

print f.gets

end

produces:

This is line one

Open a subprocess and read its output.

cmd = open("|date")

print cmd.gets

cmd.close

produces:

Wed Sep 20 16:05:32 CDT 2006

Open a subprocess running the same Ruby program.

f = open("|", "w+")

if f.nil?

puts "in Child"

exit

else

puts "Got: #{f.gets}"

end

Prepared exclusively for Jose Sierra

KERNEL 505

K
e

rn
e

l

produces:

Got: in Child

Open a subprocess using a block to receive the I/O object.

open("|") do |f|

if f.nil?

puts "in Child"

else

puts "Got: #{f.gets}"

end

end

produces:

Got: in Child

p p(〈 obj 〉+)→ nil

For each object, writes obj.inspect followed by the current output record separator to

the program’s standard output. Also see the PrettyPrint library on page 695.

S = Struct.new(:name, :state)

s = S['dave', 'TX']

p s

produces:

#<struct S name="dave", state="TX">

print print(〈 obj 〉∗)→ nil

Prints each object in turn to STDOUT.1.8 If the output field separator ($,) is not nil, its

contents will appear between each field. If the output record separator ($\) is not nil,

it will be appended to the output. If no arguments are given, prints $_. Objects that

aren’t strings will be converted by calling their to_s method.

print "cat", [1,2,3], 99, "\n"

$, = ", "

$\ = "\n"

print "cat", [1,2,3], 99

produces:

cat12399

cat, 1, 2, 3, 99

printf printf(io, format 〈 , obj 〉∗)→ nil

printf(format 〈 , obj 〉∗)→ nil

Equivalent to

io.write sprintf(format, obj ...)

or

STDOUT.write sprintf(format, obj ...)

Prepared exclusively for Jose Sierra

KERNEL 506

K
e

rn
e

l

proc proc { block }→ a_proc

Creates a new procedure object from the given block. Mildly deprecated in favor of

Kernel#lambda.1.8
prc = proc {|name| "Goodbye, #{name}" }

prc.call('Dave') → "Goodbye, Dave"

putc putc(int)→ int

Equivalent to STDOUT.putc(int).

puts puts(〈 arg 〉∗)→ nil

Equivalent to STDOUT.puts(arg...).

raise raise

raise(message)

raise(exception 〈 , message 〈 , array 〉 〉)

With no arguments, raises the exception in $! or raises a RuntimeError if $! is nil.

With a single String argument, raises a RuntimeError with the string as a message.

Otherwise, the first parameter should be the name of an Exception class (or an object

that returns an Exception when sent exception). The optional second parameter sets

the message associated with the exception, and the third parameter is an array of call-

back information. Exceptions are caught by the rescue clause of begin...end blocks.

raise "Failed to create socket"

raise ArgumentError, "No parameters", caller

rand rand(max=0)→ number

Converts max to an integer using max1 = max.to_i.abs. If the result is zero, returns

a pseudorandom floating-point number greater than or equal to 0.0 and less than 1.0.

Otherwise, returns a pseudorandom integer greater than or equal to zero and less than

max1. Kernel.srand may be used to ensure repeatable sequences of random num-

bers between different runs of the program. Ruby currently uses a modified Mersenne

Twister with a period of 219937 − 1.

srand 1234 → 0

[rand, rand] → [0.191519450163469, 0.49766366626136]

[rand(10), rand(1000)] → [6, 817]

srand 1234 → 1234

[rand, rand] → [0.191519450163469, 0.49766366626136]

readline readline(〈 separator=$/ 〉)→ string

Equivalent to Kernel.gets, except readline raises EOFError at end of file.

Prepared exclusively for Jose Sierra

KERNEL 507

K
e

rn
e

l

readlines readlines(〈 separator=$/ 〉)→ array

Returns an array containing the lines returned by calling Kernel.gets(separator)

until the end of file.

require require(library_name)→ true or false

Ruby tries to load library_name, returning true if successful. If the filename does not

resolve to an absolute path, it will be searched for in the directories listed in $:. If

the file has the extension .rb, it is loaded as a source file; if the extension is .so, .o,

or .dll,1 Ruby loads the shared library as a Ruby extension. Otherwise, Ruby tries

adding .rb, .so, and so on to the name. The name of the loaded feature is added to the

array in $". A feature will not be loaded if its name already appears in $".2 require

returns true if the feature was successfully loaded.

require 'mylibrary.rb'

require 'dbdriver'

The SCRIPT_LINES__ constant can be used to capture1.8 the source of code read using

require.

SCRIPT_LINES__ = {}

require 'code/scriptlines'

puts "Files: #{SCRIPT_LINES__.keys.join(', ')}"

SCRIPT_LINES__['./code/scriptlines.rb'].each do |line|

puts "Source: #{line}"

end

produces:

3/8

Files: ./code/scriptlines.rb, /Users/dave/ruby1.8/lib/ruby/1.8/rational.rb

Source: require 'rational'

Source:

Source: puts Rational(1,2)*Rational(3,4)

scan scan(pattern)→ array

scan(pattern) { block } → $_

Equivalent to calling $_.scan. See String#scan on page 596.

select select(read_array 〈 , write_array 〈 , error_array 〈 , timeout 〉 〉 〉)→ array or nil

Performs a low-level select call, which waits for data to become available from

input/output devices. The first three parameters are arrays of IO objects or nil. The

last is a timeout in seconds, which should be an Integer or a Float. The call waits

1. Or whatever the default shared library extension is on the current platform.

2. Although this name is not converted to an absolute path, so that require 'a';require './a' will

load a.rb twice. This is arguably a bug.

Prepared exclusively for Jose Sierra

KERNEL 508

K
e

rn
e

l

for data to become available for any of the IO objects in read_array, for buffers to

have cleared sufficiently to enable writing to any of the devices in write_array, or for

an error to occur on the devices in error_array. If one or more of these conditions are

met, the call returns a three-element array containing arrays of the IO objects that were

ready. Otherwise, if there is no change in status for timeout seconds, the call returns

nil. If all parameters are nil, the current thread sleeps forever.

select([STDIN], nil, nil, 1.5) → [[#<IO:0x1d08f4>], [], []]

set_trace_func set_trace_func(proc)→ proc

set_trace_func(nil)→ nil

Establishes proc as the handler for tracing, or disables tracing if the parameter is nil.

proc takes up to six parameters: an event name, a filename, a line number, an object

ID, a binding, and the name of a class. proc is invoked whenever an event occurs.

Events are ccall (call a C-language routine), creturn (return from a C-language

routine), call (call a Ruby method), class (start a class or module definition), end

(finish a class or module definition), line (execute code on a new line), raise (raise

an exception), and return (return from a Ruby method). Tracing is disabled within the

context of proc.

See the example starting on page 393 for more information.

sleep sleep(numeric=0)→ fixnum

Suspends the current thread for numeric seconds (which may be a Float with fractional

seconds). Returns the actual number of seconds slept (rounded), which may be less

than that asked for if the thread was interrupted by a SIGALRM or if another thread calls

Thread#run. An argument of zero causes sleep to sleep forever.

Time.now → Wed Sep 20 16:05:32 CDT 2006

sleep 1.9 → 2

Time.now → Wed Sep 20 16:05:34 CDT 2006

split split(〈 pattern 〈 , limit 〉 〉)→ array

Equivalent to $_.split(pattern, limit). See String#split on page 598.

sprintf sprintf(format_string 〈 , arguments 〉∗)→ string

Returns the string resulting from applying format_string to any additional arguments.

Within the format string, any characters other than format sequences are copied to the

result.

A format sequence consists of a percent sign, followed by optional flags, width, and

precision indicators, and then terminated with a field type character. The field type

controls how the corresponding sprintf argument is to be interpreted, and the flags

Prepared exclusively for Jose Sierra

KERNEL 509

K
e

rn
e

l

modify that interpretation. The flag characters are shown in Table 27.7 on the next page,

and the field type characters are listed in Table 27.8.

The field width is an optional integer, followed optionally by a period and a precision.

The width specifies the minimum number of characters that will be written to the result

for this field. For numeric fields, the precision controls the number of decimal places

displayed. For string fields, the precision determines the maximum number of char-

acters to be copied from the string. (Thus, the format sequence %10.10s will always

contribute exactly ten characters to the result.)

sprintf("%d %04x", 123, 123) → "123 007b"

sprintf("%08b '%4s'", 123, 123) → "01111011 ' 123'"

sprintf("%1$*2$s %2$d %1$s", "hello", 8) → " hello 8 hello"

sprintf("%1$*2$s %2$d", "hello", 8) → "hello 8"

sprintf("%+g:% g:%g", 1.23, 1.23, 1.23) → "+1.23: 1.23:1.23"

srand srand(〈 number 〉)→ old_seed

Seeds the pseudorandom number generator to the value of number.to_i.abs. If num-

ber is omitted or zero, seeds the generator using a combination of the time, the process

ID, and a sequence number. (This is also the behavior if Kernel.rand is called with-

out previously calling srand, but without the sequence.) By setting the seed to a known

value, scripts that use rand can be made deterministic during testing. The previous seed

value is returned. Also see Kernel.rand on page 506.

sub sub(pattern, replacement)→ $_

sub(pattern) { block }→ $_

Equivalent to $_.sub(args), except that $_ will be updated if substitution occurs.

sub! sub!(pattern, replacement)→ $_ or nil

sub!(pattern) { block }→ $_ or nil

Equivalent to $_.sub!(args).

syscall syscall(fixnum 〈 , args 〉∗)→ int

Calls the operating system function identified by fixnum. The arguments must be either

String objects or Integer objects that fit within a native long. Up to nine parameters

may be passed. The function identified by fixnum is system dependent. On some Unix

systems, the numbers may be obtained from a header file called syscall.h.

syscall 4, 1, "hello\n", 6 # '4' is write(2) on our system

produces:

hello

system system(command 〈 , args 〉∗)→ true or false

Executes command in a subshell, returning true if the command was found and ran

Prepared exclusively for Jose Sierra

KERNEL 510

K
e

rn
e

l

Table 27.7. sprintf flag characters

Flag Applies to Meaning

(space) bdEefGgiouXx Leave a space at the start of positive numbers.

digit$ all Specify the absolute argument number for this field.

Absolute and relative argument numbers cannot both be

used in a sprintf string.

beEfgGoxX Use an alternative format. For the conversions b, o, X,

and x, prefix the result with b, 0, 0X, 0x, respectively. For

E, e, f, G, and g, force a decimal point to be added, even

if no digits follow. For G and g, do not remove trailing

zeros.

+ bdEefGgiouXx Add a leading plus sign to positive numbers.

 all Left-justify the result of this conversion.

0 (zero) bdEefGgiouXx Pad with zeros, not spaces.

* all Use the next argument as the field width. If negative,

left-justify the result. If the asterisk is followed by a

number and a dollar sign, use the indicated argument as

the width.

successfully, false otherwise. An error status is available in $?. The arguments are

processed in the same way as for Kernel.exec on page 500. Raises SystemCallError

if the command couldn’t execute (typically Errno::ENOENT).

system("echo *")

system("echo", "*")

produces:

config.h main.rb

*

test test(cmd, file1 〈 , file2 〉)→ obj

Uses the integer cmd to perform various tests on file1 (Table 27.9 on page 512) or on

file1 and file2 (Table 27.10).

throw throw(symbol 〈 , obj 〉)

Transfers control to the end of the active catch block waiting for symbol. Raises

NameError if there is no catch block for the symbol. The optional second parame-

ter supplies a return value for the catch block, which otherwise defaults to nil. For

examples, see Kernel.catch on page 498.

Prepared exclusively for Jose Sierra

KERNEL 511

K
e

rn
e

l

Table 27.8. sprintf field types

Field Conversion

b Convert argument as a binary number.

c Argument is the numeric code for a single character.

d Convert argument as a decimal number.

E Equivalent to e, but uses an uppercase E to indicate the exponent.

e Convert floating point-argument into exponential notation with one digit before

the decimal point. The precision determines the number of fractional digits

(defaulting to six).

f Convert floating-point argument as []ddd.ddd, where the precision deter-

mines the number of digits after the decimal point.

G Equivalent to g, but use an uppercase E in exponent form.

g Convert a floating-point number using exponential form if the exponent is less

than−4 or greater than or equal to the precision, or in d.dddd form otherwise.

i Identical to d.

o Convert argument as an octal number.

p The value of argument.inspect.1.8
s Argument is a string to be substituted. If the format sequence contains a preci-

sion, at most that many characters will be copied.

u Treat argument as an unsigned decimal number.

X Convert argument as a hexadecimal number using uppercase letters. Negative

numbers will be displayed with two leading periods (representing an infinite

string of leading FFs).

x Convert argument as a hexadecimal number. Negative numbers will be dis-

played with two leading periods (representing an infinite string of leading FFs.)

trace_var trace_var(symbol, cmd)→ nil

trace_var(symbol) {| val | block } → nil

Controls tracing of assignments to global variables. The parameter symbol identifies the

variable (as either a string name or a symbol identifier). cmd (which may be a string or

a Proc object) or the block is executed whenever the variable is assigned, and receives

the variable’s new value as a parameter. Only explicit assignments are traced. Also see

Kernel.untrace_var.

trace_var :$_, lambda {|v| puts "$_ is now '#{v}'" }

$_ = "hello"

sub(/ello/, "i")

$_ += " Dave"

produces:

$_ is now 'hello'

$_ is now 'hi Dave'

Prepared exclusively for Jose Sierra

KERNEL 512

K
e

rn
e

l

Table 27.9. File tests with a single argument

Flag Description Returns

?A Last access time for file1 Time

?b True if file1 is a block device true or false

?c True if file1 is a character device true or false

?C Last change time for file1 Time

?d True if file1 exists and is a directory true or false

?e True if file1 exists true or false

?f True if file1 exists and is a regular file true or false

?g True if file1 has the setgid bit set (false under NT) true or false

?G True if file1 exists and has a group ownership equal to the

caller’s group

true or false

?k True if file1 exists and has the sticky bit set true or false

?l True if file1 exists and is a symbolic link true or false

?M Last modification time for file1 Time

?o True if file1 exists and is owned by the caller’s effective UID true or false

?O True if file1 exists and is owned by the caller’s real UID true or false

?p True if file1 exists and is a fifo true or false

?r True if file1 is readable by the effective UID/GID of the caller true or false

?R True if file1 is readable by the real UID/GID of the caller true or false

?s If file1 has nonzero size, return the size, otherwise return nil Integer or nil

?S True if file1 exists and is a socket true or false

?u True if file1 has the setuid bit set true or false

?w True if file1 exists and is writable by the effective UID/ GID true or false

?W True if file1 exists and is writable by the real UID/GID true or false

?x True if file1 exists and is executable by the effective UID/GID true or false

?X True if file1 exists and is executable by the real UID/GID true or false

?z True if file1 exists and has a zero length true or false

Table 27.10. File tests with two arguments

Flag Description

?- True if file1 is a hard link to file2

?= True if the modification times of file1 and file2 are equal

?< True if the modification time of file1 is prior to that of file2

?> True if the modification time of file1 is after that of file2

Prepared exclusively for Jose Sierra

KERNEL 513

K
e

rn
e

l

trap trap(signal, proc)→ obj

trap(signal) { block } → obj

See the Signal module on page 583.

untrace_var untrace_var(symbol 〈 , cmd 〉)→ array or nil

Removes tracing for the specified command on the given global variable and returns

nil. If no command is specified, removes all tracing for that variable and returns an

array containing the commands actually removed.

warn warn msg

1.8 Writes the given message to STDERR (unless $VERBOSE is nil, perhaps because the W0

command-line option was given).

warn "Danger, Will Robinson!"

produces:

Danger, Will Robinson!

Prepared exclusively for Jose Sierra

MARSHAL 514

M
a

rs
h

a
l

Module
Marshal

The marshaling library converts collections of Ruby objects into a byte stream, allow-

ing them to be stored outside the currently active script. This data may subsequently

be read and the original objects reconstituted. Marshaling is described starting on

page 395. Also see the YAML library on page 737.

Marshaled data has major and minor version numbers stored along with the object

information. In normal use, marshaling can load only data written with the same major

version number and an equal or lower minor version number. If Ruby’s “verbose” flag

is set (normally using d, v, w, or verbose), the major and minor numbers must

match exactly. Marshal versioning is independent of Ruby’s version numbers. You can

extract the version by reading the first two bytes of marshaled data.

str = Marshal.dump("thing")

RUBY_VERSION → "1.8.2"

str[0] → 4

str[1] → 8

Some objects cannot be dumped: if the objects to be dumped include bindings, proce-

dure or method objects, instances of class IO, or singleton objects, or if you try to dump

anonymous classes or modules,1.8 a TypeError will be raised.

If your class has special serialization needs (for example, if you want to serialize in

some specific format), or if it contains objects that would otherwise not be serializable,

you can implement your own serialization strategy. Prior to Ruby 1.8, you defined the

methods _dump and _load.

Ruby 1.81.8 includes a more flexible interface to custom serialization using the instance

methods marshal_dump and marshal_load: If an object to be marshaled responds to

marshal_dump, that method is called instead of _dump. marshal_dump can return an

object of any class (not just a String). A class that implements marshal_dump must also

implement marshal_load, which is called as an instance method of a newly allocated

object and passed the object originally created by marshal_dump.

The following code uses this new framework to store a Time object in the serialized ver-

sion of an object. When loaded, this object is passed to marshal_load, which converts

this time to a printable form, storing the result in an instance variable.

class TimedDump

attr_reader :when_dumped

def marshal_dump

Time.now

end

def marshal_load(when_dumped)

@when_dumped = when_dumped.strftime("%I:%M%p")

end

end

Prepared exclusively for Jose Sierra

MARSHAL 515

M
a

rs
h

a
l

t = TimedDump.new

t.when_dumped → nil

str = Marshal.dump(t)

newt = Marshal.load(str)

newt.when_dumped → "04:05PM"

Module constants

MAJOR_VERSION Major part of marshal format version number.

MINOR_VERSION Minor part of marshal format version number.

Module methods

dump dump(obj 〈 , io 〉 , limit=–1)→ io

Serializes obj and all descendent objects. If io is specified, the serialized data will be

written to it; otherwise the data will be returned as a String. If limit is specified, the

traversal of subobjects will be limited to that depth. If limit is negative, no checking of

depth will be performed.

class Klass

def initialize(str)

@str = str

end

def say_hello

@str

end

end

o = Klass.new("hello\n")

data = Marshal.dump(o)

obj = Marshal.load(data)

obj.say_hello → "hello\n"

load load(from 〈 , proc 〉)→ obj

Returns the result of converting the serialized data in from into a Ruby object (possi-

bly with associated subordinate objects). from may be either an instance of IO or an

object that responds to to_str. If proc is specified, it will be passed each object as it is

deserialized.

restore restore(from 〈 , proc 〉)→ obj

A synonym for Marshal.load.

Prepared exclusively for Jose Sierra

MATCHDATA 516

M
a

tc
h

D
a

ta

Class
MatchData < Object

All pattern matches set the special variable $~ to a MatchData containing information

about the match. The methods Regexp#match and Regexp.last_match also return a

MatchData object. The object encapsulates all the results of a pattern match, results

normally accessed through the special variables $&, $', $`, $1, $2, and so on (see the

list on page 319). Class Matchdata is also known as MatchingData.

Instance methods

[] match[i]→ obj

match[start, length]→ array

match[range]→ array

Match Reference—MatchData acts as an array, and may be accessed using the nor-

mal array indexing techniques. match[0] is equivalent to the special variable $& and

returns the entire matched string. match[1], match[2], and so on, return the values of

the matched back references (portions of the pattern between parentheses). See also

MatchData#select and MatchData#values_at.1.8

m = /(.)(.)(\d+)(\d)/.match("THX1138.")

m[0] → "HX1138"

m[1, 2] → ["H", "X"]

m[1..3] → ["H", "X", "113"]

m[3, 2] → ["X", "113"]

begin match.begin(n)→ int

Returns the offset of the start of the nth element of the match array in the string.

m = /(.)(.)(\d+)(\d)/.match("THX1138.")

m.begin(0) → 1

m.begin(2) → 2

captures match.captures→ array

1.8 Returns the array of all the matching groups. Compare to MatchData#to_a, which

returns both the complete matched string and all the matching groups.

m = /(.)(.)(\d+)(\d)/.match("THX1138.")

m.captures → ["H", "X", "113", "8"]

captures is useful when extracting parts of a match in an assignment.

f1, f2, f3 = /(.)(.)(\d+)(\d)/.match("THX1138.").captures

f1 → "H"

f2 → "X"

f3 → "113"

Prepared exclusively for Jose Sierra

MATCHDATA 517

M
a

tc
h

D
a

ta

end match.end(n)→ int

Returns the offset of the character immediately following the end of the nth element of

the match array in the string.

m = /(.)(.)(\d+)(\d)/.match("THX1138.")

m.end(0) → 7

m.end(2) → 3

length match.length→ int

Returns the number of elements in the match array.

m = /(.)(.)(\d+)(\d)/.match("THX1138.")

m.length → 5

m.size → 5

offset match.offset(n)→ array

Returns a two-element array containing the beginning and ending offsets of the nth

match.

m = /(.)(.)(\d+)(\d)/.match("THX1138.")

m.offset(0) → [1, 7]

m.offset(4) → [6, 7]

post_match match.post_match→ string

Returns the portion of the original string after the current match. Equivalent to the

special variable $'.

m = /(.)(.)(\d+)(\d)/.match("THX1138: The Movie")

m.post_match → ": The Movie"

pre_match match.pre_match→ string

Returns the portion of the original string before the current match. Equivalent to the

special variable $`.

m = /(.)(.)(\d+)(\d)/.match("THX1138.")

m.pre_match → "T"

select match.select {| val | block } → array

1.8 Returns an array containing all elements of match for which block is true.

m = /(.)(.)(\d+)(\d)/.match("THX1138: The Movie")

m.to_a → ["HX1138", "H", "X", "113", "8"]

m.select {|v| v =~ /\d\d/ } → ["HX1138", "113"]

size match.size→ int

A synonym for MatchData#length.

Prepared exclusively for Jose Sierra

MATCHDATA 518

M
a

tc
h

D
a

ta

string match.string→ string

Returns a frozen copy of the string passed in to match.

m = /(.)(.)(\d+)(\d)/.match("THX1138.")

m.string → "THX1138."

to_a match.to_a→ array

Returns the array of matches. Unlike MatchData#captures, returns the full string

matched.

m = /(.)(.)(\d+)(\d)/.match("THX1138.")

m.to_a → ["HX1138", "H", "X", "113", "8"]

to_s match.to_s→ string

Returns the entire matched string.

m = /(.)(.)(\d+)(\d)/.match("THX1138.")

m.to_s → "HX1138"

values_at match.values_at(〈 index 〉∗)→ array

1.8 Uses each index to access the matching values, returning an array of the corresponding

matches.

m = /(.)(.)(\d+)(\d)/.match("THX1138: The Movie")

m.to_a → ["HX1138", "H", "X", "113", "8"]

m.values_at(0, 2, 2) → ["HX1138", "X", "113"]

Prepared exclusively for Jose Sierra

MATH 519

M
a

th

Module
Math

The Math module contains module methods for basic trigonometric and transcenden-

tal functions. See class Float on page 466 for a list of constants that define Ruby’s

floating-point accuracy.

Module constants

E Value of e (base of natural logarithms)

PI Value of π

Module methods

acos Math.acos(x)→ float

1.8 Computes the arc cosine of x. Returns 0..π.

acosh Math.acosh(x)→ float

1.8 Computes the inverse hyperbolic cosine of x.

asin Math.asin(x)→ float

1.8 Computes the arc sine of x. Returns −π

2 ..π

2 .

asinh Math.asinh(x)→ float

1.8 Computes the inverse hyperbolic sine of x.

atan Math.atan(x)→ float

1.8 Computes the arc tangent of x. Returns −π

2 ..π

2 .

atanh Math.atanh(x)→ float

1.8 Computes the inverse hyperbolic tangent of x.

atan2 Math.atan2(y, x)→ float

Computes the arc tangent given y and x. Returns −π..π.

cos Math.cos(x)→ float

Computes the cosine of x (expressed in radians). Returns −1..1.

cosh Math.cosh(x)→ float

1.8 Computes the hyperbolic cosine of x (expressed in radians).

Prepared exclusively for Jose Sierra

MATH 520

M
a

th

erf Math.erf(x)→ float

Returns the error function of x.1.8

erf (x) =
2√
π

∫ x

0

e−t
2

dt

erfc Math.erfc(x)→ float

1.8 Returns the complementary error function of x.

erfc(x) = 1− 2√
π

∫

x

0

e−t
2

dt

exp Math.exp(x)→ float

Returns ex.

frexp Math.frexp(numeric)→ [fraction, exponent]

Returns a two-element array containing the normalized fraction (a Float) and exponent

(a Fixnum) of numeric.

fraction, exponent = Math.frexp(1234) → [0.6025390625, 11]

fraction * 2**exponent → 1234.0

hypot Math.hypot(x, y)→ float

1.8 Returns
√

x2 + y2, the hypotenuse of a right-angled triangle with sides x and y.

Math.hypot(3, 4) → 5.0

ldexp Math.ldexp(float, integer)→ float

Returns the value of float× 2integer.

fraction, exponent = Math.frexp(1234)

Math.ldexp(fraction, exponent) → 1234.0

log Math.log(numeric)→ float

Returns the natural logarithm of numeric.

log10 Math.log10(numeric)→ float

Returns the base 10 logarithm of numeric.

sin Math.sin(numeric)→ float

Computes the sine of numeric (expressed in radians). Returns −1..1.

Prepared exclusively for Jose Sierra

MATH 521

M
a

th

sinh Math.sinh(numeric)→ float

1.8 Computes the hyperbolic sine of numeric (expressed in radians).

sqrt Math.sqrt(numeric)→ float

Returns the non-negative square root of numeric. Raises ArgError if numeric is less

than zero.

tan Math.tan(numeric)→ float

Returns the tangent of numeric (expressed in radians).

tanh Math.tanh(numeric)→ float

1.8 Computes the hyperbolic tangent of numeric (expressed in radians).

Prepared exclusively for Jose Sierra

METHOD 522

M
e

th
o

d

Class
Method < Object

Method objects are created by Object#method. They are associated with a particular

object (not just with a class). They may be used to invoke the method within the object

and as a block associated with an iterator. They may also be unbound from one object

(creating an UnboundMethod) and bound to another.

def square(n)

n*n

end

meth = self.method(:square)

meth.call(9) → 81

[1, 2, 3].collect(&meth) → [1, 4, 9]

Instance methods

[] meth[〈 args 〉∗]→ object

Synonym for Method.call.

== meth== other→ true or false

1.8 Returns true if meth is the same method as other.

def fred()

puts "Hello"

end

alias bert fred → nil

m1 = method(:fred)

m2 = method(:bert)

m1 == m2 → true

arity meth.arity→ fixnum

Returns an indication of the number of arguments accepted by a method. See Fig-

ure 27.2 on the next page.

call meth.call(〈 args 〉∗)→ object

Invokes the meth with the specified arguments, returning the method’s return value.

m = 12.method("+")

m.call(3) → 15

m.call(20) → 32

eql? meth.eql?(other)→ true or false

1.8 Returns true if meth is the same method as other. à

Prepared exclusively for Jose Sierra

METHOD 523

M
e

th
o

d

Figure 27.2. Method#arity in action

Method#arity returns a non-negative integer for methods that take a fixed num-

ber of arguments. For Ruby methods that take a variable number of arguments,

returns−n− 1, where n is the number of required arguments. For methods writ-

ten in C, returns −1 if the call takes a variable number of arguments.

class C

def one; end

def two(a); end

def three(*a); end

def four(a, b); end

def five(a, b, *c); end

def six(a, b, *c, &d); end

end

c = C.new

c.method(:one).arity → 0

c.method(:two).arity → 1

c.method(:three).arity → 1

c.method(:four).arity → 2

c.method(:five).arity → 3

c.method(:six).arity → 3

"cat".method(:size).arity → 0

"cat".method(:replace).arity → 1

"cat".method(:squeeze).arity → 1

"cat".method(:count).arity → 1

def fred()

puts "Hello"

end

alias bert fred → nil

m1 = method(:fred)

m2 = method(:bert)

m1.eql?(m2) → false

to_proc meth.to_proc→ prc

1.8 Returns a Proc object corresponding to this method. Because to_proc is called by the

interpreter when passing block arguments, method objects may be used following an

ampersand to pass a block to another method call. See the example at the start of this

section.

unbind meth.unbind→ unbound_method

1.8 Dissociates meth from its current receiver. The resulting UnboundMethod can subse-

quently be bound to a new object of the same class (see UnboundMethod on page 630).

Prepared exclusively for Jose Sierra

MODULE 524

M
o

d
u

le

Class
Module < Object

Subclasses: Class

A Module is a collection of methods and constants. The methods in a module may be

instance methods or module methods. Instance methods appear as methods in a class

when the module is included; module methods do not. Conversely, module methods

may be called without creating an encapsulating object, and instance methods may not.

See also Module#module_function on page 537.

In the descriptions that follow, the parameter symbol refers to a symbol, which is either

a quoted string or a Symbol (such as :name).

module Mod

include Math

CONST = 1

def meth

...

end

end

Mod.class → Module

Mod.constants → ["PI", "E", "CONST"]

Mod.instance_methods → ["meth"]

Class methods

constants Module.constants→ array

Returns an array of the names of all constants defined in the system. This list includes

the names of all modules and classes.

p Module.constants.sort[1..5]

produces:

["ARGV", "ArgumentError", "Array", "Bignum", "Binding"]

nesting Module.nesting→ array

Returns the list of Modules nested at the point of call.

module M1

module M2

$a = Module.nesting

end

end

$a → [M1::M2, M1]

$a[0].name → "M1::M2"

Prepared exclusively for Jose Sierra

MODULE 525

M
o

d
u

le

new Module.new→ mod

Module.new {| mod | block } → mod

1.8 Creates a new anonymous module. If a block is given, it is passed the module object,

and the block is evaluated in the context of this module using module_eval.

Fred = Module.new do

def meth1

"hello"

end

def meth2

"bye"

end

end

a = "my string"

a.extend(Fred) → "my string"

a.meth1 → "hello"

a.meth2 → "bye"

Instance methods

<, <=, >, >= mod relop module→ true or false

Hierarchy Query—One module is considered greater than another if it is included in

(or is a parent class of) the other module. The other operators are defined accordingly.

If there is no relationship between the modules, all operators return false.

module Mixin

end

module Parent

include Mixin

end

module Unrelated

end

Parent > Mixin → false

Parent < Mixin → true

Parent <= Parent → true

Parent < Unrelated → nil

Parent > Unrelated → nil

<=> mod <=> other_mod→−1, 0, +1

Comparison—Returns−1 if mod includes other_mod, 0 if mod is the same module as

other_mod, and +1 if mod is included by other_mod or if mod has no relationship with

other_mod.

=== mod === obj→ true or false

Case Equality—Returns true if obj is an instance of mod or one of mod’s descendents.

Of limited use for modules, but can be used in case statements to test objects by class.

Prepared exclusively for Jose Sierra

MODULE 526

M
o

d
u

le

ancestors mod.ancestors→ array

Returns a list of modules included in mod (including mod itself).

module Mod

include Math

include Comparable

end

Mod.ancestors → [Mod, Comparable, Math]

Math.ancestors → [Math]

autoload mod.autoload(name, file_name)→ nil

1.8 Registers file_name to be loaded (using Kernel.require) the first time that module

name (which may be a String or a Symbol) is accessed in the namespace of mod.

Note that the autoloaded file is evaluated in the top-level context. In this example,

module_b.rb contains

module A::B # in module_b.rb

def doit

puts "In Module A::B"

end

module_function :doit

end

Other code can then include this module automatically.

module A

autoload(:B, "module_b")

end

A::B.doit # autoloads "module_b"

produces:

In Module A::B

autoload? mod.autoload?(name)→ file_name or nil

1.8 Returns the name of the file that will be autoloaded when the string or symbol name is

referenced in the context of mod, or returns nil if there is no associated autoload.

module A

autoload(:B, "module_b")

end

A.autoload?(:B) → "module_b"

A.autoload?(:C) → nil

class_eval mod.class_eval(string 〈 , file_name 〈 , line_number 〉 〉)→ obj

mod.class_eval { block } → obj

Synonym for Module.module_eval.

Prepared exclusively for Jose Sierra

MODULE 527

M
o

d
u

le

class_variables mod.class_variables→ array

Returns an array of the names of class variables in mod and the ancestors of mod.

class One

@@var1 = 1

end

class Two < One

@@var2 = 2

end

One.class_variables → ["@@var1"]

Two.class_variables → ["@@var2", "@@var1"]

clone mod.clone→ other_mod

Creates a new copy of a module.

m = Math.clone → #<Module:0x1ca580>

m.constants → ["PI", "E"]

m == Math → false

const_defined? mod.const_defined?(symbol)→ true or false

Returns true if a constant with the given name is defined by mod.

Math.const_defined? "PI" → true

const_get mod.const_get(symbol)→ obj

Returns the value of the named constant in mod.

Math.const_get :PI → 3.14159265358979

const_missing const_missing(symbol)→ obj

1.8 Invoked when a reference is made to an undefined constant in mod. It is passed a symbol

for the undefined constant and returns a value to be used for that constant. The following

code is very poor style. If a reference is made to an undefined constant, it attempts to

load a file whose name is the lowercase version of the constant (thus, class Fred is

assumed to be in file fred.rb). If found, it returns the value of the loaded class. It

therefore implements a perverse kind of autoload facility.

def Object.const_missing(name)

@looked_for ||= {}

str_name = name.to_s

raise "Class not found: #{name}" if @looked_for[str_name]

@looked_for[str_name] = 1

file = str_name.downcase

require file

klass = const_get(name)

return klass if klass

raise "Class not found: #{name}"

end

Prepared exclusively for Jose Sierra

MODULE 528

M
o

d
u

le

const_set mod.const_set(symbol, obj)→ obj

Sets the named constant to the given object, returning that object. Creates a new con-

stant if no constant with the given name previously existed.

Math.const_set("HIGH_SCHOOL_PI", 22.0/7.0) → 3.14285714285714

Math::HIGH_SCHOOL_PI Math::PI → 0.00126448926734968

constants mod.constants→ array

Returns an array of the names of the constants accessible in mod. This includes the

names of constants in any included modules (example at start of section).

include? mod.include?(other_mod)→ true or false

1.8 Returns true if other_mod is included in mod or one of mod’s ancestors.

module A

end

class B

include A

end

class C < B

end

B.include?(A) → true

C.include?(A) → true

A.include?(A) → false

included_modules mod.included_modules→ array

Returns the list of modules included in mod.

module Mixin

end

module Outer

include Mixin

end

Mixin.included_modules → []

Outer.included_modules → [Mixin]

instance_method mod.instance_method(symbol)→ unbound_method

1.8 Returns an UnboundMethod representing the given instance method in mod.

class Interpreter

def do_a() print "there, "; end

def do_d() print "Hello "; end

def do_e() print "!\n"; end

def do_v() print "Dave"; end

Prepared exclusively for Jose Sierra

MODULE 529

M
o

d
u

le

Dispatcher = {

?a => instance_method(:do_a),

?d => instance_method(:do_d),

?e => instance_method(:do_e),

?v => instance_method(:do_v)

}

def interpret(string)

string.each_byte {|b| Dispatcher[b].bind(self).call }

end

end

interpreter = Interpreter.new

interpreter.interpret('dave')

produces:

Hello there, Dave!

instance_methods mod.instance_methods(inc_super=true)→ array

1.8 Returns an array containing the names of public instance methods in the receiver. For a

module, these are the public methods; for a class, they are the instance (not singleton)

methods. With no argument, or with an argument that is true, the methods in mod

and mod’s superclasses are returned. When called with a module as a receiver or with

a parameter that is false, the instance methods in mod are returned. (The parameter

defaults to false in versions of Ruby prior to January 2004.)

module A

def method1()

end

end

class B

def method2()

end

end

class C < B

def method3()

end

end

A.instance_methods → ["method1"]

B.instance_methods(false) → ["method2"]

C.instance_methods(false) → ["method3"]

C.instance_methods(true).length → 42

method_defined? mod.method_defined?(symbol)→ true or false

Returns true if the named method is defined by mod (or its included modules and, if

mod is a class, its ancestors). Public and protected methods are matched.

Prepared exclusively for Jose Sierra

MODULE 530

M
o

d
u

le

module A

def method1() end

end

class B

def method2() end

end

class C < B

include A

def method3() end

end

A.method_defined? :method1 → true

C.method_defined? "method1" → true

C.method_defined? "method2" → true

C.method_defined? "method3" → true

C.method_defined? "method4" → false

module_eval mod.class_eval(string 〈 , file_name 〈 , line_number 〉 〉)→ obj

mod.module_eval { block } → obj

Evaluates the string or block in the context of mod. This can be used to add methods

to a class. module_eval returns the result of evaluating its argument. The optional1.8
file_name and line_number parameters set the text for error messages.

class Thing

end

a = %q{def hello() "Hello there!" end}

Thing.module_eval(a)

puts Thing.new.hello()

Thing.module_eval("invalid code", "dummy", 123)

produces:

Hello there!

dummy:123:in `module_eval': undefined local variable

or method `code' for Thing:Class

name mod.name→ string

Returns the name of the module mod.

private_class_method mod.private_class_method(〈 symbol 〉+)→ nil

Makes existing class methods private. Often used to hide the default constructor new.

class SimpleSingleton # Not thread safe

private_class_method :new

def SimpleSingleton.create(*args, &block)

@me = new(*args, &block) if ! @me

@me

end

end

Prepared exclusively for Jose Sierra

MODULE 531

M
o

d
u

le

private_instance_methods

mod.private_instance_methods(inc_super=true)→ array

1.8 Returns a list of the private instance methods defined in mod. If the optional parameter

is true, the methods of any ancestors are included. (The parameter defaults to false in

versions of Ruby prior to January 2004.)

module Mod

def method1() end

private :method1

def method2() end

end

Mod.instance_methods → ["method2"]

Mod.private_instance_methods → ["method1"]

private_method_defined? mod.private_method_defined?(symbol)→ true or false

1.8 Returns true if the named private method is defined by mod (or its included modules

and, if mod is a class, its ancestors).

module A

def method1() end

end

class B

private

def method2() end

end

class C < B

include A

def method3() end

end

A.method_defined? :method1 → true

C.private_method_defined? "method1" → false

C.private_method_defined? "method2" → true

C.method_defined? "method2" → false

protected_instance_methods

mod.protected_instance_methods(inc_super=true)→ array

1.8 Returns a list of the protected instance methods defined in mod. If the optional parame-

ter is true, the methods of any ancestors are included. (The parameter defaults to false

in versions of Ruby prior to January 2004.)

protected_method_defined? mod.protected_method_defined?(symbol)→ true or false

1.8 Returns true if the named protected method is defined by mod (or its included modules

and, if mod is a class, its ancestors).

Prepared exclusively for Jose Sierra

MODULE 532

M
o

d
u

le

module A

def method1() end

end

class B

protected

def method2() end

end

class C < B

include A

def method3() end

end

A.method_defined? :method1 → true

C.protected_method_defined? "method1" → false

C.protected_method_defined? "method2" → true

C.method_defined? "method2" → true

public_class_method mod.public_class_method(〈 symbol 〉+)→ nil

Makes a list of existing class methods public.

public_instance_methods

mod.public_instance_methods(inc_super=true)→ array

1.8 Returns a list of the public instance methods defined in mod. If the optional parameter

is true, the methods of any ancestors are included. (The parameter defaults to false in

versions of Ruby prior to January 2004.)

public_method_defined? mod.public_method_defined?(symbol)→ true or false

1.8 Returns true if the named public method is defined by mod (or its included modules

and, if mod is a class, its ancestors).

module A

def method1() end

end

class B

protected

def method2() end

end

class C < B

include A

def method3() end

end

A.method_defined? :method1 → true

C.public_method_defined? "method1" → true

C.public_method_defined? "method2" → false

C.method_defined? "method2" → true

Prepared exclusively for Jose Sierra

MODULE 533

M
o

d
u

le

Private instance methods

alias_method alias_method(new_id, old_id)→ mod

Makes new_id a new copy of the method old_id. This can be used to retain access to

methods that are overridden.

module Mod

alias_method :orig_exit, :exit

def exit(code=0)

puts "Exiting with code #{code}"

orig_exit(code)

end

end

include Mod

exit(99)

produces:

Exiting with code 99

append_features append_features(other_mod)→ mod

When this module is included in another, Ruby calls append_features in this module,

passing it the receiving module in other_mod. Ruby’s default implementation is to

add the constants, methods, and module variables of this module to other_mod if this

module has not already been added to other_mod or one of its ancestors. Prior to Ruby

1.8, user code often redefined append_features, added its own functionality, and then

invoked super to handle the real include. In Ruby 1.8, you should instead implement

the method Module#included.1.8 See also Module#include on page 535.

attr attr(symbol, writable=false)→ nil

Defines a named attribute for this module, where the name is symbol.id2name, cre-

ating an instance variable (@name) and a corresponding access method to read it. If

the optional writable argument is true, also creates a method called name= to set the

attribute.

module Mod

attr :size, true

end

is equivalent to:

module Mod

def size

@size

end

def size=(val)

@size = val

end

end

Prepared exclusively for Jose Sierra

MODULE 534

M
o

d
u

le

attr_accessor attr_accessor(〈 symbol 〉+)→ nil

Equivalent to calling “attr symbol, true” on each symbol in turn.

module Mod

attr_accessor(:one, :two)

end

Mod.instance_methods.sort → ["one", "one=", "two", "two="]

attr_reader attr_reader(〈 symbol 〉+)→ nil

Creates instance variables and corresponding methods that return the value of each

instance variable. Equivalent to calling attr :name on each name in turn.

attr_writer attr_writer(〈 symbol 〉+)→ nil

Creates an accessor method to allow assignment to the attribute symbol.id2name.

define_method define_method(symbol, method)→ method

define_method(symbol) { block }→ proc

1.8 Defines an instance method in the receiver. The method parameter can be a Proc or

Method object. If a block is specified, it is used as the method body. This block is eval-

uated using instance_eval. This is tricky to demonstrate because define_method is

private. (This is why we resort to the send hack in this example.)

class A

def fred

puts "In Fred"

end

def create_method(name, &block)

self.class.send(:define_method, name, &block)

end

define_method(:wilma) { puts "Charge it!" }

end

class B < A

define_method(:barney, instance_method(:fred))

end

b = B.new

b.barney

b.wilma

b.create_method(:betty) { p self }

b.betty

produces:

In Fred

Charge it!

#<B:0x1c9f54>

Prepared exclusively for Jose Sierra

MODULE 535

M
o

d
u

le

extend_object extend_object(obj)→ obj

Extends the specified object by adding this module’s constants and methods (which are

added as singleton methods). This is the callback method used by Object#extend.

module Picky

def Picky.extend_object(o)

if String === o

puts "Can't add Picky to a String"

else

puts "Picky added to #{o.class}"

super

end

end

end

(s = Array.new).extend Picky # Call Object.extend

(s = "quick brown fox").extend Picky

produces:

Picky added to Array

Can't add Picky to a String

extended extended(other_mod)

1.8 Callback invoked whenever the receiver is used to extend an object. The object is passed

as a parameter. This should be used in preference to Module#extend_object if your

code wants to perform some action when a module is used to extend an object.

module A

def A.extended(obj)

puts "#{self} extending '#{obj}'"

end

end

"cat".extend(A)

produces:

A extending 'cat'

include include(〈 other_mod 〉+)→ mod

Invokes Module.append_features (documented on page 533) on each parameter (in

reverse order). Equivalent to the following code.

def include(*modules)

modules.reverse_each do |mod|

mod.append_features(self)

mod.included(self)

end

end

included included(other_mod)

1.8 Callback invoked whenever the receiver is included in another module or class. This

Prepared exclusively for Jose Sierra

MODULE 536

M
o

d
u

le

should be used in preference to Module#append_features if your code wants to per-

form some action when a module is included in another.

module A

def A.included(mod)

puts "#{self} included in #{mod}"

end

end

module Enumerable

include A

end

produces:

A included in Enumerable

method_added method_added(symbol)

Invoked as a callback whenever a method is added to the receiver.

module Chatty

def Chatty.method_added(id)

puts "Adding #{id.id2name}"

end

def one() end

end

module Chatty

def two() end

end

produces:

Adding one

Adding two

method_removed method_removed(symbol)

1.8 Invoked as a callback whenever a method is removed from the receiver.

module Chatty

def Chatty.method_removed(id)

puts "Removing #{id.id2name}"

end

def one() end

end

module Chatty

remove_method(:one)

end

produces:

Removing one

method_undefined method_undefined(symbol)

1.8 Invoked as a callback whenever a method is undefined in the receiver. à

Prepared exclusively for Jose Sierra

MODULE 537

M
o

d
u

le

module Chatty

def Chatty.method_undefined(id)

puts "Undefining #{id.id2name}"

end

def one() end

end

module Chatty

undef_method(:one)

end

produces:

Undefining one

module_function module_function(〈 symbol 〉∗)→ mod

Creates module functions for the named methods. These functions may be called with

the module as a receiver and are available as instance methods to classes that mix in

the module. Module functions are copies of the original and so may be changed inde-

pendently. The instance-method versions are made private. If used with no arguments,

subsequently defined methods become module functions.

module Mod

def one

"This is one"

end

module_function :one

end

class Cls

include Mod

def call_one

one

end

end

Mod.one → "This is one"

c = Cls.new

c.call_one → "This is one"

module Mod

def one

"This is the new one"

end

end

Mod.one → "This is one"

c.call_one → "This is the new one"

private private(〈 symbol 〉∗)→ mod

With no arguments, sets the default visibility for subsequently defined methods to pri-

vate. With arguments, sets the named methods to have private visibility. See “Access

Control” starting on page 341.

Prepared exclusively for Jose Sierra

MODULE 538

M
o

d
u

le

module Mod

def a() end

def b() end

private

def c() end

private :a

end

Mod.private_instance_methods → ["a", "c"]

protected protected(〈 symbol 〉∗)→ mod

With no arguments, sets the default visibility for subsequently defined methods to

protected. With arguments, sets the named methods to have protected visibility. See

“Access Control” starting on page 341.

public public(〈 symbol 〉∗)→ mod

With no arguments, sets the default visibility for subsequently defined methods to pub-

lic. With arguments, sets the named methods to have public visibility. See “Access

Control” starting on page 341.

remove_class_variable remove_class_variable(symbol)→ obj

1.8 Removes the definition of the symbol, returning that constant’s value.

class Dummy

@@var = 99

puts @@var

remove_class_variable(:@@var)

puts(defined? @@var)

end

produces:

99

nil

remove_const remove_const(symbol)→ obj

Removes the definition of the given constant, returning that constant’s value. Predefined

classes and singleton objects (such as true) cannot be removed.

remove_method remove_method(symbol)→ mod

Removes the method identified by symbol from the current class. For an example, see

Module.undef_method.

undef_method undef_method(〈 symbol 〉+)→ mod

Prevents the current class from responding to calls to the named method(s). Contrast

this with remove_method, which deletes the method from the particular class; Ruby

will still search superclasses and mixed-in modules for a possible receiver. à

Prepared exclusively for Jose Sierra

MODULE 539

M
o

d
u

le

class Parent

def hello

puts "In parent"

end

end

class Child < Parent

def hello

puts "In child"

end

end

c = Child.new

c.hello

class Child

remove_method :hello # remove from child, still in parent

end

c.hello

class Child

undef_method :hello # prevent any calls to 'hello'

end

c.hello

produces:

In child

In parent

prog.rb:23: undefined method `hello' for #<Child:0x1ca10c> (NoMethodError)

Prepared exclusively for Jose Sierra

NILCLASS 540

N
ilC

la
s
s

Class
NilClass < Object

The class of the singleton object nil.

Instance methods

& nil & obj→ false

And—Returns false. As obj is an argument to a method call, it is always evaluated;

there is no short-circuit evaluation in this case.

nil && puts("logical and")

nil & puts("and")

produces:

and

^ nil ^ obj→ true or false

Exclusive Or—Returns false if obj is nil or false, and returns true otherwise.

| nil | obj→ true or false

Or—Returns false if obj is nil or false, and returns true otherwise.

nil | false → false

nil | 99 → true

nil? nil.nil?→ true

Always returns true.

to_a nil.to_a→ []

Always returns an empty array.

nil.to_a → []

to_f nil.to_f→ 0.0

1.8 Always returns zero.

nil.to_f → 0.0

to_i nil.to_i→ 0

Always returns zero.

nil.to_i → 0

to_s nil.to_s→ ""

Always returns the empty string.

nil.to_s → ""

Prepared exclusively for Jose Sierra

NUMERIC 541

N
u

m
e

ri
c

Class
Numeric < Object

Subclasses: Float, Integer

Numeric is the fundamental base type for the abstract class Integer and the concrete

number classes Float, Fixnum, and Bignum. Many methods in Numeric are overrid-

den in child classes, and Numeric takes some liberties by calling methods in these

child classes. A complete list of the methods defined in all five classes is shown in

Table 27.11 on page 543.

Mixes in

Comparable:

<, <=, ==, >=, >, between?

Instance methods

+@ +num→ num

Unary Plus—Returns the receiver’s value.

-@ –num→ numeric

Unary Minus—Returns the receiver’s value, negated.

<=> num <=> other→ 0 or nil

Returns zero if num equals other, and returns nil otherwise.

abs num.abs→ numeric

Returns the absolute value of num.

12.abs → 12

(34.56).abs → 34.56

34.56.abs → 34.56

ceil num.ceil→ int

Returns the smallest Integer greater than or equal to num. Class Numeric achieves

this by converting itself to a Float and then invoking Float#ceil.

1.ceil → 1

1.2.ceil → 2

(1.2).ceil → 1

(1.0).ceil → 1

coerce num.coerce(numeric)→ array

coerce is both an instance method of Numeric and part of a type conversion protocol.

When a number is asked to perform an operation and it is passed a parameter of a class

different to its own, it must first coerce both itself and that parameter into a common

Prepared exclusively for Jose Sierra

NUMERIC 542

N
u

m
e

ri
c

class so that the operation makes sense. For example, in the expression 1 + 2.5, the

Fixnum 1 must be converted to a Float to make it compatible with 2.5. This con-

version is performed by coerce. For all numeric objects, coerce is straightforward: if

numeric is the same type as num, returns an array containing numeric and num. Other-

wise, returns an array with both numeric and num represented as Float objects.

1.coerce(2.5) → [2.5, 1.0]

1.2.coerce(3) → [3.0, 1.2]

1.coerce(2) → [2, 1]

If a numeric object is asked to operate on a non-numeric, it tries to invoke coerce on

that other object. For example, if you write

1 + "2"

Ruby will effectively execute the code as

n1, n2 = "2".coerce(1)

n2 + n1

In the more general case, this won’t work, as most non-numerics don’t define a coerce

method. However, you can use this (if you feel so inclined) to implement part of Perl’s

automatic conversion of strings to numbers in expressions.

class String

def coerce(other)

case other

when Integer

begin

return other, Integer(self)

rescue

return Float(other), Float(self)

end

when Float

return other, Float(self)

else super

end

end

end

1 + "2" → 3

1 "2.3" → 1.3

1.2 + "2.3" → 3.5

1.5 "2" → 0.5

coerce is discussed further on page 358.

div num.div(numeric)→ int

1.8 Uses / to perform division, and then converts the result to an integer. Numeric does not

define the / operator; this is left to subclasses.

Prepared exclusively for Jose Sierra

NUMERIC 543

N
u

m
e

ri
c

Table 27.11: Methods

defined in class Numeric

and its subclasses. A 3

means that the method is

defined in the

corresponding class.

Numeric Integer Fixnum Bignum Float

% – – 3 3 3

& – – 3 3 –

∗ – – 3 3 3

∗∗ – – 3 3 3

+ – – 3 3 3

+@ 3 – – – –

- – – 3 3 3

-@ 3 – 3 3 3

/ – – 3 3 3

< – – 3 – 3

<< – – 3 3 –

<= – – 3 – 3

<=> 3 – 3 3 3

== – – 3 3 3

> – – 3 – 3

>= – – 3 – 3

>> – – 3 3 –

[] – – 3 3 –

^ – – 3 3 –

abs 3 – 3 3 3

ceil 3 3 – – 3

chr – 3 – – –

coerce 3 – – 3 3

div 3 – 3 3 –

divmod 3 – 3 3 3

downto – 3 – – –

eql? 3 – – 3 3

finite? – – – – 3

floor 3 3 – – 3

hash – – – 3 3

id2name – – 3 – –

infinite? – – – – 3

integer? 3 3 – – –

modulo 3 – 3 3 3

nan? – – – – 3

next – 3 – – –

nonzero? 3 – – – –

quo 3 – 3 3 –

remainder 3 – – 3 –

round 3 3 – – 3

size – – 3 3 –

step 3 – – – –

succ – 3 – – –

times – 3 – – –

to_f – – 3 3 3

to_i – 3 – – 3

to_int 3 3 – – 3

to_s – – 3 3 3

to_sym – – 3 – –

truncate 3 3 – – 3

upto – 3 – – –

zero? 3 – 3 – 3

| – – 3 3 –

~ – – 3 3 –

Prepared exclusively for Jose Sierra

NUMERIC 544

N
u

m
e

ri
c

Table 27.12. Difference between modulo and remainder. The modulo operator (“%”)

always has the sign of the divisor whereas remainder has the sign of the dividend.

a b a.divmod(b) a / b a.modulo(b) a.remainder(b)

13 4 3, 1 3 1 1

13 −4 −4, −3 −4 −3 1

−13 4 −4, 3 −4 3 −1

−13 −4 3, −1 3 −1 −1

11.5 4 2.0, 3.5 2.875 3.5 3.5

11.5 −4 −3.0, −0.5 −2.875 −0.5 3.5

−11.5 4 −3.0, 0.5 −2.875 0.5 −3.5

−11.5 −4 2.0, −3.5 2.875 −3.5 −3.5

divmod num.divmod(numeric)→ array

Returns an array containing the quotient and modulus obtained by dividing num by

numeric. If q,r = x.divmod(y), q = floor(float(x)/float(y)) and x = q × y + r.

The quotient is rounded toward −∞. See Table 27.12 for examples.

eql? num.eql?(numeric)→ true or false

Returns true if num and numeric are the same type and have equal values.

1 == 1.0 → true

1.eql?(1.0) → false

(1.0).eql?(1.0) → true

floor num.floor→ int

Returns the largest integer less than or equal to num. Numeric implements this by

converting int to a Float and invoking Float#floor.

1.floor → 1

(1).floor → 1

integer? num.integer?→ true or false

Returns true if num is an Integer (including Fixnum and Bignum).

modulo num.modulo(numeric)→ numeric

Equivalent to num.divmod(numeric)[1].

nonzero? num.nonzero?→ num or nil

Returns num if num is not zero, and returns nil otherwise. This behavior is useful when

chaining comparisons. à

Prepared exclusively for Jose Sierra

NUMERIC 545

N
u

m
e

ri
c

a = %w(z Bb bB bb BB a aA Aa AA A)

b = a.sort {|a,b| (a.downcase <=> b.downcase).nonzero? || a <=> b }

b → ["A", "a", "AA", "Aa", "aA", "BB", "Bb", "bB", "bb", "z"]

quo num.quo(numeric)→ numeric

1.8 Equivalent to Numeric#/, but overridden in subclasses. The intent of quo is to return

the most accurate result of division (in context). Thus 1.quo(2) will equal 0.5, and

1/2 equals 0.

remainder num.remainder(numeric)→ numeric

If num and numeric have different signs, returns mod−numeric; otherwise, returns

mod. In both cases mod is the value num.modulo(numeric). The differences between

remainder and modulo (%) are shown in Table 27.12 on the preceding page.

round num.round→ int

Rounds num to the nearest integer. Numeric implements this by converting int to a

Float and invoking Float#round.

step num.step(end_num, step) {| i | block } → num

1.8 Invokes block with the sequence of numbers starting at num, incremented by step

on each call. The loop finishes when the value to be passed to the block is greater

than end_num (if step is positive) or less than end_num (if step is negative). If all the

arguments are integers, the loop operates using an integer counter. If any of the argu-

ments are floating-point numbers, all are converted to floats, and the loop is executed

⌊n + n ∗ ǫ⌋+ 1 times, where n = (end_num− num)/step. Otherwise, the loop starts

at num, uses either the < or > operator to compare the counter against end_num, and

increments itself using the + operator.

1.step(10, 2) {|i| print i, " " }

Math::E.step(Math::PI, 0.2) {|f| print f, " " }

produces:

1 3 5 7 9

2.71828182845905 2.91828182845905 3.11828182845905

to_int num.to_int→ int

Invokes the child class’s to_i method to convert num to an integer.

truncate num.truncate→ int

Returns num truncated to an integer. Numeric implements this by converting its value

to a float and invoking Float#truncate.

zero? num.zero?→ true or false

Returns true if num has a zero value.

Prepared exclusively for Jose Sierra

OBJECT 546

O
b

je
c
t

Class
Object

Subclasses: Array, Binding, Continuation, Data (used internally by the interpreter),

Dir, Exception, FalseClass, File::Stat, Hash, IO, MatchData, Method, Module, Nil-

Class, Numeric, Proc, Process::Status, Range, Regexp, String, Struct, Symbol, Thread,

ThreadGroup, Time, TrueClass, UnboundMethod

Object is the parent class of all classes in Ruby. Its methods are therefore available to

all objects unless explicitly overridden.

Object mixes in the Kernel module, making the built-in kernel functions globally

accessible. Although the instance methods of Object are defined by the Kernel mod-

ule, we have chosen to document them here for clarity.

In the descriptions that follow, the parameter symbol refers to a symbol, which is either

a quoted string or a Symbol (such as :name).

Instance methods

== obj == other_obj→ true or false

Equality—At the Object level, == returns true only if obj and other_obj are the same

object. Typically, this method is overridden in descendent classes to provide class-

specific meaning.

=== obj === other_obj→ true or false

Case Equality—A synonym for Object#==, but typically overridden by descendents to

provide meaningful semantics in case statements.

=~ obj =~ other_obj→ false

Pattern Match—Overridden by descendents (notably Regexp and String) to provide

meaningful pattern-match semantics.

_ _id_ _ obj._ _id_ _→ fixnum

Synonym for Object#object_id.

_ _send_ _ obj._ _send_ _(symbol 〈 , args 〉∗ 〈 , &block 〉)→ other_obj

Synonym for Object#send.

class obj.class→ klass

Returns the class of obj, now preferred over Object#type, as an object’s type in Ruby

is only loosely tied to that object’s class. This method must always be called with an

explicit receiver, as class is also a reserved word in Ruby.

1.class → Fixnum

self.class → Object

Prepared exclusively for Jose Sierra

OBJECT 547

O
b

je
c
t

clone obj.clone→ other_obj

Produces a shallow copy of obj—the instance variables of obj are copied, but not the

objects they reference. Copies the frozen and tainted state of obj. See also the discussion

under Object#dup.

class Klass

attr_accessor :str

end

s1 = Klass.new → #<Klass:0x1c9f90>

s1.str = "Hello" → "Hello"

s2 = s1.clone → #<Klass:0x1c9ef0 @str="Hello">

s2.str[1,4] = "i" → "i"

s1.inspect → "#<Klass:0x1c9f90 @str=\"Hi\">"

s2.inspect → "#<Klass:0x1c9ef0 @str=\"Hi\">"

display obj.display(port=$>)→ nil

Prints obj on the given port (default $>). Equivalent to

def display(port=$>)

port.write self

end

For example:

1.display

"cat".display

[4, 5, 6].display

puts

produces:

1cat456

dup obj.dup→ other_obj

Produces a shallow copy of obj—the instance variables of obj are copied, but not the

objects they reference. dup copies the tainted state of obj. See also the discussion under

Object#clone. In general, clone and dup may have different semantics in descendent

classes. While clone is used to duplicate an object, including its internal state, dup

typically uses the class of the descendent object to create the new instance.

eql? obj.eql?(other_obj)→ true or false

Returns true if obj and other_obj have the same value. Used by Hash to test members

for equality. For objects of class Object, eql? is synonymous with ==. Subclasses

normally continue this tradition, but there are exceptions. Numeric types, for example,

perform type conversion across ==, but not across eql?, so

1 == 1.0 → true

1.eql? 1.0 → false

Prepared exclusively for Jose Sierra

OBJECT 548

O
b

je
c
t

equal? obj.equal?(other_obj)→ true or false

Returns true if obj and other_obj have the same object ID. This method should not be

overridden by subclasses.

a = ['cat', 'dog']

b = ['cat', 'dog']

a == b → true

a.object_id == b.object_id → false

a.eql?(b) → true

a.equal?(b) → false

extend obj.extend(〈 mod 〉+)→ obj

Adds to obj the instance methods from each module given as a parameter. See also

Module#extend_object.

module Mod

def hello

"Hello from Mod.\n"

end

end

class Klass

def hello

"Hello from Klass.\n"

end

end

k = Klass.new

k.hello → "Hello from Klass.\n"

k.extend(Mod) → #<Klass:0x1ca120>

k.hello → "Hello from Mod.\n"

Writing obj.extend(Mod) is basically the same as the following.

class <<obj

include Mod

end

freeze obj.freeze→ obj

Prevents further modifications to obj. A TypeError will be raised if modification is

attempted. You cannot unfreeze a frozen object. See also Object#frozen?.

a = ["a", "b", "c"]

a.freeze

a << "z"

produces:

prog.rb:3:in `<<': can't modify frozen array (TypeError)

from prog.rb:3

Prepared exclusively for Jose Sierra

OBJECT 549

O
b

je
c
t

frozen? obj.frozen?→ true or false

Returns the freeze status of obj.

a = ["a", "b", "c"]

a.freeze → ["a", "b", "c"]

a.frozen? → true

hash obj.hash→ fixnum

Generates a Fixnum hash value for this object. This function must have the property

that a.eql?(b) implies a.hash == b.hash. The hash value is used by class Hash.

Any hash value that exceeds the capacity of a Fixnum will be truncated before being

used.

id obj.id→ fixnum

1.8 Soon-to-be-deprecated version of Object#object_id.

initialize_copy obj.initialize_copy(other)→ other_obj or obj

1.8 Part of the protocol used by Object#dup and Object#clone, initialize_copy is

invoked as a callback which should copy across any state information that dup and

clone cannot copy themselves. Typically this is useful only when writing C extensions.

Think of initialize_copy as a kind of copy constructor.

inspect obj.inspect→ string

Returns a string containing a human-readable representation of obj. If not overridden,

uses the to_s method to generate the string.

[1, 2, 3..4, 'five'].inspect → "[1, 2, 3..4, \"five\"]"

Time.new.inspect → "Wed Sep 20 16:05:23 CDT 2006"

instance_eval obj.instance_eval(string 〈 , file 〈 , line 〉 〉)→ other_obj

obj.instance_eval { block } → other_obj

Evaluates a string containing Ruby source code, or the given block, within the con-

text of the receiver (obj). To set the context, the variable self is set to obj while the

code is executing, giving the code access to obj’s instance variables. In the version of

instance_eval that takes a String, the optional second and third parameters supply

a filename and starting line number that are used when reporting compilation errors.

class Klass

def initialize

@secret = 99

end

end

k = Klass.new

k.instance_eval { @secret } → 99

Prepared exclusively for Jose Sierra

OBJECT 550

O
b

je
c
t

instance_of? obj.instance_of?(klass)→ true or false

Returns true if obj is an instance of the given class. See also Object#kind_of?.

instance_variable_get obj.instance_variable_get(symbol)→ other_obj

1.8 Returns the value of the given instance variable (or throws a NameError exception).

The @ part of the variable name should be included for regular instance variables.

class Fred

def initialize(p1, p2)

@a, @b = p1, p2

end

end

fred = Fred.new('cat', 99)

fred.instance_variable_get(:@a) → "cat"

fred.instance_variable_get("@b") → 99

instance_variable_set obj.instance_variable_set(symbol, other_obj)→ other_obj

1.8 Sets the instance variable names by symbol to other_obj, thereby frustrating the efforts

of the class’s author to attempt to provide proper encapsulation.

class Fred

def initialize(p1, p2)

@a, @b = p1, p2

end

end

fred = Fred.new('cat', 99)

fred.instance_variable_set(:@a, 'dog') → "dog"

fred.inspect → "#<Fred:0x1ca300 @b=99,

@a=\"dog\">"

instance_variables obj.instance_variables→ array

Returns an array of instance variable names for the receiver. Note that simply defining

an accessor does not create the corresponding instance variable.

class Fred

attr_accessor :a1

def initialize

@iv = 3

end

end

Fred.new.instance_variables → ["@iv"]

is_a? obj.is_a?(klass)→ true or false

Synonym for Object#kind_of?.

Prepared exclusively for Jose Sierra

OBJECT 551

O
b

je
c
t

kind_of? obj.kind_of?(klass)→ true or false

Returns true if klass is the class of obj, or if klass is one of the superclasses of obj or

modules included in obj.

module M; end

class A

include M

end

class B < A; end

class C < B; end

b = B.new

b.instance_of? A → false

b.instance_of? B → true

b.instance_of? C → false

b.instance_of? M → false

b.kind_of? A → true

b.kind_of? B → true

b.kind_of? C → false

b.kind_of? M → true

method obj.method(symbol)→ meth

Looks up the named method in obj, returning a Method object (or raising NameError).

The Method object acts as a closure in obj’s object instance, so instance variables and

the value of self remain available.

class Demo

def initialize(n)

@iv = n

end

def hello()

"Hello, @iv = #{@iv}"

end

end

k = Demo.new(99)

m = k.method(:hello)

m.call → "Hello, @iv = 99"

l = Demo.new('Fred')

m = l.method("hello")

m.call → "Hello, @iv = Fred"

method_missing obj.method_missing(symbol 〈 , *args 〉)→ other_obj

Invoked by Ruby when obj is sent a message it cannot handle. symbol is the symbol

for the method called, and args are any arguments that were passed to it. The example

below creates a class Roman, which responds to methods with names consisting of

roman numerals, returning the corresponding integer values. A more typical use of

method_missing is to implement proxies, delegators, and forwarders.

Prepared exclusively for Jose Sierra

OBJECT 552

O
b

je
c
t

class Roman

def roman_to_int(str)

...

end

def method_missing(method_id)

str = method_id.id2name

roman_to_int(str)

end

end

r = Roman.new

r.iv → 4

r.xxiii → 23

r.mm → 2000

methods obj.methods(regular=true)→ array

1.8 If regular is true, returns a list of the names of methods publicly accessible in obj and

obj’s ancestors. Otherwise return a list of obj’s singleton methods.

class Klass

def my_method()

end

end

k = Klass.new

def k.single

end

k.methods[0..9] → ["dup", "my_method", "hash", "private_methods",

"nil?", "tainted?", "class",

"singleton_methods", "=~", "__send__"]

k.methods.length → 42

k.methods(false) → ["single"]

nil? obj.nil?→ true or false

All objects except nil return false.

object_id obj.object_id→ fixnum

1.8 Returns an integer identifier for obj. The same number will be returned on all

calls to object_id for a given object, and no two active objects will share an ID.

Object#object_id is a different concept from the :name notation, which returns the

symbol ID of name. Replaces the deprecated Object#id.

private_methods obj.private_methods→ array

Returns a list of private methods accessible within obj. This will include the private

methods in obj’s ancestors, along with any mixed-in module functions.

protected_methods obj.protected_methods→ array

Returns the list of protected methods accessible to obj.

Prepared exclusively for Jose Sierra

OBJECT 553

O
b

je
c
t

public_methods obj.public_methods→ array

Synonym for Object#methods.

respond_to? obj.respond_to?(symbol, include_priv=false)→ true or false

Returns true if obj responds to the given method. Private methods are included in the

search only if the optional second parameter evaluates to true.

send obj.send(symbol 〈 , args 〉∗ 〈 , &block 〉)→ other_obj

Invokes the method identified by symbol, passing it any arguments and block. You can

use __send__ if the name send clashes with an existing method in obj.

class Klass

def hello(*args)

"Hello " + args.join(' ')

end

end

k = Klass.new

k.send :hello, "gentle", "readers" → "Hello gentle readers"

singleton_methods obj.singleton_methods(all=true)→ array

Returns an array of the names of singleton methods for obj. If the optional all parameter

is true, the list will include methods in modules included in obj. (The parameter defaults

to false in versions of Ruby prior to January 2004.)1.8

module Other

def three() end

end

class Single

def Single.four() end

end

a = Single.new

def a.one() end

class << a

include Other

def two() end

end

Single.singleton_methods → ["four"]

a.singleton_methods(false) → ["two", "one"]

a.singleton_methods(true) → ["two", "one", "three"]

a.singleton_methods → ["two", "one", "three"]

Prepared exclusively for Jose Sierra

OBJECT 554

O
b

je
c
t

taint obj.taint→ obj

Marks obj as tainted. If the $SAFE level is greater than zero, some objects will be tainted

on creation. See Chapter 25, which begins on page 379.

tainted? obj.tainted?→ true or false

Returns true if the object is tainted.

a = "cat"

a.tainted? → false

a.taint → "cat"

a.tainted? → true

a.untaint → "cat"

a.tainted? → false

to_a obj.to_a→ array

Returns an array representation of obj. For objects of class Object and others that

don’t explicitly override the method, the return value is an array containing self. As

of Ruby 1.91.8 to_a will no longer be implemented by class Object—it is up to individual

subclasses to provide their own implementations.

self.to_a → :1: warning: default `to_a' will be

obsolete\n[main]

"hello".to_a → ["hello"]

Time.new.to_a → [23, 5, 16, 20, 9, 2006, 3, 263, true, "CDT"]

to_s obj.to_s→ string

Returns a string representing obj. The default to_s prints the object’s class and an

encoding of the object ID. As a special case, the top-level object that is the initial

execution context of Ruby programs returns “main.”

type obj.type→ klass

1.8 Deprecated synonym for Object#class.

untaint obj.untaint→ obj

Removes the taint from obj.

Private instance methods

initialize initialize(〈 arg 〉+)

Called as the third and final step in object construction, initialize is responsible for

setting up the initial state of the new object. You use the initialize method the same way

you’d use constructors in other languages. If you subclass classes other than Object,

you will probably want to call super to invoke the parent’s initializer. à

Prepared exclusively for Jose Sierra

OBJECT 555

O
b

je
c
t

class A

def initialize(p1)

puts "Initializing A: p1 = #{p1}"

@var1 = p1

end

end

class B < A

attr_reader :var1, :var2

def initialize(p1, p2)

super(p1)

puts "Initializing B: p2 = #{p2}"

@var2 = p2

end

end

b = B.new("cat", "dog")

puts b.inspect

produces:

Initializing A: p1 = cat

Initializing B: p2 = dog

#<B:0x1ca044 @var1="cat", @var2="dog">

remove_instance_variable remove_instance_variable(symbol)→ other_obj

1.8 Removes the named instance variable from obj, returning that variable’s value.

class Dummy

attr_reader :var

def initialize

@var = 99

end

def remove

remove_instance_variable(:@var)

end

end

d = Dummy.new

d.var → 99

d.remove → 99

d.var → nil

singleton_method_added singleton_method_added(symbol)

1.8 Invoked as a callback whenever a singleton method is added to the receiver.

module Chatty

def Chatty.singleton_method_added(id)

puts "Adding #{id.id2name} to #{self.name}"

end

def self.one() end

def two() end

end

def Chatty.three() end

Prepared exclusively for Jose Sierra

OBJECT 556

O
b

je
c
t

obj = "cat"

def obj.singleton_method_added(id)

puts "Adding #{id.id2name} to #{self}"

end

def obj.speak

puts "meow"

end

produces:

Adding singleton_method_added to Chatty

Adding one to Chatty

Adding three to Chatty

Adding singleton_method_added to cat

Adding speak to cat

singleton_method_removed singleton_method_removed(symbol)

1.8 Invoked as a callback whenever a singleton method is removed from the receiver.

module Chatty

def Chatty.singleton_method_removed(id)

puts "Removing #{id.id2name}"

end

def self.one() end

def two() end

def Chatty.three() end

class <<self

remove_method :three

remove_method :one

end

end

produces:

Removing three

Removing one

singleton_method_undefined singleton_method_undefined(symbol)

1.8 Invoked as a callback whenever a singleton method is undefined in the receiver.

module Chatty

def Chatty.singleton_method_undefined(id)

puts "Undefining #{id.id2name}"

end

def Chatty.one() end

class << self

undef_method(:one)

end

end

produces:

Undefining one

Prepared exclusively for Jose Sierra

OBJECTSPACE 557

O
b

je
c
tS

p
a

c
e

Module
ObjectSpace

The ObjectSpace module contains a number of routines that interact with the garbage

collection facility and allow you to traverse all living objects with an iterator.

ObjectSpace also provides support for object finalizers. These are procs that will be

called when a specific object is about to be destroyed by garbage collection.

include ObjectSpace

a, b, c = "A", "B", "C"

puts "a's id is #{a.object_id}"

puts "b's id is #{b.object_id}"

puts "c's id is #{c.object_id}"

define_finalizer(a, lambda {|id| puts "Finalizer one on #{id}" })

define_finalizer(b, lambda {|id| puts "Finalizer two on #{id}" })

define_finalizer(c, lambda {|id| puts "Finalizer three on #{id}" })

produces:

a's id is 937958

b's id is 937948

c's id is 937938

Finalizer three on 937938

Finalizer two on 937948

Finalizer one on 937958

Module methods

_id2ref ObjectSpace._id2ref(object_id)→ obj

Converts an object ID to a reference to the object. May not be called on an object ID

passed as a parameter to a finalizer.

s = "I am a string" → "I am a string"

oid = s.object_id → 938358

r = ObjectSpace._id2ref(oid) → "I am a string"

r → "I am a string"

r.equal?(s) → true

define_finalizer ObjectSpace.define_finalizer(obj, a_proc=proc())

Adds a_proc as a finalizer, called when obj is about to be destroyed.

each_object ObjectSpace.each_object(〈 class_or_mod 〉) {| obj | block }→ fixnum

Calls the block once for each living, nonimmediate object in this Ruby process. If

class_or_mod is specified, calls the block for only those classes or modules that match

(or are a subclass of) class_or_mod. Returns the number of objects found. Immediate

objects (Fixnums, Symbols true, false, and nil) are never returned. In the example

below, each_object returns both the numbers we defined and several constants defined

in the Math module.

Prepared exclusively for Jose Sierra

OBJECTSPACE 558

O
b

je
c
tS

p
a

c
e

a = 102.7

b = 95 # Fixnum: won't be returned

c = 12345678987654321

count = ObjectSpace.each_object(Numeric) {|x| p x }

puts "Total count: #{count}"

produces:

12345678987654321

102.7

2.71828182845905

3.14159265358979

2.22044604925031e16

1.79769313486232e+308

2.2250738585072e308

Total count: 7

garbage_collect ObjectSpace.garbage_collect→ nil

Initiates garbage collection (see module GC on page 470).

undefine_finalizer ObjectSpace.undefine_finalizer(obj)

Removes all finalizers for obj.

Prepared exclusively for Jose Sierra

PROC 559

P
ro

c

Class
Proc < Object

Proc objects are blocks of code that have been bound to a set of local variables. Once

bound, the code may be called in different contexts and still access those variables.

def gen_times(factor)

return Proc.new {|n| n*factor }

end

times3 = gen_times(3)

times5 = gen_times(5)

times3.call(12) → 36

times5.call(5) → 25

times3.call(times5.call(4)) → 60

Class methods

new Proc.new { block } → a_proc

Proc.new→ a_proc

Creates a new Proc object, bound to the current context. Proc.new may be called

without a block only within a method with an attached block, in which case that block

is converted to the Proc object.

def proc_from

Proc.new

end

proc = proc_from { "hello" }

proc.call → "hello"

Instance methods

[] prc[〈 params 〉∗]→ obj

Synonym for Proc.call.

== prc== other→ true or false

1.8 Returns true if prc is the same as other.

arity prc.arity→ integer

1.8 Returns the number of arguments required by the block. If the block is declared to take

no arguments, returns 0. If the block is known to take exactly n arguments, returns n. If

the block has optional arguments, return−(n+1), where n is the number of mandatory

arguments. A proc with no argument declarations also returns−1, as it can accept (and

ignore) an arbitrary number of parameters.

Prepared exclusively for Jose Sierra

PROC 560

P
ro

c

Proc.new {}.arity → 1

Proc.new {||}.arity → 0

Proc.new {|a|}.arity → 1

Proc.new {|a,b|}.arity → 2

Proc.new {|a,b,c|}.arity → 3

Proc.new {|*a|}.arity → 1

Proc.new {|a,*b|}.arity → 2

In Ruby 1.9,1.8 arity is defined as the number of parameters that would not be ignored.

In 1.8, Proc.new{ }.arity returns -1, and in 1.9 it returns 0.

binding prc.binding→ binding

1.8 Returns the binding associated with prc. Note that Kernel#eval accepts either a Proc

or a Binding object as its second parameter.

def fred(param)

lambda {}

end

b = fred(99)

eval("param", b.binding) → 99

eval("param", b) → 99

call prc.call(〈 params 〉∗)→ obj

Invokes the block, setting the block’s parameters to the values in params using some-

thing close to method-calling semantics. Returns the value of the last expression eval-

uated in the block.

a_proc = Proc.new {|a, *b| b.collect {|i| i*a }}

a_proc.call(9, 1, 2, 3) → [9, 18, 27]

a_proc[9, 1, 2, 3] → [9, 18, 27]

If the block being called explicitly accepts a single parameter, call issues a warning

unless it has been given exactly one parameter.1.8 Otherwise it happily accepts what it is

given, ignoring surplus passed parameters and setting unset block parameters to nil.

a_proc = Proc.new {|a| a}

a_proc.call(1,2,3)

produces:

prog.rb:1: warning: multiple values for a block parameter (3 for 1)

from prog.rb:2

If you want a block to receive an arbitrary number of arguments, define it to accept

*args.

a_proc = Proc.new {|*a| a}

a_proc.call(1,2,3) → [1, 2, 3]

Blocks created using Kernel.lambda check that they are called with exactly the right

number of parameters. à

Prepared exclusively for Jose Sierra

PROC 561

P
ro

c

p_proc = Proc.new {|a,b| puts "Sum is: #{a + b}" }

p_proc.call(1,2,3)

p_proc = lambda {|a,b| puts "Sum is: #{a + b}" }

p_proc.call(1,2,3)

produces:

Sum is: 3

prog.rb:3: wrong number of arguments (3 for 2) (ArgumentError)

from prog.rb:3:in `call'

from prog.rb:4

to_proc prc.to_proc→ prc

1.8 Part of the protocol for converting objects to Proc objects. Instances of class Proc

simply return themselves.

to_s prc.to_s→ string

Returns a description of prc, including information on where it was defined.

def create_proc

Proc.new

end

my_proc = create_proc { "hello" }

my_proc.to_s → "#<Proc:0x001c7abc@prog.rb:5>"

Prepared exclusively for Jose Sierra

PROCESS 562

P
ro

c
e

s
s

Module
Process

The Process module is a collection of methods used to manipulate processes. Pro-

grams that want to manipulate real and effective user and group IDs should also look

at the Process::GID, and Process::UID modules. Much of the functionality here is

duplicated in the Process::Sys module.

Module constants

PRIO_PGRP Process group priority.

PRIO_PROCESS Process priority.

PRIO_USER User priority.

WNOHANG Do not block if no child has exited. Not available on all platforms.

WUNTRACED Return stopped children as well. Not available on all platforms.

Module methods

abort abort

abort(msg)

1.8 Synonym for Kernel.abort.

detach Process.detach(pid)→ thread

1.8 Some operating systems retain the status of terminated child processes until the parent

collects that status (normally using some variant of wait()). If the parent never collects

this status, the child stays around as a zombie process. Process.detach prevents this

by setting up a separate Ruby thread whose sole job is to reap the status of the process

pid when it terminates. Use detach only when you do not intend to explicitly wait for

the child to terminate. detach checks the status only periodically (currently once each

second).

In this first example, we don’t reap the first child process, so it appears as a zombie in

the process status display.

pid = fork { sleep 0.1 }

sleep 1

system("ps o pid,state p #{pid}")

produces:

PID STAT

16986 ZN+

In the next example, Process.detach is used to reap the child automatically—no child

processes are left running.

pid = fork { sleep 0.1 }

Process.detach(pid)

sleep 1

Prepared exclusively for Jose Sierra

PROCESS 563

P
ro

c
e

s
s

system("ps o pid,state p #{pid}")

produces:

PID STAT

egid Process.egid→ int

Returns the effective group ID for this process.

Process.egid → 501

egid= Process.egid= int→ int

Sets the effective group ID for this process.

euid Process.euid→ int

Returns the effective user ID for this process.

Process.euid → 501

euid= Process.euid= int

Sets the effective user ID for this process. Not available on all platforms.

exit Process.exit(int=0)

1.8 Synonym for Kernel.exit.

exit! Process.exit!(true | false | status=1)

1.8 Synonym for Kernel.exit!. No exit handlers are run. 0, 1, or status is returned to the

underlying system as the exit status.

Process.exit!(0)

fork Process.fork 〈 { block } 〉 → int or nil

See Kernel.fork on page 501.

getpgid Process.getpgid(int)→ int

Returns the process group ID for the given process id. Not available on all platforms.

Process.getpgid(Process.ppid()) → 14284

getpgrp Process.getpgrp→ int

Returns the process group ID for this process. Not available on all platforms.

Process.getpgid(0) → 14284

Process.getpgrp → 14284

Prepared exclusively for Jose Sierra

PROCESS 564

P
ro

c
e

s
s

getpriority Process.getpriority(kind, int)→ int

Gets the scheduling priority for specified process, process group, or user. kind indicates

the kind of entity to find: one of Process::PRIO_PGRP, Process::PRIO_USER, or

Process::PRIO_PROCESS. int is an ID indicating the particular process, process group,

or user (an ID of 0 means current). Lower priorities are more favorable for scheduling.

Not available on all platforms.

Process.getpriority(Process::PRIO_USER, 0) → 0

Process.getpriority(Process::PRIO_PROCESS, 0) → 19

gid Process.gid→ int

Returns the group ID for this process.

Process.gid → 501

gid= Process.gid= int→ int

Sets the group ID for this process.

groups Process.groups→ groups

1.8 Returns an array of integer supplementary group IDs. Not available on all platforms.

See also Process.maxgroups.

Process.groups → [501, 80]

groups= Process.groups = array→ groups

1.8 Sets the supplementary group IDs from the given array, which may contain either num-

bers of group names (as strings). Not available on all platforms. Only available to super-

users. See also Process.maxgroups.

initgroups Process.initgroups(user, base_group)→ groups

1.8 Initializes the group access list using the operating system’s initgroups call. Not

available on all platforms. May require superuser privilege.

Process.initgroups("dave", 500)

kill Process.kill(signal, 〈 pid 〉+)→ int

Sends the given signal to the specified process ID(s) or to the current process if pid is

zero. signal may be an integer signal number or a POSIX signal name (either with or

without a SIG prefix). If signal is negative (or starts with a sign), kills process groups

instead of processes. Not all signals are available on all platforms.

pid = fork do

Signal.trap("USR1") { puts "Ouch!"; exit }

... do some work ...

end

Prepared exclusively for Jose Sierra

PROCESS 565

P
ro

c
e

s
s

...

Process.kill("USR1", pid)

Process.wait

produces:

:2: SIGUSR1 (SignalException)

from :1:in `fork'

from :1

maxgroups Process.maxgroups→ count

1.8 The Process module has a limit on the number of supplementary groups it supports

in the calls Process.groups and Process.groups=. The maxgroups call returns that

limit (by default 32), and the maxgroups= call sets it.

Process.maxgroups → 32

Process.maxgroups = 64

Process.maxgroups → 64

maxgroups= Process.maxgroups= limit→ count

1.8 Sets the maximum number of supplementary group IDs that can be processed by the

groups and groups= methods. If a number larger that 4096 is given, 4096 will be

used.

pid Process.pid→ int

Returns the process ID of this process. Not available on all platforms.

Process.pid → 17014

ppid Process.ppid→ int

Returns the process ID of the parent of this process. Always returns 0 on Windows. Not

available on all platforms.

puts "I am #{Process.pid}"

Process.fork { puts "Dad is #{Process.ppid}" }

produces:

I am 17016

Dad is 17016

setpgid Process.setpgid(pid, int)→ 0

Sets the process group ID of pid (0 indicates this process) to int. Not available on all

platforms.

setpgrp Process.setpgrp→ 0

Equivalent to setpgid(0,0). Not available on all platforms.

Prepared exclusively for Jose Sierra

PROCESS 566

P
ro

c
e

s
s

setpriority Process.setpriority(kind, int, int_priority)→ 0

See Process#getpriority.

Process.setpriority(Process::PRIO_USER, 0, 19) → 0

Process.setpriority(Process::PRIO_PROCESS, 0, 19) → 0

Process.getpriority(Process::PRIO_USER, 0) → 19

Process.getpriority(Process::PRIO_PROCESS, 0) → 19

setsid Process.setsid→ int

Establishes this process as a new session and process group leader, with no controlling

tty. Returns the session ID. Not available on all platforms.

Process.setsid → 17021

times Process.times→ struct_tms

1.8 Returns a Tms structure (see Struct::Tms on page 609) that contains user and system

CPU times for this process.

t = Process.times

[t.utime, t.stime] → [0.0, 0.0]

uid Process.uid→ int

Returns the user ID of this process.

Process.uid → 501

uid= Process.uid= int→ numeric

Sets the (integer) user ID for this process. Not available on all platforms.

wait Process.wait→ int

Waits for any child process to exit and returns the process ID of that child. Also sets

$? to the Process::Status object containing information on that process. Raises a

SystemError if there are no child processes. Not available on all platforms.

Process.fork { exit 99 } → 17028

Process.wait → 17028

$?.exitstatus → 99

waitall Process.waitall→ [[pid1,status], . . .]

1.8 Waits for all children, returning an array of pid/status pairs (where status is an object

of class Process::Status).

Prepared exclusively for Jose Sierra

PROCESS 567

P
ro

c
e

s
s

fork { sleep 0.2; exit 2 } → 17031

fork { sleep 0.1; exit 1 } → 17032

fork { exit 0 } → 17033

Process.waitall → [[17033, #<Process::Status:

pid=17033,exited(0)>], [17032,

#<Process::Status:

pid=17032,exited(1)>], [17031,

#<Process::Status:

pid=17031,exited(2)>]]

wait2 Process.wait2→ [pid, status]

1.8 Waits for any child process to exit and returns an array containing the process ID and

the exit status (a Process::Status object) of that child. Raises a SystemError if no

child processes exist.

Process.fork { exit 99 } → 17036

pid, status = Process.wait2

pid → 17036

status.exitstatus → 99

waitpid Process.waitpid(pid, int=0)→ pid

Waits for a child process to exit depending on the value of pid:

< −1 Any child whose progress group ID equals the absolute value of pid.

−1 Any child (equivalent to wait).

0 Any child whose process group ID equals that of the current process.

> 0 The child with the given PID.

int may be a logical or of the flag values Process::WNOHANG (do not block if no

child available) or Process::WUNTRACED (return stopped children that haven’t been

reported). Not all flags are available on all platforms, but a flag value of zero will work

on all platforms.

include Process

pid = fork { sleep 3 } → 17039

Time.now → Wed Sep 20 16:05:37 CDT 2006

waitpid(pid, Process::WNOHANG) → nil

Time.now → Wed Sep 20 16:05:37 CDT 2006

waitpid(pid, 0) → 17039

Time.now → Wed Sep 20 16:05:40 CDT 2006

waitpid2 Process.waitpid2(pid, int=0)→ [pid, status]

Waits for the given child process to exit, returning that child’s process ID and exit status

(a Process::Status object). int may be a logical or of the values Process::WNOHANG

(do not block if no child available) or Process::WUNTRACED (return stopped children

that haven’t been reported). Not all flags are available on all platforms, but a flag value

of zero will work on all platforms.

Prepared exclusively for Jose Sierra

PROCESS::GID 568

P
ro

c
e

s
s
::

G
ID

Module
Process::GID1.8
Provides a higher-level (and more portable) interface to the underlying operating sys-

tem’s concepts of real, effective, and saved group IDs. Discussing of the semantics

of these IDs is well beyond the scope of this book: readers who want to know more

should consult POSIX documentation or read the intro(2) man pages on a recent

Unix platform. All these methods throw NotImplementedError if the host operating

does not support a sufficient set of calls. The descriptions that follow are based on notes

in ruby-talk:76218 by Hidetoshi Nagai.

Module methods

change_privilege Process::GID.change_privilege(gid)→ gid

1.8 Sets the real, effective, and saved group IDs to gid, raising an exception on failure (in

which case the state of the IDs is not known).

This method is not compatible with Process.gid=.

eid Process::GID.eid→ egid

1.8 Returns the effective group ID for this process. Synonym for Process.egid.

eid= Process::GID.eid = egid

1.8 Synonym for Process::GID.grant_privilege.

grant_privilege Process::GID.grant_privilege(egid)→ egid

1.8 Sets the effective group ID to egid, raising an exception on failure. One some environ-

ments this may also change the saved group ID (see re_exchangeable?).

re_exchange Process::GID.re_exchange→ egid

1.8 Exchange the real and effective group IDs, setting the saved group ID to the new effec-

tive group ID. Returns the new effective group ID.

re_exchangeable? Process::GID.re_exchangeable→ true or false

1.8 Returns true if real and effective group IDs can be exchanged on the host operating

system, and returns false otherwise.

rid Process::GID.rid→ gid

1.8 Returns the real group ID for this process. Synonym for Process.gid.

sid_available? Process::GID.sid_available?→ true or false

1.8 Returns true if the underlying platform supports saved group IDs, and returns false

Prepared exclusively for Jose Sierra

PROCESS::GID 569

P
ro

c
e

s
s
::

G
ID

otherwise. Currently, Ruby assumes support if the operating system has setresgid(2)

or setegid(2) calls or if the configuration includes the POSIX_SAVED_IDS flag.

switch Process::GID.switch→ egid

Process::GID.switch { block }→ obj

1.8 Handles the toggling of group privilege. In the block form, automatically toggles the

IDs back when the block terminates (but only if the block doesn’t use other calls into

Process::GID calls which would interfere). Without a block, returns the original effec-

tive group ID.

Prepared exclusively for Jose Sierra

PROCESS::STATUS 570

P
ro

c
e

s
s
::

S
ta

tu
s

Class
Process::Status < Object1.8
Process::Status encapsulates the information on the status of a running or termi-

nated system process. The built-in variable $? is either nil or a Process::Status

object.

fork { exit 99 } → 16339

Process.wait → 16339

$?.class → Process::Status

$?.to_i → 25344

$? >> 8 → 99

$?.stopped? → false

$?.exited? → true

$?.exitstatus → 99

POSIX systems record information on processes using a 16-bit integer. The lower bits

recorded the process status (stopped, exited, signaled), and the upper bits possibly con-

tain additional information (for example, the program’s return code in the case of exited

processes). Before Ruby 1.8, these bits were exposed directly to the Ruby program.

Ruby now encapsulates these in a Process::Status object. To maximize compatibil-

ity, however, these objects retain a bit-oriented interface. In the descriptions that follow,

when we talk about the integer value of stat, we’re referring to this 16-bit value.

Instance methods

== stat == other→ true or false

Returns true if the integer value of stat equals other.

& stat & num→ fixnum

Logical AND of the bits in stat with num.

fork { exit 0x37 }

Process.wait

sprintf('%04x', $?.to_i) → "3700"

sprintf('%04x', $? & 0x1e00) → "1600"

>> stat >> num→ fixnum

Shift the bits in stat right num places.

fork { exit 99 } → 16345

Process.wait → 16345

$?.to_i → 25344

$? >> 8 → 99

coredump? stat.coredump→ true or false

Returns true if stat generated a coredump when it terminated. Not available on all

platforms.

Prepared exclusively for Jose Sierra

PROCESS::STATUS 571

P
ro

c
e

s
s
::

S
ta

tu
s

exited? stat.exited?→ true or false

Returns true if stat exited normally (for example using an exit call or finishing the

program).

exitstatus stat.exitstatus→ fixnum or nil

Returns the least significant 8 bits of the return code of stat. Only available if exited?

is true.

fork { } → 16348

Process.wait → 16348

$?.exited? → true

$?.exitstatus → 0

fork { exit 99 } → 16349

Process.wait → 16349

$?.exited? → true

$?.exitstatus → 99

pid stat.pid→ fixnum

Returns the ID of the process associated with this status object.

fork { exit } → 16352

Process.wait → 16352

$?.pid → 16352

signaled? stat.signaled?→ true or false

Returns true if stat terminated because of an uncaught signal.

pid = fork { sleep 100 }

Process.kill(9, pid) → 1

Process.wait → 16355

$?.signaled? → true

stopped? stat.stopped?→ true or false

Returns true if this process is stopped. This is returned only if the corresponding wait

call had the WUNTRACED flag set.

success? stat.success?→ nil, or true or false

Returns true if stat refers to a process that exited successfully, returns false if it

exited with a failure, and returns nil if stat does not refer to a process that has exited.

stopsig stat.stopsig→ fixnum or nil

Returns the number of the signal that caused stat to stop (or nil if self is not stopped).

Prepared exclusively for Jose Sierra

PROCESS::STATUS 572

P
ro

c
e

s
s
::

S
ta

tu
s

termsig stat.termsig→ fixnum or nil

Returns the number of the signal that caused stat to terminate (or nil if self was not

terminated by an uncaught signal).

to_i stat.to_i→ fixnum

Returns the bits in stat as a Fixnum. Poking around in these bits is platform dependent.

fork { exit 0xab } → 16358

Process.wait → 16358

sprintf('%04x', $?.to_i) → "ab00"

to_int stat.to_int→ fixnum

Synonym for Process::Status#to_i.

to_s stat.to_s→ string

Equivalent to stat.to_i.to_s.

Prepared exclusively for Jose Sierra

PROCESS::SYS 573

P
ro

c
e

s
s
::

S
y
s

Module
Process::Sys1.8
Process::Sys provides system call–level access to the process user and group envi-

ronment. Many of the calls are aliases of those in the Process module and are packaged

here for completeness. See also Process::GID and Process::UID for a higher-level

(and more portable) interface.

Module methods

getegid Process::Sys.getegid→ gid

1.8 Returns the effective group ID for this process. Synonym for Process.egid.

geteuid Process::Sys.getugid→ uid

1.8 Returns the effective user ID for this process. Synonym for Process.euid.

getgid Process::Sys.getgid→ gid

1.8 Returns the group ID for this process. Synonym for Process.gid.

getuid Process::Sys.getuid→ uid

1.8 Returns the user ID for this process. Synonym for Process.uid.

issetugid Process::Sys.issetugid→ true or false

1.8 Returns true if this process was made setuid or setgid as a result of the last execve()

system call, and returns false if not. On systems that don’t support issetugid(2),

throws NotImplementedError.

setegid Process::Sys.setegid(gid)

1.8 Set the effective group ID to gid, failing if the underlying system call fails. On systems

that don’t support setegid(2), throws NotImplementedError.

seteuid Process::Sys.seteuid(uid)

1.8 Set the effective user ID to uid, failing if the underlying system call fails. On systems

that don’t support seteuid(2), throws NotImplementedError.

setgid Process::Sys.setgid(gid)

1.8 Set the group ID to gid, failing if the underlying system call fails. On systems that don’t

support setgid(2), throws NotImplementedError.

setregid Process::Sys.setregid(rgid, egid)

1.8 Set the real and effective group IDs to rgid and egid, failing if the underlying system call

fails. On systems that don’t support setregid(2), throws NotImplementedError.

Prepared exclusively for Jose Sierra

PROCESS::SYS 574

P
ro

c
e

s
s
::

S
y
s

setresgid Process::Sys.setresgid(rgid, egid, sgid)

1.8 Set the real, effective, and saved group IDs to rgid, egid, and sgid, failing if the under-

lying system call fails. On systems that don’t support setresgid(2), throws NotIm

plementedError.

setresuid Process::Sys.setresuid(ruid, euid, suid)

1.8 Set the real, effective, and saved user IDs to ruid, euid, and suid, failing if the under-

lying system call fails. On systems that don’t support setresuid(2), throws NotIm

plementedError.

setreuid Process::Sys.setreuid(ruid, euid)

1.8 Set the real and effective user IDs to ruid and euid, failing if the underlying system call

fails. On systems that don’t support setreuid(2), throws NotImplementedError.

setrgid Process::Sys.setrgid(rgid)

1.8 Set the real group ID to rgid, failing if the underlying system call fails. On systems that

don’t support setrgid(2), throws NotImplementedError.

setruid Process::Sys.setruid(ruid)

1.8 Set the real user ID to ruid, failing if the underlying system call fails. On systems that

don’t support setruid(2), throws NotImplementedError.

setuid Process::Sys.setuid(uid)

1.8 Set the user ID to uid, failing if the underlying system call fails. On systems that don’t

support setuid(2), throws NotImplementedError.

Prepared exclusively for Jose Sierra

PROCESS::UID 575

P
ro

c
e

s
s
::

U
ID

Module
Process::UID1.8
Provides a higher-level (and more portable) interface to the underlying operating sys-

tem’s concepts of real, effective, and saved user IDs. For more information, see the

introduction to Process::GID on page 568.

Module methods

change_privilege Process::UID.change_privilege(uid)→ uid

1.8 Sets the real, effective, and saved user IDs to uid, raising an exception on failure (in

which case the state of the IDs is not known). Not compatible with Process.uid=.

eid Process::UID.eid→ euid

1.8 Returns the effective user ID for this process. Synonym for Process.euid.

eid= Process::UID.eid = euid

1.8 Synonym for Process::UID.grant_privilege.

grant_privilege Process::UID.grant_privilege(euid)→ euid

Sets1.8 the effective user ID to euid, raising an exception on failure. One some environ-

ments this may also change the saved user ID.

re_exchange Process::UID.re_exchange→ euid

1.8 Exchange the real and effective user IDs, setting the saved user ID to the new effective

user ID. Returns the new effective user ID.

re_exchangeable? Process::UID.re_exchangeable→ true or false

1.8 Returns true if real and effective user IDs can be exchanged on the host operating

system, and returns false otherwise.

rid Process::UID.rid→ uid

1.8 Returns the real user ID for this process. Synonym for Process.uid.

sid_available? Process::UID.sid_available?→ true or false

1.8 Returns true if the underlying platform supports saved user IDs, and returns false

otherwise. Currently, Ruby assumes support if the operating system has setresuid(2)

or seteuid(2) calls, or if the configuration includes the POSIX_SAVED_IDS flag.

switch Process::UID.switch→ euid

Process::UID.switch { block }→ obj

1.8 Handles the toggling of user privilege. In the block form, automatically toggles the IDs

back when the block terminates (as long as the block doesn’t use other Process::UID

calls to interfere). Without a block, returns the original effective user ID.

Prepared exclusively for Jose Sierra

RANGE 576

R
a

n
g

e

Class
Range < Object

A Range represents an interval—a set of values with a start and an end. Ranges may be

constructed using the s..e and s...e literals or using Range.new. Ranges constructed

using .. run from the start to the end inclusively. Those created using ... exclude the

end value. When used as an iterator, ranges return each value in the sequence.

(1..5).to_a → []

(5..1).to_a → [5, 4, 3, 2, 1]

('a'..'e').to_a → ["a", "b", "c", "d", "e"]

('a'...'e').to_a → ["a", "b", "c", "d"]

Ranges can be constructed using objects of any type, as long as the objects can be

compared using their <=> operator and they support the succ method to return the next

object in sequence.

class Xs # represent a string of 'x's

include Comparable

attr :length

def initialize(n)

@length = n

end

def succ

Xs.new(@length + 1)

end

def <=>(other)

@length <=> other.length

end

def to_s

sprintf "%2d #{inspect}", @length

end

def inspect

'x' * @length

end

end

r = Xs.new(3)..Xs.new(6) → xxx..xxxxxx

r.to_a → [xxx, xxxx, xxxxx, xxxxxx]

r.member?(Xs.new(5)) → true

In the previous code example, class Xs includes the Comparable module. This is

because Enumerable#member? checks for equality using ==. Including Comparable

ensures that the == method is defined in terms of the <=> method implemented in Xs.

Mixes in

Enumerable:

all?, any?, collect, detect, each_with_index, entries, find, find_all,

grep, include?, inject, map, max, member?, min, partition, reject,

select, sort, sort_by, to_a, zip

Prepared exclusively for Jose Sierra

RANGE 577

R
a

n
g

e

Class methods

new Range.new(start, end, exclusive=false)→ rng

Constructs a range using the given start and end. If the third parameter is omitted or is

false, the range will include the end object; otherwise, it will be excluded.

Instance methods

== rng == obj→ true or false

Returns true if obj is a range whose beginning and end are the same as those in rng

(compared using ==) and whose exclusive flag is the same as rng.

=== rng === val→ true or false

If rng excludes its end, returns rng.start ≤ val < rng.end. If rng is inclusive returns

rng.start ≤ val ≤ rng.end. Note that this implies1.8 that val need not be a member

of the range itself (for example a float could fall between the start and end values of a

range of integers). Conveniently, the === operator is used by case statements.

case 74.95

when 1...50 then puts "low"

when 50...75 then puts "medium"

when 75...100 then puts "high"

end

produces:

medium

begin rng.begin→ obj

Returns the first object of rng.

each rng.each {| i | block } → rng

Iterates over the elements rng, passing each in turn to the block. Successive elements

are generated using the succ method.

(10..15).each do |n|

print n, ' '

end

produces:

10 11 12 13 14 15

end rng.end→ obj

Returns the object that defines the end of rng.

(1..10).end → 10

(1...10).end → 10

Prepared exclusively for Jose Sierra

RANGE 578

R
a

n
g

e

eql? rng.eql?(obj)→ true or false

Returns true if obj is a range whose beginning and end are the same as those in rng

(compared using eql?) and whose exclusive flag is the same as rng.

exclude_end? rng.exclude_end?→ true or false

Returns true if rng excludes its end value.

first rng.first→ obj

Synonym for Range#begin.

include? rng.include?(val)→ true or false

Synonym for Range#===.

last rng.last→ obj

Synonym for Range#end.

member? rng.member?(val)→ true or false

Return true if val is one of the values in rng (that is if Range#each would return val

at some point).

r = 1..10

r.include?(5) → true

r.member?(5) → true

r.include?(5.5) → true

r.member?(5.5) → true

step rng.step(n=1) {| obj | block } → rng

1.8 Iterates over rng, passing each nth element to the block. If the range contains numbers,

addition by one is used to generate successive elements. Otherwise step invokes succ

to iterate through range elements. The following code uses class Xs defined at the start

of this section.

range = Xs.new(1)..Xs.new(10)

range.step(2) {|x| puts x}

range.step(3) {|x| puts x}

produces:

1 x

3 xxx

5 xxxxx

7 xxxxxxx

9 xxxxxxxxx

1 x

4 xxxx

7 xxxxxxx

10 xxxxxxxxxx

Prepared exclusively for Jose Sierra

REGEXP 579

R
e

g
e
x
p

Class
Regexp < Object

A Regexp holds a regular expression, used to match a pattern against strings. Regexps

are created using the /.../ and %r... literals and using the Regexp.new constructor.

This section documents Ruby 1.8 regular expressions. Versions 1.9 and later use a

different regular expression engine.

Class constants

EXTENDED Ignore spaces and newlines in regexp.

IGNORECASE Matches are case insensitive.

MULTILINE Newlines treated as any other character.

Class methods

compile Regexp.compile(pattern 〈 , options 〈 , lang 〉 〉)→ rxp

Synonym for Regexp.new.

escape Regexp.escape(string)→ escaped_string

Escapes any characters that would have special meaning in a regular expression. For

any string, Regexp.new(Regexp.escape(str))=~str will be true.

Regexp.escape('\\[]*?{}.') → \\\[\]*\?\{\}\.

last_match Regexp.last_match→ match

Regexp.last_match(int)→ string

1.8 The first form returns the MatchData object generated by the last successful pattern

match. This is equivalent to reading the global variable $~. MatchData is described on

page 516. The second form returns the nth field in this MatchData object.

/c(.)t/ =~ 'cat' → 0

Regexp.last_match → #<MatchData:0x1ca288>

Regexp.last_match(0) → "cat"

Regexp.last_match(1) → "a"

Regexp.last_match(2) → nil

new Regexp.new(string 〈 , options 〈 , lang 〉 〉)→ rxp

Regexp.new(regexp)→ new_regexp

1.8 Constructs a new regular expression from the string or the regexp. In the latter case that

regexp’s options are propagated, and new options may not be specified (a change as of

Ruby 1.8). If options is a Fixnum, it should be one or more of Regexp::EXTENDED,

Regexp::IGNORECASE, and Regexp::MULTILINE, or-ed together. Otherwise, if the

options parameter is not nil, the regexp will be case insensitive. The lang parameter

Prepared exclusively for Jose Sierra

REGEXP 580

R
e

g
e
x
p

enables multibyte support for the regexp: n, N, or nil = none, e, E = EUC, s, S = SJIS,

u, U = UTF-8.

r1 = Regexp.new('^[az]+:\\s+\w+') → /^[az]+:\s+\w+/

r2 = Regexp.new('cat', true) → /cat/i

r3 = Regexp.new('dog', Regexp::EXTENDED) → /dog/x

r4 = Regexp.new(r2) → /cat/i

quote Regexp.quote(string)→ escaped_string

Synonym for Regexp.escape.

Instance methods

== rxp == other_regexp→ true or false

Equality—Two regexps are equal if their patterns are identical, they have the same

character set code, and their casefold? values are the same.

/abc/ == /abc/x → false

/abc/ == /abc/i → false

/abc/u == /abc/n → false

=== rxp === string→ true or false

Case Equality—Like Regexp#=~, but accepts non-string arguments (returning false).

Used in case statements.

a = "HELLO"

case a

when /^[az]*$/; print "Lower case\n"

when /^[AZ]*$/; print "Upper case\n"

else print "Mixed case\n"

end

produces:

Upper case

=~ rxp =~ string→ int or nil

Match—Matches rxp against string, returning the offset of the start of the match or nil

if the match failed. Sets $~ to the corresponding MatchData or nil.

/SIT/ =~ "insensitive" → nil

/SIT/i =~ "insensitive" → 5

~ ~ rxp→ int or nil

Match—Matches rxp against the contents of $_. Equivalent to rxp =~ $_.

$_ = "input data"

~ /at/ → 7

Prepared exclusively for Jose Sierra

REGEXP 581

R
e

g
e
x
p

casefold? rxp.casefold?→ true or false

Returns the value of the case-insensitive flag.

inspect rxp.inspect→ string

Returns a readable version of rxp.

/cat/mi.inspect → "/cat/mi"

/cat/mi.to_s → "(?mix:cat)"

kcode rxp.kcode→ string

Returns the character set code for the regexp.

/cat/.kcode → nil

/cat/s.kcode → "sjis"

match rxp.match(string)→ match or nil

Returns a MatchData object (see page 516) describing the match, or nil if there was

no match. This is equivalent to retrieving the value of the special variable $~ following

a normal match.

/(.)(.)(.)/.match("abc")[2] → "b"

options rxp.options→ int

1.8 Returns the set of bits corresponding to the options used when creating this Regexp (see

Regexp.new for details). Note that additional bits may be set in the returned options:

these are used internally by the regular expression code. These extra bits are ignored if

the options are passed to Regexp.new.

Let's see what the values are...

Regexp::IGNORECASE → 1

Regexp::EXTENDED → 2

Regexp::MULTILINE → 4

/cat/.options → 0

/cat/ix.options → 3

Regexp.new('cat', true).options → 1

Regexp.new('cat', 0, 's').options → 48

r = /cat/ix

Regexp.new(r.source, r.options) → /cat/ix

source rxp.source→ string

Returns the original string of the pattern.

/ab+c/ix.source → "ab+c"

Prepared exclusively for Jose Sierra

REGEXP 582

R
e

g
e
x
p

to_s rxp.to_s→ string

Returns a string containing the regular expression and its options (using the (?xx:yyy)

notation). This string can be fed back in to Regexp.new to a regular expression with

the same semantics as the original. (However, Regexp#== may not return true when

comparing the two, as the source of the regular expression itself may differ, as the

example shows.) Regexp#inspect produces a generally more readable version of rxp.

r1 = /ab+c/ix → /ab+c/ix

s1 = r1.to_s → "(?ixm:ab+c)"

r2 = Regexp.new(s1) → /(?ixm:ab+c)/

r1 == r2 → false

r1.source → "ab+c"

r2.source → "(?ixm:ab+c)"

Prepared exclusively for Jose Sierra

SIGNAL 583

S
ig

n
a

l

Module
Signal1.8
Many operating systems allow signals to be sent to running processes. Some signals

have a defined effect on the process, and others may be trapped at the code level and

acted upon. For example, your process may trap the USR1 signal and use it to toggle

debugging, and it may use TERM to initiate a controlled shutdown.

pid = fork do

Signal.trap("USR1") do

$debug = !$debug

puts "Debug now: #$debug"

end

Signal.trap("TERM") do

puts "Terminating..."

shutdown()

end

. . . do some work . . .

end

Process.detach(pid)

Controlling program:

Process.kill("USR1", pid)

...

Process.kill("USR1", pid)

...

Process.kill("TERM", pid)

produces:

:6: SIGUSR1 (SignalException)

from :5:in `fork'

from :5

The list of available signal names and their interpretation is system dependent. Signal

delivery semantics may also vary between systems; in particular signal delivery may

not always be reliable.

Module methods

list Signal.list→ hash

Returns a list of signal names mapped to the corresponding underlying signal numbers.

Signal.list → {"ABRT"=>6, "ALRM"=>14, "BUS"=>10, "CHLD"=>20,

"CLD"=>20, "CONT"=>19, "EMT"=>7, "FPE"=>8, "HUP"=>1,

"ILL"=>4, "INFO"=>29, "INT"=>2, "IO"=>23, "IOT"=>6,

"KILL"=>9, "PIPE"=>13, "PROF"=>27, "QUIT"=>3,

"SEGV"=>11, "STOP"=>17, "SYS"=>12, "TERM"=>15,

"TRAP"=>5, "TSTP"=>18, "TTIN"=>21, "TTOU"=>22,

"URG"=>16, "USR1"=>30, "USR2"=>31, "VTALRM"=>26,

"WINCH"=>28, "XCPU"=>24, "XFSZ"=>25}

Prepared exclusively for Jose Sierra

SIGNAL 584

S
ig

n
a

l

trap Signal.trap(signal, proc)→ obj

Signal.trap(signal) { block } → obj

Specifies the handling of signals. The first parameter is a signal name (a string such as

SIGALRM, SIGUSR1, and so on) or a signal number. The characters SIG may be omitted

from the signal name. The command or block specifies code to be run when the signal

is raised. If the command is the string IGNORE or SIG_IGN, the signal will be ignored.

If the command is DEFAULT or SIG_DFL, the operating system’s default handler will be

invoked. If the command is EXIT, the script will be terminated by the signal. Otherwise,

the given command or block will be run.

The special signal name EXIT or signal number zero will be invoked just prior to pro-

gram termination.

trap returns the previous handler for the given signal.

Signal.trap(0, lambda { puts "Terminating: #{$$}" })

Signal.trap("CLD") { puts "Child died" }

fork && Process.wait

produces:

Terminating: 17063

Child died

Terminating: 17062

Prepared exclusively for Jose Sierra

STRING 585

S
tr

in
g

Class
String < Object

A String object holds and manipulates a sequence of bytes, typically representing

characters. String objects may be created using String.new or as literals (see page

305).

Because of aliasing issues, users of strings should be aware of the methods that modify

the contents of a String object. Typically, methods with names ending in ! modify

their receiver, while those without a ! return a new String. However, exceptions exist,

such as String#[]=.

Mixes in

Comparable:

<, <=, ==, >=, >, between?

Enumerable:

all?, any?, collect, detect, each_with_index, entries, find, find_all,

grep, include?, inject, map, max, member?, min, partition, reject,

select, sort, sort_by, to_a, zip

Class methods

new String.new(val="")→ str

Returns a new string object containing a copy of val (which should1.8 be a String or

implement to_str). Note that the new string object is only created when one of the

strings is modified.

str1 = "wibble"

str2 = String.new(str1)

str1.object_id → 938358

str2.object_id → 938348

str1[1] = "o"

str1 → "wobble"

str2 → "wibble"

Instance methods

% str % arg→ string

Format—Uses str as a format specification, and returns the result of applying it to arg.

If the format specification contains more than one substitution, then arg must be an

Array containing the values to be substituted. See Kernel.sprintf on page 508 for

details of the format string.

"%05d" % 123 → "00123"

"%5s: %08x" % ["ID", self.object_id] → "ID : 000eccdc"

Prepared exclusively for Jose Sierra

STRING 586

S
tr

in
g

* str * int→ string

Copies—Returns a new String containing int copies of the receiver.

"Ho! " * 3 → "Ho! Ho! Ho! "

+ str + string→ string

Concatenation—Returns a new String containing string concatenated to str.

"Hello from " + self.to_s → "Hello from main"

<< str << fixnum→ str

str << obj→ str

Append—Concatenates the given object to str. If the object is a Fixnum between 0 and

255, it is converted to a character before concatenation.

a = "hello "

a << "world" → "hello world"

a << 33 → "hello world!"

<=> str <=> other_string→−1, 0, +1

Comparison—Returns−1 if str is less than, 0 if str is equal to, and +1 if str is greater

than other_string. If the strings are of different lengths, and the strings are equal when

compared up to the shortest length, then the longer string is considered greater than

the shorter one. If the variable $= is false, the comparison is based on comparing

the binary values of each character in the string. In older versions of Ruby,1.8 setting

$= allowed case-insensitive comparisons; this is now deprecated in favor of using

String#casecmp.

<=> is the basis for the methods <, <=, >, >=, and between?, included from module

Comparable. The method String#== does not use Comparable#==.

"abcdef" <=> "abcde" → 1

"abcdef" <=> "abcdef" → 0

"abcdef" <=> "abcdefg" → 1

"abcdef" <=> "ABCDEF" → 1

== str == obj→ true or false

Equality—If obj is a String, returns true if str <=> obj equals zero; returns false

otherwise. If obj is not a String but responds to to_str,1.8 return obj == str; otherwise

returns false.

"abcdef" == "abcde" → false

"abcdef" == "abcdef" → true

=== str === obj→ true or false

Case Equality—Synonym for String#==.

Prepared exclusively for Jose Sierra

STRING 587

S
tr

in
g

=~ str =~ regexp→ int or nil

Match—Equivalent to regexp =~ str.1.8 Prior versions of Ruby permitted an arbitrary

operand to =~; this is now deprecated. Returns the position the match starts, or returns

nil if there is no match.

"cat o' 9 tails" =~ /\d/ → 7

[] str[int]→ int or nil

str[int, int]→ string or nil

str[range]→ string or nil

str[regexp]→ string or nil

str[regexp, int]→ string or nil

str[string]→ string or nil

Element Reference—If passed a single int, returns the code of the character at that

position. If passed two ints, returns a substring starting at the offset given by the first,

and a length given by the second. If given a range, a substring containing characters

at offsets given by the range is returned. In all three cases, if an offset is negative, it is

counted from the end of str. Returns nil if the initial offset falls outside the string and

the length is not given, the length is negative, or the beginning of the range is greater

than the end.

If regexp is supplied, the matching portion of str is returned. If a numeric parameter

follows the regular expression, that component of the MatchData is returned instead.1.8 If

a String is given, that string is returned if it occurs in str. In both cases, nil is returned

if there is no match.

a = "hello there"

a[1] → 101

a[1,3] → "ell"

a[1..3] → "ell"

a[1...3] → "el"

a[3,2] → "er"

a[4..2] → "her"

a[2..4] → ""

a[/[aeiou](.)\1/] → "ell"

a[/[aeiou](.)\1/, 0] → "ell"

a[/[aeiou](.)\1/, 1] → "l"

a[/[aeiou](.)\1/, 2] → nil

a[/(..)e/] → "the"

a[/(..)e/, 1] → "th"

a["lo"] → "lo"

a["bye"] → nil

Prepared exclusively for Jose Sierra

STRING 588

S
tr

in
g

[]= str[int] = int

str[int] = string

str[int, int] = string

str[range] = string

str[regexp] = string

str[regexp, int] = string

str[string] = string

Element Assignment—Replaces some or all of the content of str. The portion of the

string affected is determined using the same criteria as String#[]. If the replacement

string is not the same length as the text it is replacing, the string will be adjusted accord-

ingly. If the regular expression or string is used as the index doesn’t match a position

in the string, IndexError is raised. If the regular expression form is used,1.8 the optional

second int allows you to specify which portion of the match to replace (effectively using

the MatchData indexing rules). The forms that take a Fixnum will raise an IndexError

if the value is out of range; the Range form will raise a RangeError, and the Regexp

and String forms will silently ignore the assignment.

a = "hello"

a[2] = 96 (a → "he`lo")

a[2, 4] = "xyz" (a → "hexyz")

a[4, 2] = "xyz" (a → "hxyzlo")

a[2..4] = "xyz" (a → "hexyz")

a[4..2] = "xyz" (a → "hxyzo")

a[/[aeiou](.)\1(.)/] = "xyz" (a → "hxyz")

a[/[aeiou](.)\1(.)/, 1] = "xyz" (a → "hexyzlo")

a[/[aeiou](.)\1(.)/, 2] = "xyz" (a → "hellxyz")

a["l"] = "xyz" (a → "hexyzlo")

a["ll"] = "xyz" (a → "hexyzo")

a[2, 0] = "xyz" (a → "hexyzllo")

~ ~ str→ int or nil

Equivalent to $_ =~ str.

capitalize str.capitalize→ string

Returns a copy of str with the first character converted to uppercase and the remainder

to lowercase.

"hello".capitalize → "Hello"

"HELLO".capitalize → "Hello"

"123ABC".capitalize → "123abc"

capitalize! str.capitalize!→ str or nil

Modifies str by converting the first character to uppercase and the remainder to lower-

case. Returns nil if no changes are made. à

Prepared exclusively for Jose Sierra

STRING 589

S
tr

in
g

a = "hello"

a.capitalize! → "Hello"

a → "Hello"

a.capitalize! → nil

casecmp str.casecmp(string)→−1, 0, +1

1.8 Case-insensitive version of String#<=>.

"abcdef".casecmp("abcde") → 1

"abcdef".casecmp("abcdef") → 0

"aBcDeF".casecmp("abcdef") → 0

"abcdef".casecmp("abcdefg") → 1

"abcdef".casecmp("ABCDEF") → 0

center str.center(int, pad=" ")→ string

If int is greater than the length of str, returns a new String of length int with str

centered between the given padding (defaults to spaces); otherwise, returns str.

"hello".center(4) → "hello"

"hello".center(20) → " hello "

"hello".center(4, "_^") → "hello"

"hello".center(20, "_^") → "_^_^hello_^_^"

"hello".center(20, "") → "hello"

chomp str.chomp(rs=$/)→ string

Returns a new String with the given record separator removed from the end of str

(if present). If $/ has not been changed from the default Ruby record separator, then

chomp also removes carriage return characters (that is it will remove \n, \r, and \r\n).1.8

"hello".chomp → "hello"

"hello\n".chomp → "hello"

"hello\r\n".chomp → "hello"

"hello\n\r".chomp → "hello\n"

"hello\r".chomp → "hello"

"hello \n there".chomp → "hello \n there"

"hello".chomp("llo") → "he"

chomp! str.chomp!(rs=$/)→ str or nil

Modifies str in place as described for String#chomp, returning str, or returning nil if

no modifications were made.

chop str.chop→ string

Returns a new String with the last character removed. If the string ends with \r\n,

both characters are removed. Applying chop to an empty string returns an empty string.

String#chomp is often a safer alternative, as it leaves the string unchanged if it doesn’t

end in a record separator.

Prepared exclusively for Jose Sierra

STRING 590

S
tr

in
g

"string\r\n".chop → "string"

"string\n\r".chop → "string\n"

"string\n".chop → "string"

"string".chop → "strin"

"x".chop.chop → ""

chop! str.chop!→ str or nil

Processes str as for String#chop, returning str, or returning nil if str is the empty

string. See also String#chomp!.

concat str.concat(int)→ str

str.concat(obj)→ str

Synonym for String#< <.

count str.count(〈 string 〉+)→ int

Each string parameter defines a set of characters to count. The intersection of these

sets defines the characters to count in str. Any parameter that starts with a caret (^) is

negated. The sequence c1–c2 means all characters between c1 and c2.

a = "hello world"

a.count "lo" → 5

a.count "lo", "o" → 2

a.count "hello", "^l" → 4

a.count "ejm" → 4

crypt str.crypt(settings)→ string

Applies a one-way cryptographic hash to str by invoking the standard library function

crypt. The argument is to some extent system dependent. On traditional Unix boxes, it

is often a two-character salt string. On more modern boxes, it may also control things

such as DES encryption parameters. See the man page for crypt(3) for details.

standard salt

"secret".crypt("sh") → "shRK3aVg8FsI2"

On OSX: DES, 2 interactions, 24bit salt

"secret".crypt("_...0abcd") → "_...0abcdROn65JNDj12"

delete str.delete(〈 string 〉+)→ new_string

Returns a copy of str with all characters in the intersection of its arguments deleted.

Uses the same rules for building the set of characters as String#count.

"hello".delete("l","lo") → "heo"

"hello".delete("lo") → "he"

"hello".delete("aeiou", "^e") → "hell"

"hello".delete("ejm") → "ho"

Prepared exclusively for Jose Sierra

STRING 591

S
tr

in
g

delete! str.delete!(〈 string 〉+)→ str or nil

Performs a delete operation in place, returning str, or returning nil if str was not

modified.

a = "hello"

a.delete!("l","lo") → "heo"

a → "heo"

a.delete!("l") → nil

downcase str.downcase→ string

Returns a copy of str with all uppercase letters replaced with their lowercase counter-

parts. The operation is locale insensitive—only characters A to Z are affected. Multibyte

characters are skipped.

"hEllO".downcase → "hello"

downcase! str.downcase!→ str or nil

Replace uppercase letters in str with their lowercase counterparts, returning nil if no

changes were made.

dump str.dump→ string

Produces a version of str with all nonprinting characters replaced by \nnn notation and

all special characters escaped.

each str.each(sep=$/) {| substr | block } → str

Splits str using the supplied parameter as the record separator ($/ by default), pass-

ing each substring in turn to the supplied block. If a zero-length record separator is

supplied, the string is split into paragraphs, each terminated by multiple \n characters.

print "Example one\n"

"hello\nworld".each {|s| p s}

print "Example two\n"

"hello\nworld".each('l') {|s| p s}

print "Example three\n"

"hello\n\n\nworld".each('') {|s| p s}

produces:

Example one

"hello\n"

"world"

Example two

"hel"

"l"

"o\nworl"

"d"

Example three

"hello\n\n\n"

"world"

Prepared exclusively for Jose Sierra

STRING 592

S
tr

in
g

each_byte str.each_byte {| int | block } → str

Passes each byte in str to the given block.

"hello".each_byte {|c| print c, ' ' }

produces:

104 101 108 108 111

each_line str.each_line(sep=$/) {| substr | block } → str

Synonym for String#each.

empty? str.empty?→ true or false

Returns true if str has a length of zero.

"hello".empty? → false

"".empty? → true

eql? str.eql?(obj)→ true or false

Returns true if obj is a String with identical contents to str.

"cat".eql?("cat") → true

gsub str.gsub(pattern, replacement)→ string

str.gsub(pattern) {| match | block } → string

Returns a copy of str with all occurrences of pattern replaced with either replacement

or the value of the block. The pattern will typically be a Regexp; if it is a String

then no regular expression metacharacters will be interpreted (that is /\d/ will match

a digit, but '\d' will match a backslash followed by a d).

If a string is used as the replacement, special variables from the match (such as $&

and $1) cannot be substituted into it, as substitution into the string occurs before the

pattern match starts. However, the sequences \1, \2, and so on may be used to interpo-

late successive groups in the match. These sequences are shown in Table 27.13 on the

following page.

In the block form, the current match is passed in as a parameter, and variables such as

$1, $2, $`, $&, and $' will be set appropriately. The value returned by the block will be

substituted for the match on each call.

The result inherits any tainting in the original string or any supplied replacement string.

"hello".gsub(/[aeiou]/, '*') → "h*ll*"

"hello".gsub(/([aeiou])/, '<\1>') → "h<e>ll<o>"

"hello".gsub(/./) {|s| s[0].to_s + ' '} → "104 101 108 108 111 "

Prepared exclusively for Jose Sierra

STRING 593

S
tr

in
g

Table 27.13. Backslash sequences in substitution strings

Sequence Text That Is Substituted

\1, \2, ... \9 The value matched by the nth grouped subexpression

\& The last match

\` The part of the string before the match

\' The part of the string after the match

\+ The highest-numbered group matched

gsub! str.gsub!(pattern, replacement)→ str or nil

str.gsub!(pattern) {| match | block } → str or nil

Performs the substitutions of String#gsub in place, returning str, or returning nil if

no substitutions were performed.

hex str.hex→ int

Treats leading characters from str as a string of hexadecimal digits (with an optional

sign and an optional 0x), and returns the corresponding number. Zero is returned on

error.

"0x0a".hex → 10

"1234".hex → 4660

"0".hex → 0

"wombat".hex → 0

include? str.include?(string)→ true or false

str.include?(int)→ true or false

Returns true if str contains the given string or character.

"hello".include? "lo" → true

"hello".include? "ol" → false

"hello".include? ?h → true

index str.index(string 〈 , offset 〉)→ int or nil

str.index(int 〈 , offset 〉)→ int or nil

str.index(regexp 〈 , offset 〉)→ int or nil

Returns the index of the first occurrence of the given substring, character, or pattern in

str. Returns nil if not found. If the second parameter is present, it specifies the position

in the string to begin the search.

"hello".index('e') → 1

"hello".index('lo') → 3

"hello".index('a') → nil

"hello".index(101) → 1

"hello".index(/[aeiou]/, 3) → 4

Prepared exclusively for Jose Sierra

STRING 594

S
tr

in
g

insert str.insert(index, string)→ str

1.8 Inserts string before the character at the given index, modifying str. Negative indices

count from the end of the string and insert after the given character. After the insertion,

str will contain string starting at index.

"abcd".insert(0, 'X') → "Xabcd"

"abcd".insert(3, 'X') → "abcXd"

"abcd".insert(4, 'X') → "abcdX"

"abcd".insert(3, 'X') → "abXcd"

"abcd".insert(1, 'X') → "abcdX"

intern str.intern→ symbol

Returns the Symbol corresponding to str, creating the symbol if it did not previously

exist. Can intern any string, not just identifiers.1.8 See Symbol#id2name on page 610.

"Koala".intern → :Koala

sym = "$1.50 for a soda!?!?".intern

sym.to_s → "$1.50 for a soda!?!?"

length str.length→ int

Returns the length of str.

ljust str.ljust(width, padding=" ")→ string

1.8 If width is greater than the length of str, returns a new String of length width with str

left justified and padded with copies of padding; otherwise, returns a copy of str.

"hello".ljust(4) → "hello"

"hello".ljust(20) → "hello "

"hello".ljust(20, "*") → "hello***************"

"hello".ljust(20, " dolly") → "hello dolly dolly do"

lstrip str.lstrip→ string

1.8 Returns a copy of str with leading whitespace characters removed. Also see the meth-

ods String#rstrip and String#strip.

" hello ".lstrip → "hello "

"\000 hello ".lstrip → "\000 hello "

"hello".lstrip → "hello"

lstrip! str.lstrip!→
self or nil

1.8 Removes leading whitespace characters from str, returning nil if no change was made.

See also String#rstrip! and String#strip!.

" hello ".lstrip! → "hello "

"hello".lstrip! → nil

Prepared exclusively for Jose Sierra

STRING 595

S
tr

in
g

match str.match(pattern)→ match_data or nil

1.8 Converts pattern to a Regexp (if it isn’t already one), and then invokes its match method

on str.

'hello'.match('(.)\1') → #<MatchData:0x1ca288>

'hello'.match('(.)\1')[0] → "ll"

'hello'.match(/(.)\1/)[0] → "ll"

'hello'.match('xx') → nil

next str.next→ string

Synonym for String#succ.

next! str.next!→ str

Synonym for String#succ!.

oct str.oct→ int

Treats leading characters of str as a string of octal digits (with an optional sign), and

returns the corresponding number. Returns 0 if the conversion fails.

"123".oct → 83

"377".oct → 255

"bad".oct → 0

"0377bad".oct → 255

replace str.replace(string)→ str

Replaces the contents and taintedness of str with the corresponding values in string.

s = "hello" → "hello"

s.replace "world" → "world"

reverse str.reverse→ string

Returns a new string with the characters from str in reverse order.

Every problem contains its own solution...

"stressed".reverse → "desserts"

reverse! str.reverse!→ str

Reverses str in place.

rindex str.rindex(string 〈 , int 〉)→ int or nil

str.rindex(int 〈 , int 〉)→ int or nil

str.rindex(regexp 〈 , int 〉)→ int or nil

Returns the index of the last occurrence of the given substring, character, or pattern in

str. Returns nil if not found. If the second parameter is present, it specifies the position

in the string to end the search—characters beyond this point will not be considered.

Prepared exclusively for Jose Sierra

STRING 596

S
tr

in
g

"hello".rindex('e') → 1

"hello".rindex('l') → 3

"hello".rindex('a') → nil

"hello".rindex(101) → 1

"hello".rindex(/[aeiou]/, 2) → 1

rjust str.rjust(width, padding=" ")→ string

1.8 If width is greater than the length of str, returns a new String of length width with str

right justified and padded with copies of padding; otherwise, returns a copy of str.

"hello".rjust(4) → "hello"

"hello".rjust(20) → " hello"

"hello".rjust(20, "") → "hello"

"hello".rjust(20, "padding") → "paddingpaddingphello"

rstrip str.rstrip→ string

1.8 Returns a copy of str, stripping first trailing NUL characters and then stripping trailing

whitespace characters. See also String#lstrip and String#strip.

" hello ".rstrip → " hello"

" hello \000 ".rstrip → " hello \000"

" hello \000".rstrip → " hello"

"hello".rstrip → "hello"

rstrip! str.rstrip!→
self or nil

1.8 Removes trailing NUL characters and then removes trailing whitespace characters from

str. Returns nil if no change was made. See also String#lstrip! and #strip!.

" hello ".rstrip! → " hello"

"hello".rstrip! → nil

scan str.scan(pattern)→ array

str.scan(pattern) {| match, . . . | block } → str

Both forms iterate through str, matching the pattern (which may be a Regexp or a

String). For each match, a result is generated and either added to the result array or

passed to the block. If the pattern contains no groups, each individual result consists of

the matched string, $&. If the pattern contains groups, each individual result is itself an

array containing one entry per group. If the pattern is a String, it is interpreted literally

(i.e., it is not taken to be a regular expression pattern).

a = "cruel world"

a.scan(/\w+/) → ["cruel", "world"]

a.scan(/.../) → ["cru", "el ", "wor"]

a.scan(/(...)/) → [["cru"], ["el "], ["wor"]]

a.scan(/(..)(..)/) → [["cr", "ue"], ["l ", "wo"]]

And the block form

Prepared exclusively for Jose Sierra

STRING 597

S
tr

in
g

a.scan(/\w+/) {|w| print "<<#{w}>> " }

puts

a.scan(/(.)(.)/) {|a,b| print b, a }

puts

produces:

<<cruel>> <<world>>

rceu lowlr

size str.size→ int

Synonym for String#length.

slice str.slice(int)→ int or nil

str.slice(int, int)→ string or nil

str.slice(range)→ string or nil

str.slice(regexp)→ string or nil

str.slice(match_string)→ string or nil

Synonym for String#[].

a = "hello there"

a.slice(1) → 101

a.slice(1,3) → "ell"

a.slice(1..3) → "ell"

a.slice(3,2) → "er"

a.slice(4..2) → "her"

a.slice(2..4) → ""

a.slice(/th[aeiou]/) → "the"

a.slice("lo") → "lo"

a.slice("bye") → nil

slice! str.slice!(int)→ int or nil

str.slice!(int, int)→ string or nil

str.slice!(range)→ string or nil

str.slice!(regexp)→ string or nil

str.slice!(match_string)→ string or nil

Deletes the specified portion from str, and returns the portion deleted. The forms that

take a Fixnum will raise an IndexError if the value is out of range; the Range form

will raise a RangeError, and the Regexp and String forms will silently not change

the string.

string = "this is a string"

string.slice!(2) → 105

string.slice!(3..6) → " is "

string.slice!(/s.*t/) → "sa st"

string.slice!("r") → "r"

string → "thing"

Prepared exclusively for Jose Sierra

STRING 598

S
tr

in
g

split str.split(pattern=$;, 〈 limit 〉)→ array

Divides str into substrings based on a delimiter, returning an array of these substrings.

If pattern is a String, then its contents are used as the delimiter when splitting str. If

pattern is a single space, str is split on whitespace, with leading whitespace and runs

of contiguous whitespace characters ignored.

If pattern is a Regexp, str is divided where the pattern matches. Whenever the pattern

matches a zero-length string, str is split into individual characters. If pattern includes

groups, these groups will be included in the returned values.

If pattern is omitted, the value of $; is used. If $; is nil (which is the default), str is

split on whitespace as if “ ” were specified.

If the limit parameter is omitted, trailing empty fields are suppressed. If limit is a posi-

tive number, at most that number of fields will be returned (if limit is 1, the entire string

is returned as the only entry in an array). If negative, there is no limit to the number of

fields returned, and trailing null fields are not suppressed.

" now's the time".split → ["now's", "the", "time"]

" now's the time".split(' ') → ["now's", "the", "time"]

" now's the time".split(/ /) → ["", "now's", "", "", "the",

"time"]

"a@1bb@2ccc".split(/@\d/) → ["a", "bb", "ccc"]

"a@1bb@2ccc".split(/@(\d)/) → ["a", "1", "bb", "2", "ccc"]

"1, 2.34,56, 7".split(/,\s*/) → ["1", "2.34", "56", "7"]

"hello".split(//) → ["h", "e", "l", "l", "o"]

"hello".split(//, 3) → ["h", "e", "llo"]

"hi mom".split(/\s*/) → ["h", "i", "m", "o", "m"]

"".split → []

"mellow yellow".split("ello") → ["m", "w y", "w"]

"1,2,,3,4,,".split(',') → ["1", "2", "", "3", "4"]

"1,2,,3,4,,".split(',', 4) → ["1", "2", "", "3,4,,"]

"1,2,,3,4,,".split(',', 4) → ["1", "2", "", "3", "4", "", ""]

squeeze str.squeeze(〈 string 〉∗)→ squeezed_tring

Builds a set of characters from the string parameter(s) using the procedure described

for String#count on page 590. Returns a new string where runs of the same character

that occur in this set are replaced by a single character. If no arguments are given, all

runs of identical characters are replaced by a single character.

"yellow moon".squeeze → "yelow mon"

" now is the".squeeze(" ") → " now is the"

"putters putt balls".squeeze("mz") → "puters put balls"

Prepared exclusively for Jose Sierra

STRING 599

S
tr

in
g

squeeze! str.squeeze!(〈 string 〉∗)→ str or nil

Squeezes str in place, returning str. Returns nil if no changes were made.

strip str.strip→ string

1.8 Returns a copy of str with leading whitespace and trailing NUL and whitespace charac-

ters removed.

" hello ".strip → "hello"

"\tgoodbye\r\n".strip → "goodbye"

"goodbye \000".strip → "goodbye"

"goodbye \000 ".strip → "goodbye \000"

strip! str.strip!→ str or nil

1.8 Removes leading whitespace and trailing NUL and whitespace characters removed from

str. Returns nil if str was not altered.

sub str.sub(pattern, replacement)→ string

str.sub(pattern) {| match | block } → string

Returns a copy of str with the first occurrence of pattern replaced with either replace-

ment or the value of the block. The pattern will typically be a Regexp; if it is a String

then no regular expression metacharacters will be interpreted (that is /\d/ will match

a digit, but ’\d’ will match a backslash followed by a d).

If the method call specifies replacement, special variables such as $& will not be use-

ful, as substitution into the string occurs before the pattern match starts. However, the

sequences \1, \2, listed in Table 27.13 on page 593 may be used.

In the block form, the current match is passed in as a parameter, and variables such as

$1, $2, $`, $&, and $' will be set appropriately. The value returned by the block will be

substituted for the match on each call.

"hello".sub(/[aeiou]/, '*') → "h*llo"

"hello".sub(/([aeiou])/, '<\1>') → "h<e>llo"

"hello".sub(/./) {|s| s[0].to_s + ' ' } → "104 ello"

sub! str.sub!(pattern, replacement)→ str or nil

str.sub!(pattern) {| match | block } → str or nil

Performs the substitutions of String#sub in place, returning str. Returns nil if no

substitutions were performed.

succ str.succ→ string

Returns the successor to str. The successor is calculated by incrementing characters

starting from the rightmost alphanumeric (or the rightmost character if there are no

alphanumerics) in the string. Incrementing a digit always results in another digit, and

Prepared exclusively for Jose Sierra

STRING 600

S
tr

in
g

incrementing a letter results in another letter of the same case. Incrementing nonalpha-

numerics uses the underlying character set’s collating sequence.

If the increment generates a “carry,” the character to the left of it is incremented. This

process repeats until there is no carry, adding an additional character if necessary.

"abcd".succ → "abce"

"THX1138".succ → "THX1139"

"<<koala>>".succ → "<<koalb>>"

"1999zzz".succ → "2000aaa"

"ZZZ9999".succ → "AAAA0000"

"***".succ → "**+"

succ! str.succ!→ str

Equivalent to String#succ, but modifies the receiver in place.

sum str.sum(n=16)→ int

Returns a basic n-bit checksum of the characters in str, where n is the optional parame-

ter, defaulting to 16. The result is simply the sum of the binary value of each character

in str modulo 2n−1. This is not a particularly good checksum—see the digest libraries1.8
on page 647 for better alternatives.

"now is the time".sum → 1408

"now is the time".sum(8) → 128

swapcase str.swapcase→ string

Returns a copy of str with uppercase alphabetic characters converted to lowercase and

lowercase characters converted to uppercase.

"Hello".swapcase → "hELLO"

"cYbEr_PuNk11".swapcase → "CyBeR_pUnK11"

swapcase! str.swapcase!→ str or nil

Equivalent to String#swapcase, but modifies str in place, returning str. Returns nil

if no changes were made.

to_f str.to_f→ float

Returns the result of interpreting leading characters in str as a floating-point number.

Extraneous characters past the end of a valid number are ignored. If there is not a valid

number at the start of str, 0.0 is returned. The method never raises an exception (use

Kernel.Float to validate numbers).

"123.45e1".to_f → 1234.5

"45.67 degrees".to_f → 45.67

"thx1138".to_f → 0.0

Prepared exclusively for Jose Sierra

STRING 601

S
tr

in
g

to_i str.to_i(base=10)→ int

1.8 Returns the result of interpreting leading characters in str as an integer base base (2 to

36). Given a base of zero, to_i looks for leading 0, 0b, 0o, 0d, or 0x and sets the base

accordingly. Leading spaces are ignored, and leading plus or minus signs are honored.

Extraneous characters past the end of a valid number are ignored. If there is not a valid

number at the start of str, 0 is returned. The method never raises an exception.

"12345".to_i → 12345

"99 red balloons".to_i → 99

"0a".to_i → 0

"0a".to_i(16) → 10

"0x10".to_i → 0

"0x10".to_i(0) → 16

"0x10".to_i(0) → 16

"hello".to_i → 0

"hello".to_i(30) → 14167554

"1100101".to_i(2) → 101

"1100101".to_i(8) → 294977

"1100101".to_i(10) → 1100101

"1100101".to_i(16) → 17826049

"1100101".to_i(24) → 199066177

to_s str.to_s→ str

Returns the receiver.

to_str str.to_str→ str

Synonym for String#to_s. to_str is used by methods such as String#concat to

convert their arguments to a string. Unlike to_s, which is supported by almost all

classes, to_str is normally implemented only by those classes that act like strings. Of

the built-in classes, only Exception and String implement to_str.

to_sym str.to_s→ symbol

Returns the symbol for str. This can create symbols that cannot be represented using

the :xxx notation. A synonym for String#intern.

s = 'cat'.to_sym → :cat

s == :cat → true

'cat and dog'.to_sym → :"cat and dog"

s == :'cat and dog' → false

tr str.tr(from_string, to_string)→ string

Returns a copy of str with the characters in from_string replaced by the corresponding

characters in to_string. If to_string is shorter than from_string, it is padded with its last

character. Both strings may use the c1–c2 notation to denote ranges of characters, and

from_string may start with a ^, which denotes all characters except those listed.

Prepared exclusively for Jose Sierra

STRING 602

S
tr

in
g

"hello".tr('aeiou', '*') → "h*ll*"

"hello".tr('^aeiou', '*') → "*e**o"

"hello".tr('el', 'ip') → "hippo"

"hello".tr('ay', 'bz') → "ifmmp"

tr! str.tr!(from_string, to_string)→ str or nil

Translates str in place, using the same rules as String#tr. Returns str, or returns nil

if no changes were made.

tr_s str.tr_s(from_string, to_string)→ string

Processes a copy of str as described under String#tr, and then removes duplicate

characters in regions that were affected by the translation.

"hello".tr_s('l', 'r') → "hero"

"hello".tr_s('el', '*') → "h*o"

"hello".tr_s('el', 'hx') → "hhxo"

tr_s! str.tr_s!(from_string, to_string)→ str or nil

Performs String#tr_s processing on str in place, returning str. Returns nil if no

changes were made.

unpack str.unpack(format)→ array

Decodes str (which may contain binary data) according to the format string, returning

an array of the extracted values. The format string consists of a sequence of single-

character directives, summarized in Table 27.14 on the next page. Each directive may

be followed by a number, indicating the number of times to repeat this directive. An

asterisk (*) will use up all remaining elements. The directives sSiIlL may each be

followed by an underscore (_) to use the underlying platform’s native size for the

specified type; otherwise, it uses a platform-independent consistent size. Spaces are

ignored in the format string. Comments1.8 starting with # to the next newline or end of

string are also ignored. See also Array#pack on page 415.

"abc \0\0abc \0\0".unpack('A6Z6') → ["abc", "abc "]

"abc \0\0".unpack('a3a3') → ["abc", " \000\000"]

"aa".unpack('b8B8') → ["10000110", "01100001"]

"aaa".unpack('h2H2c') → ["16", "61", 97]

"\xfe\xff\xfe\xff".unpack('sS') → [257, 65279]

"now=20is".unpack('M*') → ["now is"]

"whole".unpack('xax2aX2aX1aX2a') → ["h", "e", "l", "l", "o"]

upcase str.upcase→ string

Returns a copy of str with all lowercase letters replaced with their uppercase counter-

parts. The operation is locale insensitive—only characters a to z are affected.

"hEllO".upcase → "HELLO"

Prepared exclusively for Jose Sierra

STRING 603

S
tr

in
g

Table 27.14. Directives for String#unpack

Format Function Returns

A String with trailing NULs and spaces removed. String

a String. String

B Extract bits from each character (MSB first). String

b Extract bits from each character (LSB first). String

C Extract a character as an unsigned integer. Fixnum

c Extract a character as an integer. Fixnum

d,D Treat sizeof(double) characters as a native double. Float

E Treat sizeof(double) characters as a double in little-endian byte order. Float

e Treat sizeof(float) characters as a float in little-endian byte order. Float

f,F Treat sizeof(float) characters as a native float. Float

G Treat sizeof(double) characters as a double in network byte order. Float

g Treat sizeof(float) characters as a float in network byte order. Float

H Extract hex nibbles from each character (most significant first). String

h Extract hex nibbles from each character (least significant first). String

I Treat sizeof(int)1 successive characters as an unsigned native integer. Integer

i Treat sizeof(int)1 successive characters as a signed native integer. Integer

L Treat four1 successive characters as an unsigned native long integer. Integer

l Treat four1 successive characters as a signed native long integer. Integer

M Extract a quoted-printable string. String

m Extract a Base64 encoded string. String

N Treat four characters as an unsigned long in network byte order. Fixnum

n Treat two characters as an unsigned short in network byte order. Fixnum

P Treat sizeof(char *) characters as a pointer, and return len characters from

the referenced location.

String

p Treat sizeof(char *) characters as a pointer to a null-terminated string. String

Q Treat eight characters as an unsigned quad word (64 bits). Integer

q Treat eight characters as a signed quad word (64 bits). Integer

S Treat two1 successive characters as an unsigned short in native byte order. Fixnum

s Treat two1 successive characters as a signed short in native byte order. Fixnum

U Extract UTF-8 characters as unsigned integers. Integer

u Extract a UU-encoded string. String

V Treat four characters as an unsigned long in little-endian byte order. Fixnum

v Treat two characters as an unsigned short in little-endian byte order. Fixnum

w BER-compressed integer (see Array#pack for more information). Integer

X Skip backward one character. —

x Skip forward one character. —

Z String with trailing NULs removed. String

@ Skip to the offset given by the length argument. —

1 May be modified by appending “_” to the directive.

Prepared exclusively for Jose Sierra

STRING 604

S
tr

in
g

upcase! str.upcase!→ str or nil

Upcases the contents of str, returning nil if no changes were made.

upto str.upto(string) {| s | block } → str

Iterates through successive values, starting at str and ending at string inclusive, passing

each value in turn to the block. The String#succ method is used to generate each

value.

"a8".upto("b6") {|s| print s, ' ' }

for s in "a8".."b6"

print s, ' '

end

produces:

a8 a9 b0 b1 b2 b3 b4 b5 b6

a8 a9 b0 b1 b2 b3 b4 b5 b6

Prepared exclusively for Jose Sierra

STRUCT 605

S
tr

u
c
t

Class
Struct < Object

Subclasses: Struct::Tms

A Struct is a convenient way to bundle a number of attributes together, using accessor

methods, without having to write an explicit class.

The Struct class is a generator of specific classes, each one of which is defined to hold

a set of variables and their accessors. In these examples, we’ll call the generated class

Customer, and we’ll show an example instance of that class as joe.

Also see OpenStruct on page 689.

In the descriptions that follow, the parameter symbol refers to a symbol, which is either

a quoted string or a Symbol (such as :name).

Mixes in

Enumerable:

all?, any?, collect, detect, each_with_index, entries, find, find_all,

grep, include?, inject, map, max, member?, min, partition, reject,

select, sort, sort_by, to_a, zip

Class methods

new Struct.new(〈 string 〉 〈 , symbol 〉+)→ Customer

[1.9] Struct.new(〈 string 〉 〈 , symbol 〉+) { block }→ Customer

Creates a new class, named by string, containing accessor methods for the given sym-

bols. If the name string is omitted, an anonymous structure class will be created. Oth-

erwise, the name of this struct will appear as a constant in class Struct, so it must be

unique for all Structs in the system and should start with a capital letter. Assigning a

structure class to a constant effectively gives the class the name of the constant.

Struct.new returns a new Class object, which can then be used to create specific

instances of the new structure. The remaining methods listed below (class and instance)

are defined for this generated class. See the description that follows for an example.

Ruby 1.9 and later allow you to pass a block to a Struct’s constructor. This block is

evaluated in the context of the new struct’s class and hence allows you conveniently to

add instance methods to the new struct.

Create a structure with a name in Struct

Struct.new("Customer", :name, :address) → Struct::Customer

Struct::Customer.new("Dave", "123 Main") → #<struct

Struct::Customer

name="Dave",

address="123 Main">

Prepared exclusively for Jose Sierra

STRUCT 606

S
tr

u
c
t

Create a structure named by its constant

Customer = Struct.new(:name, :address) → Customer

Customer.new("Dave", "123 Main") → #<struct Customer

name="Dave", address="123

Main">

new Customer.new(〈 obj 〉+)→ joe

Creates a new instance of a structure (the class created by Struct.new). The number

of actual parameters must be less than or equal to the number of attributes defined for

this class; unset parameters default to nil. Passing too many parameters will raise an

ArgumentError.

Customer = Struct.new(:name, :address, :zip)

joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345)

joe.name → "Joe Smith"

joe.zip → 12345

[] Customer[〈 obj 〉+]→ joe

Synonym for new (for the generated structure).

Customer = Struct.new(:name, :address, :zip)

joe = Customer["Joe Smith", "123 Maple, Anytown NC", 12345]

joe.name → "Joe Smith"

joe.zip → 12345

members Customer.members→ array

Returns an array of strings representing the names of the instance variables.

Customer = Struct.new("Customer", :name, :address, :zip)

Customer.members → ["name", "address", "zip"]

Instance methods

== joe == other_struct→ true or false

Equality—Returns true if other_struct is equal to this one: they must be of the same

class as generated by Struct.new, and the values of all instance variables must be

equal (according to Object#==).

Customer = Struct.new(:name, :address, :zip)

joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345)

joejr = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345)

jane = Customer.new("Jane Doe", "456 Elm, Anytown NC", 12345)

joe == joejr → true

joe == jane → false

Prepared exclusively for Jose Sierra

STRUCT 607

S
tr

u
c
t

[] joe[symbol]→ obj

joe[integer]→ obj

Attribute Reference—Returns the value of the instance variable named by symbol or

indexed (0..length− 1) by int. Raises NameError if the named variable does not exist,

or raises IndexError if the index is out of range.

Customer = Struct.new(:name, :address, :zip)

joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345)

joe["name"] → "Joe Smith"

joe[:name] → "Joe Smith"

joe[0] → "Joe Smith"

[]= joe[symbol] = obj→ obj

joe[int] = obj→ obj

Attribute Assignment—Assigns to the instance variable named by symbol or int the

value obj and returns it. Raises a NameError if the named variable does not exist, or

raises an IndexError if the index is out of range.

Customer = Struct.new(:name, :address, :zip)

joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345)

joe["name"] = "Luke"

joe[:zip] = "90210"

joe.name → "Luke"

joe.zip → "90210"

each joe.each {| obj | block } → joe

Calls block once for each instance variable, passing the value as a parameter.

Customer = Struct.new(:name, :address, :zip)

joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345)

joe.each {|x| puts(x) }

produces:

Joe Smith

123 Maple, Anytown NC

12345

each_pair joe.each_pair {| symbol, obj | block } → joe

1.8 Calls block once for each instance variable, passing the name (as a symbol) and the

value as parameters.

Customer = Struct.new(:name, :address, :zip)

joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345)

joe.each_pair {|name, value| puts("#{name} => #{value}") }

produces:

name => Joe Smith

address => 123 Maple, Anytown NC

zip => 12345

Prepared exclusively for Jose Sierra

STRUCT 608

S
tr

u
c
t

length joe.length→ int

Returns the number of instance variables.

Customer = Struct.new(:name, :address, :zip)

joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345)

joe.length → 3

members joe.members→ array

Returns an array of strings representing the names of the instance variables.

Customer = Struct.new(:name, :address, :zip)

joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345)

joe.members → ["name", "address", "zip"]

size joe.size→ int

Synonym for Struct#length.

to_a joe.to_a→ array

Returns the values for this instance as an array.

Customer = Struct.new(:name, :address, :zip)

joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345)

joe.to_a[1] → "123 Maple, Anytown NC"

values joe.values→ array

Synonym for to_a.

values_at joe.values_at(〈 selector 〉∗)→ array

1.8 Returns an array containing the elements in joe corresponding to the given indices. The

selectors may be integer indices or ranges.

Lots = Struct.new(:a, :b, :c, :d, :e, :f)

l = Lots.new(11, 22, 33, 44, 55, 66)

l.values_at(1, 3, 5) → [22, 44, 66]

l.values_at(0, 2, 4) → [11, 33, 55]

l.values_at(1, 3, 5) → [66, 44, 22]

Prepared exclusively for Jose Sierra

STRUCT::TMS 609

S
tr

u
c
t:

:T
m

s

Class
Struct::Tms < Struct

This structure is returned by Process.times. It holds information on process times on

those platforms that support it. Not all values are valid on all platforms. This structure

contains the following instance variables and the corresponding accessors:

utime Amount of user CPU time, in seconds

stime Amount of system CPU time, in seconds

cutime Total of completed child processes’ user CPU time, in seconds (always 0 on

Windows)

cstime Total of completed child processes’ system CPU time, in seconds (always 0

on Windows)

See also Struct on page 605 and Process.times on page 566.

def eat_cpu

100_000.times { Math.sin(0.321) }

end

3.times { fork { eat_cpu } }

eat_cpu

Process.waitall

t = Process::times

[t.utime, t.stime] → [0.06, 0.0]

[t.cutime, t.cstime] → [0.17, 0.0]

Prepared exclusively for Jose Sierra

SYMBOL 610

S
y
m

b
o

l

Class
Symbol < Object

Symbol objects represent names inside the Ruby interpreter. They are generated using

the :name literal syntax and by using the various to_sym methods. The same Symbol

object will be created for a given name string for the duration of a program’s execution,

regardless of the context or meaning of that name. Thus, if Fred is a constant in one

context, a method in another, and a class in a third, the Symbol :Fred will be the same

object in all three contexts.

module One

class Fred

end

$f1 = :Fred

end

module Two

Fred = 1

$f2 = :Fred

end

def Fred()

end

$f3 = :Fred

$f1.object_id → 2544910

$f2.object_id → 2544910

$f3.object_id → 2544910

Class methods

all_symbols Symbol.all_symbols→ array

1.8 Returns an array of all the symbols currently in Ruby’s symbol table.

Symbol.all_symbols.size → 922

Symbol.all_symbols[1,20] → [:floor, :ARGV, :Binding, :symlink,

:chown, :EOFError, :$;, :String,

:LOCK_SH, :"setuid?", :$<,

:default_proc, :compact, :extend, :Tms,

:getwd, :$=, :ThreadGroup, :"success?",

:wait2]

Instance methods

id2name sym.id2name→ string

Returns the string representation of sym.1.8 Prior to Ruby 1.8, symbols typically repre-

sented names; now they can be arbitrary strings.

:fred.id2name → "fred"

:"99 red balloons!".id2name → "99 red balloons!"

Prepared exclusively for Jose Sierra

SYMBOL 611

S
y
m

b
o

l

inspect sym.inspect→ string

Returns the representation of sym as a symbol literal.

:fred.inspect → :fred

:"99 red balloons!".inspect → :"99 red balloons!"

to_i sym.to_i→ fixnum

Returns an integer that is unique for each symbol within a particular execution of a

program.

:fred.to_i → 9929

"fred".to_sym.to_i → 9929

to_int sym.to_int→ fixnum

Synonym for Symbol#to_i. Allows symbols to have integer-like behavior.

to_s sym.to_s→ string

Synonym for Symbol#id2name.

to_sym sym.to_sym→ sym

Symbols are symbol-like!

Prepared exclusively for Jose Sierra

THREAD 612

T
h

re
a

d

Class
Thread < Object

Thread encapsulates the behavior of a thread of execution, including the main thread

of the Ruby script. See the tutorial in Chapter 11, beginning on page 127.

In the descriptions that follow, the parameter symbol refers to a symbol, which is either

a quoted string or a Symbol (such as :name).

Class methods

abort_on_exception Thread.abort_on_exception→ true or false

Returns the status of the global “abort on exception” condition. The default is false.

When set to true, or if the global $DEBUG flag is true (perhaps because the command

line option d was specified) all threads will abort (the process will exit(0)) if an

exception is raised in any thread. See also Thread.abort_on_exception=.

abort_on_exception= Thread.abort_on_exception= bool→ true or false

When set to true, all threads will abort if an exception is raised. Returns the new state.

Thread.abort_on_exception = true

t1 = Thread.new do

puts "In new thread"

raise "Exception from thread"

end

sleep(1)

puts "not reached"

produces:

In new thread

prog.rb:4: Exception from thread (RuntimeError)

from prog.rb:2:in `initialize'

from prog.rb:2:in `new'

from prog.rb:2

critical Thread.critical→ true or false

Returns the status of the global “thread critical” condition.

critical= Thread.critical= bool→ true or false

Sets the status of the global “thread critical” condition and returns it. When set to true,

prohibits scheduling of any existing thread. Does not block new threads from being

created and run. Certain thread operations (such as stopping or killing a thread, sleeping

in the current thread, and raising an exception) may cause a thread to be scheduled

even when in a critical section. Thread.critical is not intended for daily use: it is

primarily there to support folks writing threading libraries.

Prepared exclusively for Jose Sierra

THREAD 613

T
h

re
a

d

current Thread.current→ thread

Returns the currently executing thread.

Thread.current → #<Thread:0x1d6790 run>

exit Thread.exit

Terminates the currently running thread and schedules another thread to be run. If this

thread is already marked to be killed, exit returns the Thread. If this is the main thread,

or the last thread, exit the process.

fork Thread.fork { block }→ thread

Synonym for Thread.start.

kill Thread.kill(thread)

Causes the given thread to exit (see Thread.exit).

count = 0

a = Thread.new { loop { count += 1 } }

sleep(0.1) → 0

Thread.kill(a) → #<Thread:0x1ca29c dead>

count → 420145

a.alive? → false

list Thread.list→ array

Returns an array of Thread objects for all threads that are either runnable or stopped.

Thread.new { sleep(200) }

Thread.new { 1000000.times {|i| i*i } }

Thread.new { Thread.stop }

Thread.list.each {|thr| p thr }

produces:

#<Thread:0x1ca42c sleep>

#<Thread:0x1ca4b8 run>

#<Thread:0x1ca51c sleep>

#<Thread:0x1d6790 run>

main Thread.main→ thread

Returns the main thread for the process.

Thread.main → #<Thread:0x1d6790 run>

new Thread.new(〈 arg 〉∗) {| args | block } → thread

Creates and runs a new thread to execute the instructions given in block. Any arguments

passed to Thread.new are passed into the block.

Prepared exclusively for Jose Sierra

THREAD 614

T
h

re
a

d

x = Thread.new { sleep 0.1; print "x"; print "y"; print "z" }

a = Thread.new { print "a"; print "b"; sleep 0.2; print "c" }

x.join; a.join # wait for threads to finish

produces:

abxyzc

pass Thread.pass

Invokes the thread scheduler to pass execution to another thread.

a = Thread.new { print "a"; Thread.pass; print "b" }

b = Thread.new { print "x"; Thread.pass; print "y" }

a.join; b.join

produces:

axby

start Thread.start(〈 args 〉∗) {| args | block } → thread

Basically the same as Thread.new. However, if class Thread is subclassed, then calling

start in that subclass will not invoke the subclass’s initialize method.

stop Thread.stop

Stops execution of the current thread, putting it into a “sleep” state, and schedules

execution of another thread. Resets the “critical” condition to false.

a = Thread.new { print "a"; Thread.stop; print "c" }

Thread.pass

print "b"

a.run

a.join

produces:

abc

Instance methods

[] thr[symbol]→ obj or nil

Attribute Reference—Returns the value of a thread-local variable, using either a symbol

or a string name. If the specified variable does not exist, returns nil.

a = Thread.new { Thread.current["name"] = "A"; Thread.stop }

b = Thread.new { Thread.current[:name] = "B"; Thread.stop }

c = Thread.new { Thread.current["name"] = "C"; Thread.stop }

Thread.list.each {|x| puts "#{x.inspect}: #{x[:name]}" }

produces:

#<Thread:0x1ca0d0 sleep>: C

#<Thread:0x1ca148 sleep>: B

#<Thread:0x1ca1d4 sleep>: A

#<Thread:0x1d6790 run>:

Prepared exclusively for Jose Sierra

THREAD 615

T
h

re
a

d

[]= thr[symbol] = obj→ obj

Attribute Assignment—Sets or creates the value of a thread-local variable, using either

a symbol or a string. See also Thread#[].

abort_on_exception thr.abort_on_exception→ true or false

Returns the status of the thread-local “abort on exception” condition for thr. The default

is false. See also Thread.abort_on_exception=.

abort_on_exception= thr.abort_on_exception= true or false→ true or false

When set to true, causes all threads (including the main program) to abort if an excep-

tion is raised in thr. The process will effectively exit(0).

alive? thr.alive?→ true or false

Returns true if thr is running or sleeping.

thr = Thread.new { }

thr.join → #<Thread:0x1ca51c dead>

Thread.current.alive? → true

thr.alive? → false

exit thr.exit→ thr or nil

Terminates thr and schedules another thread to be run. If this thread is already marked

to be killed, exit returns the Thread. If this is the main thread, or the last thread, exits

the process.

group thr.group→ thread_group

1.8 Returns the ThreadGroup owning thr, or nil.

thread = Thread.new { sleep 99 }

Thread.current.group.list → [#<Thread:0x1ca238 sleep>,

#<Thread:0x1d6790 run>]

new_group = ThreadGroup.new

thread.group.list → [#<Thread:0x1ca238 sleep>,

#<Thread:0x1d6790 run>]

new_group.add(thread)

thread.group.list → [#<Thread:0x1ca238 sleep>]

Thread.current.group.list → [#<Thread:0x1d6790 run>]

join thr.join→ thr

thr.join(limit)→ thr

1.8 The calling thread will suspend execution and run thr. Does not return until thr exits or

until limit seconds have passed. If the time limit expires, nil will be returned; otherwise

thr is returned.

Prepared exclusively for Jose Sierra

THREAD 616

T
h

re
a

d

Any threads not joined will be killed when the main program exits. If thr had previously

raised an exception and the abort_on_exception and $DEBUG flags are not set (so the

exception has not yet been processed), it will be processed at this time.

a = Thread.new { print "a"; sleep(10); print "b"; print "c" }

x = Thread.new { print "x"; Thread.pass; print "y"; print "z" }

x.join # Let x thread finish, a will be killed on exit.

produces:

axyz

The following example illustrates the limit parameter.

y = Thread.new { 4.times { sleep 0.1; print "tick...\n" }}

print "Waiting\n" until y.join(0.15)

produces:

tick...

Waiting

tick...

tick...

Waiting

tick...

keys thr.keys→ array

1.8 Returns an array of the names of the thread-local variables (as symbols).

thr = Thread.new do

Thread.current[:cat] = 'meow'

Thread.current["dog"] = 'woof'

end

thr.join → #<Thread:0x1ca47c dead>

thr.keys → [:dog, :cat]

key? thr.key?(symbol)→ true or false

Returns true if the given string (or symbol) exists as a thread-local variable.

me = Thread.current

me[:oliver] = "a"

me.key?(:oliver) → true

me.key?(:stanley) → false

kill thr.kill

Synonym for Thread#exit.

priority thr.priority→ int

Returns the priority of thr. Default is zero; higher-priority threads will run before lower-

priority threads.

Thread.current.priority → 0

Prepared exclusively for Jose Sierra

THREAD 617

T
h

re
a

d

priority= thr.priority= int→ thr

Sets the priority of thr to integer. Higher-priority threads will run before lower-priority

threads.

count1 = count2 = 0

a = Thread.new do

loop { count1 += 1 }

end

a.priority = 1

b = Thread.new do

loop { count2 += 1 }

end

b.priority = 2

sleep 1

Thread.critical = 1

count1 → 2404114

count2 → 23754

raise thr.raise

thr.raise(message)

thr.raise(exception 〈 , message 〈 , array 〉 〉)

Raises1.8 an exception (see Kernel.raise on page 506 for details) from thr. The caller

does not have to be thr.

Thread.abort_on_exception = true

a = Thread.new { sleep(200) }

a.raise("Gotcha")

produces:

prog.rb:3: Gotcha (RuntimeError)

from prog.rb:2:in `initialize'

from prog.rb:2:in `new'

from prog.rb:2

run thr.run→ thr

Wakes up thr, making it eligible for scheduling. If not in a critical section, then invokes

the scheduler.

a = Thread.new { puts "a"; Thread.stop; puts "c" }

Thread.pass

puts "Got here"

a.run

a.join

produces:

aGot here

c

Prepared exclusively for Jose Sierra

THREAD 618

T
h

re
a

d

safe_level thr.safe_level→ int

Returns the safe level in effect for thr. Setting thread-local safe levels can help when

implementing sandboxes that run insecure code.

thr = Thread.new { $SAFE = 3; sleep }

Thread.current.safe_level → 0

thr.safe_level → 3

status thr.status→ string, false or nil

Returns the status of thr: sleep if thr is sleeping or waiting on I/O, run if thr is exe-

cuting, aborting if thr is aborting, false if thr terminated normally, and nil if thr

terminated with an exception.

a = Thread.new { raise("die now") }

b = Thread.new { Thread.stop }

c = Thread.new { Thread.exit }

d = Thread.new { sleep }

Thread.critical = true

d.kill → #<Thread:0x1c9c20 aborting>

a.status → nil

b.status → "sleep"

c.status → false

d.status → "aborting"

Thread.current.status → "run"

stop? thr.stop?→ true or false

Returns true if thr is dead or sleeping.

a = Thread.new { Thread.stop }

b = Thread.current

a.stop? → true

b.stop? → false

terminate thr.terminate

Synonym for Thread#exit.

value thr.value→ obj

Waits for thr to complete (via Thread#join) and returns its value.

a = Thread.new { 2 + 2 }

a.value → 4

wakeup thr.wakeup→ thr

Marks thr as eligible for scheduling (it may still remain blocked on I/O, however). Does

not invoke the scheduler (see Thread#run).

Prepared exclusively for Jose Sierra

THREADGROUP 619

T
h

re
a

d
G

ro
u

p

Class
ThreadGroup < Object

A ThreadGroup keeps track of a number of threads. A Thread can belong to only one

ThreadGroup at a time; adding a thread to a group will remove it from the its current

group. Newly created threads belong to the group of the thread that created them.

ThreadGroup constants

Default Default thread group.

Class methods

new ThreadGroup.new→ thgrp

Returns a newly created ThreadGroup. The group is initially empty.

Instance methods

add thgrp.add(thread)→ thgrp

Adds the given thread to this group, removing it from any other group to which it may

have previously belonged.

puts "Default group is #{ThreadGroup::Default.list}"

tg = ThreadGroup.new

t1 = Thread.new { sleep }

t2 = Thread.new { sleep }

puts "t1 is #{t1}, t2 is #{t2}"

tg.add(t1)

puts "Default group now #{ThreadGroup::Default.list}"

puts "tg group now #{tg.list}"

produces:

Default group is #<Thread:0x1d6790>

t1 is #<Thread:0x1ca24c>, t2 is #<Thread:0x1ca1e8>

Default group now #<Thread:0x1ca1e8>#<Thread:0x1d6790>

tg group now #<Thread:0x1ca24c>

enclose thgrp.enclose→ thgrp

1.8 Prevents threads being added to and removed from thgrp. New threads may still be

started.

thread = Thread.new { sleep 99 }

group = ThreadGroup.new

group.add(thread)

group.enclose

ThreadGroup::Default.add(thread)

produces:

prog.rb:5:in `add': can't move from the enclosed thread group (ThreadError)

from prog.rb:5

Prepared exclusively for Jose Sierra

THREADGROUP 620

T
h

re
a

d
G

ro
u

p

enclosed? thgrp.enclose→ true or false

1.8 Returns true if this thread group has been enclosed.

freeze thgrp.freeze

Stops new threads being added to or removed from thgrp. New threads may not be

started.

list thgrp.list→ array

Returns an array of all existing Thread objects that belong to this group.

ThreadGroup::Default.list → [#<Thread:0x1d6790 run>]

Prepared exclusively for Jose Sierra

TIME 621

T
im

e

Class
Time < Object

Time is an abstraction of dates and times. Time is stored internally as the number of

seconds and microseconds since the epoch, January 1, 1970 00:00 UTC. On some oper-

ating systems, this offset is allowed to be negative. Also see the library modules Date

and ParseDate, described on pages 644 and 692, respectively.

The Time class treats GMT (Greenwich Mean Time) and UTC (Coordinated Universal

Time)3 as equivalent. GMT is the older way of referring to these baseline times but

persists in the names of calls on POSIX systems.

All times are stored with some number of microseconds. Be aware of this fact when

comparing times with each other—times that are apparently equal when displayed may

be different when compared.

Mixes in

Comparable:

<, <=, ==, >=, >, between?

Class methods

at Time.at(time)→ time

Time.at(seconds 〈 , microseconds 〉)→ time

Creates a new time object with the value given by time, or the given number of seconds

(and optional microseconds) from epoch. A nonportable1.8 feature allows the offset to be

negative on some systems.

Time.at(0) → Wed Dec 31 18:00:00 CST 1969

Time.at(946702800) → Fri Dec 31 23:00:00 CST 1999

Time.at(284061600) → Sat Dec 31 00:00:00 CST 1960

gm Time.gm(year 〈 , month, day, hour, min, sec, usec 〉)→ time

Time.gm(sec, min, hour, day, month, year, wday, yday, isdst, tz)→ time

Creates a time based on given values, interpreted as UTC (GMT). The year must

be specified. Other values default to the minimum value for that field (and may be

nil or omitted). Months may be specified by numbers from 1 to 12 or by the three-

letter English month names. Hours are specified on a 24-hour clock (0..23). Raises an

ArgumentError if any values are out of range. Will also accept ten arguments in the

order output by Time#to_a.

Time.gm(2000,"jan",1,20,15,1) → Sat Jan 01 20:15:01 UTC 2000

3. Yes, UTC really does stand for Coordinated Universal Time. There was a committee involved.

Prepared exclusively for Jose Sierra

TIME 622

T
im

e

local Time.local(year 〈 , month, day, hour, min, sec, usec 〉)→ time

Time.local(sec, min, hour, day, month, year, wday, yday, isdst, tz)→ time

Same as Time.gm, but interprets the values in the local time zone. The first form can

be used to construct a Time object given the result of a call to ParseDate#parsedate

(described on page 692). The second form accepts ten arguments in the order output by

Time#to_a.

require 'parsedate'

Time.local(2000,"jan",1,20,15,1) → Sat Jan 01 20:15:01 CST 2000

res = ParseDate.parsedate("20000101 20:15:01")

Time.local(*res) → Sat Jan 01 20:15:01 CST 2000

mktime Time.mktime(year, month, day, hour, min, sec, usec)→ time

Synonym for Time.local.

new Time.new→ time

Returns a Time object initialized to the current system time. Note: The object created

will be created using the resolution available on your system clock and so may include

fractional seconds.

a = Time.new → Wed Sep 20 16:05:28 CDT 2006

b = Time.new → Wed Sep 20 16:05:28 CDT 2006

a == b → false

"%.6f" % a.to_f → "1158786328.833646"

"%.6f" % b.to_f → "1158786328.834145"

now Time.now→ time

Synonym for Time.new.

times Time.times→ struct_tms

Deprecated in favor of Process.times, documented1.8 on page 566.

utc Time.utc(year 〈 , month, day, hour, min, sec, usec 〉)→ time

Time.utc(sec, min, hour, day, month, year, wday, yday, isdst, tz)→ time

Synonym for Time.gm.

Time.utc(2000,"jan",1,20,15,1) → Sat Jan 01 20:15:01 UTC 2000

Prepared exclusively for Jose Sierra

TIME 623

T
im

e

Instance methods

+ time + numeric→ time

Addition—Adds some number of seconds (possibly fractional) to time and returns that

value as a new time.

t = Time.now → Wed Sep 20 16:05:28 CDT 2006

t + (60 * 60 * 24) → Thu Sep 21 16:05:28 CDT 2006

– time time→ float

time numeric→ time

Difference—Returns a new time that represents the difference between two times, or

subtracts the given number of seconds in numeric from time.

t = Time.now → Wed Sep 20 16:05:28 CDT 2006

t2 = t + 2592000 → Fri Oct 20 16:05:28 CDT 2006

t2 t → 2592000.0

t2 2592000 → Wed Sep 20 16:05:28 CDT 2006

<=> time <=> other_time→−1, 0, +1

time <=> numeric→−1, 0, +1

Comparison—Compares time with other_time or with numeric, which is the number

of seconds (possibly fractional) since epoch.

t = Time.now → Wed Sep 20 16:05:28 CDT 2006

t2 = t + 2592000 → Fri Oct 20 16:05:28 CDT 2006

t <=> t2 → 1

t2 <=> t → 1

t <=> t → 0

asctime time.asctime→ string

Returns a canonical string representation of time.

Time.now.asctime → "Wed Sep 20 16:05:28 2006"

ctime time.ctime→ string

Synonym for Time#asctime.

day time.day→ int

Returns the day of the month (1..n) for time.

t = Time.now → Wed Sep 20 16:05:28 CDT 2006

t.day → 20

dst? time.dst?→ true or false

1.8 Synonym for Time#isdst.

Prepared exclusively for Jose Sierra

TIME 624

T
im

e

Time.local(2000, 7, 1).dst? → true

Time.local(2000, 1, 1).dst? → false

getgm time.getgm→ time

1.8 Returns a new Time object representing time in UTC.

t = Time.local(2000,1,1,20,15,1) → Sat Jan 01 20:15:01 CST 2000

t.gmt? → false

y = t.getgm → Sun Jan 02 02:15:01 UTC 2000

y.gmt? → true

t == y → true

getlocal time.getlocal→ time

1.8 Returns a new Time object representing time in local time (using the local time zone in

effect for this process).

t = Time.gm(2000,1,1,20,15,1) → Sat Jan 01 20:15:01 UTC 2000

t.gmt? → true

l = t.getlocal → Sat Jan 01 14:15:01 CST 2000

l.gmt? → false

t == l → true

getutc time.getutc→ time

1.8 Synonym for Time#getgm.

gmt? time.gmt?→ true or false

Returns true if time represents a time in UTC (GMT).

t = Time.now → Wed Sep 20 16:05:29 CDT 2006

t.gmt? → false

t = Time.gm(2000,1,1,20,15,1) → Sat Jan 01 20:15:01 UTC 2000

t.gmt? → true

gmtime time.gmtime→ time

Converts time to UTC (GMT), modifying the receiver.

t = Time.now → Wed Sep 20 16:05:29 CDT 2006

t.gmt? → false

t.gmtime → Wed Sep 20 21:05:29 UTC 2006

t.gmt? → true

gmt_offset time.gmt_offset→ int

1.8 Returns the offset in seconds between the timezone of time and UTC.

t = Time.gm(2000,1,1,20,15,1) → Sat Jan 01 20:15:01 UTC 2000

t.gmt_offset → 0

l = t.getlocal → Sat Jan 01 14:15:01 CST 2000

l.gmt_offset → 21600

Prepared exclusively for Jose Sierra

TIME 625

T
im

e

gmtoff time.gmtoff→ int

1.8 Synonym for Time#gmt_offset.

hour time.hour→ int

Returns the hour of the day (0..23) for time.

t = Time.now → Wed Sep 20 16:05:29 CDT 2006

t.hour → 16

isdst time.isdst→ true or false

Returns true if time occurs during Daylight Saving Time in its time zone.

Time.local(2000, 7, 1).isdst → true

Time.local(2000, 1, 1).isdst → false

localtime time.localtime→ time

Converts time to local time (using the local time zone in effect for this process) modi-

fying the receiver.

t = Time.gm(2000, "jan", 1, 20, 15, 1)

t.gmt? → true

t.localtime → Sat Jan 01 14:15:01 CST 2000

t.gmt? → false

mday time.mday→ int

Synonym for Time#day.

min time.min→ int

Returns the minute of the hour (0..59) for time.

t = Time.now → Wed Sep 20 16:05:29 CDT 2006

t.min → 5

mon time.mon→ int

Returns the month of the year (1..12) for time.

t = Time.now → Wed Sep 20 16:05:29 CDT 2006

t.mon → 9

month time.month→ int

Synonym for Time#mon.

Prepared exclusively for Jose Sierra

TIME 626

T
im

e

sec time.sec→ int

Returns the second of the minute (0..60)4 for time.

t = Time.now → Wed Sep 20 16:05:29 CDT 2006

t.sec → 29

strftime time.strftime(format)→ string

Formats time according to the directives in the given format string. See Table 27.15 on

the following page for the available values. Any text not listed as a directive will be

passed through to the output string.

t = Time.now

t.strftime("Printed on %m/%d/%Y") → "Printed on 09/20/2006"

t.strftime("at %I:%M%p") → "at 04:05PM"

to_a time.to_a→ array

Returns a ten-element array of values for time: [sec, min, hour, day, month, year,

wday, yday, isdst, zone]. See the individual methods for an explanation of the valid

ranges of each value. The ten elements can be passed directly to the methods Time.utc

or Time.local to create a new Time.

now = Time.now → Wed Sep 20 16:05:29 CDT 2006

t = now.to_a → [29, 5, 16, 20, 9, 2006, 3, 263, true, "CDT"]

to_f time.to_f→ float

Returns the value of time as a floating-point number of seconds since epoch.

t = Time.now

"%10.5f" % t.to_f → "1158786329.77723"

t.to_i → 1158786329

to_i time.to_i→ int

Returns the value of time as an integer number of seconds since epoch.

t = Time.now

"%10.5f" % t.to_f → "1158786329.79438"

t.to_i → 1158786329

to_s time.to_s→ string

Returns a string representing time. Equivalent to calling Time#strftime with a format

string of %a %b %d %H:%M:%S %Z %Y.

Time.now.to_s → "Wed Sep 20 16:05:29 CDT 2006"

4. Yes, seconds really can range from zero to 60. This allows the system to inject leap seconds every now

and then to correct for the fact that years are not really a convenient number of hours long.

Prepared exclusively for Jose Sierra

TIME 627

T
im

e

Table 27.15. Time#strftime directives

Format Meaning

%a The abbreviated weekday name (“Sun”)

%A The full weekday name (“Sunday”)

%b The abbreviated month name (“Jan”)

%B The full month name (“January”)

%c The preferred local date and time representation

%d Day of the month (01..31)

%H Hour of the day, 24-hour clock (00..23)

%I Hour of the day, 12-hour clock (01..12)

%j Day of the year (001..366)

%m Month of the year (01..12)

%M Minute of the hour (00..59)

%p Meridian indicator (“AM” or “PM”)

%S Second of the minute (00..60)

%U Week number of the current year, starting with the first Sunday as the first

day of the first week (00..53)

%W Week number of the current year, starting with the first Monday as the first

day of the first week (00..53)

%w Day of the week (Sunday is 0, 0..6)

%x Preferred representation for the date alone, no time

%X Preferred representation for the time alone, no date

%y Year without a century (00..99)

%Y Year with century

%Z Time zone name

%% Literal % character

tv_sec time.tv_sec→ int

Synonym for Time#to_i.

tv_usec time.tv_usec→ int

Synonym for Time#usec.

usec time.usec→ int

Returns just the number of microseconds for time.

t = Time.now → Wed Sep 20 16:05:29 CDT 2006

"%10.6f" % t.to_f → "1158786329.830959"

t.usec → 830959

Prepared exclusively for Jose Sierra

TIME 628

T
im

e

utc time.utc→ time

Synonym for Time#gmtime.

t = Time.now → Wed Sep 20 16:05:29 CDT 2006

t.utc? → false

t.utc → Wed Sep 20 21:05:29 UTC 2006

t.utc? → true

utc? time.utc?→ true or false

Returns true if time represents a time in UTC (GMT).

t = Time.now → Wed Sep 20 16:05:29 CDT 2006

t.utc? → false

t = Time.gm(2000,"jan",1,20,15,1) → Sat Jan 01 20:15:01 UTC 2000

t.utc? → true

utc_offset time.utc_offset→ int

1.8 Synonym for Time#gmt_offset.

wday time.wday→ int

Returns an integer representing the day of the week, 0..6, with Sunday == 0.

t = Time.now → Wed Sep 20 16:05:29 CDT 2006

t.wday → 3

yday time.yday→ int

Returns an integer representing the day of the year, 1..366.

t = Time.now → Wed Sep 20 16:05:29 CDT 2006

t.yday → 263

year time.year→ int

Returns the year for time (including the century).

t = Time.now → Wed Sep 20 16:05:29 CDT 2006

t.year → 2006

zone time.zone→ string

Returns the name of the time zone used for time. As of Ruby 1.8,1.8 returns “UTC” rather

than “GMT” for UTC times.

t = Time.gm(2000, "jan", 1, 20, 15, 1)

t.zone → "UTC"

t = Time.local(2000, "jan", 1, 20, 15, 1)

t.zone → "CST"

Prepared exclusively for Jose Sierra

TRUECLASS 629

T
ru

e
C

la
s
s

Class
TrueClass < Object

The global value true is the only instance of class TrueClass and represents a logi-

cally true value in boolean expressions. The class provides operators allowing true to

be used in logical expressions.

Instance methods

& true & obj→ true or false

And—Returns false if obj is nil or false, and returns true otherwise.

^ true ^ obj→ true or false

Exclusive Or—Returns true if obj is nil or false, and returns false otherwise.

| true | obj→ true

Or—Returns true. As obj is an argument to a method call, it is always evaluated;

short-circuit evaluation is not performed in this case.

true | puts("or")

true || puts("logical or")

produces:

or

Prepared exclusively for Jose Sierra

UNBOUNDMETHOD 630

U
n

b
o

u
n

d
M

e
th

o
d

Class
UnboundMethod < Object1.8
Ruby supports two forms of objectified methods.1.8 Class Method is used to represent

methods that are associated with a particular object: these method objects are bound to

that object. Bound method objects for an object can be created using Object#method.

Ruby also supports unbound methods, which are methods objects that are not associ-

ated with a particular object. These can be created either by calling unbind on a bound

method object or by calling Module#instance_method.

Unbound methods can be called only after they are bound to an object. That object

must be a kind_of? the method’s original class.

class Square

def area

@side * @side

end

def initialize(side)

@side = side

end

end

area_unbound = Square.instance_method(:area)

s = Square.new(12)

area = area_unbound.bind(s)

area.call → 144

Unbound methods are a reference to the method at the time it was objectified: subse-

quent changes to the underlying class will not affect the unbound method.

class Test

def test

:original

end

end

um = Test.instance_method(:test)

class Test

def test

:modified

end

end

t = Test.new

t.test → :modified

um.bind(t).call → :original

Prepared exclusively for Jose Sierra

UNBOUNDMETHOD 631

U
n

b
o

u
n

d
M

e
th

o
d

Instance methods

arity umeth.arity→ fixnum

See Method#arity on page 522.

bind umeth.bind(obj)→ method

1.8 Bind umeth to obj. If Klass was the class from which umeth was originally obtained,

obj.kind_of?(Klass) must be true.

class A

def test

puts "In test, class = #{self.class}"

end

end

class B < A

end

class C < B

end

um = B.instance_method(:test)

bm = um.bind(C.new)

bm.call

bm = um.bind(B.new)

bm.call

bm = um.bind(A.new)

bm.call

produces:

In test, class = C

In test, class = B

prog.rb:16:in `bind': bind argument must be an instance of B (TypeError)

from prog.rb:16

Prepared exclusively for Jose Sierra

Chapter 28

Standard Library

The Ruby interpreter comes with a large number of classes, modules, and methods built

in—they are available as part of the running program. When you need a facility that

isn’t part of the built-in repertoire, you’ll often find it in a library that you can require

into your program.

A large number of Ruby libraries are available on the Internet. Sites such as the Ruby

Application Archive1 and RubyForge2 have great indices and a lot of code.

However, Ruby also ships as standard with a large number of libraries. Some of these

are written in pure Ruby and will be available on all Ruby platforms. Others are Ruby

extensions, and some of these will be present only if your system supports the resources

that they need. All can be included into your Ruby program using require. And, unlike

libraries you may find on the Internet, you can pretty much guarantee that all Ruby users

will have these libraries already installed on their machines.

In this chapter, we present the standard libraries in a new smorgasbord format. Rather

than go into depth on a few libraries, this chapter presents the entire contents of the

standard library, one entry per page. For each library we give some introductory notes

and typically give an example or two of use. You won’t find detailed method descrip-

tions here: for that consult the library’s own documentation.

It’s all very well suggesting that you “consult the library’s own documentation,” but

where can you find it? The answer is “it depends.” Some libraries have already been

documented using RDoc (see Chapter 16). That means you can use the ri command to

get their documentation. For example, from a command line, you may be able to see

the following documentation on the decode64 method in the Base64 standard library

member.

1. http://raa.rubylang.org

2. http://rubyforge.org

632Prepared exclusively for Jose Sierra

http://raa.ruby-lang.org
http://rubyforge.org

633

% ri Base64.decode64

 Base64#decode64

decode64(str)

Returns the Base64decoded version of str.

require 'base64'

str = 'VGhpcyBpcyBsaW5lIG9uZQpUaGlzIG' +

'lzIGxpbmUgdHdvClRoaXMgaXMgbGlu' +

'ZSB0aHJlZQpBbmQgc28gb24uLi4K'

puts Base64.decode64(str)

Generates:

This is line one

This is line two

This is line three

And so on...

If there’s no RDoc documentation available, the next place to look is the library itself. If

you have a source distribution of Ruby, these are in the ext/ and lib/ subdirectories.

If instead you have a binary-only installation, you can still find the source of pure-

Ruby library modules (normally in the lib/ruby/1.8/ directory under your Ruby

installation). Often, library source directories contain documentation that the author

has not yet converted to RDoc format.

If you still can’t find documentation, turn to Google. Many of the Ruby standard

libraries are also hosted as external projects. The authors develop them stand-alone

and then periodically integrate the code into the standard Ruby distribution. For exam-

ple, if you want detailed information on the API for the YAML library, Googling “yaml

ruby” may lead you to http://yaml4r.sourceforge.net . After admiring why the

lucky stiff ’s artwork, a click will take you to his 40+ page reference manual.

The next port of call is the rubytalk mailing list. Ask a (polite) question there, and

chances are that you’ll get a knowledgeable response within hours. See page 759 for

pointers on how to subscribe.

And if you still can’t find documentation, you can always follow Obi Wan’s advice and

do what we did when documenting Ruby—use the source. You’d be surprised at how

easy it is to read the actual source of Ruby libraries and work out the details of usage.

Prepared exclusively for Jose Sierra

http://yaml4r.sourceforge.net

ABBREV 634

A
b
b

re
v

Library
Abbrev Generate Sets of Unique Abbreviations

Given a set of strings, calculate the set of unambiguous abbreviations for those strings,

and return a hash where the keys are all the possible abbreviations and the values are

the full strings. Thus, given input of “car” and “cone,” the keys pointing to “car” would

be “ca” and “car,” and those pointing to “cone” would be “co,” “con,” and “cone.”

An optional pattern or a string may be specified—only those input strings matching the

pattern, or beginning with the string, are considered for inclusion in the output hash.

Including the Abbrev library also adds an abbrev method to class Array.

• Show the abbreviation set of some words.

require 'abbrev'

Abbrev::abbrev(['ruby', 'rules']) → {"rules"=>"rules",

"ruby"=>"ruby",

"rul"=>"rules",

"rub"=>"ruby",

"rule"=>"rules"}

%w{ car cone }.abbrev → {"co"=>"cone",

"con"=>"cone",

"cone"=>"cone",

"ca"=>"car", "car"=>"car"}

%w{ car cone }.abbrev("ca") → {"ca"=>"car",

"car"=>"car"}

• A trivial command loop using abbreviations.

require 'abbrev'

COMMANDS = %w{ sample send start status stop }.abbrev

while line = gets

line = line.chomp

case COMMANDS[line]

when "sample": # ...

when "send": # ...

...

else

STDERR.puts "Unknown command: #{line}"

end

end

Prepared exclusively for Jose Sierra

BASE64 635

B
a

s
e

6
4Library

Base64 Base64 Conversion Functions

Perform encoding and decoding of binary data using a Base64 representation. This

allows you to represent any binary data in purely printable characters. The encoding is

specified in RFC 2045 (http://www.faqs.org/rfcs/rfc2045.html).

Prior to Ruby 1.8.2,1.8 these methods were added to the global namespace. This is now

deprecated; the methods should instead be accessed as members of the Base64 module.

• Decode an encoded string.

require 'base64'

str = 'VGhpcyBpcyBsaW5lIG9uZQpUaGlzIG' +

'lzIGxpbmUgdHdvClRoaXMgaXMgbGlu' +

'ZSB0aHJlZQpBbmQgc28gb24uLi4K'

puts Base64.decode64(str)

produces:

This is line one

This is line two

This is line three

And so on...

• Convert and return a string.

require 'base64'

puts Base64.encode64("Now is the time\nto learn Ruby")

produces:

Tm93IGlzIHRoZSB0aW1lCnRvIGxlYXJuIFJ1Ynk=

• Convert a string into Base64 and print it to STDOUT.

require 'base64'

Base64.b64encode("Now is the time\nto learn Ruby")

produces:

Tm93IGlzIHRoZSB0aW1lCnRvIGxlYXJuIFJ1Ynk=

Prepared exclusively for Jose Sierra

http://www.faqs.org/rfcs/rfc2045.html

BENCHMARK 636

B
e

n
c
h

m
a

rk

Library
Benchmark Time Code Execution

Allows code execution to be timed and the results tabulated. The Benchmark module

is easier to use if you include it in your top-level environment.

See also: Profile (page 696)

• Compare the costs of three kinds of method dispatch.

require 'benchmark'

include Benchmark

string = "Stormy Weather"

m = string.method(:length)

bm(6) do |x|

x.report("call") { 10_000.times { m.call } }

x.report("send") { 10_000.times { string.send(:length) } }

x.report("eval") { 10_000.times { eval "string.length" } }

end

produces:

user system total real

call 0.010000 0.000000 0.010000 (0.004429)

send 0.000000 0.000000 0.000000 (0.005263)

eval 0.050000 0.000000 0.050000 (0.050006)

• Which is better: reading all of a dictionary and splitting it, or splitting it line by

line? Use bmbm to run a rehearsal before doing the timing.

require 'benchmark'

include Benchmark

bmbm(6) do |x|

x.report("all") do

str = File.read("/usr/share/dict/words")

words = str.scan(/[\w']+/)

end

x.report("lines") do

words = []

File.foreach("/usr/share/dict/words") do |line|

words << line.chomp

end

end

end

produces:

Rehearsal

all 0.360000 0.030000 0.390000 (0.388434)

lines 0.550000 0.030000 0.580000 (0.583597)

 total: 0.970000sec

user system total real

all 0.340000 0.010000 0.350000 (0.342731)

lines 0.470000 0.010000 0.480000 (0.483922)

Prepared exclusively for Jose Sierra

BIGDECIMAL 637

B
ig

D
e

c
im

a
l

Library
BigDecimal Large-Precision Decimal Numbers

Ruby’s standard Bignum class supports integers with large numbers of digits. The

BigDecimal class supports decimal numbers with large numbers of decimal places.

The standard library supports all the normal arithmetic operations. BigDecimal also

comes with some extension libraries.

bigdecimal/ludcmp

Performs an LU decomposition of a matrix.

bigdecimal/math

Provides the transcendental functions sqrt, sin, cos, atan, exp, and log, along

with functions for computing PI and E. All functions take an arbitrary precision

argument.

bigdecimal/jacobian

Constructs the Jacobian (a matrix enumerating the partial derivatives) of a given

function. Not dependent on BigDecimal.

bigdecimal/newton

Solves the roots of nonlinear function using Newton’s method. Not dependent on

BigDecimal.

bigdecimal/nlsolve

Wraps the bigdecimal/newton library for equations of BigDecimals.

You can find English-language documentation in the Ruby source distribution in the

file ext/bigdecimal/bigdecimal_en.html.

require 'bigdecimal'

require 'bigdecimal/math'

include BigMath

pi = BigMath::PI(20) # 20 is the number of decimal digits

radius = BigDecimal("2.14156987652974674392")

area = pi * radius**2

area.to_s → "0.14408354044685604417672003380667956168

8599846410445032583215824758780405545861

780909930190528E2"

The same with regular floats

radius = 2.14156987652974674392

Math::PI * radius**2 → 14.4083540446856

Prepared exclusively for Jose Sierra

CGI 638

C
G

I

Library
CGI CGI Programming Support

The CGI class provides support for programs used as CGI (Common Gateway Interface)

scripts in a Web server. CGI objects are initialized with data from the environment

and from the HTTP request, and they provide convenient accessors to form data and

cookies. They can also manage sessions using a variety of storage mechanisms. Class

CGI also provides basic facilities for HTML generation and class methods to escape

and unescape requests and HTML.

Note:1.8 The 1.8 implementation of CGI introduces a change in the way form data is

accessed. See the ri documentation of CGI#[] and CGI#params for details.

See also: CGI::Session (page 640)

• Escape and unescape special characters in URLs and HTML. If the $KCODE vari-

able is set to "u" (for UTF8), the library will convert from HTML’s Unicode to

internal UTF8.

require 'cgi'

CGI.escape('c:\My Files') → c%3A%5CMy+Files

CGI.unescape('c%3a%5cMy+Files') → c:\My Files

CGI::escapeHTML('"a"<b & c') → "a"<b & c

$KCODE = "u" # Use UTF8

CGI.unescapeHTML('"a"<=>b') → "a"<=>b

CGI.unescapeHTML('AA') → AA

CGI.unescapeHTML('πr²') → πr2

• Access information from the incoming request.

require 'cgi'

c = CGI.new

c.auth_type → "basic"

c.user_agent → "Mozscape Explorari V5.6"

• Access form fields from an incoming request. Assume the following script is

installed as test.cgi and the user linked to it using http://mydomain.com/

test.cgi?fred=10&barney=cat.

require 'cgi'

c = CGI.new

c['fred'] → "10"

c.keys → ["barney", "fred"]

c.params → {"barney"=>["cat"], "fred"=>["10"]}

• If a form contains multiple fields with the same name, the corresponding values

will be returned to the script as an array. The [] accessor returns just the first of

these—index the result of the params method to get them all. In this example,

assume the form has three fields called “name.”

Prepared exclusively for Jose Sierra

CGI 639

C
G

I

require 'cgi'

c = CGI.new

c['name'] → "fred"

c.params['name'] → ["fred", "wilma", "barney"]

c.keys → ["name"]

c.params → {"name"=>["fred", "wilma", "barney"]}

• Send a response to the browser. (Not many folks use this form of HTML genera-

tion. Consider one of the templating libraries—see page 226.)

require 'cgi'

cgi = CGI.new("html4Tr")

cgi.header("type" => "text/html", "expires" => Time.now + 30)

cgi.out do

cgi.html do

cgi.head{ cgi.title{"Hello World!"} } +

cgi.body do

cgi.pre do

CGI::escapeHTML(

"params: " + cgi.params.inspect + "\n" +

"cookies: " + cgi.cookies.inspect + "\n")

end

end

end

end

• Store a cookie in the client browser.

require 'cgi'

cgi = CGI.new("html4")

cookie = CGI::Cookie.new('name' => 'mycookie',

'value' => 'chocolate chip',

'expires' => Time.now + 3600)

cgi.out('cookie' => cookie) do

cgi.head + cgi.body { "Cookie stored" }

end

• Retrieve a previously stored cookie.

require 'cgi'

cgi = CGI.new("html4")

cookie = cgi.cookies['mycookie']

cgi.out('cookie' => cookie) do

cgi.head + cgi.body { "Flavor: " + cookie[0] }

end

Prepared exclusively for Jose Sierra

CGI::SESSION 640

C
G

I:
:S

e
s
s
io

nLibrary
CGI::Session CGI Sessions

A CGI::Session maintains a persistent state for Web users in a CGI environment.

Sessions may be memory resident or may be stored on disk. See the discussion on

page 233 for details.

See also: CGI (page 638)

require 'cgi'

require 'cgi/session'

cgi = CGI.new("html3")

sess = CGI::Session.new(cgi,

"session_key" => "rubyweb",

"prefix" => "websession."

)

if sess['lastaccess']

msg = "You were last here #{sess['lastaccess']}."

else

msg = "Looks like you haven't been here for a while"

end

count = (sess["accesscount"] || 0).to_i

count += 1

msg << "<p>Number of visits: #{count}"

sess["accesscount"] = count

sess["lastaccess"] = Time.now.to_s

sess.close

cgi.out {

cgi.html {

cgi.body {

msg

}

}

}

Prepared exclusively for Jose Sierra

COMPLEX 641

C
o

m
p

le
x

Library
Complex Complex Numbers

Class Complex represents complex numbers. As well as the methods here, including

class Complex in your program alters class Numeric (and subclasses) in order to give

the illusion that all numbers are complex (by giving them the methods real, image,

arg, polar, conjugate, and power!).

require 'complex'

include Math

v1 = Complex(2,3) → Complex(2, 3)

v2 = 2.im → Complex(0, 2)

v1 + v2 → Complex(2, 5)

v1 * v2 → Complex(6, 4)

v2**2 → Complex(4, 0)

cos(v1) → Complex(4.18962569096881, 9.10922789375534)

v1 < v2 → false

v2**2 == 4 → true

Euler's theorem

E**(PI*Complex::I) → Complex(1.0, 1.22464679914735e16)

Prepared exclusively for Jose Sierra

CSV 642

C
S

V

Library
CSV Comma-Separated Values

Comma-separated data files are often used to transfer tabular information (and are a

lingua franca for importing and exporting spreadsheet and database information).

Ruby’s CSV library deals with arrays (corresponding to the rows in the CSV file) and

strings (corresponding to the elements in a row). If an element in a row is missing, it

will be represented as a nil in Ruby.

The files used in the following examples are:

csvfile:
12,eggs,2.89,

2,"shirt, blue",21.45,special

1,"""Hello Kitty"" bag",13.99

csvfile_hdr:
Count, Description, Price

12,eggs,2.89,

2,"shirt, blue",21.45,special

1,"""Hello Kitty"" bag",13.99

• Read a file containing CSV data and process line-by-line.

require 'csv'

CSV.open("csvfile", "r") do |row|

qty = row[0].to_i

price = row[2].to_f

printf "%20s: $%5.2f %s\n", row[1], qty*price, row[3] || " "

end

produces:

eggs: $34.68

shirt, blue: $42.90 special

"Hello Kitty" bag: $13.99

• Some CSV files have a header line. Read it, and then process the rest of the file.

require 'csv'

reader = CSV.open("csvfile_hdr", "r")

header = reader.shift

reader.each {|row| process(header, row) }

• Write CSV data to an existing open stream (STDOUT in this case). Use | as the

column separator.

require 'csv'

CSV::Writer.generate(STDOUT, '|') do |csv|

csv << [1, "line 1", 27]

csv << [2, nil, 123]

csv << [3, "|bar|", 32.5]

end

produces:

1|line 1|27

2||123

3|"|bar|"|32.5

Prepared exclusively for Jose Sierra

CURSES 643

C
u

rs
e

s

Library
Curses CRT Screen Handling

The Curses library is a fairly thin wrapper around the C curses or ncurses libraries,Only if: curses or

ncurses installed in

target environment allowing applications a device-independent way of drawing on consoles and other

terminal-like devices. As a nod toward object-orientation, curses windows and mouse

events are represented as Ruby objects. Otherwise, the standard curses calls and con-

stants are simply defined in the Curses module.

Draw the paddle of a simple game of 'pong'. It moves

in response to the up and down keys

require 'curses'

include Curses

class Paddle

HEIGHT = 4

PADDLE = " \n" + "|\n"*HEIGHT + " "

def initialize

@top = (Curses::lines HEIGHT)/2

draw

end

def up

@top = 1 if @top > 1

end

def down

@top += 1 if (@top + HEIGHT + 1) < lines

end

def draw

setpos(@top1, 0)

addstr(PADDLE)

refresh

end

end

init_screen

begin

crmode

noecho

stdscr.keypad(true)

paddle = Paddle.new

loop do

case getch

when ?Q, ?q : break

when Key::UP : paddle.up

when Key::DOWN : paddle.down

else beep

end

paddle.draw

end

ensure

close_screen

end

Prepared exclusively for Jose Sierra

DATE/DATETIME 644

D
a

te
/D

a
te

T
im

e

Library
Date/DateTime Date and Time Manipulation

The date library implements classes Date and DateTime, which provide a compre-

hensive set of facilities for storing, manipulating, and converting dates with or without

time components. The classes can represent and manipulate civil, ordinal, commercial,

Julian, and standard dates, starting January 1, 4713 BCE. The DateTime class extends

Date with hours, minutes, seconds, and fractional seconds, and it provides some sup-

port for time zones. The classes also provide support for parsing and formatting date

and datetime strings. The classes have a rich interface—consult the ri documentation

for details. The introductory notes in the file lib/date.rb are also well worth reading.

See also: ParseDate (page 692)

• Experiment with various representations

require 'date'

d = Date.new(2000, 3, 31) → #<Date:

4903269/2,0,2299161>

[d.year, d.yday, d.wday] → [2000, 91, 5]

[d.month, d.mday] → [3, 31]

[d.cwyear, d.cweek, d.cwday] → [2000, 13, 5]

[d.jd, d.mjd] → [2451635, 51634]

d1 = Date.commercial(2000, 13, 7) → #<Date:

4903273/2,0,2299161>

d1.to_s → "20000402"

[d1.cwday, d1.wday] → [7, 0]

• Essential information about Christmas.

require 'date'

now = DateTime.now

year = now.year

year += 1 if now.month == 12 && now.day > 25

xmas = DateTime.new(year, 12, 25)

diff = xmas now

puts "It's #{diff.to_i} days to Christmas"

h,m,s,frac = Date.day_fraction_to_time(diff)

s += frac.to_f

puts "That's #{h} hours, #{m} minutes, #{s} seconds"

puts "Christmas falls on a #{xmas.strftime('%A')}"

produces:

It's 95 days to Christmas

That's 2282 hours, 54 minutes, 15.0000093392245 seconds

Christmas falls on a Monday

Prepared exclusively for Jose Sierra

DBM 645

D
B

M

Library
DBM Interface to DBM Databases

DBM files implement simple, hashlike persistent stores. Many DBM implementationsOnly if: a DBM

library is installed

in target

environment

exist—the Ruby library can be configured to use one of the DBM libraries db, dbm

(ndbm), gdbm, and qdbm. The interface to DBM files is similar to class Hash, except

that DBM keys and values will be strings. This can cause confusion, as the conversion

to a string is performed silently when the data is written. The DBM library is a wrapper

around the lower-level access method. For true low-level access, see also the GDBM

and SDBM libraries.

See also: gdbm (page 661), sdbm (page 709)

• Create a simple DBM file, then re-open it read-only and read some data. Note the

conversion of a date object to its string form.

require 'dbm'

require 'date'

DBM.open("data.dbm") do |dbm|

dbm['name'] = "Walter Wombat"

dbm['dob'] = Date.new(1997, 12,25)

end

DBM.open("data.dbm", nil, DBM::READER) do |dbm|

p dbm.keys

p dbm['dob']

p dbm['dob'].class

end

produces:

["name", "dob"]

"19971225"

String

• Read from the system’s aliases file. Note the trailing null bytes on all strings.

require 'dbm'

DBM.open("/etc/aliases", nil) do |dbm|

p dbm.keys

p dbm["postfix\000"]

end

produces:

["postmaster\000", "daemon\000", "ftpbugs\000",

"operator\000", "abuse\000", "decode\000", "@\000",

"mailerdaemon\000", "bin\000", "named\000", "nobody\

000", "uucp\000", "www\000", "postfix\000", "manager\

000", "dumper\000"]

"root\000"

Prepared exclusively for Jose Sierra

DELEGATOR 646

D
e

le
g

a
to

r

Library
Delegator Delegate Calls to Other Object

Object delegation is a way of composing objects—extending an object with the capa-

bilities of another—at runtime. The Ruby Delegator class implements a simple but

powerful delegation scheme, where requests are automatically forwarded from a master

class to delegates or their ancestors and where the delegate can be changed at runtime

with a single method call.

See also: Forwardable (page 659)

• For simple cases where the class of the delegate is fixed, make the master class

a subclass of DelegateClass, passing the name of the class to be delegated as a

parameter. In the master class’s initialize method, pass the object to be dele-

gated to the superclass.

require 'delegate'

class Words < DelegateClass(Array)

def initialize(list = "/usr/share/dict/words")

words = File.read(list).split

super(words)

end

end

words = Words.new

words[9999] → "anticritique"

words.size → 234937

words.grep(/matz/) → ["matzo", "matzoon", "matzos", "matzoth"]

• Use SimpleDelegator to delegate to a particular object (which can be changed).

require 'delegate'

words = File.read("/usr/share/dict/words").split

names = File.read("/usr/share/dict/propernames").split

stats = SimpleDelegator.new(words)

stats.size → 234937

stats[226] → "abidingly"

stats.__setobj__(names)

stats.size → 1323

stats[226] → "Dave"

Prepared exclusively for Jose Sierra

DIGEST 647

D
ig

e
s
t

Library
Digest MD5, RIPEMD-160 SHA1, and SHA2 Digests

The Digest module is the home for a number of classes that implement secure digest

algorithms: MD5, RIPEMD-160, SHA1, and SHA2 (256, 384, and 512 bit). The inter-

face to all these classes is identical.

• You can create a binary or hex digest for a given string by calling the class method

digest or hexdigest.

• You can also create an object (optionally passing in an initial string) and determine

the object’s hash by calling the digest or hexdigest instance methods. In this

case you can then append to the string using the update method and then recover

an updated hash value.

• Calculate some MD5 and SHA1 hashes.

require 'digest/md5'

require 'digest/sha1'

for hash_class in [Digest::MD5, Digest::SHA1]

puts "Using #{hash_class.name}"

Calculate directly

puts hash_class.hexdigest("hello world")

Or by accumulating

digest = hash_class.new

digest << "hello"

digest << " "

digest << "world"

puts digest.hexdigest

puts

end

produces:

Using Digest::MD5

5eb63bbbe01eeed093cb22bb8f5acdc3

5eb63bbbe01eeed093cb22bb8f5acdc3

Using Digest::SHA1

2aae6c35c94fcfb415dbe95f408b9ce91ee846ed

2aae6c35c94fcfb415dbe95f408b9ce91ee846ed

Prepared exclusively for Jose Sierra

DL 648

D
L

Library
DL Access Dynamically Loaded Libraries (.dll and .so)

The DL module interfaces to the underlying operating system’s dynamic loading capa-Only if: Windows,

or system supports

dl library bilities. On Windows boxes, it can be used to interface with functions in DLLs (replac-

ing the Win32API class—see dl/win32 for a compatible wrapper library). Under Unix

it can load shared libraries. Because Ruby does not have typed method parameters or

return values, you must define the types expected by the methods you call by specify-

ing their signatures. This can be done using a C-like syntax (if you use the high-level

methods in dl/import) or using explicit type specifiers in the lower-level DL module.

Good documentation is provided in the source tree’s ext/dl/doc/ directory.

See also: Win32API (page 734)

• Here’s a trivial C program that we’ll build as a shared library.

#include <stdio.h>

int print_msg(text, number) {

return printf("Text: %s (%d)\n", text, number);

}

• Generate a proxy to access the print_msg method in the shared library. The way

this book is built, the shared library is in the subdirectory code/dl; this directory

must be added to the directories searched when looking for dynamic objects.

require 'dl'

Message = DL.dlopen("code/dl/lib.so")

print_msg = Message["print_msg", "ISI"]

msg_size, args = print_msg.call("Answer", 42)

puts "Just wrote #{msg_size} bytes"

produces:

Text: Answer (42)

Just wrote 18 bytes

• We can also wrap the method in a module. Here we use an environment variable

to set the path to the shared object. This is operating system specific.

ENV['DYLD_LIBRARY_PATH'] = ":code/dl" # Mac OS X

require 'dl/import'

module Message

extend DL::Importable

dlload "lib.so"

extern "int print_msg(char *, int)"

end

msg_size = Message.print_msg("Answer", 42)

puts "Just wrote #{msg_size} bytes"

produces:

Text: Answer (42)

Just wrote 18 bytes

Prepared exclusively for Jose Sierra

DRUBY 649

D
R

u
b
y

Library
dRuby Distributed Ruby Objects (drb)

dRuby allows Ruby objects to be distributed across a network connection. Although

expressed in terms of clients and servers, once the initial connection is established, the

protocol is effectively symmetrical: either side can invoke methods in objects on the

other side. Normally, objects passed and returned by remote calls are passed by value;

including the DRbUndumped module in an object forces it to be passed by reference

(useful when implementing callbacks).

See also: Rinda (page 706), XMLRPC (page 736)

• This server program is observable—it notifies all registered listeners of changes

to a count value.

require 'drb'

require 'drb/observer'

class Counter

include DRb::DRbObservable

def run

5.times do |count|

changed

notify_observers(count)

end

end

end

counter = Counter.new

DRb.start_service('druby://localhost:9001', counter)

DRb.thread.join

• This client program interacts with the server, registering a listener object to receive

callbacks before invoking the server’s run method.

require 'drb'

class Listener

include DRbUndumped

def update(value)

puts value

end

end

DRb.start_service

counter = DRbObject.new(nil, "druby://localhost:9001")

listener = Listener.new

counter.add_observer(listener)

counter.run

Prepared exclusively for Jose Sierra

ENGLISH 650

E
n

g
lis

h

Library
English English Names For Global Symbols

Include the English library file in a Ruby script, and you can reference the global vari-

ables such as $_ using less-cryptic names, listed in the following table.

$* $ARGV $" $LOADED_FEATURES

$? $CHILD_STATUS $& $MATCH

$< $DEFAULT_INPUT $. $NR

$> $DEFAULT_OUTPUT $, $OFS

$! $ERROR_INFO $\ $ORS

$@ $ERROR_POSITION $, $OUTPUT_FIELD_SEPARATOR

$; $FIELD_SEPARATOR $\ $OUTPUT_RECORD_SEPARATOR

$; $FS $$ $PID

$= $IGNORECASE $' $POSTMATCH

$. $INPUT_LINE_NUMBER $` $PREMATCH

$/ $INPUT_RECORD_SEPARATOR $$ $PROCESS_ID

$~ $LAST_MATCH_INFO $0 $PROGRAM_NAME

$+ $LAST_PAREN_MATCH $/ $RS

$_ $LAST_READ_LINE

require 'English'

$OUTPUT_FIELD_SEPARATOR = ' '

"waterbuffalo" =~ /buff/

print $LOADED_FEATURES, $POSTMATCH, $PID, "\n"

print $", $', $$, "\n"

produces:

English.rb alo 17185

English.rb alo 17185

Prepared exclusively for Jose Sierra

ENUMERATOR 651

E
n
u

m
e

ra
to

r

Library
Enumerator Define External Iterators

The Ruby convention is that enumerable objects should define a method called each

that returns the contents one item at a time. This each method is used as the basis of the

Enumerable module, as well as the built-in for loop. Even if a class defines multiple

enumeration methods, Enumerable can only use each.

The Enumerator module creates a new iterable object based on an existing object,

mapping the each method in the new object to an arbitrary method in the original. This

allows you to use standard Ruby enumeration techniques on arbitrary methods.

See also: Enumerable (page 433), Generator (page 662)

• Define an external iterator that returns all the keys in a hash.

require 'enumerator'

hash = { "cow" => "bovine", "cat" => "feline", "dog" => "canine" }

key_iter = Enumerable::Enumerator.new(hash, :each_key)

puts "Max key is #{key_iter.max}"

for key in key_iter

puts "Key is #{key}"

end

produces:

Max key is dog

Key is cat

Key is cow

Key is dog

• Methods to_enum and enum_for also create Enumerator objects.

require 'enumerator'

hash = { "cow" => "bovine", "cat" => "feline", "dog" => "canine" }

key_iter = hash.enum_for(:each_key)

key_iter.min → "cat"

key_iter.max → "dog"

• Methods each_slice and each_cons return elements from an enumeration n

elements at a time. each_slice returns disjoint sets, and each_cons returns a

moving window over the collection.

require 'enumerator'

(1..7).each_slice(3) {|slice| print slice.inspect, " " }

puts

(1..7).each_cons(3) {|cons| print cons.inspect, " " }

produces:

[1, 2, 3] [4, 5, 6] [7]

[1, 2, 3] [2, 3, 4] [3, 4, 5] [4, 5, 6] [5, 6, 7]

Prepared exclusively for Jose Sierra

ERB 652

E
rb

Library
erb Lightweight Templating for HTML

ERB is a lightweight templating system, allowing you to intermix Ruby code and plain

text. This is sometimes a convenient way to create HTML documents but also is usable

in other plain-text situations. For other templating solutions, see 226.

ERB breaks its input text into checks of regular text and program fragments. It then

builds a Ruby program that, when run, outputs the result text and executes the program

fragments. Program fragments are enclosed between <% and %> markers. The exact

interpretation of these fragments depends on the character following the opening <%, as

shown in Table 28.1 on the next page.

require 'erb'

input = %{\

<% high.downto(low) do |n| # set high, low externally %>

<%= n %> green bottles, hanging on the wall

<%= n %> green bottles, hanging on the wall

And if one green bottle should accidentally fall

There'd be <%= n1 %> green bottles, hanging on the wall

<% end %>

}

high,low = 10, 8

erb = ERB.new(input)

erb.run

produces:

10 green bottles, hanging on the wall

10 green bottles, hanging on the wall

And if one green bottle should accidentally fall

There'd be 9 green bottles, hanging on the wall

. . .

An optional second parameter to ERB.new sets the safe level for evaluating expres-

sions. If nil, expressions are evaluated in the current thread; otherwise a new thread is

created, and its $SAFE level is set to the parameter value.

The optional third parameter to ERB.new allows some control of the interpretation of

the input and of the way whitespace is added to the output. If the third parameter is

a string, and that string contains a percent sign, then ERB treats lines starting with a

percent sign specially. Lines starting with a single percent sign are treated as if they

were enclosed in <%. . .%>. Lines starting with a double percent sign are copied to the

output with a single leading percent sign.

str = %{\

% 2.times do |i|

This is line <%= i %>

%end

%% done}

ERB.new(str, 0, '%').run

⇒
produces:

This is line 0

This is line 1

% done

Prepared exclusively for Jose Sierra

ERB 653

E
rb

Table 28.1. Directives for ERB

Sequence Action

<% ruby code %> Insert the given Ruby code at this point in the generated pro-

gram. If it outputs anything, include this output in the result.

<%= ruby expression %> Evaluate expression and insert its value in the output of the

generated program.

<%# . . . %> Comment (ignored).

<%% and %%> Replaced in the output by <% and%> respectively.

If the third parameter contains the string <> then a newline will not be written if an

input line starts with an ERB directive and ends with %>. If the trim parameter contains

>, then a newline will not be written if an input line ends %>.

str1 = %{\

* <%= "cat" %>

<%= "dog" %>

}

ERB.new(str1, 0, ">").run

ERB.new(str1, 0, "<>").run

produces:

* catdog* cat

dog

The erb library also defines the helper module ERB::Util that contains two methods:

html_escape (aliased as h) and url_encode (aliased as u). These are equivalent to the

CGI methods escapeHTML and escape, respectively (except escape encodes spaces as

plus signs, and url_encode uses %20).

include ERB::Util

str1 = %{\

h(a) = <%= h(a) %>

u(a) = <%= u(a) %>

}

a = "< a & b >"

ERB.new(str1).run

produces:

h(a) = < a & b >

u(a) = %3C%20a%20%26%20b%20%3E

You may find the command-line utility erb is supplied with your Ruby distribution.

This allows you to run erb substitutions on an input file; see erb help for details.

Prepared exclusively for Jose Sierra

ETC 654

E
tc

Library
Etc Access User and Group Information in /etc/passwd

The Etc module provides a number of methods for querying the passwd and groupOnly if: Unix or

Cygwin

facilities on Unix systems.

• Find out information about the currently logged-in user.

require 'etc'

name = Etc.getlogin

info = Etc.getpwnam(name)

info.name → "root"

info.uid → 0

info.dir → "/var/root"

info.shell → "/bin/sh"

group = Etc.getgrgid(info.gid)

group.name → "wheel"

• Return the names of all users and groups on the system used to create this book.

require 'etc'

users = []

Etc.passwd {|passwd| users << passwd.name }

users.join(", ") → "nobody, root, daemon, unknown, lp,

postfix, www, eppc, mysql, sshd, qtss,

cyrusimap, mailman, appserver, clamav,

amavisd, jabber, xgridcontroller,

xgridagent, appowner, windowserver,

tokend, securityagent, smmsp, cyrus,

testuser, dave, juliet"

groups = []

Etc.group {|group| groups << group.name }

groups.join(", ") → "nobody, nogroup, wheel, daemon, kmem,

sys, tty, operator, mail, bin, staff, lp,

postfix, postdrop, certusers, utmp, uucp,

dialer, network, www, mysql, sshd, qtss,

mailman, appserverusr, admin,

appserveradm, clamav, amavisd, jabber,

xgridcontroller, xgridagent, appowner,

windowserver, accessibility, tokend,

securityagent, unknown, smmsp, guest,

testuser, dave, everyone, authedusers,

interactusers, netusers, consoleusers,

owner, group"

Prepared exclusively for Jose Sierra

EXPECT 655

E
x
p

e
c
t

Library
expect Expect Method for IO Objects

The expect library adds the method expect to all IO objects. This allows you to write

code that waits for a particular string or pattern to be available from the I/O stream. The

expect method is particularly useful with pty objects (see page 699) and with network

connections to remote servers, where it can be used to coordinate the use of external

interactive processes.

If the global variable $expect_verbose is true, the expect method writes all char-

acters read from the I/O stream to STDOUT.

See also: pty (page 699)

• Connect to the local FTP server, log in, and print out the name of the user’s direc-

tory. (Note that it would be a lot easier to do this using the net/ftp library.)

This code might be specific to the particular

ftp daemon.

require 'expect'

require 'socket'

$expect_verbose = true

socket = TCPSocket.new('localhost', 'ftp')

socket.expect("ready")

socket.puts("user testuser")

socket.expect("Password required for testuser")

socket.puts("pass secret")

socket.expect("logged in.\r\n")

socket.puts("pwd")

puts(socket.gets)

socket.puts "quit"

produces:

220 localhost FTP server (tnftpd 20040810) ready.

331 Password required for testuser.

230

Welcome to Darwin!

230 User testuser logged in.

257 "/Users/testuser" is the current directory.

Prepared exclusively for Jose Sierra

FCNTL 656

F
c
n

tl

Library
Fcntl Symbolic Names for IO#fcntl Commands

The Fcntl module provides symbolic names for each of the host system’s available

fcntl constants (defined in fcntl.h). That is, if the host system has a constant named

F_GETLK defined in fcntl.h, then the Fcntl module will have a corresponding con-

stant Fcntl::F_GETLK with the same value as the header file’s #define.

• Different operating system will have different Fcntl constants available. The

value associated with a constant of a given name may also differ across platforms.

Here are the values on my Mac OS X system.

require 'fcntl'

Fcntl.constants.sort.each do |name|

printf "%10s: %04x\n", name, Fcntl.const_get(name)

end

produces:

FD_CLOEXEC: 0001

F_DUPFD: 0000

F_GETFD: 0001

F_GETFL: 0003

F_GETLK: 0007

F_RDLCK: 0001

F_SETFD: 0002

F_SETFL: 0004

F_SETLK: 0008

F_SETLKW: 0009

F_UNLCK: 0002

F_WRLCK: 0003

O_ACCMODE: 0003

O_APPEND: 0008

O_CREAT: 0200

O_EXCL: 0800

O_NDELAY: 0004

O_NOCTTY: 0000

O_NONBLOCK: 0004

O_RDONLY: 0000

O_RDWR: 0002

O_TRUNC: 0400

O_WRONLY: 0001

Prepared exclusively for Jose Sierra

FILEUTILS 657

F
ile

U
ti
ls

Library
FileUtils File and Directory Manipulation

FileUtils is a collection of methods for manipulating files and directories. Although

generally applicable, the model is particularly useful when writing installation scripts.

Many methods take a src and a dest parameter. If dest is a directory, then src may be a

single filename or an array of filenames. For example, the following copies the files a,

b, and c to /tmp.

cp(%w{ a b c }, "/tmp")

Most functions take a set of options. These may be zero or more of

Option Meaning

:verbose Trace execution of each function (by default to STDERR, although this can

be overridden by setting the class variable @fileutils_output).

:noop Do not perform the action of the function (useful for testing scripts).

:force Override some default conservative behavior of the method (for example

overwriting an existing file).

:preserve Attempt to preserve atime, mtime, and mode information from src in dest.

(Setuid and setgid flags are always cleared.)

For maximum portability, use forward slashes to separate the directory components of

filenames, even on Windows.

FileUtils contains three submodules which duplicate the top-level methods but with

different default options: module FileUtils::Verbose sets the verbose option, mod-

ule FileUtils::NoWrite sets noop, and FileUtils::DryRun1.8 sets verbose and noop.

See also: un (page 730)

require 'fileutils'

include FileUtils::Verbose

cd("/tmp") do

cp("/etc/passwd", "tmp_passwd")

chmod(0666, "tmp_passwd")

cp_r("/usr/include/net/", "headers")

rm("tmp_passwd") # Tidy up

rm_rf("headers")

end

produces:

cd /tmp

cp /etc/passwd tmp_passwd

chmod 666 tmp_passwd

cp r /usr/include/net/ headers

rm tmp_passwd

rm rf headers

cd

Prepared exclusively for Jose Sierra

FIND 658

F
in

d

Library
Find Traverse Directory Trees

The Find module supports the top-down traversal of a set of file paths, given as argu-

ments to the find method. If an argument is a file, its name is passed to the block. If

it’s a directory, then its name and the name of all its files and subdirectories will be

passed in.

Within the block, the method prune may be called, which skips the current file or

directory, restarting the loop with the next directory. If the current file is a directory,

that directory will not be recursively entered.

require 'find'

Find.find("/etc/passwd", "code/cdjukebox") do |f|

type = case

when File.file?(f): "F"

when File.directory?(f): "D"

else "?"

end

puts "#{type}: #{f}"

Find.prune if f =~ /CVS/

end

produces:

F: /etc/passwd

D: code/cdjukebox

F: code/cdjukebox/Makefile

F: code/cdjukebox/libcdjukebox.a

D: code/cdjukebox/CVS

F: code/cdjukebox/cdjukebox.o

F: code/cdjukebox/cdjukebox.h

F: code/cdjukebox/cdjukebox.c

Prepared exclusively for Jose Sierra

FORWARDABLE 659

F
o

rw
a

rd
a

b
le

Library
Forwardable Object Delegation

Forwardable provides a mechanism to allow classes to delegate named method calls

to other objects.

See also: Delegator (page 646)

• This simple symbol table uses a hash, exposing a subset of the hash’s methods.

require 'forwardable'

class SymbolTable

extend Forwardable

def_delegator(:@hash, :[], :lookup)

def_delegator(:@hash, :[]=, :add)

def_delegators(:@hash, :size, :has_key?)

def initialize

@hash = Hash.new

end

end

st = SymbolTable.new

st.add('cat', 'feline animal') → "feline animal"

st.add('dog', 'canine animal') → "canine animal"

st.add('cow', 'bovine animal') → "bovine animal"

st.has_key?('cow') → true

st.lookup('dog') → "canine animal"

• Forwards can also be defined for individual objects by extending them with the

SingleForwardable module. It’s hard to think of a good reason to use this fea-

ture, so here’s a silly one. . . .

require 'forwardable'

TRICKS = ["roll over", "play dead"]

dog = "rover"

dog.extend SingleForwardable

dog.def_delegator(:TRICKS, :each, :can)

dog.can do |trick|

puts trick

end

produces:

roll over

play dead

Prepared exclusively for Jose Sierra

FTOOLS 660

F
to

o
ls

Library
ftools Extra Tools for Class File

The ftools library adds methods to class File, primarily aimed at programs that move

and copy files, such as installers. The FileUtils library is now recommended over

ftools.

See also: fileutils (page 657)

• Install the file testfile into the /tmp directory. Don’t bother copying the file if

the target already exists and is the same as the original.

require 'ftools'

def install_if_different(source, dest)

if File.exist?(dest) && File.compare(source, dest)

puts "#{dest} is up to date"

else

File.copy(source, dest)

puts "#{source} copied to #{dest}"

end

end

install_if_different('testfile', '/tmp/testfile')

puts "Second time..."

install_if_different('testfile', '/tmp/testfile')

puts "Done"

produces:

testfile copied to /tmp/testfile

Second time...

/tmp/testfile is up to date

Done

• Do the same (with slightly different logging) using FTool’s install method.

require 'ftools'

File.install('testfile', '/tmp', 0644, true)

puts "Second time..."

File.install('testfile', '/tmp', 0644, true)

puts "Done"

produces:

testfile > /tmp/testfile

chmod 0644 /tmp/testfile

Second time...

Done

Prepared exclusively for Jose Sierra

GDBM 661

G
D

B
M

Library
GDBM Interface to GDBM Database

Interfaces to the gdbm database library.3 Although the DBM library provides genericOnly if: gdbm

library available

access to gdbm databases, it doesn’t expose some features of the full gdbm inter-

face. The GDBM library gives you access to underlying gdbm features such as the cache

size, synchronization mode, reorganization, and locking. Only one process may have a

GDBM database open for writing (unless locking is disabled).

See also: DBM (page 645), SDBM (page 709)

• Store some values into a database, and then read them back. The second parameter

to the open method specifies the file mode, and the next parameter uses two flags

which (1) create the database if it doesn’t exist, and (2) force all writes to be

synced to disk. Create on open is the default Ruby gdbm behavior.

require 'gdbm'

GDBM.open("data.dbm", 0644, GDBM::WRCREAT | GDBM::SYNC) do |dbm|

dbm['name'] = "Walter Wombat"

dbm['dob'] = "19691225"

dbm['uses'] = "Ruby"

end

GDBM.open("data.dbm") do |dbm|

p dbm.keys

p dbm['dob']

dbm.delete('dob')

p dbm.keys

end

produces:

["uses", "dob", "name"]

"19691225"

["uses", "name"]

• Open a database read-only. Note that the attempt to delete a key fails.

require 'gdbm'

GDBM.open("data.dbm", 0, GDBM::READER) do |dbm|

p dbm.keys

dbm.delete('name')

end

produces:

["uses", "name"]

prog.rb:4:in `delete': Reader can't delete (GDBMError)

from prog.rb:4

from prog.rb:2:in `open'

3. http://www.gnu.org/software/gdbm/gdbm.html

Prepared exclusively for Jose Sierra

http://www.gnu.org/software/gdbm/gdbm.html

GENERATOR 662

G
e

n
e

ra
to

r

Library
Generator External Iterators

The generator library implements external iterators (as in Java and C++) based either

on Enumerable objects or on a block that yields values. The Generator class is a sim-

ple iterator. The library also includes SyncEnumerator, which creates an Enumerable

object that iterates over several collections at once.

See also: Enumerable (page 433), Enumerator (page 651)

• Iterate over an Enumerable object.

require 'generator'

gen = Generator.new(1..4)

while gen.next?

print gen.next, ""

end

produces:

1234

• Iterate over a block.

require 'generator'

gen = Generator.new do |result|

result.yield "Start"

3.times {|i| result.yield i}

result.yield "done"

end

while gen.next?

print gen.next, ""

end

produces:

Start012done

• Iterate over two collections at once.

require 'generator'

gen = SyncEnumerator.new(1..3, "a".."c")

gen.each {|num, char| print num, "(", char, ") " }

produces:

1(a) 2(b) 3(c)

Prepared exclusively for Jose Sierra

GETOPTLONG 663

G
e

to
p

tL
o

n
g

Library
GetoptLong Parse Command-Line Options

Class GetoptLong supports GNU-style command-line option parsing. Options may be

a minus sign (–) followed by a single character, or two minus signs (- -) followed by a

name (a long option). Long options may be abbreviated to their shortest unambiguous

lengths.

A single internal option may have multiple external representations. For example, the

option to control verbose output could be any of v, verbose, or details. Some

options may also take an associated value.

Each internal option is passed to GetoptLong as an array, containing strings repre-

senting the option’s external forms and a flag. The flag specifies how GetoptLong

is to associate an argument with the option (NO_ARGUMENT, REQUIRED_ARGUMENT, or

OPTIONAL_ARGUMENT).

If the environment variable POSIXLY_CORRECT is set, all options must precede non-

options on the command line. Otherwise, the default behavior of GetoptLong is to reor-

ganize the command line to put the options at the front. This behavior may be changed

by setting GetoptLong#ordering= to one of the constants PERMUTE, REQUIRE_ORDER,

or RETURN_IN_ORDER. POSIXLY_CORRECT may not be overridden.

See also: OptionParser (page 690)

Call using "ruby example.rb size 10k v q a.txt b.doc"

require 'getoptlong'

specify the options we accept and initialize

the option parser

opts = GetoptLong.new(

["size", "s", GetoptLong::REQUIRED_ARGUMENT],

["verbose", "v", GetoptLong::NO_ARGUMENT],

["query", "q", GetoptLong::NO_ARGUMENT],

["check", "valid", "c", GetoptLong::NO_ARGUMENT]

)

process the parsed options

opts.each do |opt, arg|

puts "Option: #{opt}, arg #{arg.inspect}"

end

puts "Remaining args: #{ARGV.join(', ')}"

produces:

Option: size, arg "10k"

Option: verbose, arg ""

Option: query, arg ""

Remaining args: a.txt, b.doc

Prepared exclusively for Jose Sierra

GSERVER 664

G
S

e
rv

e
r

Library
GServer Generic TCP Server

Simple framework for writing TCP servers. Subclass the GServer class, set the port

(and potentially other parameters) in the constructor, and then implement a serve

method to handle incoming requests.

GServer manages a thread pool for incoming connections, so your serve method may

be running in multiple threads in parallel.

You can run multiple GServer copies on different ports in the same application.

• When a connection is made on port 2000, respond with the current time as a string.

Terminate after handling three requests.

require 'gserver'

class TimeServer < GServer

def initialize

super(2000)

@count = 3

end

def serve(client)

client.puts Time.now.to_s

@count = 1

stop if @count.zero?

end

end

server = TimeServer.new

server.audit = true # enable logging

server.start

server.join

• You can test this server by telnetting into localhost on port 2000.

% telnet localhost 2000

produces:

Trying 127.0.0.1...

Connected to localhost.

Escape character is '^]'.

Connection closed by foreign host.

Prepared exclusively for Jose Sierra

ICONV 665

I
c
o

n
v

Library
Iconv Character Encoding Conversion

The Iconv class is an interface to the Open Group’s iconv library, which supports the

translation of strings between character encodings. For a list of the supported encodingsOnly if: libiconv

installed

on your platform, see the iconv_open man pages for your system.

An Iconv object encapsulates a conversion descriptor, which contains the information

needed to convert from one encoding to another. The converter can be used multiple

times, until closed.

The conversion method iconv can be called multiple times to convert input strings. At

the end, it should be called with a nil argument to flush out any remaining output.

• Convert from ISO-8859-1 to UTF-16.

require 'iconv'

conv = Iconv.new("UTF16", "ISO88591")

result = conv.iconv("hello")

result << conv.iconv(nil)

result → "\376\377\000h\000e\000l\000l\000o"

• Do the same conversion using a class method. Not we use Iconv.conv, which

returns a single string, as opposed to Iconv.iconv, which returns an array of

strings.

require 'iconv'

result = Iconv.conv("UTF16", "ISO88591", "hello")

result → "\376\377\000h\000e\000l\000l\000o"

• Convert olé from UTF-8 to ISO-8859-1.

require 'iconv'

result = Iconv.conv("ISO88591", "UTF8", "ol\303\251")

result → "ol\351"

• Convert olé from UTF-8 to ASCII. This throws an exception, as ASCII doesn’t

have an é character.

require 'iconv'

result = Iconv.conv("ASCII", "UTF8", "ol\303\251")

produces:

prog.rb:2:in `conv': "\303\251" (Iconv::IllegalSequence)

from prog.rb:2

• This time, convert to ASCII with transliteration, which shows approximations of

missing characters.

require 'iconv'

result = Iconv.iconv("ASCII//TRANSLIT", "UTF8", "ol\303\251")

result → ["ol'e"]

Prepared exclusively for Jose Sierra

IO/WAIT 666

I
O

/W
a

it

Library
IO/Wait Check for Pending Data to Be Read

Including the library io/wait adds the methods IO#ready? and IO#wait to the stan-Only if:

FIONREAD feature

in ioctl(2) dard IO class. These allow an IO object opened on a stream (not a file) to be queried to

see if data is available to be read without reading it and to wait for a given number of

bytes to become available.

• Set up a pipe between two processes, and write ten bytes at a time into it. Periodi-

cally see how much data is available.

require 'io/wait'

reader, writer = IO.pipe

if (pid = fork)

writer.close

8.times do

sleep 0.03

len = reader.ready?

puts "Ready? = #{len.inspect}"

puts(reader.sysread(len)) if len

end

Process.waitpid(pid)

else

reader.close

5.times do |n|

sleep 0.04

writer.write n.to_s * 10

end

writer.close

end

produces:

Ready? = nil

Ready? = 10

0000000000

Ready? = 10

1111111111

Ready? = nil

Ready? = 10

2222222222

Ready? = 10

3333333333

Ready? = 10

4444444444

Ready? = nil

Prepared exclusively for Jose Sierra

IPADDR 667

I
P
A

d
d

r

Library
IPAddr Represent and Manipulate IP Addresses

Class IPAddr holds and manipulates Internet Protocol (IP) addresses. Each address

contains three parts: an address, a mask, and an address family. The family will typi-

cally be AF_INET for IPv4 and IPv6 addresses. The class contains methods for extract-

ing parts of an address, checking for IPv4 compatible addresses (and IPv4 mapped IPv6

addresses), testing whether an address falls within a subnet and many other functions.

It is also interesting in that it contains as data its own unit tests.

require 'ipaddr'

v4 = IPAddr.new('192.168.23.0/24')

v4 → #<IPAddr: IPv4:192.168.23.0/ 255.255.255.0>

v4.mask(16) → #<IPAddr: IPv4:192.168.0.0/ 255.255.0.0>

v4.reverse → "0.23.168.192.inaddr.arpa"

v6 = IPAddr.new('3ffe:505:2::1')

v6 → #<IPAddr:

IPv6:3ffe:0505:0002:0000:0000:0000:0000:0001/

ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff>

v6.mask(48) → #<IPAddr:

IPv6:3ffe:0505:0002:0000:0000:0000:0000:0000/

ffff:ffff:ffff:0000:0000:0000:0000:0000>

the value for 'family' is OS dependent. This

value is for OS X

v6.family → 30

other = IPAddr.new("192.168.23.56")

v4.include?(other) → true

Prepared exclusively for Jose Sierra

JCODE 668

J
c
o

d
e

Library
jcode Encoding Support for Strings

Requiring the jcode library augments the built-in String class with additional support

for EUC and SJIS Japanese encodings and UTF8. This is effective only if $KCODE is one

of EUC, SJIS, or UTF8. The following methods are updated: chop!, chop, delete!,

delete, squeeze!, squeeze, succ!, succ, tr!, tr, tr_s!, and tr_s.

For example, the string "\342\210\202x/\342\210\202y" contains nine 8-bit char-

acters. However, the sequence \343\210\202 could also be interpreted as a single

UTF-8 character (a math delta symbol, making the string δx/δy). If we don’t tell Ruby

about the encoding, it treats each byte in the string as a separate character:

• Without encoding support, the string contains bytes.

$KCODE = "NONE"

require 'jcode'

str = "\342\210\202x/\342\210\202y"

str.length → 9

str.jlength → 9

str.jcount("\210") → 2

str.chop! → "\342\210\202x/\342\210\202"

str.chop! → "\342\210\202x/\342\210"

str.each_char {|ch| print ch.inspect, " "}

produces:

"\342" "\210" "\202" "x" "/" "\342" "\210" "\202" "y"

• However, tell Ruby that it is dealing with UTF8 strings and the result changes.

$KCODE = 'UTF8'

require 'jcode'

str = "\342\210\202x/\342\210\202y"

str.length → 9

str.jlength → 5

str.jcount("\210") → 0

str.chop! → "δx/δ"
str.chop! → "δx/"

str = "\342\210\202x/\342\210\202y"

str.each_char {|ch| print ch.inspect, " "}

produces:

"δ" "x" "/" "δ" "y"

Prepared exclusively for Jose Sierra

LOGGER 669

L
o

g
g

e
r

Library
Logger Application Logging

Writes log messages to a file or stream. Supports automatic time- or size-based rolling

of log files. Messages can be assigned severities, and only those messages at or above

the logger’s current reporting level will be logged.

• During development, you may want to see all messages.

require 'logger'

log = Logger.new(STDOUT)

log.level = Logger::DEBUG

log.datetime_format = "%H:%M:%S"

log.info("Application starting")

3.times do |i|

log.debug("Executing loop, i = #{i}")

temperature = some_calculation(i) # defined externally

if temperature > 50

log.warn("Possible overheat. i = #{i}")

end

end

log.info("Application terminating")

produces:

I, [16:05:48#17335] INFO : Application starting

D, [16:05:48#17335] DEBUG : Executing loop, i = 0

D, [16:05:48#17335] DEBUG : Executing loop, i = 1

D, [16:05:48#17335] DEBUG : Executing loop, i = 2

W, [16:05:48#17335] WARN : Possible overheat. i = 2

I, [16:05:48#17335] INFO : Application terminating

• In deployment, you can turn off anything below INFO.

require 'logger'

log = Logger.new(STDOUT)

log.level = Logger::INFO

log.datetime_format = "%H:%M:%S"

as above...

produces:

I, [16:05:48#17337] INFO : Application starting

W, [16:05:48#17337] WARN : Possible overheat. i = 2

I, [16:05:48#17337] INFO : Application terminating

• Log to a file, which is rotated when it gets to about 10k bytes. Keep up to five old

files.

require 'logger'

log = Logger.new("application.log", 5, 10*1024)

log.info("Application starting")

...

Prepared exclusively for Jose Sierra

MAIL 670

M
a

il

Library
Mail Simple E-mail Parsing

Class Mail provides basic parsing for e-mail messages. It can read an individual mes-

sage from a named file, or it can be called repeatedly to read messages from a stream

on an opened mbox format file. Each Mail object represents a single e-mail message,

which is split into a header and a body. The body is an array of lines, and the header is

a hash indexed by the header name. Mail correctly joins multiline headers.

• Read a single e-mail from a file.

require 'mailread'

MAILBOX = "/Users/dave/Library/Mail/Mailboxes/Ruby/Talk.mbox/mbox"

msg = Mail.new(MAILBOX)

msg.header.keys → ["Status", "Listsoftware", "Messageid",

"Subject", "Received",

"Xspambayesclassification",

"Listunsubscribe", "Posted",

"Xspamlevel", "Contenttype", "From",

"Xvirusscanned", "Listpost",

"Xspamstatus",

"Contenttransferencoding", "Xmlserver",

"To", "Inreplyto", "Xmlinfo",

"Xmailcount", "Date", "Listowner",

"Xmlname", "References", "Replyto",

"Deliveredto", "Listhelp", "Lines",

"Mimeversion", "Xspamcheckerversion",

"Listid", "Precedence"]

msg.body[0] → "On Sat, 14 Aug 2004 03:02:42 +0900, Curt

Hibbs <curt@hibbs.com> wrote:\n"

msg.body[1] → "> We've change the name of the project from

\"Ruby Installer for Windows\" to\n"

msg.body[2] → "> the \"OneClick Ruby Installer\" because

we are branching out more platforms\n"

• Read successive messages from an mbox format file.

require 'mailread'

MAILBOX = "/Users/dave/Library/Mail/Mailboxes/Ruby/Talk.mbox/mbox"

mbox = File.open(MAILBOX)

count = 0

lines = 0

while !mbox.eof?

msg = Mail.new(mbox)

count += 1

lines += msg.header['Lines'].to_i

end

count → 180

lines → 5927

Prepared exclusively for Jose Sierra

MATHN 671

M
a

th
n

Library
mathn Unified Numbers

The mathn library attempts to bring some unity to numbers under Ruby, making classes

Bignum, Complex, Fixnum, Integer, and Rational work and play better together.

• Types will tend to convert between themselves in a more natural way (so, for

example, Complex::I squared will evaluate to −1, rather than Complex[1,0]).

• Division will tend to produce more accurate results. The conventional division

operator (/) is redefined to use quo, which doesn’t round (quo is documented on

page 545).

• Related to the previous point, rational numbers will be used in preference to floats

when possible. Dividing one by two results in the rational number 1
2 , rather than

0.5 (or 0, the result of normal integer division).

See also: Matrix (page 673), Rational (page 700), Complex (page 641)

• Without mathn

require 'matrix'

require 'complex'

36/16 → 2

Math.sqrt(36/16) → 1.4142135623731

Complex::I * Complex::I → Complex(1, 0)

m = Matrix[[1,2],[3,4]]

i = m.inv

i*m →

(

1 0

−2 −2

)

(36/16)**2 → 0.25

(36.0/16.0)**2 → 0.197530864197531

(36/16)**2 → 0.111111111111111

(36/16)**(1/2) → 1

(36/16)**(1/2) → 1

(36/16)**(1/2) → 0.5

(36/16)**(1/2) → 0.333333333333333

Matrix.diagonal(6,7,8)/3 →

(

2 0 0

0 2 0

0 0 2

)

Prepared exclusively for Jose Sierra

MATHN 672

M
a

th
n

• With mathn:

require 'mathn'

require 'matrix'

require 'complex'

36/16 → 9/4

Math.sqrt(36/16) → 3/2

Complex::I * Complex::I → 1

m = Matrix[[1,2],[3,4]]

i = m.inv

i*m →

(

1 0

0 1

)

(36/16)**2 → 16/81

(36.0/16.0)**2 → 0.197530864197531

(36/16)**2 → 16/81

(36/16)**(1/2) → 3/2

(36/16)**(1/2) → Complex(9.18485099360515e17, 1.5)

(36/16)**(1/2) → 2/3

(36/16)**(1/2) → Complex(4.08215599715784e17,

0.666666666666667)

Matrix.diagonal(6,7,8)/3 →

(

2 0 0

0 7/3 0

0 0 8/3

)

• The mathn library also extends the number classes to include new functionality

and adds a new class Prime.

require 'mathn'

primes = Prime.new

3.times { puts primes.succ }

primes.each {|p| puts p; break if p > 20 }

produces:

2

3

5

7

11

13

17

19

23

Prepared exclusively for Jose Sierra

MATRIX 673

M
a

tr
ix

Library
Matrix Matrix and Vector Manipulation

The matrix library defines classes Matrix and Vector, representing rectangular matri-

ces and vectors. As well as the normal arithmetic operations, they provide methods for

matrix-specific functions (such as rank, inverse, and determinants) and a number of

constructor methods (for creating special-case matrices—zero, identity, diagonal, sin-

gular, and vector).

Because by default integer arithmetic truncates, the determinant of integer matrices

may be incorrectly calculated unless you also require the mathn library.

See also: mathn (page 671), Rational (page 700)

require 'matrix'

require 'mathn'

m1 = Matrix[[2, 1], [1, 1]] →

(

2 1

−1 1

)

m1[0,1] → 1

m1.inv →

(

1/3 −1/3
1/3 2/3

)

m1 * m1.inv →

(

1 0

0 1

)

m1.determinant → 3

m1.singular? → false

m2 = Matrix[[1,2,3], [4,5,6], [7,8,9]] →

(

1 2 3

4 5 6

7 8 9

)

m2.minor(1, 2, 1, 2) →

(

5 6

8 9

)

m2.rank → 2

v1 = Vector[3, 4] → Vector[3, 4]

v1.covector →

(

3 4
)

m1 * v1 → Vector[10, 1]

Prepared exclusively for Jose Sierra

MONITOR 674

M
o

n
it
o

r

Library
Monitor Monitor-Based Synchronization

Monitors are a form of mutual-exclusion mechanism first proposed back in 1974. They

allow separate threads to define shared resources which will be accessed exclusively,

and they provide a mechanism for a thread to wait for resources to become available in

a controlled way.

The monitor library actually defines three separate ways of using monitors: as a parent

class, as a mixin, and as a extension to a particular object. Examples of all three (and

other code showing monitors in action) starts on page 134. In this section we document

the module form of Monitor. The class form is effectively identical. In both the class

form and when including MonitorMixin in an existing class it is essential to invoke

super in the class’s initialize method.

See also: Mutex (page 675), Sync (page 717), Thread (page 612)

require 'monitor'

require 'mathn'

numbers = []

numbers.extend(MonitorMixin)

number_added = numbers.new_cond

Reporter thread

Thread.new do

loop do

numbers.synchronize do

number_added.wait_while { numbers.empty? }

puts numbers.shift

end

end

end

Prime number generator thread

generator = Thread.new do

p = Prime.new

5.times do

numbers.synchronize do

numbers << p.succ

number_added.signal

end

end

end

generator.join

produces:

2

3

5

7

Prepared exclusively for Jose Sierra

MUTEX 675

M
u

te
x

Library
Mutex Thread Synchronization Support

The Mutex class allows threads to gain exclusive access to some shared resource. That

is, only one thread may hold the lock at any given time. Other threads may choose to

wait for the lock to become available or may choose to get an immediate error indi-

cating that the lock is not available. The library also implements condition variables,

allowing a thread to give up control while holding a mutex and regain the lock when

the resource becomes available, and queues, allowing threads to pass messages safely.

We describe threading in Chapter 11 on page 127, and discuss monitors, an alternative

synchronization mechanism, starting on page 134.

See also: Monitor (page 674), Sync (page 717), Queue (page 722), Thread (page 612)

require 'thread'

class Resource

attr_reader :left, :times_had_to_wait

def initialize(count)

@left = count

@times_had_to_wait = 0

@mutex = Mutex.new

@empty = ConditionVariable.new

end

def use

@mutex.synchronize do

while @left <= 0

@times_had_to_wait += 1

@empty.wait(@mutex)

end

@left = 1

end

end

def release

@mutex.synchronize do

@left += 1

@empty.signal if @left == 1

end

end

end

def do_something_with(resource)

resource.use

sleep 0.001 # to simulate doing something that takes time

resource.release

end

resource = Resource.new(2)

user1 = Thread.new { 100.times { do_something_with(resource) } }

user2 = Thread.new { 100.times { do_something_with(resource) } }

user3 = Thread.new { 100.times { do_something_with(resource) } }

user1.join; user2.join; user3.join

resource.times_had_to_wait → 150

Prepared exclusively for Jose Sierra

MUTEX_M 676

M
u

te
x
_

m

Library
Mutex_m Mutex Mix-In

mutex_m is a variant of class Mutex (contained in the thread library documented on

the preceding page) that allows mutex facilities to be mixed into any object.

The Mutex_m module defines methods that correspond to those in Mutex but with the

prefix mu_ (so that lock is defined as mu_lock and so on). It then aliases these to

the original Mutex names.

See also: Mutex (page 675), Sync (page 717), Thread (page 612)

require 'mutex_m'

class Counter

include Mutex_m

attr_reader :count

def initialize

@count = 0

super

end

def tick

lock

@count += 1

unlock

end

end

c = Counter.new

t1 = Thread.new { 10000.times { c.tick } }

t2 = Thread.new { 10000.times { c.tick } }

t1.join

t2.join

c.count → 20000

Prepared exclusively for Jose Sierra

NET::FTP 677

N
e

t:
:F

T
P

Library
Net::FTP FTP Client

The net/ftp library implements a File Transfer Protocol (FTP) client. As well as

data transfer commands (getbinaryfile, gettextfile, list, putbinaryfile, and

puttextfile), the library supports the full complement of server commands (acct,

chdir, delete, mdtm, mkdir, nlst, rename, rmdir, pwd, size, status, and system).

Anonymous and password-authenticated sessions are supported. Connections may be

active or passive.

See also: openuri (page 686)

require 'net/ftp'

ftp = Net::FTP.new('ftp.netlab.co.jp')

ftp.login

ftp.chdir('pub/lang/ruby/contrib')

files = ftp.list('n*')

ftp.getbinaryfile('nif.rb0.91.gz', 'nif.gz', 1024)

ftp.close

Prepared exclusively for Jose Sierra

NET::HTTP 678

N
e

t:
:H

T
T

P

Library
Net::HTTP HTTP Client

The net/http library provides a simple client to fetch headers and Web page contents

using the HTTP protocol.

The interface to the get, post, and head methods has changed between Ruby 1.6

and 1.8. Now, a single response object is returned, with the content of the response

accessible through the response’s body method. In addition, these methods no longer

raise exceptions on recoverable errors.

See also: OpenSSL (page 688), openuri (page 686), URI (page 731)

• Open a connection and fetch a page, displaying the response code and message,

header information, and some of the body.

require 'net/http'

Net::HTTP.start('www.pragmaticprogrammer.com') do |http|

response = http.get('/index.html')

puts "Code = #{response.code}"

puts "Message = #{response.message}"

response.each {|key, val| printf "%14s = %40.40s\n", key, val }

p response.body[400, 55]

end

produces:

Code = 200

Message = OK

lastmodified = Wed, 20 Sep 2006 13:50:20 GMT

contenttype = text/html; charset=iso88591

etag = "b00d226749d4511471c"

date = Wed, 20 Sep 2006 21:05:51 GMT

server = Rapidsite/Apa/1.3.31 (Unix) FrontPage/5.

contentlength = 29853

acceptranges = bytes

"lling book 'The Pragmatic Programmer' and The\n "

• Fetch a single page, displaying the response code and message, header informa-

tion, and some of the body.

require 'net/http'

response = Net::HTTP.get_response('www.pragmaticprogrammer.com',

'/index.html')

puts "Code = #{response.code}"

puts "Message = #{response.message}"

response.each {|key, val| printf "%14s = %40.40s\n", key, val }

p response.body[400, 55]

produces:

Code = 200

Message = OK

lastmodified = Wed, 20 Sep 2006 13:50:20 GMT

Prepared exclusively for Jose Sierra

NET::HTTP 679

N
e

t:
:H

T
T

P

contenttype = text/html; charset=iso88591

etag = "b00d226749d4511471c"

date = Wed, 20 Sep 2006 21:05:51 GMT

server = Rapidsite/Apa/1.3.31 (Unix) FrontPage/5.

contentlength = 29853

acceptranges = bytes

"lling book 'The Pragmatic Programmer' and The\n "

• Follow redirections (the openuri library does this automatically). This code

comes from the RDoc documentation.

require 'net/http'

require 'uri'

def fetch(uri_str, limit=10)

fail 'http redirect too deep' if limit.zero?

puts "Trying: #{uri_str}"

response = Net::HTTP.get_response(URI.parse(uri_str))

case response

when Net::HTTPSuccess

response

when Net::HTTPRedirection

fetch(response['location'], limit1)

else

response.error!

end

end

response = fetch('http://www.rubylang.org')

p response.body[500, 50]

produces:

Trying: http://www.rubylang.org

Trying: http://www.rubylang.org/en/

"mage/xicon\" href=\"/favicon.ico\" />\r\n <link hre"

• Search Dave’s blog by posting form data and reading back the response (doesn’t

work with my new blog, though...).

require 'net/http'

Net::HTTP.start('blogs.pragprog.com') do |query|

response = query.post("/pragdave", "terms=jolt&handler=searching")

response.body.scan(%r{(.*?)}m) do

|title|

puts title

end

end

produces:

We're Jolt Finalists

We Got a Jolt Award!

Prepared exclusively for Jose Sierra

NET::IMAP 680

N
e

t:
:I

M
A

P

Library
Net::IMAP Access an IMAP Mail Server

The Internet Mail Access Protocol (IMAP) is used to allow mail clients to access mail

servers. It supports plain text login and the IMAP login and CRAM-MD5 authentica-

tion mechanisms. Once connected, the library supports threading, so multiple interac-

tions with the server may take place at the same time.

The examples that follow are taken with minor modifications from the RDoc documen-

tation in the library source file.

See also: Net::POP (page 681)

• List senders and subjects of messages to “dave” in the INBOX.

require 'net/imap'

imap = Net::IMAP.new('my.mailserver.com')

imap.authenticate('LOGIN', 'dave', 'secret')

imap.examine('INBOX')

puts "Message count: #{ imap.responses["EXISTS"]}"

imap.search(["TO", "dave"]).each do |message_id|

envelope = imap.fetch(message_id, "ENVELOPE")[0].attr["ENVELOPE"]

puts "#{envelope.from[0].name}: \t#{envelope.subject}"

end

• Move all messages with a date in April 2003 from the folder Mail/sentmail to

Mail/sentapr03.

require 'net/imap'

imap = Net::IMAP.new('my.mailserver.com')

imap.authenticate('LOGIN', 'dave', 'secret')

imap.select('Mail/sentmail')

if not imap.list('Mail/', 'sentapr03')

imap.create('Mail/sentapr03')

end

imap.search(["BEFORE", "01May2003",

"SINCE", "1Apr2003"]).each do |message_id|

imap.copy(message_id, "Mail/sentapr03")

imap.store(message_id, "+FLAGS", [:Deleted])

end

imap.expunge

Prepared exclusively for Jose Sierra

NET::POP 681

N
e

t:
:P

O
P

Library
Net::POP Access a POP Mail Server

The net/pop library provides a simple client to fetch and delete mail on a Post Office

Protocol (POP) server.

The class Net::POP3 is used to access a POP server, returning a list of Net::POPMail

objects, one per message stored on the server. These POPMail objects are then used to

fetch and/or delete individual messages.

The library also provides class APOP, an alternative to the POP3 class that performs

authentication.

require 'net/pop'

pop = Net::POP3.new('server.rubystuff.com')

pop.start('joe', 'secret') do |server|

msg = server.mails[0]

Print the 'From:' header line

from = msg.header.split("\r\n").grep(/^From: /)[0]

puts from

puts

puts "Full message:"

text = msg.pop

puts text

end

produces:

From: dave@facet.rubystuff.com (Dave Thomas)

Full message:

ReturnPath: <dave@facet.rubystuff.com>

Received: from facet.rubystuff.com (facet.rubystuff.com [10.96.0.122])

by pragprog.com (8.11.6/8.11.6) with ESMTP id i2PJMW701809

for <joe@carat.rubystuff.com>; Thu, 25 Mar 2004 13:22:32 0600

Received: by facet.rubystuff.com (Postfix, from userid 502)

id 4AF228B1BD; Thu, 25 Mar 2004 13:22:36 0600 (CST)

To: joe@carat.rubystuff.com

Subject: Try out the new features!

MessageId: <20040325192236.4AF228B1BD@facet.rubystuff.com>

Date: Thu, 25 Mar 2004 13:22:36 0600 (CST)

From: dave@facet.rubystuff.com (Dave Thomas)

Status: RO

Ruby 1.8 has a boatload of new features, both in

the core language and in the supplied libraries.

Try it out!

Prepared exclusively for Jose Sierra

NET::SMTP 682

N
e

t:
:S

M
T

P

Library
Net::SMTP Simple SMTP Client

The net/smtp library provides a simple client to send electronic mail using the Sim-

ple Mail Transfer Protocol (SMTP). It does not assist in the creation of the message

payload—it simply delivers messages once an RFC822 message has been constructed.

• Send an e-mail from a string.

require 'net/smtp'

msg = "Subject: Test\n\nNow is the time\n"

Net::SMTP.start('pragprog.com') do |smtp|

smtp.send_message(msg, 'dave@pragprog.com', ['dave'])

end

• Send an e-mail using an SMTP object and an adapter.

require 'net/smtp'

Net::SMTP::start('pragprog.com', 25, "pragprog.com") do |smtp|

smtp.open_message_stream('dave@pragprog.com', # from

['dave'] # to

) do |stream|

stream.puts "Subject: Test1"

stream.puts

stream.puts "And so is this"

end

end

• Send an e-mail to a server requiring CRAM-MD5 authentication.

require 'net/smtp'

msg = "Subject: Test\n\nNow is the time\n"

Net::SMTP.start('pragprog.com', 25, 'pragprog.com',

'user', 'password', :cram_md5) do |smtp|

smtp.send_message(msg, 'dave@pragprog.com', ['dave'])

end

Prepared exclusively for Jose Sierra

NET::TELNET 683

N
e

t:
:T

e
ln

e
t

Library
Net::Telnet Telnet Client

The net/telnet library provides a complete implementation of a telnet client and

includes features that make it a convenient mechanism for interacting with nontelnet

services.

Class Net::Telnet delegates to class Socket. As a result, the methods of Socket and

its parent, class IO, are available through Net::Telnet objects.

• Connect to a localhost, run the date command, and disconnect.

require 'net/telnet'

tn = Net::Telnet.new({})

tn.login "guest", "secret"

tn.cmd "date" → "date\nWed Sep 20 16:05:54 CDT 2006\n% "

tn.close → nil

• The methods new, cmd, login, and waitfor take an optional block. If present, the

block is passed output from the server as it is received by the routine. This can be

used to provide realtime output, rather than waiting (for example) for a login to

complete before displaying the server’s response.

require 'net/telnet'

tn = Net::Telnet.new({}) {|str| print str }

tn.login("guest", "secret") {|str| print str }

tn.cmd("date") {|str| print str }

tn.close

produces:

Connected to localhost.

Darwin/BSD (dave.local) (ttyp2)

login: guest

Password:Last login: Wed Sep 20 16:05:53 from localhost

Welcome to Darwin!

% date

Wed Sep 20 16:05:54 CDT 2006

%

• Get the time from an NTP server.

require 'net/telnet'

tn = Net::Telnet.new('Host' => 'time.nonexistent.org',

'Port' => 'time',

'Timeout' => 60,

'Telnetmode' => false)

atomic_time = tn.recv(4).unpack('N')[0]

puts "Atomic time: " + Time.at(atomic_time 2208988800).to_s

puts "Local time: " + Time.now.to_s

produces:

Atomic time: Wed Sep 20 16:05:52 CDT 2006

Local time: Wed Sep 20 16:05:54 CDT 2006

Prepared exclusively for Jose Sierra

NKF 684

N
K

F

Library
NKF Interface to Network Kanji Filter

The NKF module is a wrapper around Itaru Ichikawa’s Network Kanji Filter (NKF)

library (version 1.7). It provides functions to guess at the encoding of JIS, EUC, and

SJIS streams, and to convert from one encoding to another.

• Unlike the interpreter, which uses strings to represent the encodings, NKF uses

integer constants.

require 'nkf'

NKF::AUTO → 0

NKF::JIS → 1

NKF::EUC → 2

NKF::SJIS → 3

• Guess at the encoding of a string. (Thanks to Nobu Nakada for the examples on

this page.)

require 'nkf'

NKF.guess("Yukihiro Matsumoto") → 5

NKF.guess("\eB^DbHf$$R$m\e(B") → 1

NKF.guess("\244\336\244\304\244\342\244\310\244\346\244\255\244\322\244\355") → 2

NKF.guess("\202\334\202\302\202\340\202\306\202\344\202\253\202\320\202\353") → 3

• The NKF.nfk method takes two parameters. The first is a set of options, passed on

to the NKF library. The second is the string to translate. The following examples

assume that your console is set up to accomdate Japanese characters. The text at

the end of the three ruby commands is Yukihiro Matsumoto.

$ ruby e ’p *ARGV’

"\244\336\244\304\244\342\244\310\244\346\244\255\244\322\244\355"

$ ruby rnkf e ’p NKF.nkf(*ARGV)’ Es

"\202\334\202\302\202\340\202\306\202\344\202\253\202\320\202\353"

$ ruby rnkf e ’p NKF.nkf(*ARGV)’ Ej

"\eB^DbHf$$R$m\e(B"

Prepared exclusively for Jose Sierra

OBSERVABLE 685

O
b

s
e

rv
a

b
le

Library
Observable The Observer Pattern

The Observer pattern, also known as Publish/Subscribe, provides a simple mechanism

for one object (the source) to inform a set of interested third-party objects when its state

changes (see Design Patterns [GHJV95]). In the Ruby implementation, the notifying

class mixes in the module Observable, which provides the methods for managing

the associated observer objects. The observers must implement the update method to

receive notifications.

require 'observer'

class CheckWaterTemperature # Periodically check the water

include Observable

def run

last_temp = nil

loop do

temp = Temperature.fetch # external class...

puts "Current temperature: #{temp}"

if temp != last_temp

changed # notify observers

notify_observers(Time.now, temp)

last_temp = temp

end

end

end

end

class Warner

def initialize(&limit)

@limit = limit

end

def update(time, temp) # callback for observer

if @limit.call(temp)

puts " #{time.to_s}: Temperature outside range: #{temp}"

end

end

end

checker = CheckWaterTemperature.new

checker.add_observer(Warner.new {|t| t < 80})

checker.add_observer(Warner.new {|t| t > 120})

checker.run

produces:

Current temperature: 83

Current temperature: 75

 Wed Sep 20 16:05:54 CDT 2006: Temperature outside range: 75

Current temperature: 90

Current temperature: 134

 Wed Sep 20 16:05:54 CDT 2006: Temperature outside range: 134

Current temperature: 134

Current temperature: 112

Current temperature: 79

 Wed Sep 20 16:05:54 CDT 2006: Temperature outside range: 79

Prepared exclusively for Jose Sierra

OPEN-URI 686

O
p

e
n

-u
ri

Library
open-uri Treat FTP and HTTP Resources as Files

The openuri library extends Kernel#open, allowing it to accept URIs for FTP and

HTTP as well as local filenames. Once opened, these resources can be treated as if they

were local files, accessed using conventional IO methods. The URI passed to open

is either a string containing an HTTP or FTP URL, or a URI object (described on

page 731). When opening an HTTP resource, the method automatically handles redi-

rection and proxies. When using an FTP resource, the method logs in as an anonymous

user.

The IO object returned by open in these cases is extended to support methods that return

meta-information from the request: content_type, charset, content_encoding,

last_modified, status, base_uri, meta.

See also: URI (page 731)

require 'openuri'

require 'pp'

open('http://localhost/index.html') do |f|

puts "URI: #{f.base_uri}"

puts "Contenttype: #{f.content_type}, charset: #{f.charset}"

puts "Encoding: #{f.content_encoding}"

puts "Last modified: #{f.last_modified}"

puts "Status: #{f.status.inspect}"

pp f.meta

puts ""

3.times {|i| puts "#{i}: #{f.gets}" }

end

produces:

URI: http://localhost/index.html

Contenttype: text/html, charset: iso88591

Encoding:

Last modified: Wed Oct 05 03:38:25 UTC 2005

Status: ["200", "OK"]

{"vary"=>"negotiate",

"lastmodified"=>"Wed, 05 Oct 2005 03:38:25 GMT",

"contentlocation"=>"index.html.en",

"date"=>"Wed, 20 Sep 2006 21:05:54 GMT",

"etag"=>"\"4eaa5385b043434ab1;43f0dd56\"",

"contenttype"=>"text/html",

"contentlanguage"=>"en",

"server"=>"Apache/1.3.33 (Darwin) PHP/4.4.1",

"contentlength"=>"1456",

"tcn"=>"choice",

"acceptranges"=>"bytes"}

0: <!DOCTYPE html PUBLIC "//W3C//DTD XHTML 1.0 Transitional//EN"

1: "http://www.w3.org/TR/xhtml1/DTD/xhtml1transitional.dtd">

2: <html xmlns="http://www.w3.org/1999/xhtml">

Prepared exclusively for Jose Sierra

OPEN3 687

O
p

e
n

3

Library
Open3 Run Subprocess and Connect to All Streams

Runs a command in a subprocess. Data written to stdin can be read by the subprocess,

and data written to standard output and standard error in the subprocess will be available

on the stdout and stderr streams. The subprocess is actually run as a grandchild, and as

a result Process#waitall cannot be used to wait for its termination (hence the sleep

in the following example).

require 'open3'

Open3.popen3('bc') do | stdin, stdout, stderr |

Thread.new { loop { puts "Err stream: #{stderr.gets}" } }

Thread.new { loop { puts "Output stream: #{stdout.gets}" } }

stdin.puts "3 * 4"

stdin.puts "1 / 0"

stdin.puts "2 ^ 5"

sleep 0.1

end

produces:

Output stream: 12

Err stream: Runtime error (func=(main), adr=3): Divide by zero

Output stream: 32

Prepared exclusively for Jose Sierra

OPENSSL 688

O
p

e
n

S
S

L

Library
OpenSSL SSL Library

The Ruby OpenSSL extension wraps the freely available OpenSSL library. It providesOnly if: OpenSSL

library available

Secure Sockets Layer and Transport Layer Security (SSL and TLS) protocols, allowing

for secure communications over networks. The library provides functions for certificate

creation and management, message signing, and encryption/decryption. It also provides

wrappers to simplify access to https servers, along with secure FTP. The interface to

the library is large (roughly 330 methods), but the average Ruby user will probably

only use a small subset of the library’s capabilities.

See also: Net::FTP (page 677), Net::HTTP (page 678), Socket (page 714)

• Access a secure Web site using HTTPS. Note that SSL is used to tunnel to the site,

but the requested page also requires standard HTTP basic authorization.

require 'net/https'

USER = "xxx"

PW = "yyy"

site = Net::HTTP.new("www.securestuff.com", 443)

site.use_ssl = true

response = site.get2("/cgibin/cokerecipe.cgi",

'Authorization' => 'Basic ' +

["#{USER}:#{PW}"].pack('m').strip)

• Create a socket that uses SSL. This isn’t a good example of accessing a Web site.

However, it illustrates how a socket can be encrypted.

require 'socket'

require 'openssl'

socket = TCPSocket.new("www.securestuff.com", 443)

ssl_context = OpenSSL::SSL::SSLContext.new()

unless ssl_context.verify_mode

warn "warning: peer certificate won't be verified this session."

ssl_context.verify_mode = OpenSSL::SSL::VERIFY_NONE

end

sslsocket = OpenSSL::SSL::SSLSocket.new(socket, ssl_context)

sslsocket.sync_close = true

sslsocket.connect

sslsocket.puts("GET /secretinfo.shtml")

while line = sslsocket.gets

p line

end

Prepared exclusively for Jose Sierra

OPENSTRUCT 689

O
p

e
n

S
tr

u
c
t

Library
OpenStruct Open (dynamic) Structure

An open structure is an object whose attributes are created dynamically when first

assigned. In other words, if obj is an instance of an OpenStruct, then the statement

obj.abc=1 will create the attribute abc in obj, and then assign the value 1 to it.

require 'ostruct'

os = OpenStruct.new("f1" => "one", :f2 => "two")

os.f3 = "cat"

os.f4 = 99

os.f1 → "one"

os.f2 → "two"

os.f3 → "cat"

os.f4 → 99

Prepared exclusively for Jose Sierra

OPTIONPARSER 690

O
p

ti
o

n
P

a
rs

e
r

Library
OptionParser Option Parsing

OptionParser is a flexible and extensible way to parse command-line arguments. It

has a particularly rich abstraction of the concept of an option.

• An option can have multiple short names (options preceded by a single hyphen)

and multiple long names (options preceded by two hyphens). Thus, an option that

displays help may be available as h, ?, help, and about. Users may abbre-

viate long option names to the shortest nonambiguous prefix.

• An option may be specified as having no argument, an optional argument, or a

required argument. Arguments can be validated against patterns or lists of valid

values.

• Arguments may be returned as objects of any type (not just strings). The argument

type system is extensible (we add Date handling in the example).

• Arguments can have one or more lines of descriptive text, used when generating

usage information.

Options are specified using the on and def methods. These methods take a variable

number of arguments that cumulatively build a definition of each option. The arguments

accepted by these methods are listed in Table 28.2 on the following page.

See also: GetoptLong (page 663)

require 'optparse'

require 'date'

Add Dates as a new option type

OptionParser.accept(Date, /(\d+)(\d+)(\d+)/) do |d, mon, day, year|

Date.new(year.to_i, mon.to_i, day.to_i)

end

opts = OptionParser.new

opts.on("x") {|val| puts "x seen" }

opts.on("s", "size VAL", Integer) {|val| puts "s #{val}" }

opts.on("a", "at DATE", Date) {|val| puts "a #{val}" }

my_argv = ["size", "1234", "x", "a", "12252003", "fred", "wilma"]

rest = opts.parse(*my_argv)

puts "Remainder = #{rest.join(', ')}"

puts opts.to_s

produces:

s 1234

x seen

a 20031225

Remainder = fred, wilma

Usage: myprog [options]

x

s, size VAL

a, at DATE

Prepared exclusively for Jose Sierra

OPTIONPARSER 691

O
p

ti
o

n
P

a
rs

e
r

Table 28.2. Option definition arguments

"x" "xARG" "x=ARG" "x[OPT]" "x[=OPT]" "x PLACE"

Option has short name x. First form has no argument, next two have manda-

tory argument, next two have optional argument, last specifies argument follows

option. The short names may also be specified as a range (such as "[ac]").

"switch" "switch=ARG" "switch=[OPT]" "switch PLACE"

Option has long name switch. First form has no argument, next has a mandatory

argument, the next has an optional argument, and the last specifies the argument

follows the switch.

"noswitch"

Defines a option whose default value is false.

"=ARG" "=[OPT]"

Argument for this option is mandatory or optional. For example, the following

code says there’s an option known by the aliases x, y, and z that takes a manda-

tory argument, shown in the usage as N.
opt.on("x", "y", "z", "=N")

"description"

Any string that doesn’t start or = is used as a description for this option in

the summary. Multiple descriptions may be given; they’ll be shown on additional

lines.

/pattern/

Any argument must match the given pattern.

array

Argument must be one of the values from array.

proc or method

Argument type conversion is performed by the given proc or method (rather than

using the block associated with the on or def method call).

ClassName

Argument must match that defined for ClassName, which may be predefined or

added using OptionParser.accept. Built-in argument classes are
Object: Any string. No conversion. This is the default.

String: Any nonempty string. No conversion.

Integer: Ruby/C-like integer with optional sign (0ddd is octal, 0bddd binary, 0xddd hex-

adecimal). Converts to Integer.

Float: Float number format. Converts to Float.

Numeric: Generic numeric format. Converts to Integer for integers, Float for floats.

Array: Argument must be of list of strings separated by a comma.

OptionParser::DecimalInteger: Decimal integer. Converted to Integer.

OptionParser::OctalInteger: Ruby/C-like octal/hexadecimal/binary integer.

OptionParser::DecimalNumeric: Decimal integer/float number. Integers converted to

Integer, floats to Float.

TrueClass, FalseClass: Boolean switch.

Prepared exclusively for Jose Sierra

PARSEDATE 692

P
a

rs
e

D
a

te

Library
ParseDate Parse a Date String

The ParseDate module defines a single method, ParseDate.parsedate, which con-

verts a date and/or time string into an array of Fixnum values representing the date

and/or time’s constituents (year, month, day, hour, minute, second, time zone, and

weekday). nil is returned for fields that cannot be parsed from the string. If the result

contains a year that is less than 100 and the guess parameter is true, parsedate will

return a year value equal to year plus 2000 if year is less than 69, and will return year

plus 1900 otherwise.

See also: Date (page 644)

ParseDate::parsedate(string, guess)

string guess yy mm dd hh min sec zone wd

1999-09-05 23:55:21+0900 F 1999 9 5 23 55 21 +0900 –

1983-12-25 F 1983 12 25 – – – – –

1965-11-10 T13:45 F 1965 11 10 13 45 – – –

10/9/75 1:30pm F 75 10 9 13 30 – – –

10/9/75 1:30pm T 1975 10 9 13 30 – – –

Wed Feb 2 17:15:49 CST 2000 F 2000 2 2 17 15 49 CST 3

Tue, 02-Mar-99 11:20:32 GMT F 99 3 2 11 20 32 GMT 2

Tue, 02-Mar-99 11:20:32 GMT T 1999 3 2 11 20 32 GMT 2

12-January-1990, 04:00 WET F 1990 1 12 4 0 – WET –

4/3/99 F 99 4 3 – – – – –

4/3/99 T 1999 4 3 – – – – –

10th February, 1976 F 1976 2 10 – – – – –

March 1st, 84 T 1984 3 1 – – – – –

Friday F – – – – – – – 5

Prepared exclusively for Jose Sierra

PATHNAME 693

P
a

th
n

a
m

e

Library
Pathname Representation of File Paths

A Pathname represents the absolute or relative name of a file. It has two distinct uses.

First, it allows manipulation of the parts of a file path (extracting components, building

new paths, and so on). Second (and somewhat confusingly), it acts as a façade for some

methods in classes Dir, File, and module FileTest, forwarding on calls for the file

named by the Pathname object.

See also: File (page 444)

• Path name manipulation:

require 'pathname'

p1 = Pathname.new("/usr/bin") → #<Pathname:/usr/bin>

p2 = Pathname.new("ruby") → #<Pathname:ruby>

p3 = p1 + p2 → #<Pathname:/usr/bin/ruby>

p4 = p2 + p1 → #<Pathname:/usr/bin>

p3.parent → #<Pathname:/usr/bin>

p3.parent.parent → #<Pathname:/usr>

p1.absolute? → true

p2.absolute? → false

p3.split → [#<Pathname:/usr/bin>,

#<Pathname:ruby>]

p5 = Pathname.new("testdir") → #<Pathname:testdir>

p5.realpath → #<Pathname:/Users/dave/Work/CVS/rubybook/testdir>

p5.children → [#<Pathname:testdir/config.h>,

#<Pathname:testdir/main.rb>]

• Pathname as proxy for file and directory status requests.

require 'pathname'

p1 = Pathname.new("/usr/bin/ruby")

p1.file? → true

p1.directory? → false

p1.executable? → true

p1.size → 13812

p2 = Pathname.new("testfile") → #<Pathname:testfile>

p2.read → "This is line one\nThis is

line two\nThis is line

three\nAnd so on...\n"

p2.readlines → ["This is line one\n", "This

is line two\n", "This is line

three\n", "And so on...\n"]

Prepared exclusively for Jose Sierra

PP 694

P
P

Library
PP Pretty-print Objects

PP uses the PrettyPrint library to format the results of inspecting Ruby objects. As

well as the methods in the class, it defines a global function, pp, which works like the

existing p method but which formats its output.

PP has a default layout for all Ruby objects. However, you can override the way it

handles a class by defining the method pretty_print, which takes a PP object as a

parameter. It should use that PP object’s methods text, breakable, nest, group, and

pp to format its output (see PrettyPrint for details).

See also: PrettyPrint (page 695), YAML (page 737)

• Compare “p” and “pp.”

require 'pp'

Customer = Struct.new(:name, :sex, :dob, :country)

cust = Customer.new("Walter Wall", "Male", "12/25/1960", "Niue")

puts "Regular print"

p cust

puts "\nPretty print"

pp cust

produces:

Regular print

#<struct Customer name="Walter Wall", sex="Male", dob="12/25/1960",

country="Niue">

Pretty print

#<struct Customer

name="Walter Wall",

sex="Male",

dob="12/25/1960",

country="Niue">

• You can tell PP not to display an object if it has already displayed it.

require 'pp'

a = "string"

b = [a]

c = [b, b]

PP.sharing_detection = false

pp c

PP.sharing_detection = true

pp c

produces:

[["string"], ["string"]]

[["string"], [...]]

Prepared exclusively for Jose Sierra

PRETTYPRINT 695

P
re

tt
y
P

ri
n

t

Library
PrettyPrint General Pretty Printer

PrettyPrint implements a pretty printer for structured text. It handles details of wrap-

ping, grouping, and indentation. The PP library uses PrettyPrint to generate more

legible dumps of Ruby objects.

See also: PP (page 694)

• The following program prints a chart of Ruby’s classes, showing subclasses as a

bracketed list following the parent. To save some space, we show just the classes

in the Numeric branch of the tree.

require 'prettyprint'

require 'complex'

require 'rational'

@children = Hash.new { |h,k| h[k] = Array.new }

ObjectSpace.each_object(Class) do |cls|

@children[cls.superclass] << cls if cls <= Numeric

end

def print_children_of(printer, cls)

printer.text(cls.name)

kids = @children[cls].sort_by {|k| k.name}

unless kids.empty?

printer.group(0, " [", "]") do

printer.nest(3) do

printer.breakable

kids.each_with_index do |k, i|

printer.breakable unless i.zero?

print_children_of(printer, k)

end

end

printer.breakable

end

end

end

printer = PrettyPrint.new($stdout, 30)

print_children_of(printer, Object)

printer.flush

produces:

Object [

Numeric [

Complex

Float

Integer [

Bignum

Fixnum

]

Rational

]

]

Prepared exclusively for Jose Sierra

PROFILE 696

P
ro

fi
le

Library
Profile Profile Execution of a Ruby Program

The profile library is a trivial wrapper around the Profiler module, making it easy

to profile the execution of an entire program. Profiling can be enabled from the com-

mand line using the rprofile option or from within a source program by requiring

the profile module.

See also: Benchmark (page 636), Profiler__ (page 697)

require 'profile'

def ackerman(m, n)

if m == 0 then n+1

elsif n == 0 and m > 0 then ackerman(m1, 1)

else ackerman(m1, ackerman(m, n1))

end

end

ackerman(3, 3)

produces:

% cumulative self self total

time seconds seconds calls ms/call ms/call name

72.55 0.74 0.74 2432 0.30 13.26 Object#ackerman

14.71 0.89 0.15 3676 0.04 0.04 Fixnum#==

6.86 0.96 0.07 1188 0.06 0.06 Fixnum#+

5.88 1.02 0.06 2431 0.02 0.02 Fixnum#

0.00 1.02 0.00 1 0.00 0.00 Module#method_added

0.00 1.02 0.00 1 0.00 0.00 Kernel.respond_to?

0.00 1.02 0.00 1 0.00 0.00 Kernel.puts

0.00 1.02 0.00 2 0.00 0.00 IO#write

0.00 1.02 0.00 57 0.00 0.00 Fixnum#>

0.00 1.02 0.00 1 0.00 0.00 Profiler__.start_profile

0.00 1.02 0.00 1 0.00 1020.00 #toplevel

Prepared exclusively for Jose Sierra

PROFILER_ _ 697

P
ro

fi
le

r_
_

Library
Profiler_ _ Control Execution Profiling

The Profiler_ _ module can be used to collect a summary of the number of calls to,

and the time spent in, methods in a Ruby program. The output is sorted by the total

time spent in each method. The profile library is a convenience wrapper than profiles

an entire program.

See also: Benchmark (page 636), profile (page 696)

require 'profiler'

Omit definition of connection and fetching methods

def calc_discount(qty, price)

case qty

when 0..10 then 0.0

when 11..99 then price * 0.05

else price * 0.1

end

end

def calc_sales_totals(rows)

total_qty = total_price = total_disc = 0

rows.each do |row|

total_qty += row.qty

total_price += row.price

total_disc += calc_discount(row.qty, row.price)

end

end

connect_to_database

rows = read_sales_data

Profiler__::start_profile

calc_sales_totals(rows)

Profiler__::stop_profile

Profiler__::print_profile($stdout)

produces:

% cumulative self self total

time seconds seconds calls ms/call ms/call name

23.33 0.07 0.07 648 0.11 0.28 Range#===

20.00 0.13 0.06 648 0.09 0.14 Fixnum#<=>

13.33 0.17 0.04 1296 0.03 0.03 Float#<=>

13.33 0.21 0.04 969 0.04 0.04 Float#+

13.33 0.25 0.04 1 40.00 300.00 Array#each

6.67 0.27 0.02 648 0.03 0.03 S#qty

3.33 0.28 0.01 648 0.02 0.02 S#price

3.33 0.29 0.01 648 0.02 0.02 Float#coerce

3.33 0.30 0.01 324 0.03 0.59 Object#calc_discount

0.00 0.30 0.00 1 0.00 0.00 Profiler__.start_profile

0.00 0.30 0.00 324 0.00 0.00 Float#*
0.00 0.30 0.00 1 0.00 300.00 #toplevel

0.00 0.30 0.00 1 0.00 300.00 Object#calc_sales_totals

0.00 0.30 0.00 3 0.00 0.00 Fixnum#+

Prepared exclusively for Jose Sierra

PSTORE 698

P
S

to
re

Library
PStore Persistent Object Storage

The PStore class provides transactional, file-based, persistent storage of Ruby objects.

Each PStore can store several object hierarchies. Each hierarchy has a root, identified

by a key (often a string). At the start of a PStore transaction, these hierarchies are read

from a disk file and made available to the Ruby program. At the end of the transaction,

the hierarchies are written back to the file. Any changes made to objects in these hier-

archies are therefore saved on disk, to be read at the start of the next transaction that

uses that file.

In normal use, a PStore object is created and then is used one or more times to control

a transaction. Within the body of the transaction, any object hierarchies that had pre-

viously been saved are made available, and any changes to object hierarchies, and any

new hierarchies, are written back to the file at the end.

• The following example stores two hierarchies in a PStore. The first, identified by

the key "names", is an array of strings. The second, identified by "tree", is a

simple binary tree.

require 'pstore'

require 'pp'

class T

def initialize(val, left=nil, right=nil)

@val, @left, @right = val, left, right

end

def to_a

[@val, @left.to_a, @right.to_a]

end

end

store = PStore.new("/tmp/store")

store.transaction do

store['names'] = ['Douglas', 'Barenberg', 'Meyer']

store['tree'] = T.new('top',

T.new('A', T.new('B')),

T.new('C', T.new('D', nil, T.new('E'))))

end

now read it back in

store.transaction do

puts "Roots: #{store.roots.join(', ')}"

puts store['names'].join(', ')

pp store['tree'].to_a

end

produces:

Roots: names, tree

Douglas, Barenberg, Meyer

["top",

["A", ["B", [], []], []],

["C", ["D", [], ["E", [], []]], []]]

Prepared exclusively for Jose Sierra

PTY 699

P
T

Y

Library
PTY Pseudo-Terminal Interface: Interact with External Processes

Many Unix platforms support a pseudo-terminal—a device pair where one end emu-Only if: Unix with

pty support

lates a process running on a conventional terminal, and the other end can read and write

that terminal as if it were a user looking at a screen and typing on a keyboard.

The PTY library provides the method spawn, which starts the given command (by

default a shell), connecting it to one end of a pseudo-terminal. It then returns the reader

and writer streams connected to that terminal, allowing your process to interact with

the running process.

Working with pseudo-terminals can be tricky. See IO#expect on page 655 for a con-

venience method that makes life easier. You might also want to track down Ara T.

Howard’s Session module for an even simpler approach to driving subprocesses.4

See also: expect (page 655)

• Run irb in a subshell and ask it to convert the string “cat” to uppercase.

require 'pty'

require 'expect'

$expect_verbose = true

PTY.spawn("ruby /usr/bin/irb") do |reader, writer, pid|

reader.expect(/irb.*:0> /)

writer.puts "'cat'.upcase"

reader.expect("=> ")

answer = reader.gets

puts "Answer = #{answer}"

end

produces:

irb(main):001:0> 'cat'.upcase

=> Answer = "CAT"

4. Currently found at http://www.codeforpeople.com/lib/ruby/session/.

Prepared exclusively for Jose Sierra

http://www.codeforpeople.com/lib/ruby/session/

RATIONAL 700

R
a

ti
o

n
a

l

Library
Rational Rational Numbers

Rational numbers are expressed as the ratio of two integers. When the denomina-

tor exactly divides the numerator, a rational number is effectively an integer. Ratio-

nals allow exact representation of fractional numbers, but some real values cannot be

expressed exactly and so cannot be represented as rationals.

Class Rational is normally relatively independent of the other numeric classes, in that

the result of dividing two integers will normally be a (truncated) integer. However, if

the mathn library is loaded into a program, integer division may generate a Rational

result.

See also: mathn (page 671), Matrix (page 673), Complex (page 641)

• Rational as a free-standing class.

require 'rational'

r1 = Rational(3, 4) → Rational(3, 4)

r2 = Rational(2, 3) → Rational(2, 3)

r1 * 2 → Rational(3, 2)

r1 * 8 → Rational(6, 1)

r1 / 6 → Rational(1, 8)

r1 * r2 → Rational(1, 2)

r1 + r2 → Rational(17, 12)

r1 ** r2 → 0.825481812223657

• Rational integrated with integers using mathn. Notice how mathn also changes the

string representation of numbers.

require 'rational'

require 'mathn'

r1 = Rational(3, 4) → 3/4

r2 = Rational(2, 3) → 2/3

r1 * 2 → 3/2

r1 * 8 → 6

5/3 → 5/3

5/3 * 6 → 10

5/3 * 6/15 → 2/3

Math::sin(r1) → 0.681638760023334

Prepared exclusively for Jose Sierra

READBYTES 701

R
e

a
d

b
y
te

s

Library
readbytes Fixed-Size Read

Adds the method readbytes to class IO. This method will guarantee to read exactly

the requested number of bytes from a stream, throwing either an EOFError at end of

file or a TruncatedDataError if fewer than the requested number of bytes remain in

the stream.

• Normally, readbytes would be used with a network connection. Here we illus-

trate its use with a regular file.

require 'readbytes'

File.open("testfile") do |f|

begin

loop do

data = f.readbytes(10)

p data

end

rescue EOFError

puts "End of File"

rescue TruncatedDataError => td

puts "Truncated data: read '#{td.data.inspect}'"

end

end

produces:

"This is li"

"ne one\nThi"

"s is line "

"two\nThis i"

"s line thr"

"ee\nAnd so "

Truncated data: read '"on...\n"'

Prepared exclusively for Jose Sierra

READLINE 702

R
e

a
d

lin
e

Library
Readline Interface to GNU Readline Library

The Readline module allows programs to prompt for and receive lines of user input.Only if: GNU

readline present

The module allows lines to be edited during entry, and command history allows pre-

vious commands to be recalled and edited. The history can be searched, allowing the

user to (for example) recall a previous command containing the text ruby. Command

completion allows context-sensitive shortcuts: tokens can be expanded in the command

line under control of the invoking application. In typical GNU fashion, the underlying

readline library supports more options than any user could need and emulates both vi

and emacs key bindings.

• This meaningless program implements a trivial interpreter that can increment and

decrement a value. It uses the Abbrev module (described on page 634) to expand

abbreviated commands when the tab key is pressed.

require 'readline'

include Readline

require 'abbrev'

COMMANDS = %w{ exit inc dec }

ABBREV = COMMANDS.abbrev

Readline.completion_proc = proc do |string|

ABBREV[string]

end

value = 0

loop do

cmd = readline("wibble [#{value}]: ", true)

break if cmd.nil?

case cmd.strip

when "exit"

break

when "inc"

value += 1

when "dec"

value = 1

else

puts "Invalid command #{cmd}"

end

end

% ruby code/readline.rb

wibble [0]: inc

wibble [1]: <uparrow> => inc

wibble [2]: d<tab> => dec

wibble [1]: ^r i => inc

wibble [2]: exit

%

Prepared exclusively for Jose Sierra

RESOLV 703

R
e

s
o

lv

Library
Resolv DNS Client Library

The resolv library is a pure-Ruby implementation of a DNS client—it can be used to

convert domain names into corresponding IP addresses. It also supports reverse lookups

and the resolution of names in the local hosts file.

The resolv library exists to overcome a problem with the interaction of the standard

operating system DNS lookup and the Ruby threading mechanism. On most operating

systems, name resolution is synchronous: you issue the call to look up a name, and

the call returns when an address has been fetched. Because this lookup often involves

network traffic, and because DNS servers can be slow, this call may take a (relatively)

long time. During this time, the thread that issued the call is effectively suspended.

Because Ruby does not use operating system threads, this means that the interpreter is

effectively suspended while a DNS request is being executed from any running Ruby

thread. This is sometimes unacceptable. Enter the resolv library. Because it is written

in Ruby, it automatically participates in Ruby threading, and hence other Ruby threads

can run while a DNS lookup is in progress in one thread.

Loading the additional library resolvreplace insinuates the resolv library into

Ruby’s socket library (see page 714).

• Use the standard socket library to look up a name. A counter running in a separate

thread is suspended while this takes place.

require 'socket'

count = 0

Thread.critical = true

thread = Thread.new { Thread.pass; loop { count += 1; } }

IPSocket.getaddress("www.rubylang.org") → "210.163.138.100"

count → 0

• Repeat the experiment, but use the resolv library to allow Ruby’s threading to

work in parallel.

require 'socket'

require 'resolvreplace'

count = 0

Thread.critical = true

thread = Thread.new { Thread.pass; loop { count += 1; } }

IPSocket.getaddress("www.rubylang.org") → "210.163.138.100"

count → 831126

Prepared exclusively for Jose Sierra

REXML 704

R
E

X
M

L

Library
REXML XML Processing Library

REXML is a pure-Ruby XML processing library, including DTD-compliant document

parsing, XPath querying, and document generation. It supports both tree-based and

stream-based document processing. As it is written in Ruby, it is available on all plat-

forms supporting Ruby. REXML has a full and complex interface—this section con-

tains a few small examples.

• Assume the file demo.xml contains

<classes language="ruby">

<class name="Numeric">

Numeric represents all numbers.

<class name="Float">

Floating point numbers have a fraction and a mantissa.

</class>

<class name="Integer">

Integers contain exact integral values.

<class name="Fixnum">

Fixnums are stored as machine ints.

</class>

<class name="Bignum">

Bignums store arbitratysized integers.

</class>

</class>

</class>

</classes>

• Read and process the XML.

require 'rexml/document'

xml = REXML::Document.new(File.open("demo.xml"))

puts "Root element: #{xml.root.name}"

puts "\nThe names of all classes"

xml.elements.each("//class") {|c| puts c.attributes["name"] }

puts "\nThe description of Fixnum"

p xml.elements["//class[@name='Fixnum']"].text

produces:

Root element: classes

The names of all classes

Numeric

Float

Integer

Fixnum

Bignum

The description of Fixnum

"\n Fixnums are stored as machine ints.\n "

Prepared exclusively for Jose Sierra

REXML 705

R
E

X
M

L

• Read in a document, add and delete elements, and manipulate attributes before

writing it back out.

require 'rexml/document'

include REXML

xml = Document.new(File.open("demo.xml"))

cls = Element.new("class")

cls.attributes["name"] = "Rational"

cls.text = "Represents complex numbers"

Remove Integer's children, and add our new node as

the one after Integer

int = xml.elements["//class[@name='Integer']"]

int.delete_at(1)

int.delete_at(2)

int.next_sibling = cls

Change all the 'name' attributes to class_name

xml.elements.each("//class") do |c|

c.attributes['class_name'] = c.attributes['name']

c.attributes.delete('name')

end

and write it out with a XML declaration at the front

xml << XMLDecl.new

xml.write(STDOUT, 0)

produces:

<?xml version='1.0'?>

<classes language='ruby'>

<class class_name='Numeric'>

Numeric represents all numbers.

<class class_name='Float'>

Floating point numbers have a fraction and a mantissa.

</class>

<class class_name='Integer'>

Integers contain exact integral values.

</class>

<class class_name='Rational'>Represents complex numbers</class>

</class>

</classes>

Prepared exclusively for Jose Sierra

RINDA 706

R
in

d
a

Library
Rinda Tuplespace Implementation

Tuplespaces are a distributed blackboard system. Processes may add tuples to the black-

board, and other processes may remove tuples from the blackboard that match a cer-

tain pattern. Originally presented by David Gelernter, tuplespaces offer an interesting

scheme for distributed cooperation among heterogeneous processes.

Rinda, the Ruby implementation of tuplespaces, offers some interesting additions to

the concept. In particular, the Rinda implementation uses the === operator to match

tuples. This means that tuples may be matched using regular expressions, the classes of

their elements, as well as the element values.

See also: DRb (page 649)

• The blackboard is a DRb server that offers a shared tuplespace.

require 'drb/drb'

require 'rinda/tuplespace'

require 'my_uri' # Defines the constant MY_URI

DRb.start_service(MY_URI, Rinda::TupleSpace.new)

DRb.thread.join

• The arithmetic agent accepts messages containing an arithmetic operator and two

numbers. It stores the result back on the blackboard.

require 'drb/drb'

require 'rinda/rinda'

require 'my_uri'

DRb.start_service

ts = Rinda::TupleSpaceProxy.new(DRbObject.new(nil, MY_URI))

loop do

op, v1, v2 = ts.take([%r{^[+/*]$}, Numeric, Numeric])

ts.write(["result", v1.send(op, v2)])

end

• The client places a sequence of tuples on the blackboard and reads back the result

of each.

require 'drb/drb'

require 'rinda/rinda'

require 'my_uri'

DRb.start_service

ts = Rinda::TupleSpaceProxy.new(DRbObject.new(nil, MY_URI))

queries = [["+", 1, 2], ["*", 3, 4], ["/", 8, 2]]

queries.each do |q|

ts.write(q)

ans = ts.take(["result", nil])

puts "#{q[1]} #{q[0]} #{q[2]} = #{ans[1]}"

end

Prepared exclusively for Jose Sierra

RSS 707

R
S

S

Library
RSS RSS Feed Generation and Parsing

Rich (or RDF) Site Summary, Really Simple Syndication, take your pick. RSS is the

protocol of choice for disseminating news on the Internet. The Ruby RSS library sup-

ports creating and parsing streams compliant with the RSS 0.9, RSS 1.0, and RSS 2.0

specifications.

• Read and summarize the latest stories from http://rubylang.org.

require 'rss/2.0'

require 'openuri'

open('http://rubylang.org/en/feeds/news.rss') do |http|

response = http.read

result = RSS::Parser.parse(response, false)

puts "Channel: " + result.channel.title

result.items.each_with_index do |item, i|

puts "#{i+1}. #{item.title}" if i < 4

end

end

produces:

Channel: News RSS Feed

1. Site Launch At Last!

2. Server maintenance

3. Ruby 1.8.5 released!

4. The Future of Ruby

• Generate some RSS information.

require 'rss/0.9'

rss = RSS::Rss.new("0.9")

chan = RSS::Rss::Channel.new

chan.description = "Dave's Feed"

chan.link = "http://pragprog.com/pragdave"

rss.channel = chan

image = RSS::Rss::Channel::Image.new

image.url = "http://pragprog.com/pragdave.gif"

image.title = "PragDave"

image.link = chan.link

chan.image = image

3.times do |i|

item = RSS::Rss::Channel::Item.new

item.title = "My News Number #{i}"

item.link = "http://pragprog.com/pragdave/story_#{i}"

item.description = "This is a story about number #{i}"

chan.items << item

end

puts rss.to_s

Prepared exclusively for Jose Sierra

http://ruby-lang.org

SCANF 708

S
c
a

n
f

Library
Scanf Input Format Conversion

Implements a version of the C library scanf function, which extracts values from a

string under the control of a format specifier.

The Ruby version of the library adds a scanf method to both class IO and class String.

The version in IO applies the format string to the next line read from the receiver. The

version in String applies the format string to the receiver. The library also adds the

global method Kernel.scanf, which uses as its source the next line of standard input.

Scanf has one main advantage over using regular expressions to break apart a string: a

regular expression extracts strings whereas scanf will return objects converted to the

correct type.

• Split a date string into its constituents.

require 'scanf'

date = "20041215"

year, month, day = date.scanf("%4d%2d%2d")

year → 2004

month → 12

day → 15

year.class → Fixnum

• The block form of scanf applies the format multiple times to the input string,

returning each set of results to the block.

require 'scanf'

data = "cat:7 dog:9 cow:17 walrus:31"

data.scanf("%[^:]:%d ") do |animal, value|

puts "A #{animal.strip} has #{value*1.4}"

end

produces:

A cat has 9.8

A dog has 12.6

A cow has 23.8

A walrus has 43.4

• Extract hex numbers.

require 'scanf'

data = "decaf bad"

data.scanf("%3x%2x%x") → [3564, 175, 2989]

Prepared exclusively for Jose Sierra

SDBM 709

S
D

B
M

Library
SDBM Interface to SDBM Database

The SDBM database implements a simple key/value persistence mechanism. Because

the underlying SDBM library itself is provided with Ruby, there are no external depen-

dencies, and SDBM should be available on all platforms supported by Ruby. SDBM

database keys and values must be strings. SDBM databases are effectively hashlike.

See also: DBM (page 645), GDBM (page 661)

• Store a record in a new database, and then fetch it back. Unlike the DBM library,

all values to SDBM must be strings (or implement to_str).

require 'sdbm'

require 'date'

SDBM.open("data.dbm") do |dbm|

dbm['name'] = "Walter Wombat"

dbm['dob'] = Date.new(1997, 12,25).to_s

dbm['uses'] = "Ruby"

end

SDBM.open("data.dbm", nil) do |dbm|

p dbm.keys

p dbm['dob']

p dbm['dob'].class

end

produces:

["name", "dob", "uses"]

"19971225"

String

Prepared exclusively for Jose Sierra

SET 710

S
e

t

Library
Set Implement Various Forms of Set

A Set is a collection of unique values (where uniqueness is determined using eql? and

hash). Convenience methods let you build sets from enumerable objects.

• Basic set operations.

require 'set'

set1 = Set.new([:bear, :cat, :deer])

set1.include?(:bat) → false

set1.add(:fox) → #<Set: {:fox, :bear, :cat, :deer}>

partition = set1.classify {|element| element.to_s.length }

partition → {3=>#<Set: {:fox, :cat}>, 4=>#<Set: {:bear,

:deer}>}

set2 = [:cat, :dog, :cow].to_set

set1 | set2 → #<Set: {:cow, :fox, :bear, :cat, :dog, :deer}>

set1 & set2 → #<Set: {:cat}>

set1 set2 → #<Set: {:fox, :bear, :deer}>

set1 ^ set2 → #<Set: {:cow, :fox, :bear, :dog, :deer}>

• Partition the users in our /etc/passwd file into subsets where members of each

subset have adjacent user IDs.

require 'etc'

require 'set'

users = []

Etc.passwd {|u| users << u }

related_users = users.to_set.divide do |u1, u2|

(u1.uid u2.uid).abs <= 1

end

related_users.each do |relatives|

relatives.each {|u| print "#{u.uid}/#{u.name} " }

puts

end

produces:

2/nobody

27/postfix 25/smmsp 26/lp

99/unknown

503/juliet 502/testuser 501/dave

70/www 71/eppc

92/securityagent 91/tokend

1/daemon 0/root

74/mysql 76/qtss 78/mailman 75/sshd 77/cyrus 77/cyrusimap 79/appserver

Prepared exclusively for Jose Sierra

SHELLWORDS 711

S
h

e
llw

o
rd

s

Library
Shellwords Split Line into Words Using POSIX Semantics

Given a string representative of a shell command line, split it into word tokens accord-

ing to POSIX semantics.

• Spaces between double or single quotes are treated as part of a word.

• Double quotes may be escaped using a backslash.

• Spaces escaped by a backslash are not used to separate words.

• Otherwise tokens separated by whitespace are treated as words.

require 'shellwords'

include Shellwords

line = %{Code Ruby, Be Happy!}

shellwords(line) → ["Code", "Ruby,", "Be", "Happy!"]

line = %{"Code Ruby", 'Be Happy'!}

shellwords(line) → ["Code Ruby,", "Be Happy!"]

line = %q{Code\ Ruby, \"Be Happy\"!}

shellwords(line) → ["Code Ruby,", "\"Be", "Happy\"!"]

Prepared exclusively for Jose Sierra

SINGLETON 712

S
in

g
le

to
n

Library
Singleton The Singleton Pattern

The Singleton design pattern ensures that only one instance of a particular class may

be created for the lifetime of a program (see Design Patterns [GHJV95]).

The singleton library makes this simple to implement. Mix the Singleton module

into each class that is to be a singleton, and that class’s new method will be made private.

In its place, users of the class call the method instance, which returns a singleton

instance of that class.

In this example, the two instances of MyClass are the same object.

require 'singleton'

class MyClass

attr_accessor :data

include Singleton

end

a = MyClass.instance → #<MyClass:0x1c2efc>

b = MyClass.instance → #<MyClass:0x1c2efc>

a.data = 123 → 123

b.data → 123

Prepared exclusively for Jose Sierra

SOAP 713

S
O

A
P

Library
SOAP Client and Server Implementations of SOAP

The SOAP library implements both the client and server sides of the SOAP protocol,

including support for WSDL, the Web Services Description Language.

A fuller discussion of the SOAP library, including some examples of accessing the

Google search API, starts on page 236.

• Create a simple SOAP service that returns the current local time as a string.

require 'soap/rpc/standaloneServer'

module TimeServant

def TimeServant.now

Time.now.to_s

end

end

class Server < SOAP::RPC::StandaloneServer

def on_init

servant = TimeServant

add_method(servant, 'now')

end

end

if __FILE__ == $0

svr = Server.new('Server',

'http://pragprog.com/TimeServer',

'0.0.0.0',

12321)

trap('INT') { svr.shutdown }

svr.start

end

• Query the server using a simple SOAP client.

require 'soap/rpc/driver'

proxy = SOAP::RPC::Driver.new("http://localhost:12321",

"http://pragprog.com/TimeServer")

proxy.add_method("now")

p proxy.now

produces:

"Wed Sep 20 16:06:01 CDT 2006"

Prepared exclusively for Jose Sierra

SOCKET 714

S
o

c
k
e

t

Library
Socket IP, TCP, Unix, and SOCKS Socket Access

IO

BasicSocket

IPSocket

TCPSocket

SOCKSSocket

TCPServer

UDPSocket

Socket

UNIXSocket

UNIXServer

The socket extension defines nine classes

for accessing the socket-level communica-

tions of the underlying system. All of these

classes are (indirect) subclasses of class IO,

meaning that IO’s methods can be used with

socket connections.

The hierarchy of socket classes reflects the

reality of network programming and hence

is somewhat confusing. The BasicSocket

class largely contains methods common to

data transfer for all socket-based connections. It is subclassed to provide protocol-

specific implementations: IPSocket, UNIXSocket (for domain sockets), and (indi-

rectly) TCPSocket, UDPSocket, and SOCKSSocket.

BasicSocket is also subclassed by class Socket, which is a more generic interface to

socket-oriented networking. While classes such as TCPSocket are specific to a proto-

col, Socket objects can, with some work, be used regardless of protocol.

TCPSocket, SOCKSSocket, and UNIXSocket are each connection oriented. Each has a

corresponding xxxxServer class, which implements the server end of a connection.

The socket libraries are something that you may never use directly. However, if you do

use them, you’ll need to know the details. For that reason, we’ve included a reference

section covering the socket library methods in Appendix A on page 740.

The following code shows a trivial UDP server and client. For more examples see

Appendix A.

Simple logger prints messages

received on UDP port 12121

require 'socket'

socket = UDPSocket.new

socket.bind("127.0.0.1", 12121)

loop do

msg, sender = socket.recvfrom(100)

host = sender[3]

puts "#{Time.now}: #{host} '#{msg}'"

end

Exercise the logger

require 'socket'

log = UDPSocket.new

log.connect("127.0.0.1", 12121)

log.print "Up and Running!"

process ... process ..

log.print "Done!"

This produces:

Wed Jun 30 17:30:24 CDT 2004: 127.0.0.1 'Up and Running!'

Wed Jun 30 17:30:24 CDT 2004: 127.0.0.1 'Done!'

Prepared exclusively for Jose Sierra

STRINGIO 715

S
tr

in
g

IO

Library
StringIO Treat Strings as IO Objects

In some ways the distinction between strings and file contents is artificial: the contents

of a file is basically a string that happens to live on disk, not in memory. The StringIO

library aims to unify the two concepts, making strings act as if they were opened IO

objects. Once a string is wrapped in a StringIO object, it can be read from and written

to as if it were an open file. This can make unit testing a lot easier. It also lets you pass

strings into classes and methods that were originally written to work with files.

• Read and write from a string.

require 'stringio'

sio = StringIO.new("time flies like an arrow")

sio.read(5) → "time "

sio.read(5) → "flies"

sio.pos = 18

sio.read(5) → " arro"

sio.rewind → 0

sio.write("fruit") → 5

sio.pos = 16

sio.write("a banana") → 8

sio.rewind → 0

sio.read → "fruitflies like a banana"

• Use StringIO as a testing aid.

require 'stringio'

require 'csv'

require 'test/unit'

class TestCSV < Test::Unit::TestCase

def test_simple

StringIO.open do |op|

CSV::Writer.generate(op) do |csv|

csv << [1, "line 1", 27]

csv << [2, nil, 123]

end

assert_equal("1,line 1,27\n2,,123\n", op.string)

end

end

end

produces:

Loaded suite

Started

.

Finished in 0.00071 seconds.

1 tests, 1 assertions, 0 failures, 0 errors

Prepared exclusively for Jose Sierra

STRINGSCANNER 716

S
tr

in
g

S
c
a

n
n

e
r

Library
StringScanner Basic String Tokenizer

StringScanner objects progress through a string, matching (and optionally returning)

tokens that match a given pattern. Unlike the built-in scan methods, StringScanner

objects maintain a current position pointer in the string being examined, so each call

resumes from the position in the string where the previous call left off. Pattern matches

are anchored to this previous point.

• Implement a simple language.

require 'strscan'

Handle the language:

set <var> = <value>

get <var>

values = {}

loop do

line = gets or break

scanner = StringScanner.new(line.chomp)

scanner.scan(/(get|set)\s+/) or fail "Missing command"

cmd = scanner[1]

var_name = scanner.scan(/\w+/) or fail "Missing variable"

case cmd

when "get"

puts "#{var_name} => #{values[var_name].inspect}"

when "set"

scanner.skip(/\s+=\s+/) or fail "Missing '='"

value = scanner.rest

values[var_name] = value

else

fail cmd

end

end

produces:

% ruby code/strscan.rb

set a = dave

set b = hello

get b

b => "hello"

get a

a => "dave"

Prepared exclusively for Jose Sierra

SYNC 717

S
y
n

c

Library
Sync Thread Synchronization with Shared Regions

The sync library synchronizes the access to shared data across multiple, concurrent

threads. Unlike Monitor, the sync library supports both exclusive access to data and

shared (read-only) access.

See also: Monitor (page 674), Mutex (page 675), Thread (page 612)

• Without synchronization, the following code has a race condition: the inc method

can be interrupted between fetching the count and storing the incremented value

back, resulting in updates being lost.

require 'thwait'

class Counter

attr_reader :total_count

def initialize

@total_count = 0

end

def inc

@total_count += 1

end

end

count = Counter.new

waiter = ThreadsWait.new([])

create 10 threads that each inc() 100,000 times

10.times do

waiter.join_nowait(Thread.new { 100_000.times { count.inc } })

end

waiter.all_waits

count.total_count → 474558

• Add exclusive synchronization to ensure the count is correct.

require 'thwait'

require 'sync'

class Counter

attr_reader :total_count

def initialize

@total_count = 0

@sync = Sync.new

end

def inc

@sync.synchronize(:EX) do

@total_count += 1

end

end

end

Prepared exclusively for Jose Sierra

SYNC 718

S
y
n

c

count = Counter.new

waiter = ThreadsWait.new([])

create 10 threads that each inc() 100,000 times

10.times do

waiter.join_nowait(Thread.new { 100_000.times { count.inc } })

end

waiter.all_waits

count.total_count → 1000000

• Add shared region to ensure that readers get consistent picture.

require 'thwait'

require 'sync'

class Counter

attr_reader :total_count

def initialize

@total_count = 0

@count_down = 0

@sync = Sync.new

end

def inc

@sync.synchronize(:EX) do

@total_count += 1

@count_down = 1

end

end

def test_consistent

@sync.synchronize(:SH) do

fail "Bad counts" unless @total_count + @count_down == 0

end

end

end

count = Counter.new

waiter = ThreadsWait.new([])

create 10 threads that each inc() 100,000 times

10.times do

waiter.join_nowait(Thread.new { 100_000.times do

count.inc

count.test_consistent

end })

end

waiter.all_waits

count.total_count → 1000000

Prepared exclusively for Jose Sierra

SYSLOG 719

S
y
s
lo

g

Library
Syslog Interface to Unix System Logging

The Syslog class is a simple wrapper around the Unix syslog(3) library. It allowsOnly if: Unix

system with syslog

messages to be written at various severity levels to the logging daemon, where they are

disseminated according to the configuration in syslog.conf. The following examples

assume the log file is /var/log/system.log.

• Add to our local system log. We’ll log all the levels configured for the user facility

for our system (which is every level except debug messages).

require 'syslog'

log = Syslog.open("test") # "test" is the app name

log.debug("Warm and fuzzy greetings from your program")

log.info("Program starting")

log.notice("I said 'Hello!'")

log.warning("If you don't respond soon, I'm quitting")

log.err("You haven't responded after %d milliseconds", 7)

log.alert("I'm telling your mother...")

log.emerg("I'm feeling totally crushed")

log.crit("Aarrgh....")

system("tail 7 /var/log/system.log")

produces:

Sep 20 15:24:52 dave test[13982]: Aarrgh....

Sep 20 16:06:50 dave test[17653]: I said 'Hello!'

Sep 20 16:06:50 dave test[17653]: If you don't respond soon, I'm quitting

Sep 20 16:06:50 dave test[17653]: You haven't responded after 7 milliseconds

Sep 20 16:06:50 dave test[17653]: I'm telling your mother...

Sep 20 16:06:50 dave test[17653]: I'm feeling totally crushed

Sep 20 16:06:50 dave test[17653]: Aarrgh....

• Only log errors and above.

require 'syslog'

log = Syslog.open("test")

log.mask = Syslog::LOG_UPTO(Syslog::LOG_ERR)

log.debug("Warm and fuzzy greetings from your program")

log.info("Program starting")

log.notice("I said 'Hello!'")

log.warning("If you don't respond soon, I'm quitting")

log.err("You haven't responded after %d milliseconds", 7)

log.alert("I'm telling your mother...")

log.emerg("I'm feeling totally crushed")

log.crit("Aarrgh....")

system("tail 7 /var/log/system.log")

produces:

Sep 20 16:06:50 dave test[17659]: You haven't responded after 7 milliseconds

Sep 20 16:06:50 dave test[17659]: I'm telling your mother...

Sep 20 16:06:50 dave test[17659]: I'm feeling totally crushed

Sep 20 16:06:50 dave test[17659]: Aarrgh....

Prepared exclusively for Jose Sierra

TEMPFILE 720

T
e

m
p

fi
le

Library
Tempfile Temporary File Support

Class Tempfile creates managed temporary files. Although they behave the same as

any other IO objects, temporary files are automatically deleted when the Ruby pro-

gram terminates. Once a Tempfile object has been created, the underlying file may be

opened and closed a number of times in succession.

Tempfile does not directly inherit from IO. Instead, it delegates calls to a File object.

From the programmer’s perspective, apart from the unusual new, open, and close

semantics, a Tempfile object behaves as if it were an IO object.

If you don’t specify a directory to hold temporary files when you create them, the

tmpdir library will be used to find a system-dependent location.

See also: tmpdir (page 727)

require 'tempfile'

tf = Tempfile.new("afile")

tf.path → "/tmp/afile17669.0"

tf.puts("Cosi Fan Tutte") → nil

tf.close → nil

tf.open → #<File:/tmp/afile17669.0>

tf.gets → "Cosi Fan Tutte\n"

tf.close(true) → #<File:/tmp/afile17669.0 (closed)>

Prepared exclusively for Jose Sierra

TEST::UNIT 721

T
e

s
t:

:U
n

it

Library
Test::Unit Unit Testing Framework

Test::Unit is a unit testing framework based on the original SUnit Smalltalk frame-

work. It provides a structure in which unit tests may be organized, selected, and run.

Tests can be run from the command line or using one of several GUI-based interfaces.

Chapter 12 on page 143 contains a tutorial on Test::Unit.

We could have a simple playlist class, designed to store and retrieve songs.

require 'code/testunit/song.rb'

require 'forwardable'

class Playlist

extend Forwardable

def_delegator(:@list, :<<, :add_song)

def_delegator(:@list, :size)

def initialize

@list = []

end

def find(title)

@list.find {|song| song.title == title}

end

end

We can write unit tests to exercise this class. The Test::Unit framework is smart

enough to run the tests in a test class if no main program is supplied.

require 'test/unit'

require 'code/testunit/playlist.rb'

class TestPlaylist < Test::Unit::TestCase

def test_adding

pl = Playlist.new

assert_equal(0, pl.size)

assert_nil(pl.find("My Way"))

pl.add_song(Song.new("My Way", "Sinatra"))

assert_equal(1, pl.size)

s = pl.find("My Way")

assert_not_nil(s)

assert_equal("Sinatra", s.artist)

assert_nil(pl.find("Chicago"))

.. and so on

end

end

produces:

Loaded suite

Started

.

Finished in 0.000582 seconds.

1 tests, 6 assertions, 0 failures, 0 errors

Prepared exclusively for Jose Sierra

THREAD 722

T
h

re
a

d

Library
thread Utility Functionality for Threading

The thread library adds some utility functions and classes for supporting threads.

Much of this has been superseded by the Monitor class, but it contains two classes,

Queue and SizedQueue, that are still useful. Both classes implement a thread-safe

queue that can be used to pass objects between producers and consumers in multi-

ple threads. The Queue object implements a unbounded queue. A SizedQueue is told

its capacity; any producer who tries to add an object when the queue is at that capacity

will block until a consumer has removed an object.

• The following example was provided by Robert Kellner. It has three consumers

taking objects from an unsized queue. Those objects are provided by two produc-

ers, which each add three items.

require 'thread'

queue = Queue.new

consumers = (1..3).map do |i|

Thread.new("consumer #{i}") do |name|

begin

obj = queue.deq

print "#{name}: consumed #{obj.inspect}\n"

sleep(rand(0.05))

end until obj == :END_OF_WORK

end

end

producers = (1..2).map do |i|

Thread.new("producer #{i}") do |name|

3.times do |j|

sleep(0.1)

queue.enq("Item #{j} from #{name}")

end

end

end

producers.each {|th| th.join}

consumers.size.times { queue.enq(:END_OF_WORK) }

consumers.each {|th| th.join}

produces:

consumer 1: consumed "Item 0 from producer 1"

consumer 2: consumed "Item 0 from producer 2"

consumer 3: consumed "Item 1 from producer 1"

consumer 3: consumed "Item 1 from producer 2"

consumer 3: consumed "Item 2 from producer 1"

consumer 2: consumed "Item 2 from producer 2"

consumer 3: consumed :END_OF_WORK

consumer 1: consumed :END_OF_WORK

consumer 2: consumed :END_OF_WORK

Prepared exclusively for Jose Sierra

THREADSWAIT 723

T
h

re
a

d
s
W

a
it

Library
ThreadsWait Wait for Multiple Threads to Terminate

Class ThreadsWait handles the termination of a group of thread objects. It provides

methods to allow you to check for termination of any managed thread and to wait for

all managed threads to terminate.

The following example kicks off a number of threads that each wait for a slightly

shorter length of time before terminating and returning their thread number. Using

ThreadsWait, we can capture these threads as they terminate, either individually or

as a group.

require 'thwait'

group = ThreadsWait.new

construct 10 threads that wait for 1 second, .9 second, etc.

add each to the group

9.times do |i|

thread = Thread.new(i) {|index| sleep 1.0 index/10.0; index }

group.join_nowait(thread)

end

any threads finished?

group.finished? → false

wait for one to finish

group.next_wait.value → 8

wait for 5 more to finish

5.times { group.next_wait } → 5

wait for next one to finish

group.next_wait.value → 2

and then wait for all the rest

group.all_waits → nil

Prepared exclusively for Jose Sierra

TIME 724

T
im

e

Library
Time Extended Functionality for Class Time

The time library adds functionality to the built-in class Time, supporting date and/or

time formats used by RFC 2822 (e-mail), RFC 2616 (HTTP), and ISO 8601 (the subset

used by XML schema).

require ’time’

Time.rfc2822("Thu, 1 Apr 2004 16:32:45 CST")

→ Thu Apr 01 16:32:45 CST 2004

Time.rfc2822("Thu, 1 Apr 2004 16:32:45 0600")

→ Thu Apr 01 16:32:45 CST 2004

Time.now.rfc2822 →Wed, 20 Sep 2006 16:06:52 -0500

Time.httpdate("Thu, 01 Apr 2004 16:32:45 GMT")

→ Thu Apr 01 16:32:45 UTC 2004

Time.httpdate("Thursday, 01Apr04 16:32:45 GMT")

→ Thu Apr 01 16:32:45 UTC 2004

Time.httpdate("Thu Apr 1 16:32:45 2004")

→ Thu Apr 01 16:32:45 UTC 2004

Time.now.httpdate →Wed, 20 Sep 2006 21:06:52 GMT

Time.xmlschema("20040401T16:32:45")

→ Thu Apr 01 16:32:45 CST 2004

Time.xmlschema("20040401T16:32:45.1206:00")

→ Thu Apr 01 22:32:45 UTC 2004

Time.now.xmlschema → 2006-09-20T16:06:52-05:00

Prepared exclusively for Jose Sierra

TIMEOUT 725

T
im

e
o

u
t

Library
Timeout Run a Block with Timeout

The Timeout.timeout method takes a parameter representing a timeout period in sec-

onds, an optional exception parameter, and a block. The block is executed, and a timer

is run concurrently. If the block terminates before the timeout, timeout returns the

value of the block. Otherwise, the exception (default Timeout::Error) is raised.

require 'timeout'

for snooze in 1..2

puts "About to sleep for #{snooze}"

begin

Timeout::timeout(1.5) do |timeout_length|

puts "Timeout period is #{timeout_length}"

sleep(snooze)

puts "That was refreshing"

end

rescue Timeout::Error

puts "Woken up early!!"

end

end

produces:

About to sleep for 1

Timeout period is 1.5

That was refreshing

About to sleep for 2

Timeout period is 1.5

Woken up early!!

Prepared exclusively for Jose Sierra

TK 726

T
k

Library
Tk Wrapper for Tcl/Tk

Of all the Ruby options for creating GUIs, the Tk library is probably the most widelyOnly if: Tk library

installed

supported, running on Windows, Linux, Mac OS X, and other Unix-like platforms.5

Although it doesn’t produce the prettiest interfaces, Tk is functional and relatively sim-

ple to program. The Tk extension is documented more fully in Chapter 19 on page 241.

require 'tk'

include Math

TkRoot.new do |root|

title "Curves"

geometry "400x400"

TkCanvas.new(root) do |canvas|

width 400

height 400

pack('side'=>'top', 'fill'=>'both', 'expand'=>'yes')

points = []

10.upto(30) do |scale|

(0.0).step(2*PI,0.1) do |i|

new_x = 5*scale*sin(i) + 200 + scale*sin(i*2)

new_y = 5*scale*cos(i) + 200 + scale*cos(i*6)

points << [new_x, new_y]

f = scale/5.0

r = (Math.sin(f)+1)*127.0

g = (Math.cos(2*f)+1)*127.0

b = (Math.sin(3*f)+1)*127.0

col = sprintf("#%02x%02x%02x", r.to_i, g.to_i, b.to_i)

if points.size == 3

TkcLine.new(canvas,

points[0][0], points[0][1],

points[1][0], points[1][1],

points[2][0], points[2][1],

'smooth'=>'on',

'width'=> 7,

'fill' => col,

'capstyle' => 'round')

points.shift

end

end

end

end

end

Tk.mainloop

5. Although all these environments require that the Tcl/Tk libraries are installed before the Ruby Tk

extension can be used.

Prepared exclusively for Jose Sierra

TMPDIR 727

T
m

p
d

ir

Library
tmpdir System-Independent Temporary Directory Location

The tmpdir library adds the tmpdir method to class Dir. This method returns the

path to a temporary directory that should be writable by the current process. (This

will not be true if none of the well-known temporary directories is writable, and if

the current working directory is also not writable.) Candidate directories include those

referenced by the environment variables TMPDIR, TMP, TEMP, and USERPROFILE, the

directory /tmp, and (on Windows boxes) the temp subdirectory of the Windows or

System directory.

require 'tmpdir'

Dir.tmpdir → "/tmp"

ENV['TMPDIR'] = "/wibble" # doesn't exist

ENV['TMP'] = "/sbin" # not writable

ENV['TEMP'] = "/Users/dave/tmp" # just right

Dir.tmpdir → "/Users/dave/tmp"

Prepared exclusively for Jose Sierra

TRACER 728

T
ra

c
e

r

Library
Tracer Trace Program Execution

The tracer library uses Kernel.set_trace_func to trace all or part of a Ruby pro-

gram’s execution. The traced lines show the thread number, file, line number, class,

event, and source line. The events shown are “-” for a change of line, “>” for a call, “<”

for a return, “C” for a class definition, and “E” for the end of a definition.

• You can trace an entire program by including the tracer library from the com-

mand line.

class Account

def initialize(balance)

@balance = balance

end

def debit(amt)

if @balance < amt

fail "Insufficient funds"

else

@balance = amt

end

end

end

acct = Account.new(100)

acct.debit(40)

% ruby r tracer account.rb

#0:account.rb:1::: class Account

#0:account.rb:1:Class:>: class Account

#0:account.rb:1:Class:<: class Account

#0:account.rb:1::C: class Account

#0:account.rb:2::: def initialize(balance)

#0:account.rb:2:Module:>: def initialize(balance)

#0:account.rb:2:Module:<: def initialize(balance)

#0:account.rb:5::: def debit(amt)

#0:account.rb:5:Module:>: def debit(amt)

#0:account.rb:5:Module:<: def debit(amt)

#0:account.rb:1::E: class Account

#0:account.rb:13::: acct = Account.new(100)

#0:account.rb:13:Class:>: acct = Account.new(100)

#0:account.rb:2:Account:>: def initialize(balance)

#0:account.rb:3:Account:: @balance = balance

#0:account.rb:13:Account:<: acct = Account.new(100)

#0:account.rb:13:Class:<: acct = Account.new(100)

#0:account.rb:14::: acct.debit(40)

#0:account.rb:5:Account:>: def debit(amt)

#0:account.rb:6:Account:: if @balance < amt

#0:account.rb:6:Account:: if @balance < amt

#0:account.rb:6:Fixnum:>: if @balance < amt

#0:account.rb:6:Fixnum:<: if @balance < amt

#0:account.rb:9:Account:: @balance = amt

#0:account.rb:9:Fixnum:>: @balance = amt

#0:account.rb:9:Fixnum:<: @balance = amt

#0:account.rb:9:Account:<: @balance = amt

• You can also use tracer objects to trace just a portion of your code and use filters

to select what to trace.

require 'tracer'

class Account

def initialize(balance)

@balance = balance

end

def debit(amt)

if @balance < amt

fail "Insufficient funds"

else

@balance = amt

end

end

end

#0:account.rb:20::: acct.debit(40)

#0:account.rb:8:Account:: if @balance < amt

#0:account.rb:8:Account:: if @balance < amt

#0:account.rb:11:Account:: @balance = amt

tracer = Tracer.new

tracer.add_filter lambda {|event, *rest| event == "line" }

acct = Account.new(100)

tracer.on do

acct.debit(40)

end

Prepared exclusively for Jose Sierra

TSORT 729

T
S

o
rt

Library
TSort Topological Sort

Given a set of dependencies between nodes (where each node depends on zero or more

other nodes, and there are no cycles in the graph of dependencies), a topological sort

will return a list of the nodes ordered such that no node follows a node that depends on

it. One use for this is scheduling tasks, where the order means that you will complete

the dependencies before you start any task that depends on them. The make program

uses a topological sort to order its execution.

In this library’s implementation, you mix in the TSort module and define two methods:

tsort_each_node, which yields each node in turn, and tsort_each_child, which,

given a node, yields each of that nodes dependencies.

• Given the set of dependencies among the steps for making a piña colada, what is

the optimum order for undertaking the steps?

require 'tsort'

class Tasks

include TSort

def initialize

@dependencies = {}

end

def add_dependency(task, *relies_on)

@dependencies[task] = relies_on

end

def tsort_each_node(&block)

@dependencies.each_key(&block)

end

def tsort_each_child(node, &block)

deps = @dependencies[node]

deps.each(&block) if deps

end

end

tasks = Tasks.new

tasks.add_dependency(:add_rum, :open_blender)

tasks.add_dependency(:add_pc_mix, :open_blender)

tasks.add_dependency(:add_ice, :open_blender)

tasks.add_dependency(:close_blender, :add_rum, :add_pc_mix, :add_ice)

tasks.add_dependency(:blend_mix, :close_blender)

tasks.add_dependency(:pour_drink, :blend_mix)

tasks.add_dependency(:pour_drink, :open_blender)

puts tasks.tsort

produces:

open_blender

add_rum

add_pc_mix

add_ice

close_blender

blend_mix

pour_drink

Prepared exclusively for Jose Sierra

UN 730

U
n

Library
un Command-Line Interface to FileUtils

Why un? Because when you invoke it from the command line with the r option to

Ruby, it spells run. This pun gives a hint as to the intent of the library: it lets you run

commands (in this case, a subset of the methods in FileUtils) from the command

line. In theory this gives you an operating system–independent set of file manipulation

commands, possibly useful when writing portable Makefiles.

See also: FileUtils (page 657)

• The available commands are

% ruby run e cp <options> source dest

% ruby run e ln <options> target linkname

% ruby run e mv <options> source dest

% ruby run e rm <options> file

% ruby run e mkdir <options> dirs

% ruby run e rmdir <options> dirs

% ruby run e install <options> source dest

% ruby run e chmod <options> octal_mode file

% ruby run e touch <options> file

Note the use of to tell the Ruby interpreter that options to the program follow.

You can get a list of all available commands with

% ruby run e help

For help on a particular command, append the command’s name.

% ruby run e help mkdir

Prepared exclusively for Jose Sierra

URI 731

U
R

I

Library
URI RFC 2396 Uniform Resource Identifier (URI) Support

URI encapsulates the concept of a Uniform Resource Identifier (URI), a way of specify-

ing some kind of (potentially networked) resource. URIs are a superset of URLs: URLs

(such as the addresses of Web pages) allow specification of addresses by location, and

URIs also allow specification by name.

URIs consist of a scheme (such as http, mailto, ftp, and so on), followed by struc-

tured data identifying the resource within the scheme.

URI has factory methods that take a URI string and return a subclass of URI spe-

cific to the scheme. The library explicitly supports the ftp, http, https, ldap, and

mailto schemes; others will be treated as generic URIs. The module also has con-

venience methods to escape and unescape URIs. The class Net::HTTP accepts URI

objects where a URL parameter is expected.

See also: openuri (page 686), Net::HTTP (page 678)

require 'uri'

uri = URI.parse("http://pragprog.com:1234/mypage.cgi?q=ruby")

uri.class → URI::HTTP

uri.scheme → "http"

uri.host → "pragprog.com"

uri.port → 1234

uri.path → "/mypage.cgi"

uri.query → "q=ruby"

uri = URI.parse("mailto:ruby@pragprog.com?Subject=help&body=info")

uri.class → URI::MailTo

uri.scheme → "mailto"

uri.to → "ruby@pragprog.com"

uri.headers → [["Subject", "help"], ["body", "info"]]

uri = URI.parse("ftp://dave@anon.com:/pub/ruby;type=i")

uri.class → URI::FTP

uri.scheme → "ftp"

uri.host → "anon.com"

uri.port → 21

uri.path → "/pub/ruby"

uri.typecode → "i"

Prepared exclusively for Jose Sierra

WEAKREF 732

W
e

a
k
R

e
f

Library
WeakRef Support for Weak References

In Ruby, objects are not eligible for garbage collection if references still exist to them.

Normally, this is a Good Thing—it would be disconcerting to have an object simply

evaporate while you were using it. However, sometimes you may need more flexibility.

For example, you might want to implement an in-memory cache of commonly used

file contents. As you read more files, the cache grows. At some point, you may run low

on memory. The garbage collector will be invoked, but the objects in the cache are all

referenced by the cache data structures and so will not be deleted.

A weak reference behaves exactly as any normal object reference with one important

exception—the referenced object may be garbage collected, even while references to

it exist. In the cache example, if the cached files were accessed using weak references,

once memory runs low they will be garbage collected, freeing memory for the rest of

the application.

• Weak references introduce a slight complexity. As the object referenced can be

deleted by garbage collection at any time, code that accesses these objects must

take care to ensure that the references are valid. Two techniques can be used. First,

the code can reference the objects normally. Any attempt to reference an object

that has been garbage collected will raise a WeakRef::RefError exception.

require 'weakref'

ref = "fol de rol"

puts "Initial object is #{ref}"

ref = WeakRef.new(ref)

puts "Weak reference is #{ref}"

ObjectSpace.garbage_collect

puts "But then it is #{ref}"

produces:

Initial object is fol de rol

Weak reference is fol de rol

But then it is fol de rol

• Alternatively, use the WeakRef#weakref_alive? method to check that a refer-

ence is valid before using it. Garbage collection must be disabled during the test

and subsequent reference to the object. In a single-threaded program, you could

use something like

ref = WeakRef.new(some_object)

.. some time later

gc_was_disabled = GC.disable

if ref.weakref_alive?

do stuff with 'ref'

end

GC.enable unless gc_was_disabled

Prepared exclusively for Jose Sierra

WEBRICK 733

W
E

B
ri

c
k

Library
WEBrick Web Server Toolkit

WEBrick is a pure-Ruby framework for implementing HTTP-based servers. The stan-

dard library includes WEBrick services that implement a standard Web server (serving

files and directory listings), and servlets supporting CGI, erb, file download, and the

mounting of Ruby lambdas.

More examples of WEBrick start on page 234.

• The following code mounts two Ruby procs on a Web server. Requests to the URI

http://localhost:2000/hello run one proc, and requests to http://localhost:2000/bye

run the other.

#!/usr/bin/ruby

require 'webrick'

include WEBrick

hello_proc = lambda do |req, resp|

resp['ContentType'] = "text/html"

resp.body = %{

<html><body>

Hello. You're calling from a #{req['UserAgent']}

<p>

I see parameters: #{req.query.keys.join(', ')}

</body></html>

}

end

bye_proc = lambda do |req, resp|

resp['ContentType'] = "text/html"

resp.body = %{

<html><body>

<h3>Goodbye!</h3>

</body></html>

}

end

hello = HTTPServlet::ProcHandler.new(hello_proc)

bye = HTTPServlet::ProcHandler.new(bye_proc)

s = HTTPServer.new(:Port => 2000)

s.mount("/hello", hello)

s.mount("/bye", bye)

trap("INT"){ s.shutdown }

s.start

Prepared exclusively for Jose Sierra

http://localhost:2000/hello
http://localhost:2000/bye

WIN32API 734

W
in

3
2

A
P

I

Library
Win32API Access Entry Points in Windows DLLs

The Win32API module allows access to any arbitrary Windows 32 function. Many ofOnly if: Windows

these functions take or return a Pointer data type—a region of memory corresponding

to a C string or structure type.

In Ruby, these pointers are represented using class String, which contains a sequence

of 8-bit bytes. It is up to you to pack and unpack the bits in the String. See the refer-

ence section for unpack on page 602 and pack on page 415 for details.

Parameters 3 and 4 of the new call specify the parameter and return types of the method

to be called. The type specifiers are n and l for numbers, i for integers, p for pointers to

data stored in a string, and v for the void type (used for export parameters only). These

strings are case-insensitive. Method parameters are specified as an array of strings, and

the return type is a single string.

The functionality of Win32API is also provided using the dl/win32 library. As the DL

library is newer, this may be a sign that the original Win32API may be phased out over

time.

See also: DL (page 648)

• This example is from the Ruby distribution, in ext/Win32API.

require 'Win32API'

get_cursor_pos = Win32API.new("user32", "GetCursorPos", ['P'], 'V')

lpPoint = " " * 8 # store two LONGs

get_cursor_pos.Call(lpPoint)

x, y = lpPoint.unpack("LL") # get the actual values

print "x: ", x, "\n"

print "y: ", y, "\n"

ods = Win32API.new("kernel32", "OutputDebugString", ['P'], 'V')

ods.Call("Hello, World\n")

GetDesktopWindow = Win32API.new("user32", "GetDesktopWindow", [], 'L')

GetActiveWindow = Win32API.new("user32", "GetActiveWindow", [], 'L')

SendMessage = Win32API.new("user32", "SendMessage", ['L'] * 4, 'L')

SendMessage.Call(GetDesktopWindow.Call, 274, 0xf140, 0)

Prepared exclusively for Jose Sierra

WIN32OLE 735

W
IN

3
2

O
L

E

Library
WIN32OLE Windows Automation

Interface to Windows automation, allowing Ruby code to interact with Windows appli-Only if: Windows

cations. The Ruby interface to Windows is discussed in more detail in Chapter 20 on

page 253.

See also: Win32API (page 734)

• Open Internet Explorer, and ask it to display our home page.

ie = WIN32OLE.new('InternetExplorer.Application')

ie.visible = true

ie.navigate("http://www.pragmaticprogrammer.com")

• Create a new chart in Microsoft Excel, and then rotate it.

require 'win32ole'

4100 is the value for the Excel constant xl3DColumn.

ChartTypeVal = 4100;

excel = WIN32OLE.new("excel.application")

Create and rotate the chart

excel['Visible'] = TRUE

excel.Workbooks.Add()

excel.Range("a1")['Value'] = 3

excel.Range("a2")['Value'] = 2

excel.Range("a3")['Value'] = 1

excel.Range("a1:a3").Select()

excelchart = excel.Charts.Add()

excelchart['Type'] = ChartTypeVal

30.step(180, 5) do |rot|

excelchart.rotation = rot

sleep(0.1)

end

excel.ActiveWorkbook.Close(0)

excel.Quit()

Prepared exclusively for Jose Sierra

XMLRPC 736

X
M

L
R

P
C

Library
XMLRPC Remote Procedure Calls using XML-RPC

XMLRPC allows clients to invoke methods on networked servers using the XML-RPC

protocol. Communications take place over HTTP. The server may run in the context of

a Web server, in which case ports 80 or 443 (for SSL) will typically be used. The server

may also be run stand-alone. The Ruby XML-RPC server implementation supports

operation as a CGI script, as a mod_ruby script, as a WEBrick handler, and as a stand-

alone server. Basic authentification is supported, and clients can communicate with

servers via proxies. Servers may throw FaultException errors—these generate the

corresponding exception on the client (or optionally may be flagged as a status return

to the call).

See also: SOAP (page 236), dRuby (page 649), WEBrick (page 733)

• The following simple server accepts a temperature in Celsius and converts it to

Fahrenheit. It runs within the context of the WEBrick Web server.

require 'webrick'

require 'xmlrpc/server'

xml_servlet = XMLRPC::WEBrickServlet.new

xml_servlet.add_handler("convert_celcius") do |celcius|

celcius*1.8 + 32

end

xml_servlet.add_multicall # Add support for multicall

server = WEBrick::HTTPServer.new(:Port => 2000)

server.mount("/RPC2", xml_servlet)

trap("INT"){ server.shutdown }

server.start

• This client makes calls to the temperature conversion server. Note that in the out-

put we show both the server’s logging and the client program’s output.

require 'xmlrpc/client'

server = XMLRPC::Client.new("localhost", "/RPC2", 2000)

puts server.call("convert_celcius", 0)

puts server.call("convert_celcius", 100)

puts server.multicall(['convert_celcius', 10],

['convert_celcius', 200])

produces:

[20040416 06:57:02] INFO WEBrick 1.3.1

[20040416 06:57:02] INFO WEBrick::HTTPServer#start: pid=11956 port=2000

localhost [16/Apr/2004:06:57:13 PDT] "POST /RPC2 HTTP/1.1" 200 124 > /RPC2

32.0

localhost [16/Apr/2004:06:57:13 PDT] "POST /RPC2 HTTP/1.1" 200 125 > /RPC2

212.0

localhost [16/Apr/2004:06:57:14 PDT] "POST /RPC2 HTTP/1.1" 200 290 > /RPC2

14.0

392.0

Prepared exclusively for Jose Sierra

YAML 737

Y
A

M
L

Library
YAML Object Serialization/Deserialization

The YAML library (also described in the tutorial starting on page 397) serializes and

deserializes Ruby object trees to and from an external, readable, plain-text format.

YAML can be used as a portable object marshaling scheme, allowing objects to be

passed in plain text between separate Ruby processes. In some cases, objects may also

be exchanged between Ruby programs and programs in other languages that also have

YAML support.

• YAML can be used to store an object tree in a flat file.

require 'yaml'

tree = { :name => 'ruby',

:uses => ['scripting', 'web', 'testing', 'etc']

}

File.open("tree.yaml", "w") {|f| YAML.dump(tree, f)}

• Once stored, it can be read by another program.

require 'yaml'

tree = YAML.load_file("tree.yaml")

tree[:uses][1] → "web"

• The YAML format is also a convenient way to store configuration information for

programs. Because it is readable, it can be maintained by hand using a normal

editor, and then read as objects by programs. For example, a configuration file

may contain

username: dave

prefs:

background: dark

foreground: cyan

timeout: 30

We can use this in a program:

require 'yaml'

config = YAML.load_file("code/config.yaml")

config["username"] → "dave"

config["prefs"]["timeout"] * 10 → 300

Prepared exclusively for Jose Sierra

ZLIB 738

Z
lib

Library
Zlib Read and Write Compressed Files

The Zlib module is home to a number of classes for compressing and decompressingOnly if: zlib library

available

streams, and for working with gzip-format compressed files. They also calculate zip

checksums.

• Compress /etc/passwd as a gzip file, and then read the result back.

require 'zlib'

These methods can take a filename

Zlib::GzipWriter.open("passwd.gz") do |gz|

gz.write(File.read("/etc/passwd"))

end

system("ls l /etc/passwd passwd.gz")

or a stream

File.open("passwd.gz") do |f|

gzip = Zlib::GzipReader.new(f)

data = gzip.read.split(/\n/)

puts data[15,3]

end

produces:

rwrr 1 root wheel 1861 Mar 22 2005 /etc/passwd

rwrr 1 dave dave 777 Sep 20 16:06 passwd.gz

daemon:*:1:1:System Services:/var/root:/usr/bin/false

lp:*:26:26:Printing Services:/var/spool/cups:/usr/bin/false

postfix:*:27:27:Postfix User:/var/spool/postfix:/usr/bin/false

• Compress data sent between two processes.

require 'zlib'

rd, wr = IO.pipe

if fork

rd.close

zipper = Zlib::Deflate.new

zipper << "This is a string "

data = zipper.deflate("to compress", Zlib::FINISH)

wr.write(data)

wr.close

Process.wait

else

wr.close

unzipper = Zlib::Inflate.new

unzipper << rd.read

puts "We got: #{unzipper.inflate(nil)}"

end

produces:

We got: This is a string to compress

Prepared exclusively for Jose Sierra

Part V

Appendixes

739Prepared exclusively for Jose Sierra

Appendix A

Socket Library

Because the socket and network libraries are such important parts of integrating Ruby

applications with the ’net, we’ve decided to document them in more detail than the

other standard libraries.

The hierarchy of socket classes is shown in the diagram below.

IO

BasicSocket

IPSocket

TCPSocket

SOCKSSocket

TCPServer

UDPSocket

Socket

UNIXSocket

UNIXServer

As the socket calls are implemented in a library, you’ll need to remember to add the

following line to your code.

require 'socket'

740Prepared exclusively for Jose Sierra

BASICSOCKET 741

Class
BasicSocket < IO

BasicSocket is an abstract base class for all other socket classes.

This class and its subclasses often manipulate addresses using something called a

struct sockaddr, which is effectively an opaque binary string.1

Class methods

do_not_reverse_lookup BasicSocket.do_not_reverse_lookup→ true or false

Returns the value of the global reverse lookup flag.

do_not_reverse_lookup= BasicSocket.do_not_reverse_lookup = true or false

Sets the global reverse lookup flag. If set to true, queries on remote addresses will

return the numeric address but not the host name.

By default the socket library performs this reverse lookup on connections. If for some

reason this lookup is slow or times out, connecting to a host can take a long time. Set

this option to false to fix this.

for_fd BasicSocket.for_fd(fd)→ sock

Wraps an already open file descriptor into a socket object.

lookup_order= BasicSocket.lookup_order = int

Sets the global address lookup order.

Instance methods

close_read sock.close_read→ nil

Closes the readable connection on this socket.

close_write sock.close_write→ nil

Closes the writable connection on this socket.

getpeername sock.getpeername→ string

Returns the struct sockaddr structure associated with the other end of this socket

connection.

getsockname sock.getsockname→ string

Returns the struct sockaddr structure associated with sock.

1. In reality, it maps onto the underlying C-language struct sockaddr set of structures, documented in

the man pages and in the books by Stevens.

Prepared exclusively for Jose Sierra

BASICSOCKET 742

getsockopt sock.getsockopt(level, optname)→ string

Returns the value of the specified option.

recv sock.recv(len, 〈 , flags 〉)→ string

Receives up to len bytes from sock.

send sock.send(string, flags, 〈 , to 〉)→ int

Sends string over sock. If specified, to is a struct sockaddr specifying the recipient

address. flags are the sum of one or more of the MSG_ options (listed on the following

page). Returns the number of characters sent.

setsockopt sock.setsockopt(level, optname, optval)→ 0

Sets a socket option. level is one of the socket-level options (listed on the next page).

optname and optval are protocol specific—see your system documentation for details.

shutdown sock.shutdown(how=2)→ 0

Shuts down the receive (how == 0), sender (how == 1), or both (how == 2), parts of this

socket.

Prepared exclusively for Jose Sierra

SOCKET 743

Class
Socket < BasicSocket

Class Socket provides access to the underlying operating system socket implementa-

tion. It can be used to provide more operating system–specific functionality than the

protocol-specific socket classes but at the expense of greater complexity. In particu-

lar, the class handles addresses using struct sockaddr structures packed into Ruby

strings, which can be a joy to manipulate.

Class constants

Class Socket defines constants for use throughout the socket library. Individual con-

stants are available only on architectures that support the related facility.

Types:

SOCK_DGRAM, SOCK_PACKET, SOCK_RAW, SOCK_RDM, SOCK_SEQPACKET, SOCK_STREAM

Protocol families:

PF_APPLETALK, PF_AX25, PF_INET6, PF_INET, PF_IPX, PF_UNIX, PF_UNSPEC

Address families:

AF_APPLETALK, AF_AX25, AF_INET6, AF_INET, AF_IPX, AF_UNIX, AF_UNSPEC

Lookup-order options:

LOOKUP_INET6, LOOKUP_INET, LOOKUP_UNSPEC

Send/receive options:

MSG_DONTROUTE, MSG_OOB, MSG_PEEK

Socket-level options:

SOL_ATALK, SOL_AX25, SOL_IPX, SOL_IP, SOL_SOCKET, SOL_TCP, SOL_UDP

Socket options:

SO_BROADCAST, SO_DEBUG, SO_DONTROUTE, SO_ERROR, SO_KEEPALIVE, SO_LINGER,

SO_NO_CHECK, SO_OOBINLINE, SO_PRIORITY, SO_RCVBUF, SO_REUSEADDR, SO_SNDBUF,

SO_TYPE

QOS options:

SOPRI_BACKGROUND, SOPRI_INTERACTIVE, SOPRI_NORMAL

Multicast options:

IP_ADD_MEMBERSHIP, IP_DEFAULT_MULTICAST_LOOP, IP_DEFAULT_MULTICAST_TTL,

IP_MAX_MEMBERSHIPS, IP_MULTICAST_IF, IP_MULTICAST_LOOP, IP_MULTICAST_TTL

TCP options:

TCP_MAXSEG, TCP_NODELAY

Prepared exclusively for Jose Sierra

SOCKET 744

getaddrinfo error codes:

EAI_ADDRFAMILY, EAI_AGAIN, EAI_BADFLAGS, EAI_BADHINTS, EAI_FAIL, EAI_FAMILY,

EAI_MAX, EAI_MEMORY, EAI_NODATA, EAI_NONAME, EAI_PROTOCOL, EAI_SERVICE,

EAI_SOCKTYPE, EAI_SYSTEM

ai_flags values:

AI_ALL, AI_CANONNAME, AI_MASK, AI_NUMERICHOST, AI_PASSIVE, AI_V4MAPPED_CFG

Class methods

getaddrinfo Socket.getaddrinfo(hostname, port,

〈 family 〈 , socktype 〈 , protocol 〈 , flags 〉 〉 〉 〉)→ array

Returns an array of arrays describing the given host and port (optionally qualified as

shown). Each subarray contains the address family, port number, host name, host IP

address, protocol family, socket type, and protocol.

for line in Socket.getaddrinfo('www.microsoft.com', 'http')

puts line.join(", ")

end

produces:

AF_INET, 80, 207.46.134.221, 207.46.134.221, 2, 2, 17

AF_INET, 80, 207.46.134.221, 207.46.134.221, 2, 1, 6

AF_INET, 80, origin2.microsoft.com, 207.46.144.188, 2, 2, 17

AF_INET, 80, origin2.microsoft.com, 207.46.144.188, 2, 1, 6

AF_INET, 80, microsoft.com, 207.46.230.219, 2, 1, 6

AF_INET, 80, microsoft.net, 207.46.130.14, 2, 1, 6

gethostbyaddr Socket.gethostbyaddr(addr, type=AF_INET)→ array

Returns the host name, address family, and sockaddr component for the given address.

a = Socket.gethostbyname("198.145.243.54")

res = Socket.gethostbyaddr(a[3], a[2])

res.join(', ') → "mike.pragprog.com, , 2, \306\221\3636"

gethostbyname Socket.gethostbyname(hostname)→ array

Returns a four-element array containing the canonical host name, a subarray of host

aliases, the address family, and the address portion of the sockaddr structure.

a = Socket.gethostbyname("63.68.129.130")

a.join(', ') → "63.68.129.130, , 2, ?D\201\202"

gethostname Socket.gethostname→ string

Returns the name of the current host.

Socket.gethostname → "dave.local"

Prepared exclusively for Jose Sierra

SOCKET 745

getnameinfo Socket.getnameinfo(addr 〈 , flags 〉)→ array

Looks up the given address, which may be either a string containing a sockaddr or

a three- or four-element array. If addr is an array, it should contain the string address

family, the port (or nil), and the host name or IP address. If a fourth element is present

and not nil, it will be used as the host name. Returns a canonical host name (or address)

and port number as an array.

Socket.getnameinfo(["AF_INET", '23', 'www.rubylang.org'])

getservbyname Socket.getservbyname(service, proto=’tcp’)→ int

Returns the port corresponding to the given service and protocol.

Socket.getservbyname("telnet") → 23

new Socket.new(domain, type, protocol)→ sock

Creates a socket using the given parameters.

open Socket.open(domain, type, protocol)→ sock

Synonym for Socket.new.

pack_sockaddr_in Socket.pack_sockaddr_in(port, host)→ str_address

1.8 Given a port and a host, return the (system dependent) sockaddr structure as a string

of bytes.

require 'socket'

addr = Socket.pack_sockaddr_in(80, "pragprog.com")

Pragprog.com is 216.87.136.211

addr.unpack("CCnC4") → [16, 2, 80, 198, 145, 243, 54]

pack_sockaddr_un Socket.pack_sockaddr_in(path)→ str_address

1.8 Given a path to a Unix socket, return the (system dependent) sock_addr_un structure

as a string of bytes. Only available on boxes supporting the Unix address family.

require 'socket'

addr = Socket.pack_sockaddr_un("/tmp/sample")

addr[0,20] → "\000\001/tmp/sample\000\000\000\000\000\000\000"

pair Socket.pair(domain, type, protocol)→ array

Returns an array containing a pair of connected, anonymous Socket objects with the

given domain, type, and protocol.

socketpair Socket.socketpair(domain, type, protocol)→ array

Synonym for Socket.pair.

Prepared exclusively for Jose Sierra

SOCKET 746

unpack_sockaddr_in Socket.pack_sockaddr_in(string_address)→ [port, host]

1.8 Given a string containing a binary addrinfo structure, return the port and host.

require 'socket'

addr = Socket.pack_sockaddr_in(80, "pragprog.com")

Socket.unpack_sockaddr_in(addr) → [80, "198.145.243.54"]

unpack_sockaddr_un Socket.pack_sockaddr_in(string_address)→ [port, host]

1.8 Given a string containing a binary sock_addr_un structure, returns the path to the Unix

socket. Only available on boxes supporting the Unix address family.

require 'socket'

addr = Socket.pack_sockaddr_in(80, "pragprog.com")

Socket.unpack_sockaddr_in(addr) → [80, "198.145.243.54"]

Instance methods

accept sock.accept→ [socket, address]

Accepts an incoming connection returning an array containing a new Socket object

and a string holding the struct sockaddr information about the caller.

bind sock.bind(sockaddr)→ 0

Binds to the given struct sockaddr, contained in a string.

connect sock.connect(sockaddr)→ 0

Connects to the given struct sockaddr, contained in a string.

listen sock.listen(int)→ 0

Listens for connections, using the specified int as the backlog.

recvfrom sock.recvfrom(len 〈 , flags 〉)→ [data, sender]

Receives up to len bytes from sock. flags is zero or more of the MSG_ options. The first

element of the result is the data received. The second element contains protocol-specific

information on the sender.

sysaccept sock.sysaccept→ [socket_fd, address]

1.8 Accepts an incoming connection. Returns an array containing the (integer) file descrip-

tor of the incoming connection and a string holding the struct sockaddr information

about the caller.

Prepared exclusively for Jose Sierra

IPSOCKET 747

Class
IPSocket < BasicSocket

Class IPSocket is a base class for sockets using IP as their transport. TCPSocket and

UDPSocket are based on this class.

Class methods

getaddress IPSocket.getaddress(hostname)→ string

Returns the dotted-quad IP address of hostname.

a = IPSocket.getaddress('www.rubylang.org')

a → "210.163.138.100"

Instance methods

addr sock.addr→ array

Returns the domain, port, name, and IP address of sock as a four-element array. The

name will be returned as an address if the do_not_reverse_lookup flag is true.

u = UDPSocket.new

u.bind('localhost', 8765)

u.addr → ["AF_INET", 8765, "localhost", "127.0.0.1"]

BasicSocket.do_not_reverse_lookup = true

u.addr → ["AF_INET", 8765, "127.0.0.1", "127.0.0.1"]

peeraddr sock.peeraddr→ array

Returns the domain, port, name, and IP address of the peer.

recvfrom sock.recvfrom(len 〈 , flags 〉)→ [data, sender]

Receives up to len bytes on the connection. flags is zero or more of the MSG_ options

(listed on page 743). Returns a two-element array. The first element is the received

data, and the second is an array containing information about the peer. On systems1.8
such as my Mac OS X box where the native recvfrom() method does not return peer

information for TCP connections, the second element of the array is nil.

require 'socket'

t = TCPSocket.new('localhost', 'ftp')

data = t.recvfrom(40)

data → ["220 localhost FTP server (tnftpd 2004081", nil]

t.close → nil

Prepared exclusively for Jose Sierra

TCPSOCKET 748

Class
TCPSocket < IPSocket

t = TCPSocket.new('localhost', 'ftp')

t.gets → "220 localhost FTP server (tnftpd 20040810) ready.\r\n"

t.close → nil

Class methods

gethostbyname TCPSocket.gethostbyname(hostname)→ array

Looks up hostname and returns its canonical name, an array containing any aliases, the

address type (AF_INET), and the dotted-quad IP address.

a = TCPSocket.gethostbyname('ns.pragprog.com')

a → ["pragprog.com", [], 2, "198.145.243.54"]

new TCPSocket.new(hostname, port)→ sock

Opens a TCP connection to hostname on the port.

open TCPSocket.open(hostname, port)→ sock

Synonym for TCPSocket.new.

Prepared exclusively for Jose Sierra

SOCKSSOCKET 749

Class
SOCKSSocket < TCPSocket

Class SOCKSSocket supports connections based on the SOCKS protocol.

Class methods

new SOCKSSocket.new(hostname, port)→ sock

Opens a SOCKS connection to port on hostname.

open SOCKSSocket.open(hostname, port)→ sock

Synonym for SOCKSSocket.new.

Instance methods

close sock.close→ nil

Closes this SOCKS connection.

Prepared exclusively for Jose Sierra

TCPSERVER 750

Class
TCPServer < TCPSocket

A TCPServer accepts incoming TCP connections. Here is a Web server that listens on

a given port and returns the time.

require 'socket'

port = (ARGV[0] || 80).to_i

server = TCPServer.new('localhost', port)

while (session = server.accept)

puts "Request: #{session.gets}"

session.print "HTTP/1.1 200/OK\r\nContenttype: text/html\r\n\r\n"

session.print "<html><body><h1>#{Time.now}</h1></body></html>\r\n"

session.close

end

Class methods

new TCPServer.new(〈 hostname, 〉 port)→ sock

Creates a new socket on the given interface (identified by hostname and port). If host-

name is omitted, the server will listen on all interfaces on the current host (equivalent

to an address of 0.0.0.0).

open TCPServer.open(〈 hostname, 〉 port)→ sock

Synonym for TCPServer.new.

Instance methods

accept sock.accept→ tcp_socket

Waits for a connection on sock, and returns a new tcp_socket connected to the caller.

See the example on the current page.

Prepared exclusively for Jose Sierra

UDPSOCKET 751

Class
UDPSocket < IPSocket

UDP sockets send and receive datagrams. To receive data, a socket must be bound to a

particular port. You have two choices when sending data: you can connect to a remote

UDP socket and thereafter send datagrams to that port, or you can specify a host and

port for use with every packet you send. This example is a UDP server that prints the

message it receives. It is called by both connectionless and connection-based clients.

require 'socket'

$port = 4321

server_thread = Thread.start do # run server in a thread

server = UDPSocket.open

server.bind(nil, $port)

2.times { p server.recvfrom(64) }

end

Adhoc client

UDPSocket.open.send("ad hoc", 0, 'localhost', $port)

Connection based client

sock = UDPSocket.open

sock.connect('localhost', $port)

sock.send("connectionbased", 0)

server_thread.join

produces:

["ad hoc", ["AF_INET", 51012, "localhost", "127.0.0.1"]]

["connectionbased", ["AF_INET", 51013, "localhost", "127.0.0.1"]]

Class methods

new UDPSocket.new(family = AF_INET)→ sock

Creates a UDP endpoint, optionally specifying an address family.

open UDPSocket.open(family = AF_INET)→ sock

Synonym for UDPSocket.new.

Instance methods

bind sock.bind(hostname, port)→ 0

Associates the local end of the UDP connection with a given hostname and port. As

well as a host name, the first parameter may to "<broadcast>" or "" (the empty string)

to bind to INADDR_BROADCAST and INADDR_ANY respectively. Must be used by servers

to establish an accessible endpoint.

connect sock.connect(hostname, port)→ 0

Creates a connection to the given hostname and port. Subsequent UDPSocket#send

Prepared exclusively for Jose Sierra

UDPSOCKET 752

requests that don’t override the recipient will use this connection. Multiple connect

requests may be issued on sock: the most recent will be used by send. As well as a host

name, the first parameter may to "<broadcast>" or "" (the empty string) to bind to

INADDR_BROADCAST and INADDR_ANY respectively.

recvfrom sock.recvfrom(len 〈 , flags 〉)→ [data, sender]

Receives up to len bytes from sock. flags is zero or more of the MSG_ options (listed on

page 743). The result is a two-element array containing the received data and informa-

tion on the sender. See the example on the page before.

send sock.send(string, flags)→ int

sock.send(string, flags, hostname, port)→ int

The two-parameter form sends string on an existing connection. The four-parameter

form sends string to port on hostname.

Prepared exclusively for Jose Sierra

UNIXSOCKET 753

Class
UNIXSocket < BasicSocket

Class UNIXSocket supports interprocess communications using the Unix domain pro-

tocol. Although the underlying protocol supports both datagram and stream connec-

tions, the Ruby library provides only a stream-based connection.

require 'socket'

SOCKET = "/tmp/sample"

server_thread = Thread.start do # run server in a thread

sock = UNIXServer.open(SOCKET)

s1 = sock.accept

p s1.recvfrom(124)

end

client = UNIXSocket.open(SOCKET)

client.send("hello", 0)

client.close

server_thread.join

produces:

["hello", ["AF_UNIX", ""]]

Class methods

new UNIXSocket.new(path)→ sock

Opens a new domain socket on path, which must be a pathname.

open UNIXSocket.open(path)→ sock

Synonym for UNIXSocket.new.

Instance methods

addr sock.addr→ array

Returns the address family and path of this socket.

path sock.path→ string

Returns the path of this domain socket.

peeraddr sock.peeraddr→ array

Returns the address family and path of the server end of the connection.

recvfrom sock.recvfrom(len 〈 , flags 〉)→ array

Receives up to len bytes from sock. flags is zero or more of the MSG_ options (listed on

page 743). The first element of the returned array is the received data, and the second

contains (minimal) information on the sender.

Prepared exclusively for Jose Sierra

UNIXSERVER 754

U
N

IX
S

e
rv

e
r

Class
UNIXServer < UNIXSocket

Class UNIXServer provides a simple Unix domain socket server. See UNIXSocket for

example code.

Class methods

new UNIXServer.new(path)→ sock

Creates a server on the given path. The corresponding file must not exist at the time of

the call.

open UNIXServer.open(path)→ sock

Synonym for UNIXServer.new.

Instance methods

accept sock.accept→ unix_socket

Waits for a connection on the server socket and returns a new socket object for that

connection. See the example for UNIXSocket on the page before.

Prepared exclusively for Jose Sierra

Appendix B

MKMF Reference

The mkmf library is used by Ruby extension modules to help create Makefiles. Chapter

21, which starts on page 261, describes how these extensions are created and built. This

appendix describes the details of the mkmf library.

Module
mkmf

require
"mkmf"

When writing an extension, you create a program named extconf.rb, which may be

as simple as

require 'mkmf'

create_makefile("Test")

When run, this script will produce a Makefile suited to the target platform. It also

produces a log file, mkmf.log, which may help in diagnosing build problems.

mkmf contains several methods you can use to find libraries and include files and to set

compiler flags.

mkmf takes configuration information from a variety of sources

• The configuration used when Ruby was built.

• The environment variable CONFIGURE_ARGS, a list of key=value pairs.

• Command line arguments of the form key=value or key=value.

You can examine the configuration by dumping the variable $configure_args.

% export CONFIGURE_ARGS="ruby=ruby18 enableextras"

% ruby rmkmf rpp e 'pp $configure_args' withcflags=O3

{"topsrcdir"=>".",

"topdir"=>"/Users/dave/Work/rubybook/tmp",

"enableextras"=>true,

"withcflags"=>"O3",

"ruby"=>"ruby18"}

755Prepared exclusively for Jose Sierra

MKMF 756

M
k
m

f

The following configuration options are recognized.

CFLAGS

Flags passed to the C compiler (overridden by withcflags).

CPPFLAGS

Flags passed to the C++ compiler (overridden by withcppflags).

curdir

Sets the global $curdir, which may be used inside the extconf.rb script. Oth-

erwise has no effect.

disablexxx

Disables extension-specific option xxx.

enablexxx

Enables extension-specific option xxx.

LDFLAGS

Flags passed to the linker (overridden by withldlags).

ruby

Sets the name and/or path of the Ruby interpreter used in the Makefile.

srcdir

Sets the path to the source directory in the Makefile.

withcflags

Flags passed to the C compiler. Overrides the CFLAGS environment variable.

withcppflags

Flags passed to the C++ compiler. Overrides the CPPFLAGS environment variable.

withldflags

Flags passed to the linker compiler. Overrides the LDFLAGS environment variable.

withmakeprog

Sets the name of the make program. If running on Windows, the choice of make

program affects the syntax of the generated Makefile (nmake vs. Borland make).

with-xxx-{dir|include|lib}

Controls where the dir_config method looks.

Prepared exclusively for Jose Sierra

MKMF 757

M
k
m

f

Instance methods

create_makefile create_makefile(target, srcprefix=nil)

Creates a Makefile for an extension named target. The srcprefix can override the default

source directory. If this method is not called, no Makefile is created.

dir_config dir_config(name)

Looks for directory configuration options for name given as arguments to this program

or to the original build of Ruby. These arguments may be one of

withnamedir=directory

withnameinclude=directory

withnamelib=directory

The given directories will be added to the appropriate search paths (include or link) in

the Makefile.

enable_config enable_config(name, default=nil)→ true or false or default

Tests for the presence of an enablename or disablename option. Returns

true if the enable option is given, false if the disable option is given, and the default

value otherwise.

find_library find_library(name, function, 〈 path 〉+)→ true or false

Same as have_library, but will also search in the given directory paths.

have_func have_func(function)→ true or false

If the named function exists in the standard compile environment, adds the directive

-D HAVE_FUNCTION to the compile command in the Makefile and returns true.

have_header have_header(header)→ true or false

If the given header file can be found in the standard search path, adds the directive

-D HAVE_HEADER to the compile command in the Makefile and returns true.

have_library have_library(library, function)→ true or false

If the given function exists in the named library, which must exist in the standard search

path or in a directory added with dir_config, adds the library to the link command in

the Makefile and returns true.

Prepared exclusively for Jose Sierra

Appendix C

Support

One of the major features of open source projects is the technical support. Articles in

the mass media often criticize open source efforts for not having the same tech support

that a commercial product has. And boy is that a good thing! Instead of dialing up

some overworked and understaffed help desk and being treated to Music On Hold for

an hour or so without ever getting the answer you need, we have a better solution: the

Ruby community. The author of Ruby, the authors of this book, and many other Ruby

users are willing and able to lend you a hand, should you need it.

The syntax of Ruby remains fairly stable, but as with all evolving software, new fea-

tures are added every now and again. As a result, both printed books and the online

documentation can fall behind. All software has bugs, and Ruby is no exception. There

aren’t many, but they do crop up.

If you experience a problem with Ruby, feel free to ask in the mailing lists or on the

newsgroup (more on those in just a minute). Generally you’ll get timely answers from

Matz himself, the author of the language, from other gurus, and from those who’ve

solved problems similar to your own.

You may be able to find similar questions in the mailing lists or on the newsgroup, and

it is good “netiquette” to read through recent postings before asking. If you can’t find

the answer you need, ask, and a correct answer will usually show up with remarkable

speed and precision.

Web Sites
Because the Web changes too fast, we’ve kept this list short. Visit one of the sites here,

and you’ll find a wealth of links to other online Ruby resources.

The official Ruby home page is http://www.rubylang.org .

758Prepared exclusively for Jose Sierra

http://www.ruby-lang.org

DOWNLOAD SITES 759

You’ll find a number of Ruby libraries and applications on RubyForge on the Web at

http://www.rubyforge.org.

RubyForge hosts open-source projects for Ruby developers. Each project has a CVS

repository, space to store releases, bug and feature request tracking, a WikiWiki web

and mailing lists. Anyone can apply to have a project hosted on this site. RubyForge is

also the repository for downloadable RubyGems.

The Ruby Production Archive (RPA) at http://www.rubyarchive.org hosts a num-

ber of prepackaged Ruby libraries and applications. The site is intended to offer a ser-

vice similar to that provided by Debian or FreeBSD to their respective communities but

for Ruby users. The site had only just become available as this book went to press, and

we have no direct experience using it.

Rubygarden hosts both a portal (http://www.rubygarden.org) and a WikiWiki site

(http://www.rubygarden.org/ruby), both full of useful Ruby information.

http://www.rubydoc.org is a portal to various sources of Ruby documentation.

While you’re surfing, drop in on http://www.pragmaticprogrammer.com and see

what we’re up to.

Download Sites
You can download the latest version of Ruby from

http://www.rubylang.org/en/

A precompiled Windows distribution is available from

http://rubyinstaller.rubyforge.org/

This project is also planning to release a Mac OS X One-Click Installer, but this was

not ready at the time this book went to press.

Usenet Newsgroup
Ruby has its own newsgroup, comp.lang.ruby. Traffic on this group is archived and

mirrored to the rubytalk mailing list.

Mailing Lists
You’ll find many mailing lists talking about Ruby. The first three below are in English,

and the remainder are mostly Japanese, but with some English language posts.

Prepared exclusively for Jose Sierra

http://www.rubyforge.org
http://www.rubyarchive.org
http://www.rubygarden.org
http://www.rubygarden.org/ruby
http://www.ruby-doc.org
http://www.pragmaticprogrammer.com
http://www.ruby-lang.org/en/
http://rubyinstaller.rubyforge.org/

MAILING LISTS 760

rubytalk@rubylang.org English language discussion of Ruby (mirrored to

comp.lang.ruby)

rubydoc@rubylang.org Documentation standards and tools

rubycvs@rubylang.org Notifications of CVS commits to Ruby source

rubycore@rubylang.org Mixed English/Japanese discussion of core implemen-

tation topics

rubylist@rubylang.org Japanese language discussion of Ruby

rubydev@rubylang.org List for Ruby developers

rubyext@rubylang.org List for people writing extensions for or with Ruby

rubymath@rubylang.org Ruby in mathematics

See the “Mailing Lists” topic under http://www.rubylang.org/ for details on join-

ing a mailing list.

The mailing lists are archived and can be searched using

http://blade.nagaokaut.ac.jp/ruby/rubytalk/index.shtml,

or using

http://www.rubytalk.org.

Prepared exclusively for Jose Sierra

http://www.ruby-lang.org/
http://blade.nagaokaut.ac.jp/ruby/ruby-talk/index.shtml
http://www.ruby-talk.org

Appendix D

Bibliography

[FJN02] Robert Feldt, Lyle Johnson, and Micheal Neuman. The Ruby Developer’s

Guide. Syngress Publishing, Inc, Rockland, MA, 2002.

[Fri02] Jeffrey E. F. Friedl. Mastering Regular Expressions: Powerful Techniques

for Perl and Other Tools. O’Reilly & Associates, Inc., Sebastopol, CA,

second edition, 2002.

[Ful01] Hal Fulton. The Ruby Way. Sams Publishing, 2001.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design

Patterns: Elements of Reusable Object-Oriented Software. Addison-Wes-

ley, Reading, MA, 1995.

[Lid98] Stephen Lidie. Perl/Tk Pocket Reference. O’Reilly & Associates, Inc.,

Sebastopol, CA, 1998.

[Mey97] Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall,

Englewood Cliffs, NJ, second edition, 1997.

[Wal99] Nancy Walsh. Learning Perl/Tk: Graphical User Interfaces with Perl.

O’Reilly & Associates, Inc., Sebastopol, CA, 1999.

761Prepared exclusively for Jose Sierra

Index
Order

!

"

#

$

%

&

’

(

)

*

+
,

-
.
/

:

;

<

=

>

?

@

[

\

]

^
_

`

{

|

}

~

Every built-in and library method described in this book is indexed at least twice, once under the

method’s name and again under the name of the class or module that contains it. These entries

have the method and class/module names in typewriter font and have the word method, class,

or module appended. If you want to know what methods class String contains, you can look up

“String class” in the index. If instead you want to know which classes and modules support a

method called index, look under “index method.” A bold page number for these method listings

shows the reference section entry.

When a class or method name corresponds with a broader concept (such as String), we’ve indexed

the class separately from the concept.

Symbols are sorted using ASCII collation. The table on the right may help those who haven’t yet

memorized the positions of the punctuation characters (shame on you all).

Symbols
! (logical not) 88, 326

!= (not equal) 89, 326

!~ (does not match) 65, 89, 326

(comment) 302

#! (shebang) 6

#{...}

substitute in pattern 66, 311

substitute in string 57, 306

$ (global variable prefix) 313

$ (in pattern) 66, 309

$ variables

$! 102, 319, 345, 347

$" 117, 320

$$ 320

$& 65, 319, 516

$* 320, 502

$+ 319

$, 319, 415, 505

$0 319

$F 320

$I 321

$K 321

$a 320

$d 321

$i 321

$l 321

$p 321

$v 321

$w 321

$. 319, 489

$/ 168, 169, 319, 589

$: 117, 152, 168, 173, 290,

320

$; 168, 319

$< 320

$= 309, 319

$> 320

$? 83, 140, 142, 320, 323,

495, 510, 566, 570

$@ 319

$\ 169, 319, 490, 505

$_ 22, 89, 95, 168, 320, 327,

489, 502

$` 65, 319, 517

$~ 65, 73, 319, 516, 579–581

$1 to $9 319

$1...$9 65, 70, 311

$0 170, 320, 322

$configure_args 755

$DEBUG 168, 321, 612, 616

$deferr 320

$defout 320

$expect_verbose 655

$F 168, 321

$FILENAME 321

$KCODE 309, 638, 668

$LOAD_PATH 152, 168, 175,

209–211, 213, 216, 321

$SAFE 169, 299, 321, 380,

554, 652

$stderr 320

$stdin 320

$stdout 320

$' 65, 319, 517

$VERBOSE 168, 169, 321,

513

English names 318, 650

762Prepared exclusively for Jose Sierra

% METHOD 763 [] METHOD

% method

class Bignum 420

class Fixnum 463

class Float 466

class String 585

%W{...} (array of words) 307

%q{...}, %Q{...} (string

literal) 58, 305

%r{...} (regexp) 65, 309

%w{...} (array of words) 14,

307

%x{...} (command expansion)

83, 323, 495

%{...} (string literal) 58, 305

& (block parameter to method)

53, 76, 334

& method

class Array 407

class Bignum 420

class FalseClass 443

class Fixnum 463

class NilClass 540

class Process::Status 570

class TrueClass 629

&& (logical and) 88, 326

(...) (in pattern) 69, 311

(?...) (regexp extensions)

311

* (array argument) 332

* (in pattern) 68, 310

* method

class Array 407

class Bignum 420

class Fixnum 463

class Float 466

class String 586

** method

class Bignum 420

class Fixnum 463

class Float 466

+ (in pattern) 68, 310

+ method

class Array 407

class Bignum 420

class Fixnum 463

class Float 466

class String 586

class Time 623

+@ method

class Numeric 541

 method

class Array 407

class Bignum 420

class Fixnum 463

class Float 466

class Time 623

@ method

class Bignum 420

class Fixnum 463

class Float 466

class Numeric 541

. (in pattern) 310

.. and ... (range) 62, 327

/ method

class Bignum 420

class Fixnum 463

class Float 466

/.../ (regexp) 65, 309

: (symbol creation) 308, 323

: (then replacement) 91, 93

:: (scope resolution) 315, 323,

337, 339

vs. “.” 334

; (line separator) 302

< (superclass) 337

< method

module Comparable 426

<, <=, >, >= method

class Module 525

<= method

module Comparable 426

<=> (comparison operator) 63,

89, 426, 433

<=> method

class Array 408

class Bignum 420

class File::Stat 456

class Fixnum 463

class Float 466

class Module 525

class Numeric 541

class String 586

class Time 623

<<

here document 58, 306

singleton object 337, 365

<< method

class Array 407

class Bignum 420

class Fixnum 463

class IO 124, 486

class String 586

= (assignment) 84, 323

== (equals) 89

== method

class Array 408

class Bignum 420

class Float 467

class Hash 472

class Method 522

class Object 546

class Process::Status 570

class Proc 559

class Range 577

class Regexp 580

class String 586

class Struct 606

module Comparable 426

=== (case equals) 89, 93, 104,

328

=== method

class Module 525

class Object 546

class Range 577

class Regexp 580

class String 586

=>

hash creation 43, 307

in argument list 80, 333

rescue clause 104, 346

=begin...=end 303

embedded documentation

190

=~ (match) 65, 89

=~ method

class Object 546

class Regexp 580

class String 587

> method

module Comparable 426

>= method

module Comparable 426

>> method

class Bignum 420

class Fixnum 463

class Process::Status 570

? (in pattern) 68, 310

? (ternary operator) 91

@ (instance variable prefix) 313

@@ (class variable prefix) 313

[] method

class Array 41, 406, 408

class Bignum 421

class Dir 428

class Fixnum 464

class Hash 471, 472

class MatchData 516

class Method 522

class Proc 559

class String 587

class Struct 606, 607

class Thread 614

Prepared exclusively for Jose Sierra

[]= METHOD 764 Arithmetic operations METHOD

[]= method

class Array 41, 409

class Hash 472

class String 588

class Struct 607

class Thread 615

[...]

array literal 14, 307

bracket expression 310

character class 67

$\ variable 169, 319, 490, 505

\ (line continuation) 302

\& (in substitution) 71

\’ (in substitution) 71

\+ (in substitution) 71

\1...\9

in pattern 70, 311

in substitution 71

\A (in pattern) 309

\B (in pattern) 310

\D (in pattern) 310

\G (in pattern) 310, 311

\S (in pattern) 310

\W (in pattern) 310

\Z (in pattern) 310

\‘ (in substitution) 71

\b (in pattern) 310

\d (in pattern) 310

\n (newline) 12, 306

\s (in pattern) 310

\w (in pattern) 310

\z (in pattern) 310

^ (in pattern) 66, 67, 309

^ method

class Bignum 420

class FalseClass 443

class Fixnum 463

class NilClass 540

class TrueClass 629

__id__ method

class Object 546

__send__ method

class Object 546

_id2ref method

module ObjectSpace 557

$` variable 65, 319, 517

` (backquote) method

module Kernel 83, 140, 495

{...}

hash literal 15, 307

in pattern 68, 310

see also Block

verbose (Ruby option) 514

|

in file name 141

in pattern 69, 310

| method

class Array 409

class Bignum 420

class FalseClass 443

class Fixnum 463

class NilClass 540

class TrueClass 629

|| (logical or) 88, 326

$~ variable 65, 73, 319, 516,

579–581

~ method

class Bignum 420

class Fixnum 463

class Regexp 580

class String 588

0[octal] (Ruby option) 168

A
a (Ruby option) 168, 320, 321

$a variable 320

Abbrev module 634, 702

Abbreviations, calculating 634

Abort see Exception

abort method

module Kernel 496

module Process 562

abort_on_exception method

class Thread 130, 612, 615

abort_on_exception= method

class Thread 612, 615

abs method

class Bignum 421

class Fixnum 464

class Float 467

class Numeric 541

accept method

class Socket 746

class TCPServer 750

class UNIXServer 754

Access control 35, 341

method 530, 532, 537, 538

overriding in subclass 376

see also File, permission

Accessor method 27, 86

acos method

module Math 519

acosh method

module Math 519

ActiveX see Microsoft

Windows, automation

Ad hoc testing 143

add method

class ThreadGroup 619

add_observer method

module Observable 685

addr method

class IPSocket 747

class UNIXSocket 753

AF_INET class 667

Alias 38, 161, 315

alias 336

alias_method method

class Module 533

module Kernel 391

alive? method

class Thread 615

all? method

module Enumerable 433

all_symbols method

class Symbol 610

ALLOC 279

ALLOC_N 279

ALLOCA_N 280

allocate method

class Class 425

Allocation 273

Amrita

templates 228

Ancestor 25

ancestors method

class Module 365, 386, 526

and (logical and) 88, 326

Anonymous class 365, 424

any? method

module Enumerable 433

Aoki, Minero 106

Aoyama, Wakou 72

Apache Web server 230

mod_ruby 234

API

Microsoft Windows 254, 734

Ruby see Extend Ruby

APOP authentification 681

append_features method

class Module 533

ARGF constant 170

ARGF variable 22, 321

Argument, command-line see

Command line

Argument, method 74, 75

ARGV variable 168–170, 321,

502, 663, 690

Arithmetic 671, 700

Arithmetic operations

method

Prepared exclusively for Jose Sierra

arity METHOD 765 basename METHOD

class Bignum 420

class Fixnum 463

class Float 466

arity method

class Method 522

class Proc 559

class UnboundMethod 631

Array

associative see Hash

creating 40

expanding as method

parameter 78, 333

indexing 41

literal 14, 307

method argument 332

Array class 357, 406

& 407

* 407

+ 407

 407

<=> 408

<< 407

== 408

[] 41, 406, 408

[]= 41, 409

| 409

assoc 409

at 409

clear 410

collect! 410

compact 410

compact! 410

concat 410

delete 410

delete_at 411

delete_if 411

each 411

each_index 411

empty? 411

eql? 411

fetch 412

fill 412

first 412

flatten 412

flatten! 413

include? 413

index 413

indexes 413

indices 413

insert 413

join 415

last 415

length 415

map! 415

new 406

nitems 415

pack 123, 414, 415

pop 416

push 416

rassoc 416

reject! 416

replace 416

reverse 416

reverse! 416

reverse_each 417

rindex 417

scanf 708

shift 417

size 417

slice 417

slice! 418

sort 418

sort! 418

to_a 418

to_ary 418

to_s 419

transpose 419

uniq 419

uniq! 419

unshift 419

values_at 419

Array method

module Kernel 495

ASCII 302

character literal 56, 305

convert integer to 480

asctime method

class Time 623

asin method

module Math 519

asinh method

module Math 519

ASP see eruby

assert_equal method 144

assert_not_nil method 148

Assertions see Test::Unit,

assertions

Assignment 84, 323

attribute 335

parallel 85, 325

assoc method

class Array 409

Associative array see Hash

Asynchronous I/O 666

at method

class Array 409

class Time 621

at_exit method

module Kernel 496

atan method

module Math 519

atan2 method

module Math 519

atanh method

module Math 519

atime method

class File::Stat 456

class File 444, 454

Atom see Symbol

attr method 339

class Module 533

attr_accessor method 339

class Module 534

attr_reader method 28, 339,

371

class Module 534

attr_writer method 339

class Module 534

Attribute 27

assignment 159, 335

virtual 30

writable 29

see also Class attribute

autoload method

class Module 526

module Kernel 496

autoload? method

class Module 526

module Kernel 497

Automation, Windows 255, 735

Autosplit mode 168

B
Backquote character see

`(backquote)

Backreferences (in regular

expressions) 69–71, 311,

336

Backtrace see $@, caller

backtrace method

class Exception 440

Backup files, creating 168

Base

number 422, 465, 601

Base (numeric) see to_s

methods,

Kernel.Integer,

String#to_i

Base64 module 635

base_uri method 686

basename method

Prepared exclusively for Jose Sierra

BasicSocket CLASS 766 C LANGUAGE API

class File 444

BasicSocket class 119, 714,

741

close_read 741

close_write 741

do_not_reverse_lookup

741

do_not_reverse_lookup=

741

for_fd 741

getpeername 741

getsockname 741

getsockopt 742

lookup_order= 741

recv 742

send 742

setsockopt 742

shutdown 742

BEGIN {...} 303

begin method

class MatchData 516

class Range 577

=begin...=end 303

begin...end 95, 102, 325, 346

Benchmark module 162, 390,

636

Berger, Daniel 259

between? method

module Comparable 426

BigDecimal class 637

BigMath module 637

Bignum class 55, 420, 463, 637,

671

% 420

& 420

* 420

** 420

+ 420

 420

@ 420

/ 420

<=> 420

<< 420

== 420

>> 420

[] 421

^ 420

| 420

~ 420

abs 421

Arithmetic operations

420

Bit operations 420

div 421

divmod 421

eql? 421

literal 55, 304

modulo 421

quo 421

remainder 422

size 422

to_f 422

to_s 422

Binary data 123, 306, 415, 602

Binary notation 55, 304

bind method

class Socket 746

class UDPSocket 751

class UnboundMethod 631

Binding

in block 318

GUI events 246

Binding class 322, 423

binding method

class Proc 560

module Kernel 390, 423,

497

binmode method

class IO 486

Bit operations method

class Bignum 420

class Fixnum 463

blksize method

class File::Stat 456

Block 19, 46, 341

break and next 342

as closure 52

and files 120

for busy cursor 249

fork, popen, and subprocess

142, 485, 504, 687

with method 389

as parameter to method 75,

333, 334

parameters 19, 48

return from 344

as transaction 50

variable scope 99, 128, 318

see also Iterator

block_given? method

module Kernel 51, 334, 497

blockdev? method

class File::Stat 456

class File 445

blocks method

class File::Stat 457

BlueCloth 206

Boolean expressions 326

see also FalseClass,

TrueClass

Bottlenecks 162

break 98, 330, 342

Breakpoint 155

Buffering problems 161

Bug see Testing

Build environment see Config

module

Busy cursor 249

C
c (Ruby option) 168

C directory (Ruby option)

168

C language see Extend Ruby

C language API

ALLOC 279

ALLOC_N 279

ALLOCA_N 280

Data_Get_Struct 271

Data_Make_Struct 271

Data_Wrap_Struct 271

OBJ_FREEZE 298

OBJ_FROZEN 299

OBJ_TAINT 298

OBJ_TAINTED 298

rb_apply 295

rb_ary_entry 300

rb_ary_new 299

rb_ary_new2 299

rb_ary_new3 299

rb_ary_new4 299

rb_ary_pop 299

rb_ary_push 299

rb_ary_shift 299

rb_ary_store 299

rb_ary_unshift 300

rb_block_given_p 297

rb_bug 296

rb_call_super 295

rb_catch 297

rb_class_new_instance

295

rb_cv_get 298

rb_cv_set 298

rb_cvar_defined 298

rb_cvar_get 298

rb_cvar_set 298

rb_define_alias 293

rb_define_alloc_func

293

rb_define_attr 295

Prepared exclusively for Jose Sierra

call METHOD 767 CHARACTER

rb_define_class 291

rb_define_class_under

291

rb_define_class_

variable

294

rb_define_const 294

rb_define_global_const

294

rb_define_global_

function

293

rb_define_hooked_

variable

294

rb_define_method 293

rb_define_module 291

rb_define_module_

function

293

rb_define_module_under

292

rb_define_readonly_

variable

294

rb_define_singleton_

method

293

rb_define_variable 294

rb_define_virtual_

variable

294

rb_each 297

rb_ensure 296

rb_exit 296

rb_extend_object 292

rb_fatal 296

rb_funcall 295

rb_funcall2 295

rb_funcall3 295

rb_global_variable 295

rb_gv_get 298

rb_gv_set 298

rb_hash_aref 300

rb_hash_aset 300

rb_hash_new 300

rb_id2name 295

rb_include_module 292

rb_intern 295

rb_iter_break 297

rb_iterate 297

rb_iv_get 297

rb_iv_set 298

rb_ivar_get 298

rb_ivar_set 298

rb_load_file 290

rb_notimplement 296

rb_obj_is_instance_of

300

rb_obj_is_kind_of 300

rb_protect 296

rb_raise 296

rb_require 292

rb_rescue 296

rb_respond_to 300

rb_safe_level 299

rb_scan_args 293

rb_secure 299

rb_set_safe_level 299

rb_str_cat 300

rb_str_concat 300

rb_str_dup 300

rb_str_new 300

rb_str_new2 300

rb_str_split 300

rb_struct_aref 292

rb_struct_aset 292

rb_struct_define 292

rb_struct_new 292

rb_sys_fail 296

rb_thread_create 300

rb_throw 297

rb_undef_method 293

rb_warn 297

rb_warning 297

rb_yield 297

REALLOC_N 280

ruby_finalize 290

ruby_init 290

ruby_init_loadpath 290

ruby_options 290

ruby_run 290

ruby_script 290

SafeStringValue 299

call method

class Continuation 427

class Method 389, 522

class Proc 560

:callseq: (RDoc) 194, 197

Callback

from GUI widget 243

Ruby runtime 392

see also Block, closure

callcc method

module Kernel 427, 497

caller method

module Kernel 107, 393,

394, 497

CamelCase 313

capitalize method

class String 588

capitalize! method

class String 588

captures method

class MatchData 516

case expression 92, 328

Case insensitive

string comparison 589

Case insensitive (regexp) 309

casecmp method

class String 589

casefold? method

class Regexp 581

catch method

module Kernel 99, 108,

347, 498

ceil method

class Float 467

class Integer 480

class Numeric 541

center method

class String 589

CFLAGS (mkmf) 756

CGI class 223, 638

cookies 231

has_key? 225

params 224

CGI programming 222–240

cookies 231

embedding Ruby (eruby)

229

forms 224

generate HTML 225

mod_ruby 234

query parameters 224

quoting 223

session 233

WEBrick 234

see also Network protocols,

Templates

CGI::Session class 640

CGIKit, Web framework 240

change_privilege method

module Process::GID 568

module Process::UID 575

changed method

module Observable 685

changed? method

module Observable 685

Character

convert integer to 480

literal 56, 305

Prepared exclusively for Jose Sierra

CHARACTER CLASS 768 CLASSES

Character class 67

chardev? method

class File::Stat 457

class File 445

charset method 686

chdir method

class Dir 172, 428

Checksum 600, 647

Child process see Process

chmod method

class File 445, 454

chomp method

class String 59, 589

module Kernel 498

chomp! method

class String 589

module Kernel 498

chop method

class String 589, 668

module Kernel 499

chop! method

class String 590, 668

module Kernel 499

chown method

class File 445, 454

chr method

class Integer 480

chroot method

class Dir 429

Class

anonymous 365, 424

attribute 27, 339

defining 337, 370

extending 24

generator 605

hierarchy 525

instance 10, 338

listing hierarchy 386

metaclass 363

method 32, 368

mixing in module 340

naming 14, 375

object specific 365

vs type 350

variable 31

virtual 364, 365

Class class 362, 424

allocate 425

inherited 392, 424

new 338, 424, 425

superclass 386, 425

class method

class Object 354, 546

class_eval method

class Module 526

class_variables method

class Module 527

Classes

list of methods 403

AF_INET 667

Array 357, 406

BasicSocket 119, 714, 741

BigDecimal 637

Bignum 55, 420, 463, 637,

671

Binding 322, 423

CGI 223, 638

CGI::Session 640

Class 362, 424

Complex 641, 671

Continuation 427, 497

CSV 642

CSV::Row 642

Date 644

DateTime 644

DBM 645

Delegator 646

Dir 428, 693

DRb 649

ERB 652

Exception 101, 345, 440

FalseClass 443

File 119, 444, 462, 660,

693

File::Stat 456

Fixnum 55, 463, 671

Float 56, 466

GDBM 661

Generator 662

GetoptLong 663

GServer 664

Hash 357, 471

Iconv 665

Integer 357, 480, 671

IO 119, 357, 482, 655, 708,

714, 715

IPAddr 667

IPSocket 714, 747

Logger 669

Mail 670

MatchData 65, 73, 516, 579,

581, 587

MatchingData 516

Matrix 673

Method 389, 522, 534

Module 524

Monitor 134, 136, 717, 722

Mutex 675, 676

Net::FTP 677

Net::HTTP 678, 731

Net::IMAP 680

Net::POP3 681

Net::SMTP 682

Net::Telnet 683

NilClass 540

Numeric 541, 641

Object 27, 376, 546

OpenStruct 605, 689

OptionParser 690

Pathname 693

PP 694

PrettyPrint 505, 694, 695

Proc 53, 76, 342, 344, 357,

523, 534, 559

Process::Status 142, 566,

567, 570

PStore 698

Queue 133, 137, 722

Range 63, 307, 576

Rational 671, 700

Regexp 72, 579

SDBM 709

Set 407, 409, 710

SimpleDelegator 646

SizedQueue 722

Socket 714, 743

SOCKSSocket 714, 749

String 57, 305, 358, 585,

668, 708

StringIO 124, 715

StringScanner 716

Struct 605

Struct::Tms 609

Symbol 29, 323, 358, 594,

610

Sync 717

SyncEnumerator 662

Syslog 719

TCPServer 750

TCPSocket 714, 748

Tempfile 720

Test::Unit 721

Thread 612

ThreadGroup 615, 619

ThreadsWait 723

Time 444, 621, 724

Tk 726

TrueClass 629

UDPSocket 714, 751

UnboundMethod 389, 522,

523, 528, 630

UNIXServer 754

Prepared exclusively for Jose Sierra

clear METHOD 769 cosh METHOD

UNIXSocket 714, 753

URI 731

Vector 673

WeakRef 732

Win32API 648, 734

WIN32OLE 735

clear method

class Array 410

class Hash 472

Client/Server 398, 649, 664,

713

clone method

class IO 486

class Module 527

class Object 274, 547

close method

class Dir 431

class IO 486

class SOCKSSocket 749

close_read method

class BasicSocket 741

class IO 486

close_write method

class BasicSocket 741

class IO 487

closed? method

class IO 487

Closure 52, see Block

Code profiler 163

Coding system (ASCII, EUC,

SJIS, UTF-8) 169, 302n,

306n, 665, 668, 684

coerce method 358

class Numeric 358, 541

Coercion 358

Coffee coaster

attractive xxvii

collect method

module Enumerable 49,

410, 433

collect! method

class Array 410

COM see Microsoft Windows,

automation

Comma-separated data 642

Command (type of method) 77n

Command expansion 83

see also ` (backquote)

Command line 121, 167

options 168–170

parsing 663, 690

see also ARGV

Command line, parsing 711

Command, editing with readline

702

Comment 302

for RDoc 187

regular expression 311

Common Gateway Interface

see CGI programming

compact method

class Array 410

compact! method

class Array 410

Comparable module 112, 426

< 426

<= 426

== 426

> 426

>= 426

between? 426

Comparisons 426

Comparison operators 326

see also <=>

Comparisons method

module Comparable 426

compile method

class Regexp 579

Completion, trb 176

Complex class 641, 671

Compression, gzip 738

COMSPEC 172, 500

concat method

class Array 410

class String 590

Condition variable see Thread,

condition variable (and

Thread, synchronization)

Conditional expression 91, 328

see also Range

Config module 173

CONFIGURE_ARGS 755

$configure_args variable

755

connect method

class Socket 746

class UDPSocket 751

const_defined? method

class Module 527

const_get method

class Module 527

const_missing method

class Module 527

const_set method

class Module 528

Constant 315

class name 375

listing in module 387

scope 315

Constants

ARGF 170

DATA 303, 322

Errno 104

FALSE 322

false 87, 321, 326

__FILE__ 322

NIL 322

nil 14, 87, 321, 326

RUBY_PLATFORM 322

RUBY_RELEASE_DATE 322

RUBY_VERSION 322

SCRIPT_LINES__ 322, 395,

507

STDERR 322, 513

STDIN 322, 504

STDOUT 322, 504, 505

TOPLEVEL_BINDING 322

TRUE 322

true 87, 322, 326

constants method

class Module 524, 528

Constructor 10, 23

initialize method 554

private 33

Contact, authors’ e-mail xxii

Containers see Array and Hash

content_encoding method

686

content_type method 686

Continuation class 427, 497

call 427

Control character

\n etc. 56, 305, 306

Conventions, typographic xxiv

Conversion protocols 356

Cookies see CGI programming,

cookies

cookies method

class CGI 231

Cookies, HTTP 231

Coordinated Universal Time

621

copyright (Ruby option)

168

CORBA see Distributed Ruby

coredump? method

class Process::Status

570

cos method

module Math 519

cosh method

Prepared exclusively for Jose Sierra

count METHOD 770 DIRECTORIES

module Math 519

count method

class String 590

count_observers method

module Observable 685

CPPFLAGS (mkmf) 756

CPU times 609

CRAM-MD5 authentication

680

create_makefile method

module mkmf 282, 757

Critical section see Thread,

synchronization

critical method

class Thread 612

critical= method

class Thread 133, 612

crypt method

class String 590

Cryptographic Hashes 647

CSV class 642

CSV::Row class 642

ctime method

class File::Stat 457

class File 445, 454

class Time 623

curdir (mkmf) 756

Current directory 429

current method

class Thread 613

Curses module 643

CVS access to Ruby 5

CVSup 5

cygwin32 253

D
d (Ruby option) 130, 321, 514

d, debug (Ruby option)

168

$d variable 321

DATA constant 303, 322

Data_Get_Struct 271

Data_Make_Struct 271

Data_Wrap_Struct 271

Database see dbm, gdbm,

qdbm, sdbm

Datagram see Network

protocols, UDP

Date class 644

parsing 692

see also Time class

Date module 621

DateTime class 644

day method

class Time 623

DBM class 645

dbm 645

DCOM see Microsoft

Windows, automation

Deadlock see Thread

Debian installation 3

$DEBUG variable 168, 321, 612,

616

Debug mode 130, 168

Debugger 155

commands 165f

Decimal notation 55, 304

Decoupling 26

Decoux, Guy 275

def (method definition) 74

Default (ThreadGroup

constant) 619

Default parameters 74, 332

default method

class Hash 473

default= method

class Hash 473

default_proc method

class Hash 473

$deferr variable 320

define_finalizer method

module ObjectSpace 557

define_method method

class Module 534

module Module 345

defined? operator 88, 326

$defout variable 320

Delegation 646, 659

Delegator class 646

delete method

class Array 410

class Dir 429

class File 445

class Hash 473

class String 590, 668

delete! method

class String 591, 668

delete_at method

class Array 411

delete_if method

class Array 411

class Hash 474

delete_observer method

module Observable 685

delete_observers method

module Observable 685

Delimited string 303

Dependency, RubyGems 203

Design Pattern see Patterns

detach method

module Process 562

detect method

module Enumerable 433

Determinant, matrix 673

dev method

class File::Stat 457

dev_major method

class File::Stat 457

dev_minor method

class File::Stat 457

Dictionary see Hash

DIG (Float constant) 466

Digest module 647

Dir

match modes 447f

Dir class 428, 693

[] 428

chdir 172, 428

chroot 429

close 431

delete 429

each 431

entries 429

foreach 429

getwd 429

glob 430

mkdir 430

new 430

open 431

path 431

pos 431

pos= 432

pwd 431

read 432

rewind 432

rmdir 431

seek 432

tell 432

tmpdir 233, 727

unlink 431

see also Find module

dir_config method

module mkmf 283, 757

Directories

include and library for

extensions 283

lib/ 282

pathname 693

search path 284

searched 173

temporary 727

Prepared exclusively for Jose Sierra

directory? METHOD 771 empty? METHOD

working 168

directory? method

class File::Stat 457

class File 446

dirname method

class File 446

disable method

module GC 470

disable-xxx (mkmf) 756

Dispatch table 388

display method

class Object 547

Distributed Ruby 398, 649, 706,

736

Distribution see RubyGems

div method

class Bignum 421

class Fixnum 464

class Numeric 542

Division, accuracy 671, 700

divmod method

class Bignum 421

class Fixnum 464

class Float 467

class Numeric 544

DL module 648

DL library 259

DLL, accessing API 254, 648,

734

DLN_LIBRARY_PATH 172

DNS 703

do (in loops) 329

do...end see Block

do_not_reverse_lookup

method

class BasicSocket 741

do_not_reverse_lookup=

method

class BasicSocket 741

:doc: (RDoc) 194

Document Type Definition 704

Documentclass: (RDoc) 197

Documentmethod: (RDoc)

197

Documentation

doc string example 372

embedded 187, 303

modifiers 193

see also RDoc

doGoogleSearch method 238

Domain Name System 703

Dotted quad see Network

protocols

Double dispatch 359

Double-quoted string 57, 305

downcase method

class String 591

downcase! method

class String 591

Download

Ruby 2

source from book 4

Download Ruby

sites 759

downto method

class Integer 96, 480

dpkg installation 3

DRb

see also Distributed Ruby

DRb class 649

DRbUndumped module 649

dst? method

class Time 623

DTD 704

Duck typing 280, 349–361

_dump 396, 514

dump method

class String 591

module Marshal 395, 515

dup method

class Object 274, 547

Dynamic

compilation 499

definitions 370

linking 287, 648

method invocation 388

see also Reflection

E
E (Math constant) 519

e 'command' (Ruby option)

168

E-mail

date/time formats 724

each method 651

class Array 411

class Dir 431

class Hash 474

class IO 487

class Range 577

class String 591

class Struct 607

module Enumerable 49, 433

each_byte method

class IO 122, 487

class String 592

each_cons method 651

each_index method

class Array 411

each_key method

class Hash 474

each_line method

class IO 122, 488

class String 592

each_object method

module ObjectSpace 365,

385, 387, 557

each_pair method

class Hash 474

class Struct 607

each_slice method 651

each_value method

class Hash 474

each_with_index method

module Enumerable 434

Editor

run Ruby in 157

egid method

module Process 563

egid= method

module Process 563

eid method

module Process::GID 568

module Process::UID 575

eid= method

module Process::GID 568

module Process::UID 575

Eiffel

once modifier 374

Element reference ([]) 336

else (exceptions) 105, 347

see also if, case

elsif 328

Emacs 157

tag file 185

Emacs key binding 702

E-mail

address for feedback xxii

fetching with IMAP 680

fetching with POP 681

parsing 670

sending with SMTP 682

Embed Ruby

in HTML etc. see eruby

interpreter in application 287

Embedded documentation 187,

303

empty? method

class Array 411

class Hash 474

class String 592

Prepared exclusively for Jose Sierra

enable METHOD 772 exception METHOD

enable method

module GC 470

enable-xxx (mkmf) 756

enable_config method

module mkmf 757

enclose method

class ThreadGroup 619

enclosed? method

class ThreadGroup 620

Encodings, character 665, 668,

684

Encryption 590

__END__ 303, 322

END {...} 303

End of line 122

end method

class MatchData 517

class Range 577

:enddoc: (RDoc) 195

English library 650

English names for $ variables

318, 650

ensure (exceptions) 105, 347

entries method

class Dir 429

module Enumerable 434

enum_for method 651

Enumerable class

Enumerator 651

Enumerable module 49, 113,

433, 651, 662

all? 433

any? 433

collect 49, 410, 433

convert to Set 710

detect 433

each 49, 433

each_with_index 434

entries 434

find 434

find_all 434

grep 434

include? 434

inject 49, 113, 435

map 435

max 435

member? 435

min 435

partition 436

reject 416, 436

select 436

sort 436

sort_by 436

to_a 438

zip 438

Enumerator module 651

ENV variable 171, 321

Environment variables 171

COMSPEC 172, 500

DLN_LIBRARY_PATH 172

HOME 172, 428, 446

LOGDIR 172, 428

OPENSSL_CONF 172

PATH 169

POSIXLY_CORRECT 663

RI 8, 202

RUBY_TCL_DLL 172

RUBY_TK_DLL 172

RUBYLIB 172, 173, 383

RUBYLIB_PREFIX 172

RUBYOPT 172, 383

RUBYPATH 169, 172

RUBYSHELL 172, 500

SHELL 172

see also ENV variable

eof method

class IO 488

eof? method

class IO 488

Epoch 621

EPSILON (Float constant) 466

eql? method 89

class Array 411

class Bignum 421

class Float 467

class Method 522

class Numeric 544

class Object 547

class Range 578

class String 592

equal? method 89

class Object 548

ERB class 652

erb 229, 652

ERB::Util module 653

erf method

module Math 520

erfc method

module Math 520

Errno constant 104

Errno module 104, 439, 440

Error handling see Exception

Errors in book, reporting xxii

eruby 229–231

in Apache 230

see also CGI programming

escape method

class Regexp 579

Escaping characters see

Quoting

Etc module 654

EUC 302, 309, 665, 668, 684

euid method

module Process 563

euid= method

module Process 563

eval method

module Kernel 389, 423,

499

Event binding see GUI

programming

Example code, download 4

Example printer 186

Exception 101–109, 345

ClassCastException 350

EOFError 701

in extensions 296

FaultException 736

handling 102

hierarchy 103f

IndexError 412, 588

LoadError 210

LocalJumpError 344

NameError 318, 348

raising 106, 506

RuntimeError 107, 345

SecurityError 379

StandardError 102, 104,

346

stored in $! 319

SystemCallError 104, 439,

500, 510

SystemExit 170, 441, 442,

500

testing 147

in thread 130, 612

ThreadError 344

Timeout::Error 725

TruncatedDataError 701

TypeError 38, 266, 396,

495

Exception class 101, 345, 440

backtrace 440

exception 440

message 441

new 440

set_backtrace 441

status 441

success? 442

to_s 442

to_str 442

exception method

Prepared exclusively for Jose Sierra

exclude_end? METHOD 773 File CLASS

class Exception 440

exclude_end? method

class Range 578

exec method

module Kernel 141, 485,

500

executable? method

class File::Stat 458

class File 446

executable_real? method

class File::Stat 458

class File 446

Execution

environment 376

profiler 163

tracing 393

exist? method

class File 446

exists? method

class File 446

Exit status see $?

exit method

class Thread 613, 615

module Kernel 170, 441,

500

module Process 563

exit! method

module Kernel 501

module Process 563

exited? method

class Process::Status

571

exitstatus method

class Process::Status

571

exp method

module Math 520

expand_path method

class File 446

expect library 655

expect method

class IO 655, 699

$expect_verbose variable

655

Expression 81–100, 323–330

boolean 87, 326

case 92, 328

if 90, 328

range as boolean 89

substitution in string 306

ternary 91, 328

unless see if

extconf.rb 263, 282

see also mkmf module

Extend Ruby 261–301, 755

allocation 273

building extensions 282

see also mkmf module

call method API 295

clone and dup 274

create object 262, 273

data type conversion API

266

data type wrapping API 271

define classes API 291

define methods API 292

define structures API 292

documentation (RDoc) 195

embedded Ruby API 290

embedding 287

example code 276

exception API 296

garbage collection 271

initialize 262

internal types 264

iterator API 297

linking 287

memory allocation API 279

object status API 298

strings 266

variable API 294, 297

variables 269

extend method

class Object 366, 368, 548

extend_object method

class Module 392, 535

EXTENDED (Regexp constant)

579

Extended mode (regexp) 309

extended method

class Module 535

Extending classes 24

External iterator 50, 662

extname method

class File 446

F
$F variable 168, 321

F pattern (Ruby option)

168, 319

$F variable 320

Factory method 34

fail method

module Kernel 106, 501

FALSE constant 322

false constant 87, 321, 326

FalseClass class 443

& 443

^ 443

| 443

Fcntl module 488, 656

fcntl method

class IO 488

FD (file descriptor) 486

Feedback, e-mail address xxii

fetch method

class Array 412

class Hash 475

Fibonacci series (fib_up_to)

47

Field separator see $;

__FILE__ constant 322

File

associations under Windows

254

and blocks 120

descriptor 486

directory operations see Dir

class

directory traversal 658

expanding names 446, 447

FNM_NOESCAPE 447

including source 117, 168,

172

lock modes 455f

match modes 447f

modes 483f

open modes 451f

opening 120

owner 445, 454, 458, 460,

461

pathname 449f, 482, 693

permission 444, 453

reading 121

temporary 720

tests 510

writing 123

File class 119, 444, 462, 660,

693

atime 444, 454

basename 444

blockdev? 445

chardev? 445

chmod 445, 454

chown 445, 454

ctime 445, 454

delete 445

directory? 446

dirname 446

executable? 446

executable_real? 446

Prepared exclusively for Jose Sierra

FILE TRANSFER PROTOCOL 774 Float CLASS

exist? 446

exists? 446

expand_path 446

extname 446

file? 447

flock 454

fnmatch 430, 447

fnmatch? 448

ftools extension 660

ftype 448

grpowned? 448

join 448

lchmod 448, 454

lchown 449, 454

link 449

lstat 449, 455

mtime 449, 455

new 120, 449

open 51, 120, 450

owned? 450

path 455

pipe? 450

readable? 450

readable_real? 450

readlink 450

rename 451

setgid? 451

setuid? 451

size 451

size? 451

socket? 452

split 452

stat 452

sticky? 452

symlink 452

symlink? 452

truncate 452, 455

umask 453

unlink 453

utime 453

writable? 453

writable_real? 453

zero? 453

File Transfer Protocol see

Network protocols, FTP

File, reading 701

File::Stat class 456

<=> 456

atime 456

blksize 456

blockdev? 456

blocks 457

chardev? 457

ctime 457

dev 457

dev_major 457

dev_minor 457

directory? 457

executable? 458

executable_real? 458

file? 458

ftype 458

gid 458

grpowned? 458

ino 458

mode 458

mtime 459

nlink 459

owned? 459

pipe? 459

rdev 459

rdev_major 459

rdev_minor 459

readable? 459

readable_real? 460

setgid? 460

setuid? 460

size 460

size? 460

socket? 460

sticky? 460

symlink? 461

uid 461

writable? 461

writable_real? 461

zero? 461

file? method

class File::Stat 458

class File 447

$FILENAME variable 321

fileno method

class IO 488

FileTest module 462, 693

FileUtils module 657, 730

fill method

class Array 412

Find module 658

find method

module Enumerable 434

find_all method

module Enumerable 434

find_library method

module mkmf 285, 757

Finger client 125

finite? method

class Float 467

first method

class Array 412

class Range 578

Fixnum class 55, 463, 671

% 463

& 463

* 463

** 463

+ 463

 463

@ 463

/ 463

<=> 463

<< 463

>> 463

[] 464

^ 463

| 463

~ 463

abs 464

Arithmetic operations

463

Bit operations 463

div 464

divmod 464

id2name 464

literal 55, 304

modulo 464

quo 464

range of 55

size 465

to_f 465

to_s 465

to_sym 465

zero? 465

flatten method

class Array 412

flatten! method

class Array 413

Float class 56, 466

% 466

* 466

** 466

+ 466

 466

@ 466

/ 466

<=> 466

== 467

abs 467

Arithmetic operations

466

ceil 467

divmod 467

eql? 467

finite? 467

Prepared exclusively for Jose Sierra

Float METHOD 775 gmt? METHOD

floor 467

infinite? 468

literal 56, 305

modulo 468

nan? 468

round 468

to_f 468

to_i 468

to_int 468

to_s 469

truncate 469

zero? 469

Float method

module Kernel 495, 600

flock method

class File 454

floor method

class Float 467

class Integer 480

class Numeric 544

flush method

class IO 488

FNM_xxx

filename match constants

447

fnmatch method

class File 430, 447

fnmatch? method

class File 448

for...in loop 97, 329, 651

for_fd method

class BasicSocket 741

class IO 483

foreach method

class Dir 429

class IO 123, 483

Fork see Process

fork method

class Thread 613

module Kernel 141, 142,

501

module Process 563

format method

module Kernel 502

Forms see CGI programming,

forms

Forms (Web) 224

Fortran, documentation 187n

Forwardable module 659

Forwarding 646, 659

Fowler, Chad xxiii, 203

freeze method

class Object 162, 377, 548

class ThreadGroup 620

frexp method

module Math 520

frozen? method

class Object 549

fsync method

class IO 488

ftools library 660

FTP see Network protocols,

FTP

FTP site for Ruby 2

ftype method

class File::Stat 458

class File 448

Funaba, Tadayoshi 373

Function see Method

Function pointer 389

G
Garbage collection 353, 470,

557, 732

internals 271

garbage_collect method

module GC 470

module ObjectSpace 558

GC module 470

disable 470

enable 470

garbage_collect 470

start 470

GDBM class 661

gdbm 645, 661

Gelernter, David 706

Gem see RubyGems

gem_server 208

gemspec 212–214

General delimited string 303

Generator class 662

Generator library 50

Geometry management 246

get method 678

getaddress method

class IPSocket 747

getaddrinfo method

class Socket 744

getc method

class IO 489

getegid method

module Process::Sys 573

geteuid method

module Process::Sys 573

getgid method

module Process::Sys 573

getgm method

class Time 624

gethostbyaddr method

class Socket 744

gethostbyname method

class Socket 744

class TCPSocket 748

gethostname method

class Socket 744

getlocal method

class Time 624

getnameinfo method

class Socket 745

GetoptLong class 663

getpeername method

class BasicSocket 741

getpgid method

module Process 563

getpgrp method

module Process 563

getpriority method

module Process 564

gets method

class IO 489

module Kernel 320, 502

getservbyname method

class Socket 745

getsockname method

class BasicSocket 741

getsockopt method

class BasicSocket 742

Getter method 27

getuid method

module Process::Sys 573

getutc method

class Time 624

getwd method

class Dir 429

gid method

class File::Stat 458

module Process 564

gid= method

module Process 564

GIF 246, 250

Glob see File, expanding names

glob method

class Dir 430

Global variables see Variables

global_variables method

module Kernel 502

gm method

class Time 621

GMT 621

gmt? method

class Time 624

Prepared exclusively for Jose Sierra

gmt_offset METHOD 776 Idirectories (RUBY OPTION)

gmt_offset method

class Time 624

gmtime method

class Time 624

gmtoff method

class Time 625

GNU readline 702

Google

developer key 238

Web API 238

WSDL 239

Granger, Michael 206

grant_privilege method

module Process::GID 568

module Process::UID 575

Graphic User Interface see GUI

programming

Greedy patterns 69

Greenwich Mean Time 621

grep method

module Enumerable 434

group method

class Thread 615

Grouping (regular expression)

69

groups method

module Process 564, 565

groups= method

module Process 564, 565

grpowned? method

class File::Stat 458

class File 448

GServer class 664

gsub method

class String 70, 311, 592

module Kernel 502

gsub! method

class String 311, 593

module Kernel 502

GUI programming 241–252,

726

callback from widget 243

events 246

geometry management 246

scrolling 249

widgets 242–245

GZip compression 738

H
h, help (Ruby option) 168

has_key? method

class CGI 225

class Hash 475

has_value? method

class Hash 475

Hash 42

creating 43

default value 16

indexing 43

key requirements 308

literal 15, 307

as method parameter 79, 333

Hash class 357, 471

== 472

[] 471, 472

[]= 472

=> 43

clear 472

default 473

default= 473

default_proc 473

delete 473

delete_if 474

each 474

each_key 474

each_pair 474

each_value 474

empty? 474

fetch 475

has_key? 475

has_value? 475

include? 475

index 475

indexes 476

indices 476

invert 476

key? 476

keys 476

length 476

member? 476

merge 476

merge! 477

new 471

rehash 308, 477

reject 477

reject! 477

replace 357, 477

select 478

shift 478

size 478

sort 478

store 478

to_a 478

to_hash 478

to_s 478

update 479

value? 479

values 479

values_at 479

Hash functions 647

hash method

class Object 549

have_func method

module mkmf 286, 757

have_header method

module mkmf 285, 757

have_library method

module mkmf 285, 757

head method 678

Heading, RDoc 193

Here document 58, 306

Hex notation 55, 304

hex method

class String 593

Hintze, Clemens 314

HOME 172, 428, 446

Hook 391

hour method

class Time 625

Howard, Ara T. 699

HTML see CGI programming

HTML, documentation 187

HTTP see Network protocols,

HTTP

HTTPS protocol 688

Hyperlink in documentation

192

hypot method

module Math 520

I
/i regexp option 309

i [extension] (Ruby option)

168, 321

I directories (Ruby option)

168, 320

$I variable 321

$i variable 321

Ichikawa, Itaru 684

Iconv class 665

id method

class Object 549

id2name method

class Fixnum 464

class Symbol 610

Identifier

object ID 10, 386

see also Variable

IEEE floating point 466

Idirectories (Ruby option)

173

Prepared exclusively for Jose Sierra

if EXPRESSION 777 IO CLASS

if expression 90, 328

as modifier 91, 328

IGNORECASE (Regexp constant)

579

Igpay atinlay see Pig latin

in (for loop) 329

In-place edit mode 168

:include: (RDoc) 194

include method 112

class Module 340, 535

include? method

class Array 413

class Hash 475

class Module 528

class Range 578

class String 593

module Enumerable 434

included method

class Module 535

included_modules method

class Module 528

Including source files see File,

including source

Incremental development 162

Indentation 12

index method

class Array 413

class Hash 475

class String 311, 593

indexes method

class Array 413

class Hash 476

Indexing

array 41

hash 43

indices method

class Array 413

class Hash 476

infinite? method

class Float 468

Inheritance 25, 337

and access control 376

method lookup 334, 363

single versus multiple 28

see also Delegation;

Module, mixin

inherited method

class Class 392, 424

initgroups method

module Process 564

initialize method 23, 35,

338

class Object 554

initialize_copy method

class Object 275, 549

inject method 49

module Enumerable 49,

113, 435

ino method

class File::Stat 458

Input/Output see I/O

insert method

class Array 413

class String 594

inspect method

class Object 549, 694

class Regexp 581

class Symbol 611

Installation script 657, 730

Installing Ruby 2

Instance

class instance method see

Object

method method see Method

variable see Variable

instance_eval method

class Object 549

instance_method method

class Module 528, 630

instance_methods method

class Module 529

instance_of? method

class Object 550

instance_variable_get

method

class Object 550

instance_variable_set

method

class Object 550

instance_variables method

class Object 550

Integer class 357, 480, 671

ceil 480

chr 480

downto 96, 480

floor 480

integer? 480

next 480

round 480

succ 481

times 96, 481

to_i 481

to_int 481

truncate 481

upto 96, 481

see also Fixnum, Bignum

Integer method

module Kernel 357, 495

integer? method

class Integer 480

class Numeric 544

Interactive Ruby see irb

Intern see Symbol

intern method

class String 594

Internal iterator 50

Internet see Network protocols

Internet Mail Access Protocol

(IMAP) see Network

protocols, IMAP

Interval see Range

Introspection see Reflection

Inverse, matrix 673

invert method

class Hash 476

Invoking see Method, calling

IO class 119, 357, 482, 655,

708, 714, 715

<< 124, 486

binmode 486

clone 486

close 486

close_read 486

close_write 487

closed? 487

each 487

each_byte 122, 487

each_line 122, 488

eof 488

eof? 488

expect 655, 699

fcntl 488

fileno 488

flush 488

for_fd 483

foreach 123, 483

fsync 488

getc 489

gets 489

ioctl 489

isatty 489

lineno 489

lineno= 490

new 483

open 484

pid 490

pipe 141, 484

popen 140, 484

pos 490

pos= 490

print 490

printf 491

Prepared exclusively for Jose Sierra

I/O 778 Kernel MODULE

putc 491

puts 491

read 485, 491

readbytes 701

readchar 491

readline 491

readlines 485, 492

ready? 666

reopen 357, 492

rewind 492

seek 492

select 357, 486

stat 492

StringIO 715

sync 493

sync= 493

sysopen 486

sysread 493

sysseek 493

syswrite 493

tell 494

to_i 494

to_io 494

tty? 494

ungetc 494

wait 666

write 494

I/O 119–126

binary data 123

buffering problems 161

see also classes File, IO,

and Network Protocols

io/wait library 666

ioctl method

class IO 489

Iowa, Web framework 226

IP address representation 667

IP, IPv4, IPv6 see Network

protocols

IPAddr class 667

IPSocket class 714, 747

addr 747

getaddress 747

peeraddr 747

recvfrom 747

irb 5, 156, 174–185

commands 183

configuration 179

extending 180

load files into 176

options 175f

prompt 179, 184

adding ri 180

subsession 177

tab completion 176

.irbrc, _irbrc, irb.rc,

$irbrc 179

is_a? method

class Object 550

isatty method

class IO 489

isdst method

class Time 625

ISO 8601 date 692, 724

issetugid method

module Process::Sys 573

Iterator 19, 46, 95

on arbitrary method 651

in extension 297

external, internal 50, 662

for reading files 122

see also Block

iterator? method

module Kernel 503

J
JavaSpaces see Distributed

Ruby

jcode library 668

JINI see Distributed Ruby

JIS 302, 665, 668, 684

join method

class Array 415

class File 448

class Thread 129, 615

JSP see eruby

Jukebox example 23–32, 52–54,

270–279

K
K kcode (Ruby option) 169,

321

$K variable 321

Kanji 684

$KCODE variable 309, 638, 668

kcode method

class Regexp 581

Kellner, Robert 722

Kernel module 495

` (backquote) 83, 140,

495

abort 496

alias_method 391

Array 495

at_exit 496

autoload 496

autoload? 497

binding 390, 423, 497

block_given? 51, 334, 497

callcc 427, 497

caller 107, 393, 394, 497

catch 99, 108, 347, 498

chomp 498

chomp! 498

chop 499

chop! 499

eval 389, 423, 499

exec 141, 485, 500

exit 170, 441, 500

exit! 501

fail 106, 501

Float 495, 600

fork 141, 142, 501

format 502

gets 320, 502

global_variables 502

gsub 502

gsub! 502

Integer 357, 495

iterator? 503

lambda 53, 343, 345, 503,

560

load 172, 320, 380, 503

local_variables 503

loop 96, 503

method_missing 334, 362

open 126, 504, 686

p 505

pp 694

print 320, 505

printf 320, 505

proc 343, 345, 506

putc 506

puts 506

raise 106, 345, 506

rand 506

readline 320, 506

readlines 507

require 172, 320, 507, 526

scan 507

scanf 708

select 507

set_trace_func 393, 423,

508, 728

singleton_method_added

392

singleton_method_

removed

392

Prepared exclusively for Jose Sierra

key? METHOD 779 LIBRARY

singleton_method_

undefined

392

sleep 508

split 168, 508

sprintf 508

srand 509

String 495

sub 509

sub! 509

syscall 509

system 140, 509

test 510

throw 108, 347, 510

trace_var 511

trap 142, 513

untrace_var 513

warn 169, 321, 513

see also Object class

key? method

class Hash 476

class Thread 616

keys method

class Hash 476

class Thread 616

Keyword argument 79

Keywords 314

kill method

class Thread 613, 616

module Process 564

kind_of? method

class Object 551

L
l (Ruby option) 169, 321

$l variable 321

lambda method

module Kernel 53, 343,

345, 503, 560

last method

class Array 415

class Range 578

last_match method

class Regexp 579

last_modified method 686

Latent types see Duck typing

Layout, source code 302

lchmod method

class File 448, 454

lchown method

class File 449, 454

ldexp method

module Math 520

LDFLAGS (mkmf) 756

Leap seconds 626n

Leap year 92

length method

class Array 415

class Hash 476

class MatchData 517

class String 594

class Struct 608

Library

Abbrev 634

Base64 635

Benchmark 636

BigDecimal 637

BigMath 637

CGI 638

CGI::Session 640

Complex 641

CSV 642

CSV::Row 642

Curses 643

Date 644

DateTime 644

DBM 645

Delegator 646

Digest 647

DL 259, 648

DRb 649

English 650

Enumerator 651

ERB 652

expect 655

Fcntl 656

FileUtils 657

Find 658

Forwardable 659

ftools 660

GDBM 661

Generator 50, 662

GetoptLong 663

GServer 664

Iconv 665

io/wait 666

IPAddr 667

jcode 668

Logger 669

Mail 670

mathn 182, 671, 700

Matrix 673

mkmf 755

Monitor 674

monitor 134

MonitorMixin 674

Mutex 675

Mutex_m 676

net/http 128

Net::FTP 677

Net::HTTP 678

Net::IMAP 680

Net::POP3 681

Net::SMTP 682

Net::Telnet 683

NKF 684

Observable 685

open-uri 126, 686

Open3 687

OpenSSL 688

OpenStruct 689

OptionParser 690

ParseDate 692

Pathname 693

PP 694

PrettyPrint 695

profile 163, 696

Profiler__ 697

PStore 698

PTY 699

Queue 722

Rational 700

readbytes 701

Readline 702

readline 155, 176, 182

resolv 703

resolv-replace 703

REXML 704

Rinda 706

RSS 707

scanf 708

SDBM 709

Set 710

Shellwords 711

SimpleDelegator 646

Singleton 712

SizedQueue 722

SOAP 713

Socket 714

standard 632–738

StringIO 715

StringScanner 716

Sync 717

SyncEnumerator 662

Syslog 719

Tempfile 720

Test::Unit 721

thread 133, 137

ThreadsWait 723

time 724

Timeout 725

Prepared exclusively for Jose Sierra

lib/ DIRECTORY 780 Math MODULE

Tk 726

tmpdir 720, 727

tracer 728

TSort 729

un 730

URI 731

Vector 673

WeakRef 732

WEBrick 733

Win32API 254, 734

WIN32OLE 255, 735

XMLRPC 736

YAML 397, 514, 633, 737

Zlib 738

see also RubyGems

lib/ directory 282

Linda see Distributed Ruby,

Rinda

Line continuation 302

Line separator see End of line

lineno method

class IO 489

lineno= method

class IO 490

link method

class File 449

List see Array

RDoc 192

list method

class ThreadGroup 620

class Thread 613

module Signal 583

listen method

class Socket 746

Listener see Observer

Literal

array 307

ASCII 56, 305

Bignum 55, 304

Fixnum 55, 304

Float 56, 305

hash 307

range 62, 307

regular expression 64, 309

String 57, 305

symbol 308

ljust method

class String 594

_load 396, 514

load method 112, 117

module Kernel 172, 320,

380, 503

module Marshal 395, 396,

515

$LOAD_PATH variable 152, 168,

175, 209–211, 213, 216,

321

Local variable see Variable

local method

class Time 622

local_variables method

module Kernel 503

localtime method

class Time 625

Locking see File class, flock

Locking (file) 454

log method

module Math 520

log10 method

module Math 520

LOGDIR 172, 428

Logger

system 719

Logger class 669

lookup_order= method

class BasicSocket 741

Loop 480, 481, 545

see also Iterator

loop method 96, 329

module Kernel 96, 503

lstat method

class File 449, 455

lstrip method

class String 594

lstrip! method

class String 594

Lvalue 84, 323

M
/m regexp option 309

Macdonald, Ian 240

Maeda, Shugo 229

Mail class 670

Mailing lists 759

:main: (RDoc) 195

Main program 376

main method

class Thread 613

MAJOR_VERSION (Marshal

constant) 515

MANIFEST file 287

MANT_DIG (Float constant) 466

map method

module Enumerable 435

map! method

class Array 415

Marshal module 395–397,

514–515

dump 395, 515

limitations 514

load 395, 396, 515

restore 515

see also YAML

marshal_dump method 396,

514

marshal_load method 514

match method

class Regexp 65, 73, 581

class String 595

MatchData class 65, 73, 516,

579, 581, 587

[] 516

begin 516

captures 516

end 517

length 517

offset 517

post_match 517

pre_match 517

select 517

size 517

string 518

to_a 518

to_s 518

values_at 518

see also $~

MatchingData class 516

Math module 519

acos 519

acosh 519

asin 519

asinh 519

atan 519

atan2 519

atanh 519

cos 519

cosh 519

erf 520

erfc 520

exp 520

frexp 520

hypot 520

ldexp 520

log 520

log10 520

sin 520

sinh 521

sqrt 521

tan 521

tanh 521

Prepared exclusively for Jose Sierra

MATHN LIBRARY 781 Module CLASS

mathn library 182, 671, 700

Matrix class 673

Matsumoto, Yukihiro xviii, xix,

xxiii, 72

Matz see Matsumoto, Yukihiro

MAX (Float constant) 466

max method

module Enumerable 435

MAX_10_EXP (Float constant)

466

MAX_EXP (Float constant) 466

maxgroups method

module Process 565

maxgroups= method

module Process 565

mbox (e-mail file) 670

MD5 hash 647

mday method

class Time 625

member? method

class Hash 476

class Range 578

module Enumerable 435

members method

class Struct 606, 608

merge method

class Hash 476

merge! method

class Hash 477

Message

receiver 11

sending 10, 26

Message box, Windows 259

message method

class Exception 441

Meta character 56, 305

meta method 686

Metaclass 363, 365

Metaprogramming see

Reflection

Method 80

access control 35, 530, 532,

537, 538

aliasing 336

ambiguity 116

arguments 332

array parameter 78

block as parameter 75

call, in extension 295

calling 76, 333

calling dynamically 388

class 32, 368

defining 74, 75, 330

in extension 292

getter 27

instance 10

with iterator 389

keyword argument 79

module 111

naming 14, 74, 331

nested definition 75

nested method definition 331

object 389, 551

as operator 82

parameters 74, 75

private 76

renaming 391

return value 75, 77, 335

setter 29, 86

vs. variable name 314

variable-length arguments 75

Method class 389, 522, 534

== 522

[] 522

arity 522

call 389, 522

eql? 522

to_proc 523

unbind 523

Method module 630

method method

class Object 522, 551

method_added method

class Module 392, 536

method_defined? method

class Module 529

method_missing method

class Object 551

module Kernel 334, 362

method_removed method

class Module 392, 536

method_undefined method

class Module 392, 536

methods method

class Object 386, 552

Meyer, Bertrand 30

Microsoft Windows 253–260

accessing API 254, 734

automation 255, 735

file associations 254

installing Ruby 3, 759

message box 259

printing under 254

running Ruby 254

scripting see automation

(above)

MIN (Float constant) 466

min method

class Time 625

module Enumerable 435

MIN_10_EXP (Float constant)

466

MIN_EXP (Float constant) 466

MINOR_VERSION (Marshal

constant) 515

Mirroring, using CVSup 5

MixedCase 14, 313

Mixin see Module

mkdir method

class Dir 430

mkmf module 755

building extensions with 282

create_makefile 282, 757

dir_config 283, 757

enable_config 757

find_library 285, 757

have_func 286, 757

have_header 285, 757

have_library 285, 757

mkmf library 755

mktime method

class Time 622

mod_ruby 234

safe level 380

mode method

class File::Stat 458

Module 110–118

constant 111

creating extension see

Extend Ruby

defining 339

function 340

include 112

instance variable 115

load 112

as mixin 111, 340, 366

as namespace 110

naming 14

require 112

wrap 380

Module class 524

<, <=, >, >= 525

<=> 525

=== 525

alias_method 533

ancestors 365, 386, 526

append_features 533

attr 533

attr_accessor 534

attr_reader 534

attr_writer 534

autoload 526

Prepared exclusively for Jose Sierra

Module MODULE 782 NAMING CONVENTIONS

autoload? 526

class_eval 526

class_variables 527

clone 527

const_defined? 527

const_get 527

const_missing 527

const_set 528

constants 524, 528

define_method 534

extend_object 392, 535

extended 535

include 340, 535

include? 528

included 535

included_modules 528

instance_method 528, 630

instance_methods 529

method_added 392, 536

method_defined? 529

method_removed 392, 536

method_undefined 392,

536

module_eval 530

module_function 340, 537

name 530

nesting 524

new 525

private 537

private_class_method

33, 530

private_instance_

methods

531

private_method_defined?

531

protected 538

protected_instance_

methods

531

protected_method_

defined?

531

public 538

public_class_method 532

public_instance_methods

532

public_method_defined?

532

remove_class_variable

538

remove_const 538

remove_method 538

undef_method 538

Module module

define_method 345

module_eval method

class Module 530

module_function method

class Module 340, 537

Modules

list of methods 405

Abbrev 634, 702

Base64 635

Benchmark 162, 390, 636

BigMath 637

Comparable 112, 426

Config 173

Curses 643

Date 621

Digest 647

DL 648

DRbUndumped 649

Enumerable 49, 113, 433,

651, 662

Enumerator 651

ERB::Util 653

Errno 104, 439, 440

Etc 654

Fcntl 488, 656

FileTest 462, 693

FileUtils 657, 730

Find 658

Forwardable 659

GC 470

Kernel 495

Marshal 514

Math 519

Method 630

mkmf 755

Monitor 674

MonitorMixin 136, 674

Mutex_m 133, 676

NKF 684

ObjectSpace 557

Observable 685

Open3 485, 687

ParseDate 621, 692

Process 142, 562, 573

Process::GID 568, 573

Process::Sys 573

Process::UID 573, 575

Profiler 696

Profiler__ 697

PTY 699

Readline 702

REXML 704

Rinda 706

RSS 707

Session 699

Shellwords 711

Signal 513, 583

SingleForwardable 659

Singleton 712

SOAP 713

Sync 133

Timeout 725

TSort 729

WEBrick 733

XMLRPC 736

Zlib 738

modulo method

class Bignum 421

class Fixnum 464

class Float 468

class Numeric 544

mon method

class Time 625

Monitor class 134, 136, 717,

722

Monitor module 674

monitor library 134

MonitorMixin module 136,

674

month method

class Time 625

mswin32 253

mtime method

class File::Stat 459

class File 449, 455

MULTILINE (Regexp constant)

579

Multiline mode (regexp) 309

Multiple inheritance 28

see also Module, mixin

Multithreading see Thread

Music on hold 758

Mutex class 675, 676

Mutex_m module 133, 676

Mutual exclusion see Thread,

synchronization

“My Way” 25

N
n (Ruby option) 169

Nagai, Hidetoshi 568

Nakada, Nobuyoshi 684

name method

class Module 530

Namespace see Module

Naming conventions 14, 313

Prepared exclusively for Jose Sierra

nan? METHOD 783 Object CLASS

file pathnames 482

method names 74

Test::Unit 153

nan? method

class Float 468

Native thread see Thread

ncurses see Curses

ndbm 645

Nested assignment 86

nesting method

class Module 524

net/http library 128

Net::FTP class 677

Net::HTTP class 678, 731

Net::IMAP class 680

Net::POP3 class 681

Net::SMTP class 682

Net::Telnet class 683

Network protocols

DNS 703

domain socket 753

finger 125

ftp 677, 686, 731

secure 688

generic server for 664

HTTP 678, 686, 731

HTTPS 688, 731

IMAP 680

IP 747

IP address representation

667

IPv4/IPv6 667

LDAP 731

POP 681

server 750, 754

SMTP 682

socket 125, 714, 741, 743

SOCKS 749

TCP 748

telnet 683

UDP 751

new method

see also Constructor

new method

class Array 406

class Class 338, 424, 425

class Dir 430

class Exception 440

class File 120, 449

class Hash 471

class IO 483

class Module 525

class Proc 503, 559

class Range 577

class Regexp 579

class Socket 745

class SOCKSSocket 749

class String 585

class Struct 605, 606

class TCPServer 750

class TCPSocket 748

class ThreadGroup 619

class Thread 128, 613

class Time 622

class UDPSocket 751

class UNIXServer 754

class UNIXSocket 753

Newline (\n) 12, 306

Newsgroup 759

next 98, 330, 342

next method

class Integer 480

class String 595

next! method

class String 595

nfk method

module NKF 684

NIL constant 322

nil constant 14, 87, 321, 326

nil? method

class NilClass 540

class Object 552

NilClass class 540

& 540

^ 540

| 540

nil? 540

to_a 540

to_f 540

to_i 540

to_s 540

nitems method

class Array 415

NKF module 684

nfk 684

nlink method

class File::Stat 459

No-wait mode I/O 666

:nodoc: (RDoc) 194

nonzero? method

class Numeric 544

not (logical not) 88, 326

Notation xxiv

binary, decimal, hex, octal

55, 304

notify_observers method

module Observable 685

:notnew: (RDoc) 194

now method

class Time 622

NTP (Network Time Protocol)

683

Numbers, unifying 671

Numeric class 541, 641

+@ 541

@ 541

<=> 541

abs 541

ceil 541

coerce 358, 541

div 542

divmod 544

eql? 544

floor 544

integer? 544

mathn 671

modulo 544

nonzero? 544

quo 545

Rational 700

remainder 545

round 545

step 96, 545

to_int 545

truncate 545

zero? 545

O
/o regexp option 309

OBJ_FREEZE 298

OBJ_FROZEN 299

OBJ_TAINT 298

OBJ_TAINTED 298

Object 10

aliasing 38, 161, 315

allocation 273

creation 23, 338, 391

extending 365, 368

finalizer 557

freezing 377

ID 10, 386

immediate 265, 385, 463

listing active 385

listing methods in 386

object_id 557

persistence 698

tainting 381

Object class 27, 376, 546

== 546

=== 546

=~ 546

Prepared exclusively for Jose Sierra

OBJECT-ORIENTED TERMINOLOGY 784 PATTERN

__id__ 546

__send__ 546

class 354, 546

clone 274, 547

display 547

dup 274, 547

eql? 547

equal? 548

extend 366, 368, 548

freeze 162, 377, 548

frozen? 549

hash 549

id 549

initialize 554

initialize_copy 275, 549

inspect 549, 694

instance_eval 549

instance_of? 550

instance_variable_get

550

instance_variable_set

550

instance_variables 550

is_a? 550

kind_of? 551

method 522, 551

method_missing 551

methods 386, 552

nil? 552

object_id 552

private_methods 552

protected_methods 552

public_methods 553

remove_instance_

variable

555

respond_to? 386, 553

send 553

singleton_method_added

555

singleton_method_

removed

556

singleton_method_

undefined

556

singleton_methods 553

taint 554

tainted? 554

to_a 554

to_s 24, 554

to_str 266

type 354, 554

untaint 554

see also Kernel module

Object-oriented terminology 9

object_id method

class Object 552

ObjectSpace module 557

_id2ref 557

define_finalizer 557

each_object 365, 385, 387,

557

garbage_collect 558

undefine_finalizer 558

Observable module 685

add_observer 685

changed 685

changed? 685

count_observers 685

delete_observer 685

delete_observers 685

notify_observers 685

Observer pattern 685

oct method

class String 595

Octal notation 55, 304

offset method

class MatchData 517

OLE see Microsoft Windows,

automation

olegen.rb 258

once example 374

Once option (regexp) 309

One-Click Installer 3, 253, 759

OO see Object-oriented

open method

class Dir 431

class File 51, 120, 450

class IO 484

class Socket 745

class SOCKSSocket 749

class TCPServer 750

class TCPSocket 748

class UDPSocket 751

class UNIXServer 754

class UNIXSocket 753

module Kernel 126, 504,

686

open-uri library 126, 686

Open3 module 485, 687

OpenSSL library 688

OPENSSL_CONF 172

OpenStruct class 605, 689

Operating system errors 439

Operator

as method call 82, 335

precedence 324

Optimizing see Performance

Option, command line see

Command line

OptionParser class 690

options method

class Regexp 581

or (logical or) 88, 326

owned? method

class File::Stat 459

class File 450

Ownership, file see File, owner

P
p (Ruby option) 169, 321

p method

module Kernel 505

$p variable 321

pack method

class Array 123, 414, 415

pack_sockaddr_in method

class Socket 745

pack_sockaddr_un method

class Socket 745

Packaging see RubyGems

pair method

class Socket 745

Paragraph mode 168

Parallel assignment 85, 325

Parameter

default 74

to block 19

params method

class CGI 224

Parent-child 25

Parse error 159

ParseDate module 621, 692

parsedate 622

see also Time class and

library

parsedate method

module ParseDate 622

partition method

module Enumerable 436

pass method

class Thread 614

PATH 169

path method

class Dir 431

class File 455

class UNIXSocket 753

Pathname see File, pathname

Pathname class 693

Pattern see Regular expression

Prepared exclusively for Jose Sierra

PATTERNS 785 Process MODULE

Patterns

factory 34

observer 685

singleton 33, 712

peeraddr method

class IPSocket 747

class UNIXSocket 753

Performance 162, 353, 636

caching method values 373

CGI 234

dynamic method invocation

390

profiling 163, 696, 697

windows automation 258

Perl/Tk see GUI programming

Perlisms 22, 72, 94

Permission see File, permission

Persistent object storage 698

PHP see eruby

PI (Math constant) 519

pid method

class IO 490

class Process::Status 571

module Process 565

Pig latin 140, 245

Pipe see IO.pipe, IO.popen

pipe method

class IO 141, 484

pipe? method

class File::Stat 459

class File 450

pop method

class Array 416

popen method

class IO 140, 484

pos method

class Dir 431

class IO 490

pos= method

class Dir 432

class IO 490

POSIX

character classes 67

error codes 104

POSIXLY_CORRECT 663

Post Office Protocol (POP) see

Network protocols, POP

post method 678

post_match method

class MatchData 517

PP class 694

pp method

module Kernel 694

ppid method

module Process 565

Pragmatic Programmer

e-mail address xxii

Pre-defined variables see

Variables

pre_match method

class MatchData 517

Precedence

do...end vs {} 160, 341

of operators 324

Pretty printing 694, 695

pretty_print method 694

PrettyPrint class 505, 694,

695

Print

under Windows 254

print method

class IO 490

module Kernel 320, 505

printf method

class IO 491

module Kernel 320, 505

PRIO_PGRP (Process constant)

562

PRIO_PROCESS (Process

constant) 562

PRIO_USER (Process constant)

562

priority method

class Thread 616

priority= method

class Thread 617

Private see Access control

private method 36

class Module 537

private_class_method

method

class Module 33, 530

private_instance_methods

method

class Module 531

private_method_defined?

method

class Module 531

private_methods method

class Object 552

Proc class 53, 76, 342, 344,

357, 523, 534, 559

== 559

[] 559

arity 559

binding 560

call 560

new 503, 559

to_proc 561

to_s 561

proc method

module Kernel 343, 345,

506

return from 345

and safe level 381

Process 139–142

block 142

creating 139, 482, 485, 504,

687

exec 500

ID (see also $$) 490

priority 564, 566

Ruby subprocess 141, 142,

482, 485, 687

setting name 320

termination 142, 170, 496,

501, 563, 566

times 609

Process module 142, 562, 573

abort 562

detach 562

egid 563

egid= 563

euid 563

euid= 563

exit 563

exit! 563

fork 563

getpgid 563

getpgrp 563

getpriority 564

gid 564

gid= 564

groups 564, 565

groups= 564, 565

initgroups 564

kill 564

maxgroups 565

maxgroups= 565

pid 565

ppid 565

setpgid 565

setpgrp 565

setpriority 566

setsid 566

times 566, 609

uid 566

uid= 566

wait 141, 566

wait2 567

waitall 566

waitpid 567

Prepared exclusively for Jose Sierra

Process::GID MODULE 786 rb_ary_new3

waitpid2 567

Process::GID module 568,

573

change_privilege 568

eid 568

eid= 568

grant_privilege 568

re_exchange 568

re_exchangeable? 568

rid 568

sid_available? 568

switch 569

Process::Status class 142,

566, 567, 570

& 570

== 570

>> 570

coredump? 570

exited? 571

exitstatus 571

pid 571

signaled? 571

stopped? 571

stopsig 571

success? 571

termsig 572

to_i 572

to_int 572

to_s 572

Process::Sys module 573

getegid 573

geteuid 573

getgid 573

getuid 573

issetugid 573

setegid 573

seteuid 573

setgid 573

setregid 573

setresgid 574

setresuid 574

setreuid 574

setrgid 574

setruid 574

setuid 574

Process::UID module 573,

575

change_privilege 575

eid 575

eid= 575

grant_privilege 575

re_exchange 575

re_exchangeable? 575

rid 575

sid_available? 575

switch 575

profile library 163, 696

Profiler 163

Profiler module 696

Profiler__ module 697

Program see Process

Protected see Access control

protected method 36

class Module 538

protected_instance_

methods

method

class Module 531

protected_method_defined?

method

class Module 531

protected_methods method

class Object 552

Protocols 356

Pseudo terminal 699

PStore class 698

PTY module 699

Public see Access control

public method 36

class Module 538

public_class_method method

class Module 532

public_instance_methods

method

class Module 532

public_method_defined?

method

class Module 532

public_methods method

class Object 553

Publish/subscribe 685

push method

class Array 416

putc method

class IO 491

module Kernel 506

puts method

class IO 491

module Kernel 506

pwd method

class Dir 431

Q
qdbm 645

Queue class 133, 137, 722

quo method

class Bignum 421

class Fixnum 464

class Numeric 545

quote method

class Regexp 580

Quoting

characters in regexp 66, 579

URLs and HTML 223

R
r (Ruby option) 730

r library (Ruby option)

169

Race condition 129

RADIX (Float constant) 466

Radix see to_s methods,

Kernel.Integer,

String#to_i

Rails, Web framework 240

raise method

class Thread 617

module Kernel 106, 345,

506

Rake 217

Rake (build tool) 204

rand method

module Kernel 506

Range 62

as condition 64, 89, 94, 327

as interval 64

literal 62, 307

as sequence 62

Range class 63, 307, 576

== 577

=== 577

begin 577

each 577

end 577

eql? 578

exclude_end? 578

first 578

include? 578

last 578

member? 578

new 577

step 578

Rank, matrix 673

rassoc method

class Array 416

Rational class 671, 700

rb_apply 295

rb_ary_entry 300

rb_ary_new 299

rb_ary_new2 299

rb_ary_new3 299

Prepared exclusively for Jose Sierra

rb_ary_new4 787 readchar METHOD

rb_ary_new4 299

rb_ary_pop 299

rb_ary_push 299

rb_ary_shift 299

rb_ary_store 299

rb_ary_unshift 300

rb_block_given_p 297

rb_bug 296

rb_call_super 295

rb_catch 297

rb_class_new_instance 295

rb_cv_get 298

rb_cv_set 298

rb_cvar_defined 298

rb_cvar_get 298

rb_cvar_set 298

rb_define_alias 293

rb_define_alloc_func 293

rb_define_attr 295

rb_define_class 291

rb_define_class_under 291

rb_define_class_variable

294

rb_define_const 294

rb_define_global_const

294

rb_define_global_function

293

rb_define_hooked_variable

294

rb_define_method 293

rb_define_module 291

rb_define_module_function

293

rb_define_module_under

292

rb_define_readonly_

variable

294

rb_define_singleton_

method

293

rb_define_variable 294

rb_define_virtual_

variable

294

rb_each 297

rb_ensure 296

rb_exit 296

rb_extend_object 292

rb_fatal 296

rb_funcall 295

rb_funcall2 295

rb_funcall3 295

rb_global_variable 295

rb_gv_get 298

rb_gv_set 298

rb_hash_aref 300

rb_hash_aset 300

rb_hash_new 300

rb_id2name 295

rb_include_module 292

rb_intern 295

rb_iter_break 297

rb_iterate 297

rb_iv_get 297

rb_iv_set 298

rb_ivar_get 298

rb_ivar_set 298

rb_load_file 290

rb_notimplement 296

rb_obj_is_instance_of 300

rb_obj_is_kind_of 300

rb_protect 296

rb_raise 296

rb_require 292

rb_rescue 296

rb_respond_to 300

rb_safe_level 299

rb_scan_args 293

rb_secure 299

rb_set_safe_level 299

rb_str_cat 300

rb_str_concat 300

rb_str_dup 300

rb_str_new 300

rb_str_new2 300

rb_str_split 300

rb_struct_aref 292

rb_struct_aset 292

rb_struct_define 292

rb_struct_new 292

rb_sys_fail 296

rb_thread_create 300

rb_throw 297

rb_undef_method 293

rb_warn 297

rb_warning 297

rb_yield 297

rbconfig.rb 173

rbconfig.rb see Config

module

rdev method

class File::Stat 459

rdev_major method

class File::Stat 459

rdev_minor method

class File::Stat 459

RDoc 7, 187–200

C extensions 195

:callseq: 194, 197

comment format 187–193

:doc: 194

Documentclass: 197

Documentmethod: 197

documentation modifiers

193

embedding in Ruby 187

:enddoc: 195

heading 193

hyperlink 192

:include: 194

lists 192

:main: 195

:nodoc: 194

:notnew: 194

including README 199

generate ri documentation

200

for RubyGems 207

rules 193

running 199

:startdoc: 195

:stopdoc: 195

templates 227

:title: 195

yield parameters 193

:yields: 194

RDoc::usage method 201

RDoc::usage_no_exit method

201

rdtool 303

re_exchange method

module Process::GID 568

module Process::UID 575

re_exchangeable? method

module Process::GID 568

module Process::UID 575

read method

class Dir 432

class IO 485, 491

readable? method

class File::Stat 459

class File 450

readable_real? method

class File::Stat 460

class File 450

readbytes library 701

readbytes method

class IO 701

readchar method

class IO 491

Prepared exclusively for Jose Sierra

Readline MODULE 788 round METHOD

Readline module 702

readline library 155, 176, 182

readline method

class IO 491

module Kernel 320, 506

readlines method

class IO 485, 492

module Kernel 507

readlink method

class File 450

README 199

ready? method

class IO 666

REALLOC_N 280

Really Simple Syndication 707

Receiver 11, 76, 334, 362

Record separator see $/

recv method

class BasicSocket 742

recvfrom method

class IPSocket 747

class Socket 746

class UDPSocket 752

class UNIXSocket 753

redo 98, 330

Reference

to object 37

weak 732

Reflection 384–395

callbacks 392

Regexp class 72, 579

== 580

=== 580

=~ 580

~ 580

casefold? 581

compile 579

escape 579

inspect 581

kcode 581

last_match 579

match 65, 73, 581

new 579

options 581

quote 580

source 581

to_s 582

Regular expression 64–73,

309–313

alternation 69

anchor 66

character class 67

as condition 327

extensions 311

greedy 69

grouping 69

literal 64, 309

object-oriented 72

options 309, 312, 579

pattern match variables 319

quoting within 66

repetition 68

substitution 70, 593

rehash method

class Hash 308, 477

reject method

class Hash 477

module Enumerable 416,

436

reject! method

class Array 416

class Hash 477

remainder method

class Bignum 422

class Numeric 545

Remote Procedure Call see

Distributed Ruby, SOAP,

XMLRPC

remove_class_variable

method

class Module 538

remove_const method

class Module 538

remove_instance_variable

method

class Object 555

remove_method method

class Module 538

rename method

class File 451

reopen method

class IO 357, 492

replace method

class Array 416

class Hash 357, 477

class String 595

require method 112, 117

loading extensions 264

module Kernel 172, 320,

507, 526

require_gem 208

rescue 102, 346, 439

Reserved words 314

resolv library 703

resolv-replace library 703

respond_to? method

class Object 386, 553

restore method

module Marshal 515

retry

in exceptions 106, 107, 347

in loops 99, 330

return

from block 344

from lambda/proc 345

from Proc 344

see also Method, return

value

reverse method

class Array 416

class String 595

reverse! method

class Array 416

class String 595

reverse_each method

class Array 417

rewind method

class Dir 432

class IO 492

REXML module 704

RFC 2045 (base 64) 635

RFC 2396 (URI) 731

RFC 2616 (HTTP) 724

RFC 2822 (e-mail) 724

.rhtml (eruby) 230

RI 8, 202

ri 7, 187–200

add to irb 180

directories 200

sample output 191

see also RDoc

Rich Site Summary 707

rid method

module Process::GID 568

module Process::UID 575

Rinda module 706

rinda see Distributed Ruby

rindex method

class Array 417

class String 595

RIPEMD-160 hash 647

rjust method

class String 596

rmdir method

class Dir 431

RMI see Distributed Ruby

Roll, log files 669

Roman numerals 143

example 356

round method

class Float 468

class Integer 480

Prepared exclusively for Jose Sierra

ROUNDS (FLOAT CONSTANT) 789 setpgrp METHOD

class Numeric 545

ROUNDS (Float constant) 466

RPM installation 2

RSS module 707

RSTRING macro 266

rstrip method

class String 596

rstrip! method

class String 596

rtags 185

Ruby

debugger 155

distributed 398–399

download 759

embed in application 287

installing 2, 284

language reference 302–348

and Perl 22, 72, 94

versions xx

Web sites xxii, 758

ports to Windows 253

ruby (mkmf) 756

Ruby Documentation Project 8,

759

Ruby mode (emacs) 157

Ruby On Rails 240

Ruby Production Archive (RPA)

759

ruby-doc.org 8

ruby-mode.el 157

ruby.exe and rubyw.exe 254

ruby_finalize 290

ruby_init 290

ruby_init_loadpath 290

ruby_options 290

ruby_run 290

ruby_script 290

RUBY_TCL_DLL 172

RUBY_TK_DLL 172

RUBY_PLATFORM constant 322

RUBY_PLATFORM variable 216

RUBY_RELEASE_DATE constant

322

RUBY_VERSION constant 322

RubyForge 217, 759

RubyGarden 759

RubyGems 203–221

creating 211

documentation 207

extensions 215

gem_server 208

gemspec 212–214

installing applications 204

installing library 206

installing RubyGems 204

package layout 211

repository 759

require_gem 208

test on install 205

versioning 205, 206f, 209

RUBYLIB 172, 173, 383

RUBYLIB_PREFIX 172

RUBYOPT 172, 383

RUBYPATH 169, 172

RUBYSHELL 172, 500

Rule, RDoc 193

run method

class Thread 617

Runtime Type Information

(RTTI) see Reflection

Rvalue 84, 323

S
S (Ruby option) 169

s (Ruby option) 169

$SAFE variable 169, 299, 321,

380, 554, 652

Safe level 379–382

in extensions 298

list of constraints 383f

and proc 381

setting using T 169

and tainting 381

safe_level method

class Thread 618

SafeStringValue 299

SafeStringValue method 267

Sandbox 380, 381, see Safe

level

chroot 429

scan method

class String 60, 61, 311,

596, 716

module Kernel 507

scanf library 708

scanf method

class Array 708

class String 708

module Kernel 708

Scheduler, thread 132

Schneiker, Conrad 78n

Schwartz, Randal 437

Schwartzian transform 437

Scope of variables 99, 315

Screen output see Curses

SCRIPT_LINES__ constant

322, 395, 507

SDBM class 709

sdbm 709

Search path 173, 284

sec method

class Time 626

seek method

class Dir 432

class IO 492

Seki, Masatoshi 398

select method

class Hash 478

class IO 357, 486

class MatchData 517

module Enumerable 436

module Kernel 507

self variable 76, 115, 322,

334, 362

in class definition 370

Semaphore see Thread,

synchronization

Send message 10, 26

send method

class BasicSocket 742

class Object 553

class UDPSocket 752

Sequence see Range

Serialization see Marshal

Server 664

Session see CGI programming,

session

Session module 699

Session leader 566

Session, HTTP 233

Set class 407, 409, 710

Set operations see Array class

set_backtrace method

class Exception 441

set_trace_func method

module Kernel 393, 423,

508, 728

setegid method

module Process::Sys 573

seteuid method

module Process::Sys 573

setgid, setuid 380

setgid method

module Process::Sys 573

setgid? method

class File::Stat 460

class File 451

setpgid method

module Process 565

setpgrp method

module Process 565

Prepared exclusively for Jose Sierra

setpriority METHOD 790 SOURCE CODE

setpriority method

module Process 566

setregid method

module Process::Sys 573

setresgid method

module Process::Sys 574

setresuid method

module Process::Sys 574

setreuid method

module Process::Sys 574

setrgid method

module Process::Sys 574

setruid method

module Process::Sys 574

setsid method

module Process 566

setsockopt method

class BasicSocket 742

Setter method see Method,

setter

setuid method

module Process::Sys 574

setuid? method

class File::Stat 460

class File 451

setup method 150

SHA1/2 hash 647

Shallow copy 547

Shared library, accessing 648

Shebang (#!) 6

SHELL 172

Shell glob see File, expanding

names

Shellwords module 711

shift method

class Array 417

class Hash 478

shutdown method

class BasicSocket 742

sid_available? method

module Process::GID 568

module Process::UID 575

SIGALRM 508

SIGCLD 142

Signal

handling 142

sending 564

see also trap method

Signal module 513, 583

list 583

trap 584

signaled? method

class Process::Status

571

Simple Mail Transfer Protocol

see Network protocols,

SMTP

Simple Object Access protocol

see SOAP

SimpleDelegator class 646

sin method

module Math 520

Sinatra, Frank 25

Single inheritance 28

Single-quoted string 57, 305

SingleForwardable module

659

Singleton module 712

Singleton class 365

Singleton pattern 33, 712

singleton_method_added

method

class Object 555

module Kernel 392

singleton_method_removed

method

class Object 556

module Kernel 392

singleton_method_

undefined

method

class Object 556

module Kernel 392

singleton_methods method

class Object 553

sinh method

module Math 521

site_ruby directory 173

size method

class Array 417

class Bignum 422

class File::Stat 460

class File 451

class Fixnum 465

class Hash 478

class MatchData 517

class String 597

class Struct 608

size? method

class File::Stat 460

class File 451

SizedQueue class 722

SJIS 302, 309, 668

sleep method

module Kernel 508

slice method

class Array 417

class String 597

slice! method

class Array 418

class String 597

Smalltalk 10n, 365

SMTP see Network protocols,

SMTP

SOAP 236, 399, 713

SOAP module 713

Socket see Network protocols

Socket class 714, 743

accept 746

bind 746

connect 746

getaddrinfo 744

gethostbyaddr 744

gethostbyname 744

gethostname 744

getnameinfo 745

getservbyname 745

listen 746

new 745

open 745

pack_sockaddr_in 745

pack_sockaddr_un 745

pair 745

recvfrom 746

socketpair 745

sysaccept 746

unpack_sockaddr_in 746

unpack_sockaddr_un 746

socket? method

class File::Stat 460

class File 452

socketpair method

class Socket 745

SOCKS see Network protocols

SOCKSSocket class 714, 749

close 749

new 749

open 749

Sort

topological 729

sort method

class Array 418

class Hash 478

module Enumerable 436

Schwartzian transform 437

sort! method

class Array 418

sort_by method

module Enumerable 436

Source code

layout 302

reflecting on 394

Prepared exclusively for Jose Sierra

SOURCE CODE FROM BOOK 791 String CLASS

Source code from book 4

source method

class Regexp 581

Spaceship see <=>

Spawn see Process, creating

spawn method 699

split method

class File 452

class String 59, 598

module Kernel 168, 508

sprintf method

field types 511

flag characters 510

module Kernel 508

sqrt method

module Math 521

squeeze method

class String 60, 598, 668

squeeze! method

class String 599, 668

srand method

module Kernel 509

srcdir (mkmf) 756

Stack

execution see caller

method

operations see Array class

unwinding 104, 108, 346

Stack frame 155

Standard Library 632–738

start method

class Thread 614

module GC 470

:startdoc: (RDoc) 195

stat method

class File 452

class IO 492

Statement modifier

if/unless 91, 328

while/until 94, 330

Static linking 287

Static method see Class, method

Static typing see Duck typing

status method 686

class Exception 441

class Thread 618

STDERR constant 322, 513

$stderr variable 320

STDIN constant 322, 504

$stdin variable 320

STDOUT constant 322, 504, 505

$stdout variable 320

step method

class Numeric 96, 545

class Range 578

Stephenson, Neal 167n

sticky? method

class File::Stat 460

class File 452

stiff, why the lucky 633

stop method

class Thread 614

stop? method

class Thread 618

:stopdoc: (RDoc) 195

stopped? method

class Process::Status

571

stopsig method

class Process::Status

571

store method

class Hash 478

strftime method

class Time 626

String 57

#{. . . } 57

%... delimiters 303

control characters \n etc.

306

conversion for output 123,

505

expression interpolation 13

here document 58, 306

literal 12, 57, 305

concatenation 306

String class 57, 305, 358, 585,

668, 708

% 585

* 586

+ 586

<=> 586

<< 586

== 586

=== 586

=~ 587

[] 587

[]= 588

~ 588

capitalize 588

capitalize! 588

casecmp 589

center 589

chomp 59, 589

chomp! 589

chop 589, 668

chop! 590, 668

concat 590

count 590

crypt 590

delete 590, 668

delete! 591, 668

downcase 591

downcase! 591

dump 591

each 591

each_byte 592

each_line 592

empty? 592

eql? 592

gsub 70, 311, 592

gsub! 311, 593

hex 593

include? 593

index 311, 593

insert 594

intern 594

length 594

ljust 594

lstrip 594

lstrip! 594

match 595

new 585

next 595

next! 595

oct 595

replace 595

reverse 595

reverse! 595

rindex 595

rjust 596

rstrip 596

rstrip! 596

scan 60, 61, 311, 596, 716

scanf 708

size 597

slice 597

slice! 597

split 59, 598

squeeze 60, 598, 668

squeeze! 599, 668

strip 599

strip! 599

sub 70, 599

sub! 599

succ 599, 668

succ! 600, 668

sum 600

swapcase 600

swapcase! 600

to_f 600

to_i 601

Prepared exclusively for Jose Sierra

String METHOD 792 TEMPORARY FILE

to_s 601

to_str 601

to_sym 601

tr 601, 668

tr! 602, 668

tr_s 602, 668

tr_s! 602, 668

unpack 602

upcase 602

upcase! 604

upto 604

String method

module Kernel 495

string method

class MatchData 518

StringIO class 124, 715

StringScanner class 716

StringValue method 266

StringValuePtr method 267

strip method

class String 599

strip! method

class String 599

Struct class 605

== 606

[] 606, 607

[]= 607

each 607

each_pair 607

length 608

members 606, 608

new 605, 606

OpenStruct 689

size 608

to_a 608

values 608

values_at 608

struct sockaddr 741

Struct::Tms class 609

Stub

WIN32OLE 258

sub method

class String 70, 599

module Kernel 509

sub! method

class String 599

module Kernel 509

Subclass 25

Subnet, testing address in 667

Subprocess see Process

Subroutine see Method

Substitution see Regular

expression

succ method

class Integer 481

class String 599, 668

for generating sequences 63

succ! method

class String 600, 668

success? method

class Exception 442

class Process::Status 571

Suites, test 152

Suketa, Masaki 255

sum method

class String 600

super 27, 335, 554

Superclass 25, 362, 386

see also Module, mixin

superclass method

class Class 386, 425

swapcase method

class String 600

swapcase! method

class String 600

SWIG 287

switch method

module Process::GID 569

module Process::UID 575

Symbol

literal 308

Symbol class 29, 323, 358, 594,

610

all_symbols 610

id2name 610

inspect 611

to_i 611

to_int 611

to_s 611

to_sym 611

symlink method

class File 452

symlink? method

class File::Stat 461

class File 452

Sync class 717

Sync module 133

sync method

class IO 493

sync= method

class IO 493

SyncEnumerator class 662

Synchronization see Thread,

synchronization

sysaccept method

class Socket 746

syscall.h 509

syscall method

module Kernel 509

Syslog class 719

sysopen method

class IO 486

sysread method

class IO 493

sysseek method

class IO 493

system method

module Kernel 140, 509

syswrite method

class IO 493

T
T[level] (Ruby option) 169

Tab completion

irb 176

Tag file 185

taint method

class Object 554

Tainted objects 267, 381, 554

see also Safe level

tainted? method

class Object 554

Talbott, Nathaniel 143, 153

tan method

module Math 521

tanh method

module Math 521

Tcl/Tk see GUI programming

TCP see Network protocols

TCPServer class 750

accept 750

new 750

open 750

TCPSocket class 714, 748

gethostbyname 748

new 748

open 748

teardown method 150

Technical support 758

tell method

class Dir 432

class IO 494

Telnet see Network protocols,

telnet

Tempfile class 720

Templates 226–231

Amrita 228

BlueCloth 206

eruby 229, 652

RDoc 227

Temporary directory 727

Temporary file 720

Prepared exclusively for Jose Sierra

TERMINAL 793 to_a METHOD

Terminal

pseudo 699

terminate method

class Thread 618

termsig method

class Process::Status

572

Ternary operator 91, 328

Test case 148

Test suites 152

test method

module Kernel 510

Test::Unit 144–153

exceptions 147

assertions 144, 154f

cases 148

naming conventions 153

setup 150

suites 152

teardown 150

see also Testing

Test::Unit class 721

Testing 143–153

ad hoc 143

assertions 144

exceptions 147

gem 205

Roman numerals 143

using StringIO 715

structuring tests 148

what is a unit test? 144

where to put files 151

$' variable 65, 319, 517

then 328

Thread 127–139

condition variable 137

creating 127

exception 130

group 619

queue 722

race condition 129

scheduling 132

synchronization 133–139,

674–676, 717, 722

variable 129

variable scope 128

waiting for multiple 723

Thread class 612

[] 614

[]= 615

abort_on_exception 130,

612, 615

abort_on_exception= 612,

615

alive? 615

critical 612

critical= 133, 612

current 613

exit 613, 615

fork 613

group 615

join 129, 615

key? 616

keys 616

kill 613, 616

list 613

main 613

new 128, 613

pass 614

priority 616

priority= 617

Queue 722

raise 617

run 617

safe_level 618

SizedQueue 722

start 614

status 618

stop 614

stop? 618

terminate 618

value 129, 618

wakeup 618

thread library 133, 137

ThreadGroup class 615, 619

add 619

enclose 619

enclosed? 620

freeze 620

list 620

new 619

ThreadsWait class 723

throw method

module Kernel 108, 347,

510

Time class 444, 621, 724

+ 623

 623

<=> 623

asctime 623

at 621

ctime 623

day 623

dst? 623

extensions to 724

getgm 624

getlocal 624

getutc 624

gm 621

gmt? 624

gmt_offset 624

gmtime 624

gmtoff 625

hour 625

isdst 625

local 622

localtime 625

mday 625

min 625

mktime 622

mon 625

month 625

new 622

now 622

sec 626

strftime 626

times 622

to_a 626

to_f 626

to_i 626

to_s 626

tv_sec 627

tv_usec 627

usec 627

utc 622, 628

utc? 628

utc_offset 628

wday 628

yday 628

year 628

zone 628

time library 724

Timeout module 725

times method

class Integer 96, 481

class Time 622

module Process 566, 609

:title: (RDoc) 195

Tk see GUI programming

Tk class 726

tmpdir library 720, 727

tmpdir method

class Dir 233, 727

to_a method

class Array 418

class Hash 478

class MatchData 518

class NilClass 540

class Object 554

class Struct 608

class Time 626

module Enumerable 438

Prepared exclusively for Jose Sierra

to_ary METHOD 794 UNIXSocket CLASS

to_ary method 325, 357, 408,

418

class Array 418

to_enum method 651

to_f method

class Bignum 422

class Fixnum 465

class Float 468

class NilClass 540

class String 600

class Time 626

to_hash method 357, 472

class Hash 478

to_i method

class Float 468

class Integer 481

class IO 494

class NilClass 540

class Process::Status 572

class String 601

class Symbol 611

class Time 626

to_int method 356, 357

class Float 468

class Integer 481

class Numeric 545

class Process::Status 572

class Symbol 611

to_io method 357

class IO 494

to_proc method 357

class Method 523

class Proc 561

to_s method 356

class Array 419

class Bignum 422

class Exception 442

class Fixnum 465

class Float 469

class Hash 478

class MatchData 518

class NilClass 540

class Object 24, 554

class Process::Status 572

class Proc 561

class Regexp 582

class String 601

class Symbol 611

class Time 626

and print 123, 505

to_str method 356, 358, 585

class Exception 442

class Object 266

class String 601

to_sym method 358

class Fixnum 465

class String 601

class Symbol 611

to_yaml_properties method

397

Top-level environment 376

TOPLEVEL_BINDING constant

322

Topological sort 729

tr method

class String 601, 668

tr! method

class String 602, 668

tr_s method

class String 602, 668

tr_s! method

class String 602, 668

trace_var method

module Kernel 511

tracer library 728

Tracing 393, see Logger

Transactions 50

Transcendental functions 519

Transparent language 50, 55

transpose method

class Array 419

trap method

module Kernel 142, 513

module Signal 584

Trigonometric functions 519

Troubleshooting 159

TRUE constant 322

true constant 87, 322, 326

TrueClass class 629

& 629

^ 629

| 629

truncate method

class File 452, 455

class Float 469

class Integer 481

class Numeric 545

TSort module 729

tsort_each_child method

729

tsort_each_node method 729

tty? method

class IO 494

Tuning see Performance

Tuplespace see Distributed

Ruby, Rinda

tv_sec method

class Time 627

tv_usec method

class Time 627

type method

class Object 354, 554

Types see Duck typing

Typographic conventions xxiv

U
UDP see Network protocols

UDPSocket class 714, 751

bind 751

connect 751

new 751

open 751

recvfrom 752

send 752

uid method

class File::Stat 461

module Process 566

uid= method

module Process 566

umask method

class File 453

un library 730

Unary minus, unary plus 541

unbind method

class Method 523

UnboundMethod class 389,

522, 523, 528, 630

arity 631

bind 631

undef_method method

class Module 538

undefine_finalizer method

module ObjectSpace 558

ungetc method

class IO 494

Unicode 302

Uniform Access Principle 30

uniq method

class Array 419

uniq! method

class Array 419

Unit test see Testing

UNIXServer class 754

accept 754

new 754

open 754

UNIXSocket class 714, 753

addr 753

new 753

open 753

path 753

Prepared exclusively for Jose Sierra

unless 795 VIRTUAL ATTRIBUTE

peeraddr 753

recvfrom 753

unless see if expression

unlink method

class Dir 431

class File 453

unpack method

class String 602

unpack_sockaddr_in method

class Socket 746

unpack_sockaddr_un method

class Socket 746

unshift method

class Array 419

untaint method

class Object 554

until see while loop

untrace_var method

module Kernel 513

upcase method

class String 602

upcase! method

class String 604

update

Observable callback 685

update method

class Hash 479

upto method

class Integer 96, 481

class String 604

URI class 731

URI, opening as file 686

Usage, message 201

usec method

class Time 627

Usenet 759

UTC 621

utc method

class Time 622, 628

utc? method

class Time 628

utc_offset method

class Time 628

UTF 302

UTF8 309, 668

utime method

class File 453

V
v (Ruby option) 514

v, verbose (Ruby option)

169, 321

$v variable 321

VALUE (C extension) 264

value method

class Thread 129, 618

value? method

class Hash 479

values method

class Hash 479

class Struct 608

values_at method

class Array 419

class Hash 479

class MatchData 518

class Struct 608

Variable

class 31

in extension 294, 297

instance 10, 24, 115, 387

vs. method name 314

naming 14, 313

predefined 318

as reference 37, 315

scope 99, 117, 128, 315

thread 129

weak reference 732

Variable-length argument list

75

Variables

$! 102, 319, 345, 347

$" 117, 320

$$ 320

$& 65, 319, 516

$* 320, 502

$+ 319

$, 319, 415, 505

$0 319

$F 320

$I 321

$K 321

$a 320

$d 321

$i 321

$l 321

$p 321

$v 321

$w 321

$. 319, 489

$/ 168, 169, 319, 589

$0 170, 320, 322

$1 to $9 319

$1...$9 65, 70, 311

$: 117, 152, 168, 173, 290,

320

$; 168, 319

$< 320

$= 309, 319

$> 320

$? 83, 140, 142, 320, 323,

495, 510, 566, 570

$@ 319

$DEBUG 168, 321, 612, 616

$F 168, 321

$FILENAME 321

$KCODE 309, 638, 668

$LOAD_PATH 152, 168, 175,

209–211, 213, 216, 321

$SAFE 169, 299, 321, 380,

554, 652

$VERBOSE 168, 169, 321,

513

$\ 169, 319, 490, 505

$_ 22, 89, 95, 168, 320, 327,

489, 502

$` 65, 319, 517

$configure_args 755

$deferr 320

$defout 320

$expect_verbose 655

$stderr 320

$stdin 320

$stdout 320

$' 65, 319, 517

$~ 65, 73, 319, 516, 579–581

@fileutils_output 657

__FILE__ 394

ARGF 22, 321

ARGV 168–170, 321, 502,

663, 690

ENV 171, 321

environment see

Environment variables

__FILE__ 321

__LINE__ 321

predefined 318

English names 318,

650

RUBY_PLATFORM 216

self 76, 115, 322, 334, 362

Vector class 673

$VERBOSE variable 168, 169,

321, 513

version (Ruby option) 169

Versions of Ruby xx

vi and vim 157

tag file 185

vi key binding 702

Virtual

class 364

Virtual attribute 30

Prepared exclusively for Jose Sierra

w (RUBY OPTION) 796 zone METHOD

W
w (Ruby option) 169, 321, 514

W level (Ruby option) 169,

513

$w variable 321

wait method

class IO 666

module Process 141, 566

wait2 method

module Process 567

waitall method

module Process 566

waitpid method

module Process 567

waitpid2 method

module Process 567

wakeup method

class Thread 618

Walk directory tree 658

warn method

module Kernel 169, 321,

513

Warnings 169

ARGV[0] is not $0 170

be careful with tainted data

379

C functions must return

VALUE 263

strings aren’t numbers 56,

161

wday method

class Time 628

Weak reference 732

WeakRef class 732

weakref_alive? 732

weakref_alive? method

class WeakRef 732

Web see CGI programming

Web framework

CGIKit 240

Iowa 226

Rails 240

Web server

trivial 750

WEBrick 234, 733

see also Apache

Web services 236

description language 239

Google 238

Web sites for Ruby xxii, 758

Webcoder, Walter 379

WEBrick 234

WEBrick module 733

Weirich, Jim 204

when (in case) 328

while loop 94, 329

as modifier 94, 330

why the lucky stiff 633

Widget see GUI programming

Wildcard see fnmatch and

glob

Win32API class 648, 734

Win32API library 254

WIN32OLE class 735

WIN32OLE library 255

Windows see Microsoft

Windows, GUI

programming

with-cflags (mkmf) 756

with-cppflags (mkmf) 756

with-ldflags (mkmf) 756

with-make-prog (mkmf) 756

WNOHANG (Process constant)

562

Words

array of 14, 307

Working directory 168, 429

Wrap see Module, wrap

writable? method

class File::Stat 461

class File 453

writable_real? method

class File::Stat 461

class File 453

write method

class IO 494

WSDL 239, 713

Google interface 239

WUNTRACED (Process constant)

562

Wyss, Clemens 380

X
/x regexp option 309

x [directory] (Ruby option)

170

X directory (Ruby option)

170

XML 704, 736

XMLRPC module 736

xmp 186

Y
y, yydebug (Ruby option)

170

YAML library 397, 514, 633,

737

yday method

class Time 628

year method

class Time 628

yield 47, 342

arguments 19, 48

and RDoc 193

:yields: (RDoc) 194

Yukihiro, Matsumoto 365

Z
zero? method

class File::Stat 461

class File 453

class Fixnum 465

class Float 469

class Numeric 545

Zip compression 738

zip method

module Enumerable 438

Zlib module 738

zone method

class Time 628

Prepared exclusively for Jose Sierra

797

Template characters for Array#pack

Directive Meaning

@ Moves to absolute position

A ASCII string (space padded, count is width)

a ASCII string (null padded, count is width)

B Bit string (descending bit order)

b Bit string (ascending bit order)

C Unsigned char

c Char

D, d Double-precision float, native format

E Double-precision float, little-endian byte order

e Single-precision float, little-endian byte order

F, f Single-precision float, native format

G Double-precision float, network (big-endian) byte order

g Single-precision float, network (big-endian) byte order

H Hex string (high nibble first)

h Hex string (low nibble first)

I Unsigned integer

i Integer

L Unsigned long

l Long

M Quoted printable, MIME encoding (see RFC2045)

m Base64 encoded string

N Long, network (big-endian) byte order

n Short, network (big-endian) byte order

P Pointer to a structure (fixed-length string)

p Pointer to a null-terminated string

Q, q 64-bit number1.8
S Unsigned short

s Short

U UTF-8

u UU-encoded string

V Long, little-endian byte order

v Short, little-endian byte order

w BER-compressed integer1.8 1

X Back up a byte

x Null byte

Z Same as A

1 The octets of a BER-compressed integer represent an unsigned integer in base 128, most significant digit

first, with as few digits as possible. Bit eight (the high bit) is set on each byte except the last (Self-Describing

Binary Data Representation, MacLeod)

Prepared exclusively for Jose Sierra

798

Template characters for String#unpack

Format Function Returns

A String with trailing NULs and spaces removed. String

a String. String

B Extract bits from each character (MSB first). String

b Extract bits from each character (LSB first). String

C Extract a character as an unsigned integer. Fixnum

c Extract a character as an integer. Fixnum

d,D Treat sizeof(double) characters as a native double. Float

E Treat sizeof(double) characters as a double in little-endian byte order. Float

e Treat sizeof(float) characters as a float in little-endian byte order. Float

f,F Treat sizeof(float) characters as a native float. Float

G Treat sizeof(double) characters as a double in network byte order. Float

g Treat sizeof(float) characters as a float in network byte order. Float

H Extract hex nibbles from each character (most significant first). String

h Extract hex nibbles from each character (least significant first). String

I Treat sizeof(int)1 successive characters as an unsigned native integer. Integer

i Treat sizeof(int)1 successive characters as a signed native integer. Integer

L Treat four1 successive characters as an unsigned native long integer. Integer

l Treat four1 successive characters as a signed native long integer. Integer

M Extract a quoted-printable string. String

m Extract a Base64 encoded string. String

N Treat four characters as an unsigned long in network byte order. Fixnum

n Treat two characters as an unsigned short in network byte order. Fixnum

P Treat sizeof(char *) characters as a pointer, and return len characters from

the referenced location.

String

p Treat sizeof(char *) characters as a pointer to a null-terminated string. String

Q Treat eight characters as an unsigned quad word (64 bits). Integer

q Treat eight characters as a signed quad word (64 bits). Integer

S Treat two1 successive characters as an unsigned short in native byte order. Fixnum

s Treat two1 successive characters as a signed short in native byte order. Fixnum

U Extract UTF-8 characters as unsigned integers. Integer

u Extract a UU-encoded string. String

V Treat four characters as an unsigned long in little-endian byte order. Fixnum

v Treat two characters as an unsigned short in little-endian byte order. Fixnum

w BER-compressed integer (see Array#pack for more information). Integer

X Skip backward one character. —

x Skip forward one character. —

Z String with trailing NULs removed. String

@ Skip to the offset given by the length argument. —

1 May be modified by appending “_” to the directive.

Prepared exclusively for Jose Sierra

799

Character class abbreviations

Sequence As [. . .] Meaning

\d [0-9] Digit character

\D [^0-9] Any character except a digit

\s [\t\r\n\f] Whitespace character

\S [^ \t\r\n\f] Any character except whitespace

\w [A-Za-z0-9_] Word character

\W [^A-Za-z0-9_] Any character except a word character

POSIX Character Classes

[:alnum:] Alphanumeric

[:alpha:] Uppercase or lowercase letter

[:blank:] Blank and tab

[:cntrl:] Control characters (at least 0x00–0x1f, 0x7f)

[:digit:] Digit

[:graph:] Printable character excluding space

[:lower:] Lowercase letter

[:print:] Any printable character (including space)

[:punct:] Printable character excluding space and alphanumeric

[:space:] Whitespace (same as \s)

[:upper:] Uppercase letter

[:xdigit:] Hex digit (0–9, a–f, A–F)

Prepared exclusively for Jose Sierra

800

sprintf flag characters

Flag Applies to Meaning

(space) bdEefGgiouXx Leave a space at the start of positive numbers.

digit$ all Specify the absolute argument number for this field.

Absolute and relative argument numbers cannot both be

used in a sprintf string.

beEfgGoxX Use an alternative format. For the conversions b, o, X,

and x, prefix the result with b, 0, 0X, 0x, respectively. For

E, e, f, G, and g, force a decimal point to be added, even

if no digits follow. For G and g, do not remove trailing

zeros.

+ bdEefGgiouXx Add a leading plus sign to positive numbers.

 all Left-justify the result of this conversion.

0 (zero) bdEefGgiouXx Pad with zeros, not spaces.

* all Use the next argument as the field width. If negative,

left-justify the result. If the asterisk is followed by a

number and a dollar sign, use the indicated argument as

the width.

Prepared exclusively for Jose Sierra

801

sprintf field types

Field Conversion

b Convert argument as a binary number.

c Argument is the numeric code for a single character.

d Convert argument as a decimal number.

E Equivalent to e, but uses an uppercase E to indicate the exponent.

e Convert floating point-argument into exponential notation with one digit before

the decimal point. The precision determines the number of fractional digits

(defaulting to six).

f Convert floating-point argument as []ddd.ddd, where the precision deter-

mines the number of digits after the decimal point.

G Equivalent to g, but use an uppercase E in exponent form.

g Convert a floating-point number using exponential form if the exponent is less

than−4 or greater than or equal to the precision, or in d.dddd form otherwise.

i Identical to d.

o Convert argument as an octal number.

p The value of argument.inspect.1.8
s Argument is a string to be substituted. If the format sequence contains a preci-

sion, at most that many characters will be copied.

u Treat argument as an unsigned decimal number.

X Convert argument as a hexadecimal number using uppercase letters. Negative

numbers will be displayed with two leading periods (representing an infinite

string of leading FFs).

x Convert argument as a hexadecimal number. Negative numbers will be dis-

played with two leading periods (representing an infinite string of leading FFs.)

Prepared exclusively for Jose Sierra

802

Time#strftime directives

Format Meaning

%a The abbreviated weekday name (“Sun”)

%A The full weekday name (“Sunday”)

%b The abbreviated month name (“Jan”)

%B The full month name (“January”)

%c The preferred local date and time representation

%d Day of the month (01..31)

%H Hour of the day, 24-hour clock (00..23)

%I Hour of the day, 12-hour clock (01..12)

%j Day of the year (001..366)

%m Month of the year (01..12)

%M Minute of the hour (00..59)

%p Meridian indicator (“AM” or “PM”)

%S Second of the minute (00..60)

%U Week number of the current year, starting with the first Sunday as the first

day of the first week (00..53)

%W Week number of the current year, starting with the first Monday as the first

day of the first week (00..53)

%w Day of the week (Sunday is 0, 0..6)

%x Preferred representation for the date alone, no time

%X Preferred representation for the time alone, no date

%y Year without a century (00..99)

%Y Year with century

%Z Time zone name

%% Literal % character

Prepared exclusively for Jose Sierra

803

File tests with a single argument

Flag Description Returns

?A Last access time for file1 Time

?b True if file1 is a block device true or false

?c True if file1 is a character device true or false

?C Last change time for file1 Time

?d True if file1 exists and is a directory true or false

?e True if file1 exists true or false

?f True if file1 exists and is a regular file true or false

?g True if file1 has the setgid bit set (false under NT) true or false

?G True if file1 exists and has a group ownership equal to the

caller’s group

true or false

?k True if file1 exists and has the sticky bit set true or false

?l True if file1 exists and is a symbolic link true or false

?M Last modification time for file1 Time

?o True if file1 exists and is owned by the caller’s effective UID true or false

?O True if file1 exists and is owned by the caller’s real UID true or false

?p True if file1 exists and is a fifo true or false

?r True if file1 is readable by the effective UID/GID of the caller true or false

?R True if file1 is readable by the real UID/GID of the caller true or false

?s If file1 has nonzero size, return the size, otherwise return nil Integer or nil

?S True if file1 exists and is a socket true or false

?u True if file1 has the setuid bit set true or false

?w True if file1 exists and is writable by the effective UID/ GID true or false

?W True if file1 exists and is writable by the real UID/GID true or false

?x True if file1 exists and is executable by the effective UID/GID true or false

?X True if file1 exists and is executable by the real UID/GID true or false

?z True if file1 exists and has a zero length true or false

File tests with two arguments

Flag Description

?- True if file1 is a hard link to file2

?= True if the modification times of file1 and file2 are equal

?< True if the modification time of file1 is prior to that of file2

?> True if the modification time of file1 is after that of file2

Prepared exclusively for Jose Sierra

Get on Board with Ruby on Rails
Maybe you’ve already heard the buzz about Ruby on Rails, the framework that makes

web development both fun and productive. We think it’s incredible. By honoring the

principles of convention over configuration and Don’t Repeat Yourself, Rails gives you

all the support you need to write modern, flexible, and scalable web applications with

none of the hassles and no boring, repetitive code.

Agile Web Development with Rails

Second Edition

• The definitive guide for Rails developers.

• Tutorial introduction, and in-depth

reference. • All the scoop on

ActiveRecord, ActionPack, and ActionView.

• Special David Says... content by the

inventor of Rails. • Chapters on testing,

web services, Ajax, security, e-mail,

deployment, and more.

(600 pages) ISBN: 0-9776166-3-0
Beta-book available from our website May 1, 2006.
Final book available in the Fall, 2006.

Rails Recipes

• Seventy in-depth recipes • Better user

interfaces with Ajax • Work smarter with

your database • Know your authentication

options • Discover new ways to test

• Create complex e-mail • And more. . .

• Complete worked solutions to common

problems. • Unique Rails productivity tips

• See how the pros write their Rails

applications. • Includes contributions from

Rails core team.

(368 pages) ISBN: 0-9776166-0-6

Available June, 2006.

Available from good technical booksellers. Also available as a paper book/PDF combo

pack from our secure online store at http://pragmaticprogrammer.com. And, while

you’re there, check out our other titles on Ruby, as well as our books on programming,

running projects, jump-starting your career. . . .

Prepared exclusively for Jose Sierra

http://pragmaticprogrammer.com

The Pragmatic Bookshelf
A new line in books written by developers, published by developers, aimed squarely at the needs of develop-

ers. Books on programming, books on running projects, and books on jump-starting your career. Information

rich books, designed to be practical and applicable. Available in printed form and PDF. Check us out on the

web at pragmaticbookshelf.com, and have a look on the previous page for information on our Ruby on

Rails titles.

Visit Us Online
Programming Ruby Home Page

pragmaticprogrammer.com/titles/ruby

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

pragmaticprogrammer.com/updates

Be notified when updates and new books become available.

Join the Community

pragmaticprogrammer.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact with our wiki, and

benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

pragmaticprogrammer.com/news

Check out the latest pragmatic developments in the news.

Save on the PDF
Save 60% on the PDF version of this book. Owning the paper version of this book entitles you to purchase

the PDF version at a discount. The PDF is great for carrying around on your laptop. It’s hyperlinked, has

color, and is fully searchable. Buy it now at pragmaticprogrammer.com/coupon

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)

Online Orders: www.pragmaticprogrammer.com/catalog

Customer Service: orders@pragmaticprogrammer.com

Non-English Versions: translations@pragmaticprogrammer.com

Pragmatic Teaching: academic@pragmaticprogrammer.com

Author Proposals: proposals@pragmaticprogrammer.com

Prepared exclusively for Jose Sierra

pragmaticbookshelf.com
pragmaticprogrammer.com/coupon
www.pragmaticprogrammer.com/catalog

	Foreword to the First Edition
	Foreword to the Second Edition
	Preface
	Road Map
	Part I---Facets of Ruby
	Getting Started
	Installing Ruby
	Running Ruby
	Ruby Documentation: RDoc and ri

	Ruby.new
	Ruby Is an Object-Oriented Language
	Some Basic Ruby
	Arrays and Hashes
	Control Structures
	Regular Expressions
	Blocks and Iterators
	Reading and 'Riting
	Onward and Upward

	Classes, Objects, and Variables
	Inheritance and Messages
	Objects and Attributes
	Class Variables and Class Methods
	Access Control
	Variables

	Containers, Blocks, and Iterators
	Containers
	Blocks and Iterators
	Containers Everywhere

	Standard Types
	Numbers
	Strings
	Ranges
	Regular Expressions

	More about Methods
	Defining a Method
	Calling a Method

	Expressions
	Operator Expressions
	Miscellaneous Expressions
	Assignment
	Conditional Execution
	Case Expressions
	Loops
	Variable Scope, Loops, and Blocks

	Exceptions, Catch, and Throw
	The Exception Class
	Handling Exceptions
	Raising Exceptions
	Catch and Throw

	Modules
	Namespaces
	Mixins
	Iterators and the Enumerable Module
	Composing Modules
	Including Other Files

	Basic Input and Output
	What Is an IO Object?
	Opening and Closing Files
	Reading and Writing Files
	Talking to Networks

	Threads and Processes
	Multithreading
	Controlling the Thread Scheduler
	Mutual Exclusion
	Running Multiple Processes

	Unit Testing
	Test::Unit Framework
	Structuring Tests
	Organizing and Running Tests

	When Trouble Strikes
	Ruby Debugger
	Interactive Ruby
	Editor Support
	But It Doesn't Work!
	But It's Too Slow!

	Part II---Ruby in Its Setting
	Ruby and Its World
	Command-Line Arguments
	Program Termination
	Environment Variables
	Where Ruby Finds Its Modules
	Build Environment

	Interactive Ruby Shell
	Command Line
	Configuration
	Commands
	Restrictions
	rtags and xmp

	Documenting Ruby
	Adding RDoc to Ruby Code
	Adding RDoc to C Extensions
	Running RDoc
	Displaying Program Usage

	Package Management with RubyGems
	Installing RubyGems
	Installing Application Gems
	Installing and Using Gem Libraries
	Creating Your Own Gems

	Ruby and the Web
	Writing CGI Scripts
	Cookies
	Improving Performance
	Choice of Web Servers
	SOAP and Web Services
	More Information

	Ruby Tk
	Simple Tk Application
	Widgets
	Binding Events
	Canvas
	Scrolling
	Translating from Perl/Tk Documentation

	Ruby and Microsoft Windows
	Getting Ruby for Windows
	Running Ruby Under Windows
	Win32API
	Windows Automation

	Extending Ruby
	Your First Extension
	Ruby Objects in C
	The Jukebox Extension
	Memory Allocation
	Ruby Type System
	Creating an Extension
	Embedding a Ruby Interpreter
	Bridging Ruby to Other Languages
	Ruby C Language API

	Part III---Ruby Crystallized
	The Ruby Language
	Source Layout
	The Basic Types
	Names
	Variables and Constants
	Expressions
	Method Definition
	Invoking a Method
	Aliasing
	Class Definition
	Module Definitions
	Access Control
	Blocks, Closures, and Proc Objects
	Exceptions
	Catch and Throw

	Duck Typing
	Classes Aren't Types
	Coding like a Duck
	Standard Protocols and Coercions
	Walk the Walk, Talk the Talk

	Classes and Objects
	How Classes and Objects Interact
	Class and Module Definitions
	Top-Level Execution Environment
	Inheritance and Visibility
	Freezing Objects

	Locking Ruby in the Safe
	Safe Levels
	Tainted Objects

	Reflection, ObjectSpace, and Distributed Ruby
	Looking at Objects
	Looking at Classes
	Calling Methods Dynamically
	System Hooks
	Tracing Your Program's Execution
	Marshaling and Distributed Ruby
	Compile Time? Runtime? Anytime!

	Part IV---Ruby Library Reference
	Built-in Classes and Modules
	Alphabetical Listing

	Array
	Bignum
	Binding
	Class
	Comparable
	Continuation
	Dir
	Enumerable
	Errno
	Exception
	FalseClass
	File
	File::Stat
	FileTest
	Fixnum
	Float
	GC
	Hash
	Integer
	IO
	Kernel
	Marshal
	MatchData
	Math
	Method
	Module
	NilClass
	Numeric
	Object
	ObjectSpace
	Proc
	Process
	Process::GID
	Process::Status
	Process::Sys
	Process::UID
	Range
	Regexp
	Signal
	String
	Struct
	Struct::Tms
	Symbol
	Thread
	ThreadGroup
	Time
	TrueClass
	UnboundMethod
	Standard Library
	Abbrev
	Base64
	Benchmark
	BigDecimal
	CGI
	CGI::Session
	Complex
	CSV
	Curses
	Date/DateTime
	DBM
	Delegator
	Digest
	DL
	dRuby
	English
	Enumerator
	erb
	Etc
	expect
	Fcntl
	FileUtils
	Find
	Forwardable
	ftools
	GDBM
	Generator
	GetoptLong
	GServer
	Iconv
	IO/Wait
	IPAddr
	jcode
	Logger
	Mail
	mathn
	Matrix
	Monitor
	Mutex
	Mutex_m
	Net::FTP
	Net::HTTP
	Net::IMAP
	Net::POP
	Net::SMTP
	Net::Telnet
	NKF
	Observable
	open-uri
	Open3
	OpenSSL
	OpenStruct
	OptionParser
	ParseDate
	Pathname
	PP
	PrettyPrint
	Profile
	Profiler__
	PStore
	PTY
	Rational
	readbytes
	Readline
	Resolv
	REXML
	Rinda
	RSS
	Scanf
	SDBM
	Set
	Shellwords
	Singleton
	SOAP
	Socket
	StringIO
	StringScanner
	Sync
	Syslog
	Tempfile
	Test::Unit
	thread
	ThreadsWait
	Time
	Timeout
	Tk
	tmpdir
	Tracer
	TSort
	un
	URI
	WeakRef
	WEBrick
	Win32API
	WIN32OLE
	XMLRPC
	YAML
	Zlib

	Part V---Appendixes
	Socket Library
	BasicSocket
	Socket
	IPSocket
	TCPSocket
	SOCKSSocket
	TCPServer
	UDPSocket
	UNIXSocket
	UNIXServer
	MKMF Reference
	mkmf
	Support
	Web Sites
	Download Sites
	Usenet Newsgroup
	Mailing Lists

	Bibliography

