
Prepared exclusively for Jose Sierra

Beta
Book

Agile publishing for agile developers

Under Construction The book you’re reading is still under develop-

ment. As part of our Beta book program, we’re releasing this copy well

before a normal book would be released. That way you’re able to get

this content a couple of months before it’s available in finished form,

and we’ll get feedback to make the book even better. The idea is that

everyone wins!

Be warned. The book has not had a full technical edit, so it will con-

tain errors. It has not been copyedited, so it will be full of typos and

other weirdness. And there’s been no effort spent doing layout, so

you’ll find bad page breaks, over-long lines with little black rectan-

gles, incorrect hyphenations, and all the other ugly things that you

wouldn’t expect to see in a finished book. We can’t be held liable if you

use this book to try to create a spiffy application and you somehow

end up with a strangely shaped farm implement instead. Despite all

this, we think you’ll enjoy it!

Download Updates Throughout this process you’ll be able to down-

load updated ebooks from your account on http://pragprog.com. When

the book is finally ready, you’ll get the final version (and subsequent

updates) from the same address.

Send us your feedback In the meantime, we’d appreciate you send-

ing us your feedback on this book at http://pragprog.com/titles/mcappe/

errata, or by using the links at the bottom of each page.

Thank you for being part of the Pragmatic community!

Andy & Dave

Prepared exclusively for Jose Sierra

http://pragprog.com
http://pragprog.com/titles/mcappe/errata
http://pragprog.com/titles/mcappe/errata

Code in the Cloud
Programming Google AppEngine

Mark C. Chu-Carroll

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Prepared exclusively for Jose Sierra

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2010 Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-63-8

ISBN-13: 978-1-934356-63-0

Printed on acid-free paper.

B3.0 printing, April 20, 2010

Version: 2010-4-21

Prepared exclusively for Jose Sierra

http://www.pragprog.com

Contents
Changes in the Beta Releases 8

Beta 3, April 20 . 8

Beta 2, April 7 . 8

I Getting Started with AppEngine 9

1 Introduction 10

1.1 What’s Cloud Computing? 10

1.2 Cloud Computing Programming Systems 16

2 Getting Started 19

2.1 Setting Up an AppEngine Account 19

2.2 Setting Up Your Development Environment 21

2.3 Starting to Program in Python with AppEngine 24

2.4 Monitoring Your Application 31

II Programming AppEngine with Python 35

3 A First Real Cloud Application 36

3.1 The Basic Chat Application 36

3.2 The Basics of HTTP . 41

3.3 Mapping Chat into HTTP 45

4 Managing Data in the Cloud 52

4.1 Why Didn’t Chat Work? 52

4.2 Making Chat Persistent 55

5 Using AppEngine Services for Login Authentication 63

5.1 Introducing the Users Service 63

5.2 The Users Service . 64

5.3 Integrating the Users Service into Chat 66

Prepared exclusively for Jose Sierra

CONTENTS 6

6 Organizing AppEngine Code: Separating UI and Logic 68

6.1 Getting Started with Templates 68

6.2 Building Related Views with Templates 73

6.3 Multiple Chat Rooms . 79

7 Making the UI Pretty: Templates and CSS 85

7.1 Introducing CSS . 86

7.2 Styling Text Using CSS 87

7.3 Page Layouts Using CSS 92

7.4 Building Our Interface Using Flowed Layout 100

8 Getting Interactive 105

8.1 Interactive Web Services: The Basics 105

8.2 The Model View Controller Design Pattern 108

8.3 Talking to the Server without Disruption 111

8.4 References and Resources 118

III Programming AppEngine with Java 120

9 AppEngine and Java 121

9.1 Introducing GWT . 123

9.2 Getting Started with Java and GWT 125

9.3 RPC in GWT . 133

9.4 Testing and Deploying with GWT 138

10 Managing Server-Side Data in AppEngine 140

10.1 Data Persistence in Java 140

10.2 Storing Persistent Objects in GWT 144

10.3 Retrieving Persistent Objects in GWT 148

10.4 Gluing the Client and Server Together 150

10.5 References and Resources 152

11 Building User Interfaces in Java 153

11.1 Why Use GWT? . 153

11.2 Building GWT UIs with Widgets 154

11.3 Making the UI Active: Handling Events 161

11.4 Making the UI Active: Updating the Display 166

11.5 Wrapping Up with GWT 168

11.6 Resources . 169

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=6

CONTENTS 7

12 Building the Server Side of a Java Application 170

12.1 Filling in Gaps: Supporting Chat Rooms 170

12.2 Proper Interactive Design: Being Incremental 175

12.3 Updating the Client . 183

12.4 Chat Administration . 184

12.5 Running and Deploying the Chat Application 186

12.6 Wrapping Up . 188

IV Advanced AppEngine 190

13 Advanced Datastore 191

14 AppEngine Services 192

15 Computing in the Cloud 193

16 Security in AppEngine Services 194

17 Wrapping Up 195

Index 196

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=7

Changes in the Beta Releases
Beta 3, April 20

The new release contains lots of changes:

1. A substantial rewrite of Chapter 10 (GWT user interfaces);

2. A new chapter (Chapter 11) on building the server-side of Java

applications, particularly dealing with GWT RPC, interactions between

GWT and the datastore, and the tricks of the trade in dealing with

distributed systems issues like time;

3. Major cleanups of the Java example code; and

4. The complete, deployed Java chat application.

Beta 2, April 7

This new release contains one additional chapter on GWT user inter-

faces. You’ll see how a GWT UI for a Java AppEngine application is put

together, and how callbacks and handlers work in GWT clients. There

are also quite a few errata corrections in earlier chapters.

Prepared exclusively for Jose Sierra

Part I

Getting Started with AppEngine

Prepared exclusively for Jose Sierra

Chapter 1

Introduction
Cloud computing is an innovative and exciting style of programming

and using computers. It creates tremendous opportunities for software

developers: cloud computing can provide an amazing new platform for

building new kinds applications. In this chapter, we’ll look at the basic

concepts: what cloud computing is, when and why you should use it,

and what kinds of cloud-based services are available to you as an appli-

cation developer.

1.1 What’s Cloud Computing?

Before we look at how to write cloud programs using AppEngine, let’s

start at the very beginning, and ask just what we mean by “cloud com-

puting”? What is the cloud? How is it different from desktop computing,

or old-fashioned client-server computing? And most importantly: why

should you, as a software developer, care about the cloud? When should

you use it, and what should you use it for?

The Cloud Concept

In the modern world of the Internet and the World Wide Web, there

are thousands upon thousands of computers sitting in data centers,

scattered around the world. We use those computers constantly—for

chatting with other people, sending email, playing games, reading and

writing blogs. When we’re doing one of these everyday activities, we’re

accessing a program running on a server, using our browser as a client.

But where is the program actually running? Where is the data? Where

is the server? They’re somewhere out there. Somewhere, in some data

Prepared exclusively for Jose Sierra

WHAT’S CLOUD COMPUTING? 11

center, somewhere in the world. You don’t know where, and more impor-

tantly, you don’t care: there’s absolutely no reason for you to care. What

matters to you is that you can get to the program and the data when-

ever you need to.

Let’s look at a simple example. A few years ago, I started writing a blog.

When I got started, I used Google’s “Blogger” service to write it. Every

day, I would open up my web browser, go to http://goodmath.blogspot.

com/admin, and start writing. When I finished, I’d click on the “Post”

button, and the blog post would appear to all of my readers. From my

point of view, it just worked. All I needed was my web browser and the

URL, and I could write my blog.

Behind the scenes, Blogger is a complex piece of software run by Google

in one of its data centers. It hosts hundreds of thousands of blogs, and

those blogs are read by millions of users every day. When you look at

it this way, it’s obvious that the software behind Blogger is running

on lots of computers. How many? We don’t know. In fact, it’s probably

not even a fixed number—when not many people are accessing it, it

doesn’t need to be running on as many machines; when more people

start using it, it needs more machines. The number of machines run-

ning it varies. But from the point of view of a user—whether that user

is a blog author, or a blog reader—none of that matters. Blogger is a

service, and it works. When I want to write a post, I can go to Blogger

and write it, and when people go to my blog’s web page, they can read

it.

That’s the fundamental idea of the cloud: programs and data are on a

computer somewhere out there—and you neither know nor care where

that computer is.

Why call this collection of resources a cloud? A cloud is a huge collec-

tion of tiny droplets of water. Some of those droplets fall on my yard,

providing the trees and the lawn with water; some run off into the reser-

voir from which my drinking water comes. And the clouds themselves

grow from evaporated water, which comes from all over the place. All I

want is enough water in my yard to keep the plants alive, and enough in

the reservoir so that I have something to drink. I don’t care which cloud

brings the rain; it’s all the same to me. I don’t care where on earth that

water came from. It’s all just water—the particular drops are pretty

much exactly the same, and I can’t tell the difference. As long as I get

enough, I’m happy.

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://goodmath.blogspot.com/admin
http://goodmath.blogspot.com/admin
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=11

WHAT’S CLOUD COMPUTING? 12

So think about the various data centers around the world—where com-

panies have swarms of computers—as clouds. Lots of the biggest com-

panies in network computing, including Google, Amazon, Microsoft,

IBM, and Yahoo all have thousands of machines connected to networks,

running all sorts of software. Each of those centers is a cloud, and each

processor, each disk drive, is a droplet of water in that cloud. In the

cloud world, when you write a program, you don’t know what computer

it’s going to run on. You don’t know where the disks that store the

data are. And you don’t need to care. You just need to know how many

droplets you need.

Cloud to the Developer

Cloud computing is a fundamental change from how computers and

software have worked in the past. Traditionally, if you wanted to run

an application, you went out and bought a computer and software,

set it up on your own premises, and ran your program. You needed

to pick out which operating system you were going to run, handle the

installation of your software, and maintain your computer—keeping

track of software upgrades, security, backups, and so on.

With cloud computing, you don’t do any of that. If you’re a user of the

cloud, you buy access to the application you want, and then connect

to it from anywhere. Installing the software, maintaining the hardware

and software where the application runs, making sure that the data is

kept safe and secure—none of that is your concern. In the cloud, you

buy software as a service. If you need more storage than a typical user,

you buy extra storage from the service provider. If that means buying

and installing a new disk drive, that’s up to the provider. You just buy

storage-as-a-service from them: how they provide it is their problem.

You tell them what you need—in both the physical sense (“I need 1 ter-

abyte of storage”), and in less tangible quality of service senses (“I need

to guarantee that my storage is transactional, so that after I commit a

change, data will never be lost”). You tell them your requirements, and

some cloud provider will sell you a service that meets those require-

ments.

What this means is that when you’re developing for the cloud, instead

of buying a computer and running software on it, you break things

down to basic building blocks, buy those pieces from service providers,

and put them together however you want to build a system.

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=12

WHAT’S CLOUD COMPUTING? 13

The building blocks are the resources you need to run a program or to

perform a task. Resources include things like processing time, network

bandwidth, disk storage, and memory. As a user of the cloud, you don’t

need to be concerned about where these resources are located. You

know what you need, and you buy that from whomever can provide it

to you most conveniently.

For developers, cloud computing introduces an even bigger change.

When you develop for the cloud, you’re not building a piece of software

to sell to your customers—you’re building a service for your customers

to use. Understanding that difference is crucial: you need to design

your application around the idea that it’s a service you’re going to pro-

vide to users, not a standalone application that they’re going to install

on their computers. Your customers are going to choose a service based

on the tasks they want to accomplish, so your application needs to be

designed with the task in mind, and you must provide it in the most

flexible way possible.

For example, if you want to build a to-do list application for a desk-

top computer, it’s a fairly straightforward process. There are lots of

variations in how you can arrange the UI, but the basic idea of what

you’re building is obvious. You would build one UI—after all, why would

you need more than one? And you’d build it mainly for a single user.

If you are developing this to-do list application for the cloud, though,

you’d want multiple UIs; at the very least, you’d want one UI for people

accessing your service using their desktop computer, and one for people

using a mobile browser on a cell phone. You’d probably want to provide

an open interface that other people could use for building clients for

other devices. And you’d need to design it for multiple users: if you put

an application in the cloud, there’s only one program, but it can be

used by lots of people. So you need to design it around the assumption

that even if users never work together using your application, it’s still a

multi-user system.

For developers, the most exciting aspect of cloud computing is its scala-

bility. When you’re developing in the cloud, you can write a simple pro-

gram to be used by one or two people—and then, without ever changing

a line of code, that program can scale up to support millions of users.

The program is scale-neutral: you write it so it will work equally well

for one dozen users or one million users. As you get more users, all you

need to do is buy more resources—and your program will just work.

You can start with a simple program running on one server somewhere

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=13

WHAT’S CLOUD COMPUTING? 14

in the cloud, and scale up by adding resources until you’ve got millions

of users.

Cloud Versus Client-Server

In many ways, the basic style of development for cloud-based software

is similar to programming for client-server computing. Both are based

on the idea that you don’t really run programs on your own computer.

Your computer provides a window into an application, but it doesn’t run

the application itself. Instead of running the program on your computer,

all you do on your own computer is run some kind of user interface.

The real program is running somewhere else, on a computer called a

server. You use the server because for whatever reason, the resources

necessary to run the program aren’t available on your local computer:

it’s cheaper, faster, or more convenient to run the program somewhere

else, where the necessary resources are easy to obtain.

The big difference between cloud and client-server development is in

what you know: in traditional client-server systems, you might have

a specific computer that is your server, and that’s where your stuff is

running. The computer may not have be sitting on your desk in front of

you, but you know where it is. For example, when I was in college, one

of the first big computers I used was a Vax 11/780, nicknamed "Gold."

Gold lived in the Rutgers university computing lab in Hill Center. I used

Gold pretty much daily for at least a year before I actually got to see it.

The data center had at least 30 other computers: several DEC 20s,

a couple of Pyramids, an S/390, and a bunch of Suns. But of those

machines, I specifically used Gold. Every program that I wrote, I wrote

specifically to run on Gold, and that’s the only place that I could run it.

In the cloud, you aren’t confined to a specific server. You have com-

puting resources—that is, someone is renting you a certain amount

of computation on some collection of computers somewhere. You don’t

know where they are; you don’t know what kind of computers they are.

You could have 2 massive machines with 32 processors each, and 64

gigabytes of memory; or they could be 64 dinky little single-processor

machines with 2 gigabytes of memory. The computers where you run

your program could have great big disks of their own, or they could be

diskless machines accessing storage on dedicated storage servers. To

you, as a user of the cloud, that doesn’t matter. You’ve got the resources

you pay for, and where they are makes no difference, as long as you get

what you need.

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=14

WHAT’S CLOUD COMPUTING? 15

When to Develop for the Cloud

So, now you know what the cloud is. It’s a revolutionary way of think-

ing about computing; it’s a universe of servers that you can build an

application on; it’s a world of services that you can build, or that you

can use to build other things. Now, the question is, when should you

use it?

You can write almost any application you want in the cloud. In fact,

many people strongly believe that everything should be in the cloud—

that there’s no longer any reason to develop applications for standalone

personal computers. I don’t go quite that far: many applications are

well-suited to the cloud, but that doesn’t mean that it’s the ideal plat-

form for everything. You can build anything as a service in the cloud,

but it might be a lot harder that developing it as a standalone applica-

tion.

There are three kinds of applications that it makes sense to build in the

cloud:

Collaborative applications. If the application you’re building will be used

by groups of people to work together, share data, communicate, or

collaborate, then you really should build that application in the

cloud. Collaboration is the cloud’s natural niche.

Services. If you ask “What does my application do?” and the most nat-

ural answer sounds like a service, then you’re looking at a cloud

application. The difference between an application and a service

can be subtle—you can describe almost anything as a service. The

key question here is what’s the most natural description of it? If

you want to describe the desktop iTunes application, you could

say: “It lets people manage their music collections,” which does

sound service-like. But it leaves out the key property of what the

iTunes desktop application does: it manages a collection of music

files on the users computer, and lets them sync that music with

their iPod using a serial cable. Described the latter way, it’s clear

that it’s a desktop application, not a cloud application.

On the other hand, if you take a look at something like eMusic,

you’ll come to a different conclusion. eMusic is a subscription-

based website that lets users browse an enormous collection of

music, and buy a certain number of songs per month. eMusic is

clearly a service: it lets people search through a library of hun-

dreds of thousands of musical tracks, providing them with the

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=15

CLOUD COMPUTING PROGRAMMING SYSTEMS 16

ability to listen to snippets, read reviews, comment on things that

they’ve listened to, get suggestions for new things based on what

they like, and ultimately select things to purchase. That’s clearly

a service, and it makes sense to keep it in the cloud.

Large computations. Is your application intended to perform a huge

computation, which you could never afford to do if you needed

to buy your own computers to run it? If so, the cloud allows you

to purchase time on a server farm of computers in an affordable

way, and run your application. This is great for people like genet-

ics researchers, who need to run massive computations, but don’t

have the money or other resources to set up a dedicated data-

center for their computations. Instead, they can purchase time

on commercial data-centers, which they share with many other

users.

1.2 Cloud Computing Programming Systems

There are multiple ways of programming the cloud. Before we start

actually writing programs, we’ll take a quick look at a few examples, to

give you a sense of what the options.

Amazon EC2

Amazon provides a variety of cloud-based services. Their main pro-

gramming tool is called EC2, Elastic Computing Cloud.

EC2 is really a family of related services. Compared to AppEngine,

which provides a single, narrowly focused suite of APIs, EC2 is com-

pletely agnostic about programming APIs. It provides hundreds of dif-

ferent environments: you can run your application in EC2 using Linux,

Solaris, AIX, or Windows Server; you can store data using DB2, Informix,

MySQL, SQL Server, or Oracle; you can implement your code in Perl,

Python, Ruby, Java, C++, or C#; you can run it using IBM’s Websphere

or sMash, Apache JBoss, Oracle Weblogic, or Microsoft IIS. Depend-

ing on which combination you prefer, and how much of each kind of

resource (storage, CPU, network bandwidth), the costs vary from $0.10

per CPU hour and $0.10 per gigabyte of bandwidth to around $2,000

for a dedicated server for one year.

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=16

CLOUD COMPUTING PROGRAMMING SYSTEMS 17

Amazon S3

Amazon provides another extremely interesting cloud service, which is

very different from the other cloud offerings. S3, simple storage ser-

vices, is a pure storage system. It doesn’t provide the ability to run pro-

grams; it doesn’t provide any filesystem; it doesn’t provide any index-

ing. It’s pure block storage: you can allocate a chunk of storage that

has a unique identifier, and then you can read and write bytes from

that chunk using its identifier.

A variety of systems have been created that use S3 for storage: web-

based filesystems, native OS filesystems, database systems, and table

storage systems. It’s a wonderful example of the cloud’s resource-based

paradigm: the computation involved in storage is completely separated

from the actual data storage itself. When you need storage, you buy a

bunch of bytes of storage space from S3. When you need computation,

you buy EC2 resources.

S3 is a really fascinating system. It’s very focused: it does exactly one

thing, and it does it in an incredibly narrow way. But in an important

sense, that’s exactly what the cloud is about. S3 is a perfectly focused

service: it stores bytes for you.

S3 charges are based on two criteria: how much data you store, and

how much network bandwidth you use storing and retrieving your data.

Amazon currently charges 15 cents per gigabyte per month, and about

10 cents per gigabyte uploaded, 17 cents per gigabyte downloaded.

IBM Computing on Demand

IBM provides a cloud service platform based on IBM’s suite of web ser-

vice development that uses Websphere, DB2, and Lotus collaboration

tools. The environment is the same as the IBM-based environment on

EC2, but it runs in IBM’s data centers, instead of Amazon’s.

Microsoft Azure

Microsoft has developed and deployed a cloud platform called Azure.

Azure is a Windows-based platform that uses a combination of stan-

dard web services technologies (such as SOAP, REST, Servlets, and

ASPs), and Microsoft’s proprietary APIs like Silverlight. As a result,

you get the ability to create extremely powerful applications that look

very much like standard desktop applications. But the downside is it’s

closely tied to the Windows platform, so the application clients run

primarily on Windows. While there are Silverlight implementations for

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=17

CLOUD COMPUTING PROGRAMMING SYSTEMS 18

other platforms, the applications tend to only be reliable on Windows

platforms, and only fully functional in Internet Explorer.

So that’s the cloud. Now that we know what it is, we’re going to start

learning about how to build applications in the cloud. Google has put

together a really terrific platform, called AppEngine, for you to build

and run your own cloud applications.

In the rest of the book, we’re going to look in detail at the key pieces

of how to build cloud-based web applications. We’ll start off working

in Python. Python’s great for learning the basics: it lets you see what’s

going on, and it makes it easy to quickly try different approaches and

see what happens.

We’ll go through the full stack of techniques that you need for build-

ing an AppEngine application in Python, starting with the basic build-

ing blocks: HTTP, services, and handlers. Then we’ll look at how you

work with persistent data in the cloud, using the AppEngine datastore

service. And then, we’ll look at how to build user interfaces for your

applications using HTTP, CSS, and AJAX.

From there, we’ll leave Python, and move into Java. For building com-

plex applications, Java can be a lot more convenient. And AppEngine

provides access to an absolutely brilliant framework called GWT, which

abstracts away most of the boilerplate plumbing of a web-based cloud

application, and allows you to focus on the interesting parts. We’ll

spend some time learning about how to build beautiful user interfaces

using GWT, and how to do AJAX style communication using GWTs

remote procedure call service.

Finally, we’ll spend some time looking at the most complicated aspects

of real web development. We’ll look at the details of how you can do

sophisticated things using the AppEngine datastore service; how to

implement server-side processing and computation using things like

cron; and how to integrate security and authentication into you AppEngine

application.

In the next chapter, we’ll start this journey through AppEngine, by look-

ing at how to set up an AppEngine account, and how to set up the soft-

ware on your computer for building, testing, and deploying AppEngine

applications written in Python.

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=18

Chapter 2

Getting Started
In this chapter, we’re going to take our first look at AppEngine, and get

started using it. You’ll learn how to:

1. Set up an AppEngine account.

2. Download and set up the AppEngine SDK.

3. Create a simple AppEngine application.

4. Test an application locally.

5. Deploy and monitor an AppEngine application in the cloud.

This definitely isn’t going to be the most exciting chapter in the book.

But it’s stuff that you need to get out of the way in order to be able

to get to the interesting stuff. And there will be an interesting tidbit or

two.

2.1 Setting Up an AppEngine Account

The first thing you need to do in order to write cloud applications with

AppEngine is open an AppEngine account. When you’re developing for

the cloud, you’re renting computing and storage resources for your

application; the AppEngine account provides you with a basic set of

free resources, and a mechanism for buying more of various types of

resources when you need them.

Creating an account with AppEngine is free. A basic, no-charge AppEngine

account gives you the ability to run up to 10 applications, along with:

1. 46 hours of CPU time per day

Prepared exclusively for Jose Sierra

SETTING UP AN APPENGINE ACCOUNT 20

Counting CPU Time

The CPU time resources may look strange: there are only 24
hours in a day, but you get 46 hours of CPU time. In AppEngine,
your application isn’t running on one server; it’s running in a
Google datacenter. Each incoming request is routed to some
machine in the cluster. There can be multiple users accessing
your system at the same time, and therefore using CPU time on
multiple physical computers. What you’re billed for is the total
amount of CPU time used by your application on all of the com-
puters that wind up running any part of it. So you can end up
using more than 24 hours of CPU time per day.

2. 10 gigabytes per day each of outgoing and incoming bandwidth

3. 1 gigabyte of data storage

4. Privileges to send email to 2,000 distinct recipients

If you need more, you can buy additional resources in each category.

To get an AppEngine account, you first need to have a standard Google

account. If you already use Gmail or iGoogle, you’ve got one. If not,

just go to google.com, select “Sign In” from the top right corner of the

screen, and click on the “Create an Account Now” link.

Once your Google account is ready, get started with AppEngine by

pointing your browser at http://appengine.google.com. You’ll see a stan-

dard Google login screen; go ahead and log in with your Google user-

name and password. The first time you do this, you’ll need to authenti-

cate yourself using SMS messaging with your cellphone. In order to

prevent spammers from setting up AppEngine accounts, Google set

up a mechanism that requires a unique telephone number. Don’t fool

around here: you can only use a given phone number to set up one

AppEngine account—once that number is used, you can’t create another

account using that number again.

After you fill out the form, you’ll get a new page in your browser that

asks you to enter an authentication code. Within 10 minutes, you’ll

receive an SMS message with an authentication code on your cellphone.

Enter that code, and you’re ready to go.

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://appengine.google.com
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=20

SETTING UP YOUR DEVELOPMENT ENVIRONMENT 21

2.2 Setting Up Your Development Environment

Now that you have an AppEngine account, the first thing you’ll want to

do is create an application. Already, the process of developing for the

cloud is a bit different from normal application development. To write

a new program to run on your own computer, you’d just open up an

editor and start typing. But for a cloup app, you need to register your

application on a cloud server in order to create a space for it to run,

and to provide you with the tools that you’ll need to work on it.

Before you download the AppEngine tools, make sure that you have

Python installed on your machine. If you’re running either Linux or

MacOS, Python should be installed automatically. If you’re using Win-

dows, you’ll need to download and install a Python interpreter. You’ll

also need a text editor or IDE to use for writing code. There are plenty

of excellent examples of free tools; just pick one that you’re comfortable

with, and make sure you have it installed.

When you have the tools you need to write Python programs, you can

download the AppEngine Python SDK by logging into the AppEngine

account you created in the previous section, and clicking “Create at

Application.” This brings you to a form to give your application a name

and a description. The form will look roughly like the one in Figure 2.1,

on the following page. (AppEngine is updated frequently, so the exact

form may appear slightly different.)

To create your application, you need to provide some information to the

AppEngine service:

An application identifier. This is a unique name for your application,

distinct from every other application being run by any other AppEngine

user. It will be used to form the URL for your application. This is

the one thing about your application that you cannot change, so

choose carefully! You can type in a name, and check to make sure

that no one else has already used it by clicking the “Check Avail-

ability” button. I recommend choosing a personal prefix for your

application name; doing so makes it more likely that you’ll avoid

name collisions with anyone else, and it gives your family of appli-

cations a common identity within the universe of AppEngine pro-

grams. In all of the applications that I built for this book, I used

the prefix “markcc”. For the sample application that we’re going

to walk through, I chose the name “markcc-chatroom-one”, so the

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=21

SETTING UP YOUR DEVELOPMENT ENVIRONMENT 22

Figure 2.1: The “Create Application” form

URL for my application is going to be http://markcc-chatroom-one.

appspot.com.

An application title. This is the name for your application that all the

users of your application will see, and will turn up in search

results that include your application. For the example, I used

“MarkCC’s Example Chatroom”. You can change the application

title from the control panel anytime you want.

Security and authentication settings. You can set initial security and authen-

tication settings for your application. Don’t worry about this for

now; we’ll come back to that in Chapter 16, Security in AppEngine

Services, on page 194.

Terms of service. Before you can create an application on AppEngine,

you have to accept Google’s terms of service. Take the time to read

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://markcc-chatroom-one.appspot.com
http://markcc-chatroom-one.appspot.com
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=22

SETTING UP YOUR DEVELOPMENT ENVIRONMENT 23

Figure 2.2: The AppEngine control panel

through, so you understand the commitments you’re making, and

the guarantees Google is giving to you as an AppEngine developer.

Then click the checkbox to indicate that you accept the terms.

When you’re done filling the form out, click Save, and the framework of

your brand new application will be created by AppEngine.

After you’ve saved your initial application description, you’ll get a con-

trol panel that you’ll use for building and monitoring your application

(Figure 2.2).

Once you’re sitting in front of the application control panel, you’re just

about ready to start programming. Notice, though, that programming

for the cloud is different from other kinds of development. You can’t

edit files on the AppEngine server. You need to write them locally, and

then use an administrative script to transfer them into the AppEngine

environment where they can run.

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=23

STARTING TO PROGRAM IN PYTHON WITH APPENGINE 24

The next step is to get the tools. On your control panel, toward the bot-

tom left, you’ll see a box labelled “Resources”. This box contains links to

software, forums, and documentation that you’ll want as you learn and

use AppEngine. For right now, click on the download link, and down-

load the appropriate version of the AppEngine SDK for Python. Once

it’s downloaded, go ahead and install it. The installation process varies

slightly, depending on which operating system you’re using: for Win-

dows or Macintosh, the download contains an automated installation

program—just run it, and it will do the work. If you’re using Linux, the

download is a zip file, so unzip it in an appropriate location.

If you’re using Windows or MacOS, you’re all ready to start. If you’re

using Linux, take the directory where you unpacked the SDK zip file,

and add it to your path.

There are two main programs in the SDK that you’ll use:

• dev_appserver.py runs a simulated AppEngine environment that

you can use to test your application on your local computer.

• appcfg.py uploads and configures application using AppEngine in

the cloud.

2.3 Starting to Program in Python with AppEngine

Now we’re ready to do some programming!

Python-AppEngine is, at its core, very simple. The main engine is a

lightweight, secure CGI executor. CGI is one of the oldest interfaces

for executing programs in response to HTTP requests. The bare bones

of AppEngine are pure CGI. The big advantage of this is that if you’ve

ever done any CGI scripting in Python, you can just about take those

scripts, and use them in AppEngine. Any framework and any Python

library that was written for CGI scripting can be used in AppEngine—

just include the framework/library files when you upload your applica-

tion code.

The easiest way to work with AppEngine is to use its own framework,

called “webapp”. Webapp is a very simple but very powerful framework,

which makes it easy to use AppEngine and Google services like login,

data storage, security, authentication, and payments inside your appli-

cation. In this book, we’ll focus on using the webapp framework—but

once you know how to work with and execute your programs using

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=24

STARTING TO PROGRAM IN PYTHON WITH APPENGINE 25

Why Start with Python?

I’ll say more about this later, but I’m not a huge Python fan.
We’re starting with it first for two reasons. First, Python is a nice,
simple language. We can start writing AppEngine programs
with just a few lines of code. There’s very little in the way of
required infrastructure. When you’re learning how to develop
for the cloud, Python is great way to start.

Second, we’re going to learn tools like GWT, which generate a
lot of code for us, taking care of the underlying mechanisms
of the client/server interaction in our cloud applications. For
developing complicated applications, that saves us incredible
amounts of effort. But it’s important to understand what’s hap-
pening behind the scenes.

Python gives us a good way of exploring the primitive infrastruc-
ture of a cloud application. We’ll be able to look at each piece
of technology, build it up, and learn about how it works. When
we get to GWT, it will be easy to nderstand what’s really going
on.

If you decide you like doing your cloud programming in Python,
you’ll learn enough to be able to do it. But even if you never
write a cloud app using Python, taking the time to explore the
basic technologies of cloud applications using Python will help
you understand and debug your real applications in whatever
language you decide to use.

AppEngine, you’ll be able to write AppEngine applications using other

frameworks, as well.

In most of this book, we’ll be working on a chatroom application. But

before we get to that, we’ll do the cloud equivalent of “Hello World.”

For the cloud, it’s a simple program that runs on a cloud server and

generates a welcome page to be displayed in the user’s browser.

Since cloud applications typically use web browsers as their user inter-

face, our application must generate HTML, rather than just plain text.

Whenever we generate output, we first need to include a MIME header,

which is a single line that specifies the format of the content that fol-

lows. For HTML, the content type is text/html.

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=25

STARTING TO PROGRAM IN PYTHON WITH APPENGINE 26

The AppEngine SDK expects you to have all of your application’s files

stored in a directory hierarchy. For our first program, we’ll create a

directory named chatone. In that directory, we’ll write our trivial wel-

come program in a file named chat.py:

Download chatone/chat.py

import datetime

print 'Content-Type: text/html'

print ''

print '<html>'

print '<head>'

print '<title>Welcome to MarkCC\'s chat service</title>'

print '</head>'

print '<body>'

print '<h1>Welcome to MarkCC\'s chat service</h1>'

print ''

print 'Current time is: %s' % (datetime.datetime.now())

print '</body>'

print '</html>'

To be able to run the program, we need to tell AppEngine what language

it’s written in, what resources it needs, where the code is, and how to

map requests that are sent to the server on to the code.

In AppEngine, we do that by writing a file named app.yaml:

Download chatone/app.yaml

application: markcc-chatroom-one

version: 1

runtime: python

api_version: 1

handlers:

- url: /.*
script: chat.py

We always start app.yaml files with a header, whose fields are:

application: The name of the application we’re building. This must exactly

match the name you supplied when you created the application

control panel.

version: A number specifying the version of our application. This is really

for our information, so that we can do things like query the server

to find out what version it’s running, or identify the code version

that caused some bug.

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/chatone/chat.py
http://media.pragprog.com/titles/mcappe/code/chatone/app.yaml
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=26

STARTING TO PROGRAM IN PYTHON WITH APPENGINE 27

Figure 2.3: Our welcome program in a web browser

runtime: The language in which we’re going to write the program: either

“java” or “python”.

After the header, we need to write a list of handler clauses. We use

these to describe to the AppEngine server what it should do when it

receives an incoming HTTP request. The server is going to route HTTP

requests to scripts that we write. The handler clauses in the app.yaml

file are how we tell it which requests to route to which Python scripts. In

each handler clause, we specify a url pattern using a regular expression,

followed by a clause that specifies the action to take when a request

matching the pattern is received. For our example, there’s only one

handler. Any request that reaches our application will be answered by

running our welcome script, so the url pattern is /.*, which will match

any request. Whenever a request is received, we want to run our wel-

come script. So the action is: script: chat.py, meaning “execute the script

named chat.py”.

To test our application, we’ll first run it locally using dev_appserver.py:

$ ls

chatone

$ ls chatone

app.yaml chat.py

$ dev_appserver.py chatone

INFO 2009-06-18 23:13:31,872 appengine_rpc.py:157] Server: appengine.google.com

INFO 2009-06-18 23:13:31,880 appcfg.py:320] Checking for updates to the SDK.

INFO 2009-06-18 23:13:31,994 appcfg.py:334] The SDK is up to date.

WARNING 2009-06-18 23:13:31,994 datastore_file_stub.py:404] Could not read \

datastore data from /tmp/dev_appserver.datastore

WARNING 2009-06-18 23:13:31,994 datastore_file_stub.py:404] Could not read \

datastore data from /tmp/dev_appserver.datastore.history

INFO 2009-06-18 23:13:32,058 dev_appserver_main.py:463] Running application\

markcc-chat-one on port 8080: http://localhost:8080

With the application running locally, we can test it using our web

browser. If you look at the last line of output from running dev_appserver.py,

it provides the URL for this session—in this case, http://localhost:8080. If

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://localhost:8080
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=27

STARTING TO PROGRAM IN PYTHON WITH APPENGINE 28

we point the browser at that URL, we get what’s in Figure 2.3, on the

previous page.

Since we know that it works, we can now deploy it to the cloud server

by running the appcfg.py command. appcfg.py is the main developers

interface to AppEngine, so it supports a number of different applica-

tions. To send code to the server, use its update command:

$ appcfg.py update chat

Scanning files on local disk.

Initiating update.

Cloning 1 application file.

Uploading 1 files.

Deploying new version.

Checking if new version is ready to serve.

Will check again in 1 seconds.

Checking if new version is ready to serve.

Closing update: new version is ready to start serving.

And the code is now deployed on the server. You can access it by going

to http://your-app-name.appspot.com.

Even in this simple example, we can start to see the basic flavor of

programming for AppEngine. We used nothing from the webapp frame-

work, but the basic concept is still there: the app.yaml file specifies how

incoming requests are routed to the scripts that make up our program,

and the way our program communicates with the user is by generating

HTML content that will be rendered in the user’s browser.

The problem with the trivial approach is that it does everything manu-

ally. It generates the MIME content header and the HTML page structure

itself. Doing the work manually that way is very verbose, and extremely

error-prone. It gets worse when you start making the application inter-

active, and you need to parse input from the incoming requests. The

webapp framework provides infrastructure that takes care of the basic

HTTP request/response cycle, parsing the incoming requests, generat-

ing the necessary headers, and managing the communication with the

webserver to send the response. In addition, webapp provides access to

a set of template processors that allow you to create skeletons of your

responses, so that you don’t need to output the entire HTML structure

yourself. For now, our HTML is simple enough that we don’t need to use

the templating capabilities, but we’ll look at them in detail in Chapter 6,

Organizing AppEngine Code: Separating UI and Logic, on page 68.

Here’s a version of our welcome page application using a basic webapp

skeleton:

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://your-app-name.appspot.com
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=28

STARTING TO PROGRAM IN PYTHON WITH APPENGINE 29

Download chatone/chatonewa.py

Ê from google.appengine.ext import webapp

from google.appengine.ext.webapp.util import run_wsgi_app

import datetime

Ë class WelcomePage(webapp.RequestHandler):

Ì def get(self):

Í self.response.headers["Content-Type"] = "text/html"

Î self.response.out.write(

"""<html>

<head>

<title>Welcome to MarkCC's chat service</title>

</head>

<body>

<h1>Welcome to MarkCC's chat service</h1>

<p> The current time is: %s</p>

</body>

</html>

""" % (datetime.datetime.now()))

Ï chatapp = webapp.WSGIApplication([('/', WelcomePage)])

Ð def main():

run_wsgi_app(chatapp)

if __name__ == "__main__":

main()

Let’s take a quick walk-through that to see what the webapp pieces

mean.

Ê First, we need to import the pieces of the webapp framework that

we’re going to use. For this, we’re using two basic webapp building

blocks: the webapp module itself, and a a webapp function called

run_wsgi_app.

Ë Next, we create a webapp RequestHandler. webapp understands

how HTTP works, and provides utility classes for working with all

of the basic elements of the HTTP protocol. The basic operation

in a cloud application is responding to requests from a user. The

RequestHandler class is built for doing that—it’s the webapp class

that you’ll use the most.

Ì The only kind of HTTP request that we’re going to handle in the

welcome application is GET. In webapp, you handle that by provid-

ing an implementation of the get() in a subclass of RequestHandler.

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/chatone/chatonewa.py
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=29

STARTING TO PROGRAM IN PYTHON WITH APPENGINE 30

Í Instead of generating things like the MIME header manually, webapp

provides you with a response structure, which includes a Python

map. To set the value of any HTTP header, you assign a value into

that map. The only header that we’re going to use is “Content-

Type”, so we put that into the map.

Î Instead of generating output directly to standard out, webapp pro-

vides you with a buffered output channel that it will manage. You

write the content of your response to that output channel.

Ï To use our webapp RequestHandler, we need to create an appli-

cation object. An application object looks a lot like an app.yaml

file: the app.yaml file describes how to map incoming requests on

to particular application scripts; the application object describes

how to take the requests that were mapped to this script, and map

them to specific RequestHandler classes. We map requests for the

root URL—that is, requests to http://markcc-chatroom-one/—to our

welcome request handler.

Ð The rest of the file makes use of a common Google idiom. To actu-

ally run the application, the script needs to invoke run_wsgiapplication.

But instead of executing that statement directly, we implement a

main function, and use an indirect way of invoking it. This idiom

makes it easy to reuse this script. If we just executed run_wsgi_app

directly, then if we were to import this script into any other Python

code, that line would be executed. The main function plus the con-

ditional invocation ensures that we’ll only execute it if we specifi-

cally ran this script—it won’t be executed by modules that import

this.

We can deploy the new version of this exactly the same way as the last

one. I changed the filename of the Python script, so I needed to also

update the app.yaml file to reference the new Python script file. Once

that’s done, deployment is done by just running appcfg.py update chat.

That will upload the changes. Immediately after running the update,

going to the application URL will run the new version of the code. It

will still appear in AppEngine as version 1, because I didn’t change the

version identifier in app.yaml.

This quick and dirty explanation just gives you a sense of what devel-

oping for AppEngine is like. In later chapters, we’ll look at all of the

aspects of developing interesting web applications in AppEngine in greater

detail.

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://markcc-chatroom-one/
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=30

MONITORING YOUR APPLICATION 31

2.4 Monitoring Your Application

As the developer of an application, you’ll want to monitor it—to be able

to detect how many users you have, the quantity of resources being

consumed, the number of hits, which scripts are most active, what’s

working, what isn’t, and so on. You can do that by using the AppEngine

control panel.

The monitoring features of the AppEngine control panel is going to be

really important for you. Your cloud application is running on a com-

puter that you don’t control. You can’t just run a profiler or a debugging

to try to see why things aren’t working the way you expect. So when you

find that something is taking much longer than you think it should (and

that’s something that will eventually happen if you write any serious

cloud applications), the monitor is your information source.

As an example, on my day-job, I build cloud-based data analysis appli-

cations for Google. I’ve had cases where an analysis that usually runs

for 1 hour suddenly started taking 8 hours. That’s obviously a really

bad thing. I was able to figure out what was going on by going into the

control panel, looking at the information it could give me, and discover-

ing that certain shards of the data being processed by the system were

extremely large—far larger than normal. That led me to the problem:

someone else had changed the code that feeds data into my analyzer,

and it was generating data in a form that affected the performance

of my code. It would have been incredibly difficult to figure that out

without a tool to let me see what was going on in the cluster of server

machines.

You can monitor all aspects of your application in the control panel,

from information logged by your code while it was running, to informa-

tion recorded by the AppEngine servers, to detailed information about

the resources that your application has consumed.

The main view in the application control panel is called the dashboard.

The dashboard provides a broad summary of everything you want to

know about the status and resource usage of your application, with

links to the places where you can get more detailed information. It’s

divided into four sections:

• A graph view of the performance of your application. This can

be used to display the way that your application has been using

resources over time.

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=31

MONITORING YOUR APPLICATION 32

1

2

3 4

Figure 2.4: The sections of the control panel

• A billing status view, which shows you how much of each resource

category you’ve used, and how much you have available under

your billing plan;

• A load view, which shows the different URI patterns declared in

your app.yaml file, and how much CPU time has been spent respond-

ing to requests for each.

• An error view, which shows detailed information about any errors

that occured in your appplication.

Finally, the control panel provides a set of useful links, listed under

“Resources”. The resources include developer forums, where you can

discuss issues with other AppEngine developers and Google’s AppEngine

team; the official, up-to-the-minute AppEngine documentation; and answers

to frequently asked questions. I strongly advise you to make use of

those links, particularly the developer forums: most problems that you

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=32

MONITORING YOUR APPLICATION 33

Figure 2.5: The request log view

encounter developing AppEngine programs will be similar to things

that other AppEngine developers have encountered, and the forums

will have the answers that you need.

In addition to the basic resource information, there’s a set of admin-

istration links up the left-hand side of the control panel main view,

which allows you to pick various aspects of the system to use to look at

in greater detail.

One example of the useful data provided by the detailed links is infor-

mation from your application’s logs. Every request that is received by

the AppEngine server generates a data record describing the request.

In addition, errors are logged, and you can add logging statements to

your program. For now, we’ll just look at request logging.

Open the application’s control panel. The left-hand section of the screen

contains a collection of links to various views and tools for monitoring,

managing, and administrating your application. In the topmost section,

labelled “Main”, the third link from the top is “Logs”. Clicking on the

“Logs” link changes the view to show you information from the logs. At

this point, if you didn’t make any mistakes, the view should be pretty

much empty—the default view of the logs is a compact view of any

errors that might have occurred in your application.

To see the set of requests that have been processed by the application,

use the drop-box menu at the top of the log list labeled “Minimum

Severity”. Open the menu, and select “Requests only”. The result, as

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=33

MONITORING YOUR APPLICATION 34

shown in Figure 2.5, on the previous page is a list of the log entries for

each of the requests received by the application.

Now you’re all set up. You have your AppEngine account, and the

AppEngine tools are installed. You’re ready to build an AppEngine appli-

cation. In the next chapter, we’ll start building a real chat application

that runs in the cloud, using the AppEngine tools that we just finished

setting up.

References and Resources

AppEngine Developers Guide http://code.google.com/appengine/docs/

The official AppEngine documentation, for both the Python and Java APIs.

Common Gateway Interface (CGI) http://www.w3.org/CGI/

The official standard and documentation for CGI.

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://code.google.com/appengine/docs/
http://www.w3.org/CGI/
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=34

Part II

Programming AppEngine with

Python

Prepared exclusively for Jose Sierra

Chapter 3

A First Real Cloud Application
In this chapter, we’re going to build our first non-trivial cloud application—

a basic Python chatroom. Along the way, we’ll look at:

• The HTTP protocol used by cloud applications, and see how cloud

applications communicate

• How to take a simple program written in Python, and wrap it in an

HTTP framework so that it works in the cloud

• How managing data and variables is different in a cloud applica-

tion

3.1 The Basic Chat Application

As a running example, we’re going to build a chat service in Python.

Chat is a good example because it’s familiar—we’ve all used chat ser-

vices. But even though it’s an old familiar sort of application, it’s got

many of the typical attributes of a cloud service.

What makes a cloud app different, and interesting, is that cloud appli-

cations are intrinsically multi-user. You can’t build a cloud application

without thinking about how you’re going to handle multiple users, and

how you’re going to handle data for multiple users.

A chat application is simple, but pretty typical: To build a chat, we

need to think about interactions between multiple users; we need to

store and retrieve persistent data; and we’ll have multiple streams of

data for different discussions. On top of that, it’s easy to build a simple

version, and then gradually add features that demonstrate more and

more of the capabilities of AppEngine.

Prepared exclusively for Jose Sierra

THE BASIC CHAT APPLICATION 37

 MarkCC (10:46): Hello, is there anybody there?
 Prag (10:47): Yup, I'm here.
 Prag (10:47): So how's the book coming?
 User Jim has entered.
 MarkCC (10:48): It's coming along well. I'm writing about the chat application.

Transcript Area

Entry Area

Figure 3.1: A mockup of the chat interface

For now, we’ll ignore the user interface, and focus our attention on the

backend. (We’ll deal with the user interface in Chapter 7, Making the

UI Pretty: Templates and CSS, on page 85.) For now, we’re just going to

write a basic backend for a traditional local chat application, with the

calls to hook a user interface on to it. We’re not going to implement the

entire thing in this chapter; instead, getting to the point where we can

do everything that’s in this code will be our goal for most of this book.

A basic chat application is very simple. Imagine a typical chat. The

user interface of the chat is pretty straightforward: it should have two

boxes, one where you can see the transcript, and one where you enter

new text. The transcript should have the sequence of messages that

have been sent in the chat, each marked by the name of the sender,

and the time that it was sent. The basic chat interface, then, should

look something like the mockup in Figure 3.1.

Now that we have some idea of what it should look like, we can start

thinking about how to build it. Before we get into how to build this

as a cloud application, let’s start by thinking about how to build the

backend of a chat application as a standard server program. So we’ll

work on an application skeleton that does everything we need for chat

in standard Python, without using any AppEngine code at all.

What do we need? Looking at the basic transcript, we can see that the

chat system has a virtual space, which users can enter and leave. After

they’ve entered, they can send messages. Any message that gets sent

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=37

THE BASIC CHAT APPLICATION 38

will be visible to everyone who’s entered. That gives us the three basic

objects that we want to work with: the space (which we’ll call a room),

users, and messages.

In our space, we want multiple conversations to be available, so people

can decide what they want to talk about and with whom. We’ll call each

space that a conversation can happen in a room. There are three inter-

esting things that can happen in a room: someone can enter, someone

can leave, and someone can send a message. Also, just to keep things

simple, instead of automatically updating everyone whenever a mes-

sage gets sent, we’ll just provide a way for users to periodically ask for

a transcript of what’s been going on in the room. A simple implementa-

tion of a room is shown below. It’s not written the way that you’d write

it for the cloud: cloud apps behave very differently, and so they need

to be implemented differently. In the rest of this book, we’ll build up to

the point where we have an AppEngine cloud app that does everything

that this one does—but in the cloud way. You’ll see just how different

they are.

Download basechat.py

class ChatRoom(object):

"""A chatroom"""

rooms = {}

def __init__(self, name):

self.name = name

self.users = []

self.messages = []

ChatRoom.rooms[name] = self

def addSubscriber(self, subscriber):

self.users.append(subscriber)

subscriber.sendMessage(self.name, "User %s has entered." %

subscriber.username)

def removeSubscriber(self, subscriber):

if subscriber in self.users:

subscriber.sendMessage(self.name,

"User %s is leaving." %

subscriber.username)

self.users.remove(subscriber)

def addMessage(self, msg):

self.messages.append(msg)

def printMessages(self, out):

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/basechat.py
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=38

THE BASIC CHAT APPLICATION 39

print >>out, "Chat Transcript for: %s" % self.name

for i in self.messages:

print >>out, i

The next thing the chatroom needs is users. A user has a name, and is

signed in to some set of rooms. A user can enter a room, leave a room,

or send a message. If they haven’t entered a particular room, they’re

not allowed to send a message to that room.

Download basechat.py

class ChatUser(object):

"""A user participating in chats"""

def __init__(self, username):

self.username = username

self.rooms = {}

def subscribe(self, roomname):

if roomname in ChatRoom.rooms:

room = ChatRoom.rooms[roomname]

self.rooms[roomname] = room

room.addSubscriber(self)

else:

raise ChatError("No such room %s" % roomname)

def sendMessage(self, roomname, text):

if roomname in self.rooms:

room = self.rooms[roomname]

cm = ChatMessage(self, text)

room.addMessage(cm)

else:

raise ChatError("User %s not subscribed to chat %s" %

(self.username, roomname))

def displayChat(self, roomname, out):

if roomname in self.rooms:

room = self.rooms[roomname]

room.printMessages(out)

else:

raise ChatError("User %s not subscribed to chat %s" %

(self.username, roomname))

The chat message is the simplest part: it’s just a message from a user.

The message needs a reference to the user who sent it and to the text

that the user wants to send, and it needs to include the time the mes-

sage was sent.

Download basechat.py

class ChatMessage(object):

"""A single message sent by a user to a chatroom."""

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/basechat.py
http://media.pragprog.com/titles/mcappe/code/basechat.py
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=39

THE BASIC CHAT APPLICATION 40

def __init__(self, user, text):

self.sender = user

self.msg = text

self.time = datetime.datetime.now()

def __str__(self):

return "From: %s at %s: %s" % (self.sender.username,

self.time,

self.msg)

To test the chat message object, we’ll just throw together a quick main

program—that is, we’ll write the code that actually makes our applica-

tion do something when it’s run. In this case, instead of running the

chat interactively, we’ll just make it show a demo of what things might

look like when the program actually runs. We’ll make it create some

users, have them subscribe to some chats, and have them send some

messages.

Download basechat.py

def main():

room = ChatRoom("Main")

markcc = ChatUser("MarkCC")

markcc.subscribe("Main")

prag = ChatUser("Prag")

prag.subscribe("Main")

markcc.sendMessage("Main", "Hello! Is there anybody out there?")

prag.sendMessage("Main", "Yes, I'm here.")

markcc.displayChat("Main", sys.stdout)

if __name__ == "__main__":

main()

When we run that, we get the following:

Chat Transcript for: Main

From: MarkCC at 2009-06-27 15:10:51.181035: User MarkCC has entered.

From: Prag at 2009-06-27 15:10:51.181194: User Prag has entered.

From: MarkCC at 2009-06-27 15:10:51.181218: Hello! Is there anybody out there?

From: Prag at 2009-06-27 15:10:51.181237: Yes, I'm here.

It’s far from pretty: the timestamps are distractingly verbose, and there’s

no formatting to the text to make it easier to read—but the basic chat

functionality (rooms, subscriptions, users, and messages) are all there.

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/basechat.py
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=40

THE BASICS OF HTTP 41

3.2 The Basics of HTTP

The way that we just designed and implemented the skeleton of a cha-

troom is a reasonable approach for a traditional application. But when

you’re designing an application to run in the cloud, there’s an addi-

tional step. In a traditional application, you have to think about how

to design the data processing backend of your application, and you

design a user interface. When you’re programming a cloud application,

you still need to do those things—but you also need to design a protocol

for your application.

In cloud applications, the backend runs on a server or collection of

servers somewhere in a data center. The user interface runs in a user’s

web browser. What the protocol does is describe just how the backend

and the frontend communicate in order to produce a working applica-

tion that looks like it’s running inside the user’s browser.

Most cloud applications, and pretty much all AppEngine applications,

are built using a basic protocol called HTTP (Hypertext Transport Proto-

col). For your cloud applications, you need to design a protocol that can

be layered on top of HTTP. Layering just means that the protocol is built

so that each interaction in your application protocol is described in

terms of HTTP interactions. That’s one of the key things that makes pro-

gramming for the cloud so different: cloud application are built around

HTTP interactions between a client and a server: layering your appli-

cation properly onto HTTP is the key to building an attractive cloud

application that will provide a good user experience. HTTP can seem a

bit clunky when you’re not used to it, but a bit later in the book, you’ll

see how you can build just about any kind of application using HTTP

interactions.

You may already be familiar with HTTP, but it’s worth taking the time

to review, because knowing the basics of HTTP is essential in order to

understand how an AppEngine application works. Before we examine

how to put together an application protocol for our chatroom, we need

to review the basics of HTTP.

HTTP is a simple request/response client/server protocol. In other words,

it’s a protocol that allows two parties to communicate. One of them is

called the client, and one is called the server. The client and the server

behave differently; in HTTP, the client really drives the communication,

by sending requests to the server; the server processes the requests

from the client, and sends responses. That’s basically all HTTP does: it

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=41

THE BASICS OF HTTP 42

describes a way for a client to send a request to a server, and get a

response.

To make things even simpler, every request in HTTP is centered on

a resource. A resource is anything on the network that has a name

assigned to it. The other name for a resource is a URL (Universal Resource

Location); a URL is a sort of filename, except that it can be used to name

many different things: a file, a program, a person, a process, or pretty

much anything else you can imagine. Every request in HTTP is either

asking to retrieve data from a resource, or send data to a resource.

Each HTTP request from the client invokes a method on the server.

(Don’t let the terminology confuse you: even though they call these

methods, there’s really nothing object-oriented about HTTP.) There are

four basic methods in HTTP (plus about a dozen extensions, which we

don’t need to look at, because they aren’t needed for web applications):

GET Asks the server to retrieve some information from the resource,

and send it to the client.

HEAD Asks the server to tell it information about a resource. It’s basi-

cally like a GET request, except that the response only contains

metadata. You can use head requests to do things like ask “How

big is this resource?” without having to download the entire thing.

In general, most web applications don’t use the HEAD method, but

once in a while, it’s useful.

PUT Stores data in a resource. The client sends information to the

server to store in the target resource, and the server response just

says whether the data was successfully stored.

POST Sends data to a program on the server. POST requests are sort of

strange. There’s not a lot of difference between a PUT and a POST.

The distinction really dates back to the early days of the World

Wide Web, when people ran web servers on private, individual

machines. In early web server implementations, all GET and PUT

requests were interpreted as requests to fetch or store files. So

to do something that ran a program on a web server, you needed

a different HTTP protocol request, which specifically asked you to

run a program. In modern systems, we use PUT and POST pretty

indistinguishably.

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=42

THE BASICS OF HTTP 43

Every HTML request that you generate using a web browser and every

HTML request that your AppEngine services will process has three

parts:

1. The request line, consisting of the HTTP method for the request,

followed the URL of the resource, followed by a protocol version

specification. In most requests that you make using your browser,

the method is GET, and the version specification is usually HTTP/1.1.

2. A series of header lines, containing metadata about the request

(like the “Content-Type” specification we used in the welcome appli-

cation in Section 2.3, Starting to Program in Python with AppEngine,

on page 24). Most of your requests from a browser will have header

lines telling the server what browser you’re using (the User-Agent

header), and some user identifier (the From: header). Headers can

also contain cookie references, language identifiers, network addresses,

and so on. In fact, anything can be put in a header: servers just

ignore headers that they don’t recognize.

3. A body, consisting of some arbitrary stream of data.

A blank line separates the end of the headers from the beginning of the

body. In general, the message body for GET and HEAD requests is empty.

For example, here’s a simple GET request:

GET /markcc-chatroom-one.appspot.com/rooms/chatter HTTP/1.1

User-Agent: Mozilla/5.001 (windows; U; NT4.0; en-US; rv:1.0) Gecko/25250101

From: markcc@phouka.local

When you send an HTML request to a server, the server responds with

a similarly structured message. The difference is that in the place of

the request line, the server starts the response with a status line. The

status line starts with a status code and a status message that tell you

whether the request was processed successfully, and if not, what went

wrong. A typical status line that your cloud service needs to handle

looks like HTTP/1.1 200 OK, where “HTTP/1.1” tells you the protocol ver-

sion being used by the server, “200” is the status code of the response,

and “OK” is the status text.

The status code always consists of three digits. The first digit is the

general response kind, where:

1. One means “Informational response”.

2. Two means success.

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=43

THE BASICS OF HTTP 44

HTTP Status Codes

The HTTP standard has an extensive list of status codes for server
result messages. The ones that you’ll encounter most often are:

200 OK The request was completed successfully. The body
of the message will contain the result of the successful
request.

301 Moved permanently The requested has been permanently
moved, and this and all future requests for the resource
should be sent to the new location.

303 See other For this request, the result can be found by doing
a GET on a different URL. The URL can be found in the
“Location” header of the message. This is generally used
for the result of PUT requests, where after the PUT was suc-
cessfully processed, the server tells the client where to look
to see the result of the operation.

401 Unauthorized The request was valid, but the user has
not provided any authentication data to show that they
should be permitted to see the resource. The user could
use some other request to get an authentication code,
and then retry the request.

403 Forbidden The request was valid, but the user is not
allowed to access the specified resource. This is similar to
401, but indicates that either the user has been authen-
ticated and still can’t access the resource, or that even
if the user authenticated, that user is not permitted to
access it.

404 Not found No resource at the specified location.

501 Not implemented The request wants to perform some
operation that the server doesn’t support. You’ll see this
most often if you do something like mispell the URL in a
POST request.

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=44

MAPPING CHAT INTO HTTP 45

3. Three means redirect, which tells the client that the client should

look in a different location to get the resource. (Essentially, a redi-

rect is a message to the client meaning “If you want that resource,

look for it at this other URL.”)

4. Four indicates a client error (for example, 401 means that the

client requested a resource which doesn’t exist on the server).

5. Five indicates a server error (for example, the request caused the

server to execute a script, and the script crashed).

For example, here’s a successful response to the GET request shown

above:

HTTP/1.1 200 OK

Date: Sat, 26 Jun 2009 21:41:13 GMT

Content-Type: text/html Content-Length: 123

<html>

<body>

<p> MarkCC: Hello, is there anybody out there?</p>

<p> Prag: Yes, I'm here.</p>

</body>

</html>

Let’s try walking through a complete request/response cycle. Suppose

our application uses POST for submitting chat messages. A request could

look like the following:

POST /markcc-chatroom-one.appspot.com/submit HTTP/1.1

User-Agent: Mozilla/5.001 (windows; U; NT4.0; en-US; rv:1.0) Gecko/25250101

From: markcc@phouka.local

<ChatMessage>

<User>MarkCC</User>

<Date>June 26, 2009 16:33:12 EDT</Date>

<Body>Hello, is there anybody out there?</Body>

</ChatMessage>

If that was successful, the response could be something like:

HTTP/1.1 303 See other

Date: Sat, 26 Jun 2009 21:41:13 GMT

Location: http://markcc-chatroom-one.appspot.com/

3.3 Mapping Chat into HTTP

To make our Python chat application work as an AppEngine webapp,

we need to map the basic operations of the application on to HTTP

requests and responses.

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=45

MAPPING CHAT INTO HTTP 46

In this version, we won’t deal with subscriptions: there’s one chat room,

and if you connect to the chat application, you’re in the room. For now,

we don’t need to worry about users entering and leaving.

Imagine you’re using a chatroom. What are the things that you want to

be able to do?

First of all, you’ll want to see any new messages in the room. Trans-

lating that into HTTP, the room is a resource, and you want to see its

contents. That naturally fits as a GET: you want your browser to retrieve

the contents of the chatroom, and then show it to you.

You also want to be able to send messages, so you need your browser

to be able to talk to the chat room as an active entity, and tell the chat

room application that you’ve got something to say. Again, the chat room

is the resource—but this time you want to talk to it. That’s either a PUT

or a POST. We decide whether to use PUT or POST by asking, essentially,

do you want to replace the contents of the resource, or do you want to

talk to the resource? Posting a message to a chat room is clearly the

latter. We don’t want to replace the contents of the chat room; we want

to talk to it and tell it that there’s a new message to be added to the

conversation. So sending a new message is definitely a POST.

That gives us the framework that we need for our application. We’re

going to have one resource, which is a chatroom. Users can GET that

resource to see the current state of the chat. We need another resource,

which is the active process that they’ll POST to when they send a new

message to add to the chat.

Now we need to think a bit about UI issues. How is the user going to

be able to POST data to our application? We need to provide a way to

do that. The easiest is to create a form in the page that’s sent when a

user asks to view the chatroom. So the chat page will have a title at the

top, and then it will have a transcript of what’s in the room, and then,

at the bottom, we’ll have an entry form that takes the user’s name and

the message that the user wants to post.

To implement in AppEngine, we need to build a RequestHander that

implements GET for the chat room content, and another RequestHandler

that receives the POSTs, and adds things to the chat.

The chat room main page is almost the same as the code we used in

Chapter 2, Getting Started, on page 19. The main difference is that we

need to add some dynamic content to it—that is, we need to generate

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=46

MAPPING CHAT INTO HTTP 47

the text for the messages that have been posted—so we can’t just use

quoted HTML; we need to generate some. For our first attempt, we’ll cre-

ate a global variable that contains a list of messages. When we render

the page, we’ll iterate over that list of messages, and add them to the

page.

Download chattwo/chattwo.py

class ChatMessage(object):

def __init__(self, user, msg):

self.user = user

self.message = msg

self.time = datetime.datetime.now()

def __str__(self):

return "%s (%s): %s" % (self.user, self.time, self.message)

Messages = []

class ChatRoomPage(webapp.RequestHandler):

def get(self):

self.response.headers["Content-Type"] = "text/html"

self.response.out.write("""

<html>

<head>

<title>MarkCC's AppEngine Chat Room</title>

</head>

<body>

<h1>Welcome to MarkCC's AppEngine Chat Room</h1>

<p>(Current time is %s)</p>

""" % (datetime.datetime.now()))

Output the set of chat messages

global Messages

for msg in Messages:

self.response.out.write("<p>%s</p>" % msg)

self.response.out.write("""

<form action="/talk" method="post">

<div>Name:

<textarea name="name" rows="1" cols="20"></textarea</div>

<p>Message</p>

<div><textarea name="message" rows="5" cols="60"></textarea></div>

<div><input type="submit" value="Send ChatMessage"></input></div>

</form>

</body>

</html>

""")

Handling a POST is a completely new step, but the webapp framework

makes it really easy to do. In a handler for a GET request, we implement

a subclass of RequestHandler that has a get method. For a POST request,

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/chattwo/chattwo.py
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=47

MAPPING CHAT INTO HTTP 48

we follow the same pattern: we implement a RequestHandler, and inside

of it, we include a post method. The RequestHandler superclass ensures

that when post is called, the fields of the object contain everything we

could want to look at from the request. To get at the data from the fields

of the form that produced the post, we just call the get method on the

request, using the label specified in the form. In our code, we’ll get the

username and message from the post request, and using them, we’ll

create a message object and add it to the global message list.

Download chattwo/chattwo.py

class ChatRoomPoster(webapp.RequestHandler):

def post(self):

chatter = self.request.get("name")

msg = self.request.get("message")

global Messages

Messages.append(ChatMessage(chatter, msg))

Now that we've added the message to the chat, we'll redirect

to the root page, which will make the users browser refresh to

show the chat including their new message.

self.redirect('/')

Now, we need to put it together as an application. There are two parts:

first, we need to write the Python code that creates the application

object, and maps requests to our request handlers; and second, we

need to write the app.yaml file. Then we’ll be able to test our applica-

tion.

The app.yaml file is pretty much exactly the same as before. I changed

the name of the Python file for the new example, so we need to change

the script entry in the app.yaml file to the new name.

Download chattwo/app.yaml

application: markcc-chatroom-one

version: 1

runtime: python

api_version: 1

handlers:

- url: /.*
script: chattwo.py

The Python webapp glue code is:

Download chattwo/chattwo.py

chatapp = webapp.WSGIApplication([('/', ChatRoomPage),

('/talk', ChatRoomPoster)])

def main():

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/chattwo/chattwo.py
http://media.pragprog.com/titles/mcappe/code/chattwo/app.yaml
http://media.pragprog.com/titles/mcappe/code/chattwo/chattwo.py
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=48

MAPPING CHAT INTO HTTP 49

Figure 3.2: The Chatroom app in action

run_wsgi_app(chatapp)

if __name__ == "__main__":

main()

Now, when we run it (using dev_appserver.py as in the last chapter), we

have a simple working chatroom. Go ahead, give it a try. It works beau-

tifully in dev_appserver.py! So now we can upload it to the AppEngine

servers. Just like before, we use appcfg.py update to upload it to AppEngine.

You can see the result in Figure 3.2; it looks exactly like it did run-

ning on the local development server. I sent a few messages using two

different usernames, and got a beautiful chat transcript.

But then I needed to take a break to give my son a bath and put him in

bed. When I got back, I sent another message. You can see the result

in Figure 3.3, on the next page.

When I sent the new message, all of the older messages were gone! The

transcript doesn’t have anything except the new message I just added.

We didn’t write any code to delete old messages—in fact, our code has

absolutely no concept of getting rid of messages: we just continually add

messages to the chatroom. So what happened to the transcript that we

so before? Where did the old messages go?

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=49

MAPPING CHAT INTO HTTP 50

Figure 3.3: The Chatroom app after taking a break

They didn’t go anywhere. We got bitten by one of the basic and impor-

tant differences between cloud code and regular code. When you write

code for your own server, you know that every request is going to be

handled by your server. If you start a Python interpreter, and send

requests to it for processing, you know that the Python interpreter will

stay around for as long as you want it to.

When you send a request to a cloud server, it gets routed to some server

in some cloud datacenter. There’s no guarantee that any two requests

will be routed to the same server, or even to servers on the same con-

tinent! Even if they do wind up running on the same server, there’s no

guarantee that the cloud server will keep a Python interpreter running

your code all of the time. In cloud-based programming frameworks like

webapp, request handlers are stateless—which means that you cannot

count on any variables containing a value that was set while processing

a different request. You need to program as if each and every request

was running in a completely new Python interpreter.

The reason that the application worked at all was, basically, pure luck.

When we ran it locally, the dev_appserver just used a single Python

interpreter—so the application ran fine there. When we uploaded it to

the AppEngine server, it was running out in the cloud. When the first

request was received by AppEngine, it started a Python interpreter, and

used it to run the request. When I submitted a message, that sent a

second request off to AppEngine. The main AppEngine server saw that

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=50

MAPPING CHAT INTO HTTP 51

there was a Python interpreter on one of the data-center processors

that had just handled a request for that application, and that it wasn’t

busy—so it routed the request to that interpreter.

But then I took a break, and was away from my computer for 15 min-

utes; at some point, the AppEngine service noticed that the Python

interpreter running my chat application had been idle for a while—so

it shut it down. When I submitted my next message, there was no live

Python interpreter running the chatroom code, so it started a new one.

To get around this issue, we need to be completely explicit about how

we manage data that we want to share between different requests when

building a cloud application for AppEngine. We can’t rely on module or

class variables to manage the state of our application: we must explic-

itly store all of our application’s data whenever we change it, and explic-

itly retrieve data whenever we want to access it.

The point to take home is you can’t take basic data management for

granted in cloud apps: you need to be explicit about it. Fortunately,

webapp provides a very nice persistence service, called datastore. I’ll

describe datastore in the next chapter.

References and Resources

RFC 2616: Hypertext Transfer Protocol – HTTP/1.1. . .
. . . http://www.w3.org/Protocols/rfc2616/rfc2616.html

The HTTP 1.1 protocol standard from the W3C.

Wikipedia article on HTTP http://en.wikipedia.org/wiki/Http

A concise, thorough, informal description of HTTP.

DJango .http://www.djangoproject.com/

Django is a widely used web service development platform. It’s one of the alter-

native frameworks that can be used in AppEngine. Many AppEngine facilities

are modeled on or borrowed from the Django framework.

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://en.wikipedia.org/wiki/Http
http://www.djangoproject.com/
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=51

Chapter 4

Managing Data in the Cloud
In this chapter, we’re going to modify our chat application to use per-

sistent storage with datastore. Along the way, we’ll look at the general

problem of storing and managing data in a cloud application.

4.1 Why Didn’t Chat Work?

When we left off in the last chapter, our chat application had a problem.

It seemed to be working, but if we stopped using it for a few minutes,

and then went back, it lost the history of the chat.

The reason is that our chat application currently relies on global vari-

ables for storing the chat history. But when we’re running an applica-

tion in the cloud, that method doesn’t work: the data in global variables

doesn’t necessarily survive between different requests.

The first question to ask is why? What is it about cloud applications

that forces us to handle data differently?

When you run an application on your own computer, your operating

system creates a process. The process allocates memory for storage,

where it keeps all of its data. The process continues to run on your

computer, with the storage it allocated from the operating system, until

you tell it to quit. If you use the application for a while, go off and do

something else, and then come back to it, it’s still the same process,

which has access to the same memory.

The cloud is a whole different world. The rules that you’re used to—

even things as simple as the ways that variables work—are very dif-

ferent. This program isn’t running on your computer: it’s running on

who-knows-how-many computers, which are living who-knows-where

Prepared exclusively for Jose Sierra

WHY DIDN’T CHAT WORK? 53

in some data center connected to the network. We wrote a cloud appli-

cation, and uploaded it using Google’s AppEngine’s service. From the

moment we did that, the program was running. But what it means for

it to run isn’t what you’d expect from your desktop experience. A pro-

gram that’s “running” in the cloud might not actually be running on

any computers. In fact, as I write this, I’ve got the final version of the

Python chatroom application uploaded to AppEngine—and it’s actually

running on absolutely no machines at all! (And how do I know that?

Because I uploaded it several weeks ago, and I haven’t loaded the page

into my browser in at least a week. AppEngine’s servers definitely don’t

have it loaded on any computers right now. If I load the chat app’s page

in a browser, AppEngine will load it to handle the request.)

As we saw in the earlier chapters, cloud applications are built around

request processing. If there are no requests waiting to be processed,

there is no need for the program to be running on any computer. If there

are a few requests coming in, running it on one computer might be

enough. If your application got mentioned on slashdot, you might need

a thousand machines to handle all of the incoming requests! That’s

one of the things that makes the cloud such an interesting place to

program: it gives you a self-scaling platform.

Of course, that comes at a price. If the program could be running on

many computers, or it could be running on no computers, then there’s

no way that you can count on what is actually in memory when your

code starts to handle a request.

You can’t count on your application’s request handlers having data in

memory when it starts processing a request. While you’re processing

a request, every single piece of data that you might want to be able

to look at in the future must be explicitly saved into a shared storage

area called persistent storage. Every piece of data that you want to use

processing a request must be retrieved from persistent storage.

How do we work with persistent storage? That’s one of the aspects of

cloud programming that is fundamentally different from old-fashioned,

local applications. When you’re just starting to write cloud applications,

the process can seem cumbersome and frustrating. But it’s not a bad

thing; the fact that your application is made up of stateless pieces has

some wonderful effects. It’s part of what makes your programs scale.

If your application is handling one request every five seconds, running

it as a Python application on a single computer would work fine; you

could use global variables for data, and get all of your results without

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=53

WHY DIDN’T CHAT WORK? 54

The Cloud: Functional Programming?

The cloud as an environment encourages something like a
functional style of programming. In functional programming,
you aren’t allowed to store mutable state; in other words, you
aren’t allowed to use assignments to alter the value of vari-
ables. You can’t store anything to be shared between different
calls to the same function. You need to pass everything that
the function needs explicitly as a parameter. That style is very
natural for cloud programming.

If you’re not used to it, the functional programming style can
seem very unnatural, very difficult. But it really isn’t—in fact, it’s
downright attractive once you get used to it! The more compli-
cated your application becomes, the more attractive the func-
tional style becomes.

At Google, we generally program in three languages: C++,
Java, and Python. None are functional languages; they’re all
state-heavy, imperative, object-oriented languages. But the
more I’ve read and written code in this code-base, the more
I’ve found that functional code is the best way of building
large things. If the code is basically functional, I’ve found that
it’s much easier to understand and test, and less likely to pro-
duce painful bugs. It’s gotten to the point where when I see
code that isn’t functional, I cringe a little. Almost everything
that I write ends up being at least mostly functional—the places
where I use non-functional code, it’s because the language
and compiler aren’t up to the task of keeping the code effi-
cient.

having to deal with fancy persistent storage. But if your application

started getting more users, what would happen? One request a second,

no problem. 10 per second? No problem. 100 per second? That might

start to get difficult. 1,000 per second? 10,000 per second? 100,000

per second? At some point, your application will break: it will not be

able to handle the number of requests being received. But in the cloud,

as the number of requests increases, the number of machines running

your application also increases, so no matter how many requests you’re

receiving, you always have the capacity to handle them. A good per-

sistent storage mechanism means you don’t need to worry about how

many machines are running your program. Whether it’s one, ten, or one

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=54

MAKING CHAT PERSISTENT 55

General Data Management in the Cloud

Every cloud programming system provides some mechanism
for storing persistent data. The exact mechanics vary, but the
basic mechanism is almost always database-like. Some systems
give you access to a small, fast database system like MySQL.
Others, like AppEngine, provide a more flexible database-like
storage. We’ll only look at the AppEngine datastore, but there
are plenty of others, some of which can be used by AppEngine
programs.

thousand machines makes no difference. In my project at work, my code

runs on a network of thousands of machines every night. In that kind

of environment, sharing data using global variables is obviously ridicu-

lous: how can an assignment to a global variable in my Python program

be shared among a thousand machines? But because the system uses

persistent storage, it’s never a problem. When one part of the system

gets too slow, and starts to exceed its deadlines, I just change one con-

figuration file specifying the maximum number of machines that it can

use—and that’s all I need to do; it starts running on more machines,

which allows it to finish faster.

4.2 Making Chat Persistent

AppEngine has a custom data persistence system called datastore. Data-

store is very database-like, only it’s a lot easier to use for things like

Python objects. Unlike relational databases, datastore does not require

a strict schema; it’s very flexible and dynamic about how it lets you

store and manage persistent data. For retrieving things, it’s got a cus-

tom query language called GQL. GQL looks a lot like the SQL language

used to query conventional relational databases, but it’s customized for

working with datastore objects instead of relational tables.

Creating and Storing Persistent Objects

Datastore has a lot of options to let you do things in the way that makes

the most sense for your application. The basic datastore operations are

simple, and easy to use. As you use datastore more, you can start to

use more complex features as you need them. For now, we’ll stick with

the basics.

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=55

MAKING CHAT PERSISTENT 56

Datastore is pretty different from how you’d normally program in Python.

Normally, when you create a class in Python, you don’t need to declare

the fields of the class—you just assign values, and the fields are auto-

matically created. To use datastore, you have to give up some of that

flexibility. With datastore, you have to create models of your objects,

which tell the datastore what fields the object will have, and what types

of values they will have. (Actually, you can use the Python assign-as-

you-want style by using something called an expando model—but you

really shouldn’t: for a cloud application, you really should think out

your data well enough to define a proper model for it.)

Enough background. The easiest way to grasp datastore is by jumping

right in and looking at some code. As I said, in datastore, you need

to define a model to tell datastore about your objects. In Python, the

model is a class object that is a subclass of db.Model, and the fields

are defined by creating class-members of the model class. It’s a sort-of

awkwardly non-Pythonic way of doing things,

Below, I’ve taken the ChatMessage from our chat application, and turned

it into a datastore model:

Download persist-chat/pchat.py

class ChatMessage(db.Model):

user = db.StringProperty(required=True)

timestamp = db.DateTimeProperty(auto_now_add=True)

message = db.TextProperty(required=True)

def __str__(self):

return "%s (%s): %s" % (self.user, self.timestamp, self.message)

In datastore, a model defines a collection of named properties. You

define a type of storable object by creating a subclass of db.model, and

you define the properties of the object by assigning property types to

class variables in the class itself. Datastore supports a good collec-

tion of datatypes: strings, numbers, dates, lists, references and more. It

even lets you define your own, new types of storable objects. We’ll talk

more about the complex things you can do in Chapter 13, Advanced

Datastore, on page 191

Our chat message has three fields: a string containing the name of the

user that sent the message, another string containing the message, and

a timestamp that specifies when the message was sent. Each of those

fields is specified as a property.

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/persist-chat/pchat.py
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=56

MAKING CHAT PERSISTENT 57

user The username is a simple string property. Every message must

have a username, so we specify that it can’t be null by providing

the keyword argument required=true. The value of a string property

in datastore is just a Python string, which cannot be longer than

500 characters.

time The time property is an instance of db.DateTimeProperty, which

specifies a property whose value is an instance of Python’s date-

time. For this property, we get to use an interesting capability of

the way that datastore represents properties using Python classes.

Every message should have a timestamp. But we don’t really want

to have to specify it when we create a message; we want the

timestamp to be now—that is, the time when the message was

received by the application. So what we do is use a special key-

word parameter auto_now_add for the property that says, “If this

property isn’t explicitly initialized when an instance of the model

type is created, then automatically initialize it to the current time.”

Because the property is represented by an instance of a Python

class, the class can define custom initializer parameters to pro-

vide type-specific functionality like auto_now_add, without requir-

ing any special primitives. As you’ll see when we look at advanced

datastore topics in Chapter 13, Advanced Datastore, on page 191,

you can define your own new property types, and provide your

own type specific extensions.

message Finally, we get to the content of the message. Like the user field,

message is a required string property. But in datastore, a string

can’t be more than 500 characters. Probably most chat messages

will be shorter than that—but not all of them. So instead of using

db.StringProperty, we use db.TextProperty. db.TextProperty is a string

that can be as long as you want—but because it’s an arbitrary

length, you can’t use it for sorting or searching.

Since we’ve created a model with the information needed to describe

its instances, we don’t have to provide our own initializer method now;

db.Model will auto-generate an initializer with keyword parameters and

types based on the property names and types we specified as fields of

the class.

We’ve got a storable class. How do we actually store values? It couldn’t

possibly be any easier: every object that is an instance of a subclass

of db.Model provides a zero-parameter method called put. If you call put

on an object, it’s stored in the datastore for your application. Here’s

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=57

MAKING CHAT PERSISTENT 58

a modification of our post handler, which creates an instance of our

ChatMessage class, and then, at Ê, it stores the new chat message:

Download persist-chat/pchat.py

class ChatRoomPoster(webapp.RequestHandler):

def post(self):

chatter = self.request.get("name")

msgtext = self.request.get("message")

msg = ChatMessage(user=chatter, message=msgtext)

Ê msg.put()

Now that we've added the message to the chat, we'll redirect

to the root page,

self.redirect('/')

That’s it: calling put() on a model instance stores the instance in the

datastore, and makes it available for retrieval using queries.

Retrieving Persistent Objects

The last thing we need to know is how to retrieve what we’ve stored.

Below is the part of our GET handler that retrieves all of the mes-

sages from the datastore; the rest of the method—everything outside

of the part that retrieves the messages and prints them—is completely

unchanged.

Download persist-chat/pchat.py

Output the set of chat messages

Ê messages = db.GqlQuery("SELECT * From ChatMessage ORDER BY time")

for msg in messages:

self.response.out.write("<p>%s</p>" % msg)

You retrieve things using a query language called GQL. As you can see

from the code, GQL looks a lot like SQL. The big difference is that GQL

isn’t querying over tables; it’s querying over model types. The query

from our chat room selects all instances of ChatMessage, not over all

rows of a table.

Depending on what you want to query, sometimes it’s clearer to use

a different style of GQL. You can omit the SELECT * FROM type part of

the query by calling the gql method of the model class. For example,

the GQL query from our code above could also be written ChatMes-

sage.gql("ORDER BY time").

Using GQL Queries to Improve Chat

One problem that our chat application has is its verbosity. Right now,

each time you refresh your display of the chat, you get the entire chat.

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/persist-chat/pchat.py
http://media.pragprog.com/titles/mcappe/code/persist-chat/pchat.py
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=58

MAKING CHAT PERSISTENT 59

Datastore Versus Relational Databases

At this point, the difference between datastore models and
relational database tables might sound small. After all, every
instance of ChatMessage is exactly the same: they’ve got a set
of typed fields, which look a lot like the columns in a relational
database. At a first glance, it looks pretty much like a relational
database that uses stylized Python classes to create its tables
instead of SQLCREATE TABLE statements.

That is, in fact, very much not the case. Datastore has a much
richer range of data types and data structures than a rela-
tional database. In datastore, we can have properties of a
model that have list types, where the elements of the list can
be any storable value, and where you can use the elements
of the list as a part of a GQL query. You can have reference
properties, which are used to describe non-containment links
between objects. You can have hierarchical, tree-structured
datatypes, and queries that traverse the tree. (That’s not to say
that datastore is better than a relational database; just differ-
ent. For example, relational databases have much better per-
formance on joins than datastore. But datastore lets you use
familiar data structures that make sense in your application in a
simple, scalable way.)

After a conversation has been going on for a while, that gets to be very

long, and the part that you’re interested in is the most recent part of

the chat, which is all the way at the bottom of the page.

People using a chatroom don’t want to have to constantly scroll through

messages they’ve seen before. Most of the time, they know what was

said before, and only want to see the latest messages. For example,

they might want to only see the last 20 messages in the chatroom, or

they might want to only see messages posted within the last 5 minutes.

Using GQL, it’s downright trivial to fix the verbosity issue by adding

clauses to our GQL query. To see the 20 most recent messages, we can

add a LIMIT clause, and to see the messages from the last 5 minutes, we

can add a WHERE clause.

Of course, we don’t want to restrict our users so that they can only

see one of those concise views; when they first enter a new chat, they

may want to see the entire history. So we’ll add new handlers to our

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=59

MAKING CHAT PERSISTENT 60

application for the two new cases. We’ll leave the full chat where it was,

and add two new URLs for time-limited and count-limited short views.

Adding the Count-Limited View

First, let’s add the counted view. That’s very easy: GQL queries have

a LIMIT clause, which specifies a maximum number of results for the

query. For example, when you indicate LIMIT 20, you get the first 20

values that match the query in the specified sort order. Since we want

to get the 20 most recent query results, we need to make sure that the

results we want are the first ones. We do that by sorting in order by

time, with the most recent times first.

The counted view is implemented using a RequestHandler, which is exactly

the same as ChatRoomPage, except for two lines. I copied ChatRoom-

Page, and renamed the copy to ChatRoomCountViewPage. The modified

get method is shown below:

Download persist-chat/pchat.py

class ChatRoomCountViewPage(webapp.RequestHandler):

def get(self):

self.response.headers["Content-Type"] = "text/html"

self.response.out.write("""

<html>

<head><title>MarkCC's AppEngine Chat Room (last 20)</title>

</head>

<body><h1>Welcome to MarkCC's AppEngine Chat Room</h1>

<p>(Current time is %s; viewing the last 20 messages.)</p>

""" % (datetime.datetime.now()))

Output the set of chat messages

Ê messages = db.GqlQuery('SELECT * From ChatMessage ORDER BY time '

'DESC LIMIT 20')

Ë messages.reverse()

for msg in messages:

self.response.out.write("<p>%s</p>" % msg)

self.response.out.write("""

<form action="/talk" method="post">

<div>Name: <textarea name="name" rows="1" cols="20">

</textarea></div>

<p>Message</p>

<div><textarea name="message" rows="5" cols="60"></textarea></div>

<div><input type="submit" value="Send ChatMessage"/></div>

</form>

</body>

</html>""")

There are only two real changes:

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/persist-chat/pchat.py
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=60

MAKING CHAT PERSISTENT 61

Ê In the query itself, we’ve specified the sort order as descending, so

that the 20 most recent posts to the chat will be the first ones in

the query result (ORDER BY time DESC), and limited it to 20 results

(LIMIT 20)

Ë The query produced the messages in descending order by time,

with the most recent message first. When our users read a chat,

that’s not the order that they’re going to expect: when you’re read-

ing a chat, you want the chat to appear in natural order, which

means that the most recent message should be at the end. So we

need to reverse the order of the query result before we print it.

Adding the time-limited view

Adding in a view that selects a sub-part of the chat based on time

is more complicated than the count-limited view. It requires adding a

comparison to the query—and it runs into two of the biggest limitations

of GQL:

1. In GQL queries, you can’t do any computation. You can’t use expres-

sions like x+1. Every computation needs to be done in Python code

outside of the query, and then inserted into the query string.

2. You can’t compare things in a query directly to literal values. You

can only do comparisons between queried values and parameters.

To really get the sense of those two restrictions, we need to see some

parameters in GQL. A parameter is basically a slot in a query where

we can inject a Python value. For example, we could have written the

number-limited view as ChatMessage.gql("ORDER BY time DESC LIMIT :1",

20). “:1” is a parameter for the query, which will be replaced by the

first unnamed parameter following the query string—in this case, 20.

Parameters can be either numbered or named. If they’re named, spec-

ify their value using a named parameter to the Python call. Again, for

example, we could use a named parameter in the number-limited view

query like ChatMessage.gql("ORDER BY time DESC LIMIT :limit", limit=20).

To do the time-limited view, we have to do some time arithmetic. If we

want to show the messages posted in the last five minutes, we’ll say

that in the query as something like, “All messages whose timestamp is

larger than now minus five minutes.”

It’s easy to say “now minus five minutes” in Python using the datetime

module: datetime.now() - timedelta(minutes=5). To use it in a query, we

just need to inject it using a parameter. So we wind up with: ChatMes-

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=61

MAKING CHAT PERSISTENT 62

sage.gql("WHERE timestamp > :fiveago ORDER BY time", fiveago=datetime.now()

- timedelta(minutes=5)). And that’s all it takes: just copy ChatRoomPage,

rename it to ChatRoomTimeViewPage, and replace the query with the

fragment above, and you’ve got it.

Of course, to be able to see and test this, we need to modify the WSGIAp-

plication to direct queries to our two limited views. Our application now

has three views: the full conversation view, the time-limited view, and

the count-limited view:

Download persist-chat/pchat.py

chatapp = webapp.WSGIApplication([('/', ChatRoomPage),

('/talk', ChatRoomPoster)

('/limited/count', ChatRoomCountViewPage),

('/limited/time', ChatRoomTimeViewPage)])

We don’t yet have a nice way of moving between the views, and their

implementations have a silly amount of duplication. We’ll look at how

to clean that up in the next chapter—but for now, we’ve got something

that works.

Resources

The Python Datastore API. . .
. . . http://code.google.com/appengine/docs/python/datastore/

The official Google datastore documentation.

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/persist-chat/pchat.py
http://code.google.com/appengine/docs/python/datastore/
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=62

Chapter 5

Using AppEngine Services for
Login Authentication

Most web applications that you build with AppEngine must to be able to

keep track of users. You need to be able to let users login, and perform

tasks based on the permissions you grant them. In this chapter, we’ll

look at how to manage users, and keep track of who is issuing which

request. To do that, we’ll use an AppEngine service, which is a piece of

the AppEngine API that is independent of the webapp framework.

5.1 Introducing the Users Service

We’ve made a nice start on our chat system, but it’s awfully limited.

We started out with a design sketch that allowed multiple chatrooms.

Unfortunately, we can’t make that design work very well at the moment.

In that design, a given user could subscribe to multiple chats, and the

chat application kept track of which subscriptions different users were

subscribed to. But our chat application doesn’t have any way of keeping

track of who is making a particular request—so we don’t know which

chats to show to the user.

Taking care of logins and authentication isn’t just something that you

need for an application like a chat system. It’s something that you’ll

probably need to do in every AppEngine application that you write.

For things like login, which are ubiquitous and so necessary that they’ll

appear in nearly every application, AppEngine provides APIs called ser-

vices. A service is a module provided by the AppEngine implementation

Prepared exclusively for Jose Sierra

THE USERS SERVICE 64

Using Other Domains

If you really want to have your own logins, you can set up and
register a domain using Google sites, and then use Google’s
login service with accounts on that domain. To do that, write
the code as described here, but in the app.yaml file, declare
a secure domain using the secure: attribute. We’ll cover this in
more depth when we get to security issues in Chapter 16, Secu-
rity in AppEngine Services, on page 194

that is accessible to every AppEngine application, regardless of what

framework you use for building your application. Even if you decide to

use something like Django for your application, you can still use all of

the AppEngine services.

The easiest way to set up authentication is to use the AppEngine users

service to piggyback on Google accounts. If your application uses Google

email addresses as its main identifier, then it can work with Google

logins.

5.2 The Users Service

Google logins are supported by the users service. The users service keeps

track of a currently logged-in user, and provides capabilities to allow

your application to provide log in and log out pages.

User Objects and the Current User

The easiest thing to do with the users service is to retrieve the user

object for the currently logged-in user. You can always retrieve the user

by calling users.get_current_user(). If there’s no user logged in from that

client, the call returns None. If there is a logged-in user, you get back a

Python object with three instance methods:

nickname() A textual name associated with the user. This is frequently

the full name of the user, but it’s configurable by the user. In my

case, it’s “Mark C. Chu-Carroll”.

email() The user’s email address. In my case, “markcc@gmail.com”.

user_id() A permanent identifier for the user. Treat this as an opaque

string. The users can change their email address or their nick-

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=64

THE USERS SERVICE 65

name whenever they want, but their user_id will always be the

same. This isn’t useful for display purposes, but if you want to

record permanent information about a user—such as the set of

orders placed by a user on a commerce site—you can use this as

an identifier that will work no matter what.

Letting Users Log In

We need a login page for our users. Fortunately, we don’t need to design

our own login page—after all, every login page is pretty much the same.

The users service provides a mechanism for generating a login page auto-

matically.

The standard users service login is intended to act as an interstitial:

that is, a page the users get along the way to what they really want to

access. In our chat application, users will first get a welcome screen;

from that welcome screen, they enter the chat room to see the ongoing

conversation. But we want them to be logged in before they get access,

so we know who they are. If they’re not logged in and they ask to enter

the chat room, they’ll be sent to a login page. As soon as they’re done

logging in, they’ll be sent directly to the chat page.

With that in mind, the way that the users service works is that you ask

it to log in the user, and you provide it with a target page. After users

successfully log in, it automatically redirects them to the target page.

Our chat is very typical of this style. We can build it to work this way by

adding a bit of logic to the get method of the chat page’s RequestHandler.

At the beginning of get, we’ll check if the user is logged in, using users.get_current_user().

If that returns a logged-in user, we go ahead and render the page. If not,

we create a login page using the chat page itself as the redirect target

for successful logins. That sounds a bit hairy, but it’s really pretty sim-

ple: the call to allow users to login and then redirect back to the chat

page if they’re successful is just self.redirect(users.create_login_url(self.request.uri)).

In other words, we’re performing a redirect that tells AppEngine to send

the users to a login page. The login page is generated by the users ser-

vice, with users.create_login_url. And when the users have successfully

logged in, we redirect them to the chat page. We don’t even need to

remember the URL for the chat page—we just use the URI of the original

request, which is accessible in a request handler as self.request.uri.

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=65

INTEGRATING THE USERS SERVICE INTO CHAT 66

5.3 Integrating the Users Service into Chat

Now that we know how to do logins, we can integrate users and login into

our chat application. To do that, we need to make a series of changes

to the chat application:

1. Modify the chat page to require users to login.

2. Use the logged-in user object to set the “user” field of messages in

chat, and remove the user field from the chat message entry form.

3. Modify the post message handler to use the logged-in user.

We’ve already seen how to let users login in Section 5.2, Letting Users

Log In, on the previous page. Integrating that into our chat page request

handler is simple. The other change in the chat page request handler

is removing the name field from the form. The updated request handler

is shown below:

Download login-chat/pchat.py

class ChatRoomPage(webapp.RequestHandler):

def get(self):

user = users.get_current_user()

Ê if user is None:

self.redirect(users.create_login_url(self.request.uri))

else:

self.response.headers["Content-Type"] = "text/html"

self.response.out.write("""

<html>

<head>

<title>MarkCC's AppEngine Chat Room</title>

</head>

<body>

<h1>Welcome to MarkCC's AppEngine Chat Room</h1>

<p>(Current time is %s)</p>

""" % (datetime.datetime.now()))

Output the set of chat messages

messages = db.GqlQuery("SELECT * From ChatMessage "

"ORDER BY time")

for msg in messages:

self.response.out.write("<p>%s</p>" % msg)

self.response.out.write("""

Ë <form action="/talk" method="post">

<p>Enter new message from: %s

<p>Message</p>

<div><textarea name="message" rows="5" cols="60"></textarea></div>

<div><input type="submit" value="Send ChatMessage"/></div>

</form>

</body>

</html>

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/login-chat/pchat.py
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=66

INTEGRATING THE USERS SERVICE INTO CHAT 67

""" % user.nickname())

The login code is at Ê, and follows exactly the pattern we described

earlier. If the users are already logged in, the chat application renders

the chat for them. If they’re not logged in, it redirects to a login page,

and returns them to the chat page after they’ve logged in.

The other change is at Ë, where we removed the username entry field

from the form, and replaced it with a prompt line that uses the nick-

name fetched from the current logged in user object.

Changing the post handler is also simple. In fact, all we need to do is

add a copy of the get_current_user line, and use it in the call that creates

the ChatMessage, as shown below:

Download login-chat/pchat.py

class ChatRoomPoster(webapp.RequestHandler):

def post(self):

Ê user = users.get_current_user()

msgtext = self.request.get("message")

msg = ChatMessage(user=user.nickname(), message=msgtext)

msg.put()

Now that we've added the message to the chat, we'll redirect

to the root page,

self.redirect('/')

Now that we’ve got the ability to provide logins, we can start making

our chat application much more interesting. We build things like mul-

tiple chats, subscriptions, and other features, such as the ability to

establish which users are connected, direct private messaging between

users, and so on. Of course, nothing ever comes for free. When we

start adding these kinds of features, the HTML that we use to render

our user interface gets complicated, and we need to constantly gen-

erate the same boilerplate HTML code. That’s laborious, error-prone,

and just plain annoying. In the next chapter, we’ll look at how to add

subscriptions and multiple chats to our application, and use a facility

called templates to make it easy to generate the HTML of the UI without

errors, inconsistencies, or other kinds of grief.

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/login-chat/pchat.py
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=67

Chapter 6

Organizing AppEngine Code:
Separating UI and Logic

In all of the code we’ve written so far, we’ve been rendering the user

interfaces by writing Python code that prints out HTML. Doing that

is laborious, awkward, and error-prone. In this chapter, you’ll learn

about templates, which organize the code of an AppEngine application

by separating the code that renders the user interface from the code

that implements the application logic. With templates, instead of ren-

dering the HTML user interface code using Python print statements,

you’ll write it directly as a marked-up form of HTML. Your application

logic will stay in Python, which will invoke the templates when it needs

to generate a page.

6.1 Getting Started with Templates

Back in Chapter 3, A First Real Cloud Application, on page 36, we

sketched out a pretty advanced chat system. We designed it to sup-

port multiple simultaneous chats taking place in different chat rooms.

Users could participate in multiple chats at the same time by subscrib-

ing to different chats.

But since then, we’ve been building AppEngine applications that have

only one chat. In the last chapter, we took care of one of the aspects

of a full chat application: recognizing a logged-in user. We needed that

function both to save users the trouble of typing in their usernames

every time they say anything, and to keep track of who is participating

in which chat. We have the ability to keep track of users—but so far,

Prepared exclusively for Jose Sierra

GETTING STARTED WITH TEMPLATES 69

it’s just a convenience for the users. We’re not managing multiple chats;

there’s no information about the users that we need to keep track of or

protect.

We want to start implementing some more interesting features. To do

that, we’ll be introducing several new views. As we’ve seen in the pre-

vious chapters, adding new views can be painful, because writing code

to generate the HTML is clumsy and error-prone.

To make things both easier and more maintainable, we’ll learn to use a

facility called templates. Templates provide a flexible, easy-to-use sys-

tem for creating the HTML code that describes our user interface. It does

this by allowing us to separate the logic of our system from the appear-

ance. The logic, we’ll continue to write in Python. The appearance, we’ll

write in annotated HTML template files.

There are lots of template languages. The AppEngine webapp frame-

work includes one from the open source Django project, so that’s what

we’ll use. If you prefer another, go ahead and use it: just put the Python

files that you need into your AppEngine project, and it should work.

Why Learn Another Language?

Like all web applications, cloud applications build their user interfaces

by generating HTML that will be rendered by a browser. It’s convenient,

because it makes it easy to create all sorts of attractive interfaces on the

fly. Web browsers have a very flexible, consistent, pleasant platform for

creating user interfaces, and you can take advantage of everything the

browser provides by using HTML. Especially with the upcoming HTML5

standard, you can create beautiful interfaces using HTML.

The problem is that generating HTML correctly can be laborious and

error-prone. HTML has a very verbose syntax, and uses some of the

same quoting characters as most programming languages. That means

you must be very careful how you write the code—and no matter how

careful you are, it’s still easy to make mistakes.

Templates help solve that problem. The idea behind the use of tem-

plates is that you can separate programs into two basic parts: the com-

putational and the interface. The computational part is where you do

the work, and produce the data that you want to render in the web-

page. In the computational part, you’re mostly manipulating data—

sometimes, you might end up rendering some of it as HTML, but for

the most part, the computational part doesn’t do rendering.

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=69

GETTING STARTED WITH TEMPLATES 70

The interface part is all about generating HTML. What it does is take

the data produced by the computational part, and render it into HTML.

In pretty much every application, a large part of the HTML is fixed; it’s

boilerplate stuff. In our chat application, every page rendering has to

generate the basic HTML structure, the page headers, the message entry

form, and so on. Only the content of the message list changes: every-

thing else is exactly the same. When we’re writing in Python, that means

that there are a ton of print statements that do nothing but output fixed

strings that form a piece of the page HTML. The HTML is embedded in

the code, and that embedding is, at best, awkward.

With templates, you write the computational part of your code in Python

(or whatever language you’re using). If you need to do any HTML render-

ing as part of your computation, it’s done using HTML strings embedded

in the Python. For the interface part of your code, you write it in HTML,

and embed any computation that’s needed to insert dynamic content

using special meta-syntax in the HTML file.

In fact, you could write your entire application using templates. But

just as it’s awkward, painful, and error-prone to render the HTML from

standard Python code, it’s awkward, painful, and error-prone to try to

do complicated population using templates.

Template Basics: Using Templates to Render Chats

The first thing we can do with templates is separate the logic of retriev-

ing chat messages in the datastore from the logic of how we render a

page containing those chat messages for displaying a chat. To do that,

we’ll take the chat page of our application, write it as a template, and

then change the Python code to use the template. A really simple ver-

sion of our chat display page as a template is shown below.

Download template-chat/chat-template.html

<html>

<head>

<title>{{ title }}</title>

</head>

<body>

Ê <h1>Welcome to {{ title }} </h1>{#}

Ë <p> Current time is {% now "F j Y H:i" %}</p> {#}

Ì {% for m in msg_list %} {#}

<p> {{ m.user }} ({{ m.timestamp }}): {{ m.message }} </p>

{% endfor %}

<form action="/talk" method="post">

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/template-chat/chat-template.html
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=70

GETTING STARTED WITH TEMPLATES 71

<p>Message</p>

<div><textarea name="message" rows="5" cols="60"></textarea></div>

<div><input type="submit" value="Send ChatMessage"/></div>

</form>

</body>

</html>

In the Django template system, a template is a text file with a special

non-XML markup syntax embedded. Right now, we’re going to use it for

generating HTML, but Django templates aren’t limited to HTML. You can

use them for anything that’s built using text: CSS, XML, even Python

code!

The Django template system uses the curly braces for marking its syn-

tax. In our example, most of the contents of the template file is just

plain XML. Whatever is enclosed in curly braces will be replaced when

the template is actually used. In this first example, we only use a couple

of elements of Django syntax:

Ê The first template construct we use is a simple variable refer-

ence: in Django, variable references are written as double-braces

surrounding an identifier—so {{ title }} is a reference to a variable

named “title”. When the template is used, it will be replaced by the

contents of the named variable. A variable reference can also use

dotted identifiers; the parts after the dot are references to fields of

a Python object. We’ll see an example of that a little later.

Ë Next we see what Django calls a tag. A tag in Django is something

like a function call in a regular programming language. Tag invo-

cations are surrounded by “{%” and “%}”. The first word inside the

invocation is the name of the tag. The rest are parameters. In this

case, we want to insert the current time. Django provides a tag,

now, which will be replaced by the current time. It takes a series

of parameters that specify how to format the time:

F The textual name of the current month.

j The numeric day of the month.

Y The numeric value of the year.

H The current hour.

i The current minute in two-digit format.

There are other characters you can use in a date format—you

can look at the Django template documents for the full list. Any-

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=71

GETTING STARTED WITH TEMPLATES 72

thing that isn’t a letter in the now format string is included in the

replacement text—so the spaces and colon in the parameters to

now will be included in the text. As a result, the date is rendered

in this form: “Jul 19 2009 02:45”.

Ì Here we’ve got a for-loop implemented as a Django tag. In a Django

template file, tags can have bodies. Think of it as similar to XML: in

XML, all tags can have a set of simple parameters called attributes,

which are part of the tag itself. More complex tags can also have

content, which is some other mixture of text and HTML tags that

are embedded between the start and end of the complex tag. Django

template tags are similar: simple tags take one line, and define

everything through parameters listed in the tag itself; more com-

plex tags have content, which is everything between the tag and

its corresponding end. In Django, the end of the body is marked

by {% endTAG %}.

In this example, the tag is a loop. When the template is used,

the evaluator will loop over each value in the specified list, and

produce one copy of the tag body for each element in the list. This

loop iterates over the messages in the chat room; for each one, it

produces a copy of the body with the variables replaced using a

different message from the list of messages in the chat room.

Now that we have the template for our user interface page, we need to

invoke that template from our Python code. An updated version of the

ChatRoomPage, which uses the template, is shown below.

Download template-chat/tchat.py

class ChatRoomPage(webapp.RequestHandler):

def get(self):

user = users.get_current_user()

if user is None:

self.redirect(users.create_login_url(self.request.uri))

else:

self.response.headers["Content-Type"] = "text/html"

messages = db.GqlQuery("SELECT * From ChatMessage ORDER BY time")

template_values = {

'title': "MarkCC's AppEngine Chat Room",

'msg_list': messages,

}

Ê path = os.path.join(os.path.dirname(__file__), 'chat-template.html')

Ë page = template.render(path, template_values)

self.response.out.write(page)

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/template-chat/tchat.py
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=72

BUILDING RELATED VIEWS WITH TEMPLATES 73

To use a template, you need to get the pathname of the template file,

and then call template.render.

Getting the pathname requires a bit of a trick in AppEngine. As we

keep seeing, in the cloud you have less control over your environment

than you’re used to in a traditional application. Your application and its

data are somewhere, but you don’t know where. The AppEngine server

determines where it’s going to put your data, and it can move it at

any time, without warning. In order to access a file, you need to ask

AppEngine to tell you where the directory containing your application

files is located. AppEngine uses the Python metavariable __file__, which

is a reference to the source file for the current module. AppEngine guar-

antees that any file uploaded in the same directory as a source file can

always be referenced from the same directory as that source file. So to

find the template file, we get the directory containing our Python code

using standard Python tricks with the __file__ metavariable: just like any

other file, os.path.dirname(__file__) gives us the directory, and we get the

pathname of the template by joining that with the template name.

Once we’ve got a reference to the template file, we call template.render.

The first parameter to the call is the template, and the second is a

Python dictionary. The keys in that Python dictionary will become the

variables that can be accessed in the template. Since we reference title

and msg_list in the template, those are the keys that we put in to the

dictionary.

6.2 Building Related Views with Templates

When you’re building an application like our chat system, you typically

have multiple views that look similar, but not exactly the same. For

example, we want to have multiple chat rooms, with one view for each

chat. So we’re going to need an index view to select a chat room, plus a

view for each of the different chats. The index view and the chat views

should have similar appearances; the chats should be identical except

for the name of the chat room.

Almost every good web application has a unified look and feel to all of

its pages. A good web application isn’t just a collection of web pages.

It’s a cohesive program that provides a service to the user. Each of

the pages that make it up provide a part of that functionality. By giv-

ing all of the pages of your application an appearance that is distinct

from other applications, and which is shared by all of the parts of your

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=73

BUILDING RELATED VIEWS WITH TEMPLATES 74

Figure 6.1: Common Styling in Google Docs

application, you provide the user with the feeling that they’re using an

consistent, well-designed application. For example, take a look at the

Google Docs thumbnails in Figure 6.1. Docs presents itself as an office

suite. It starts with an initial view that looks like a windows file browser.

When you open a document, it opens a new browser window to let you

work on that document. Every Docs window has the same basic lay-

out; they all have the Google Docs logo in the upper left corner, a set

of control links in the upper right, a document title, and decorations

using a family of shades of blue. You can always tell at a glance that

a window contains something from Google Docs, because it looks like

Google Docs.

The look and feel that defines your application is created by a combi-

nation of common page layouts and shared styles defined by cascad-

ing style sheets. Both the basic structure and the shared CSS can be

defined as templates, and then individual pages can tailor the details to

fit particular requirements using subtemplates, while maintaining the

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=74

BUILDING RELATED VIEWS WITH TEMPLATES 75

The Problem with Copies

I recently had an encounter with a real-world example of the
copy problem. The site where I write my blog went through a
system upgrade. Before the upgrade, the base-path of all of
the URLs was http://.../cgi-bin/MT/; after the upgrade, the base-
path was changed to http://.../mt/. It turned out that there were
multiple places where the base-path was hardcoded. During
the upgrade, most of them got fixed, but a couple got missed.
As a result, article, comment, and administrative links all broke,
and needed to be fixed. It took two weeks to track down all of
the copies and get everything working properly; during those
two weeks, the site was a mess both for the writers and the
readers. If they’d set up a single function that computed URLs,
and then just called that function whenever they needed to
generate a URL, they could have changed one line of code in
one place, and nothing would have broken.

Don’t let this happen to you: reuse code in-place instead of
copying it!

defaults from the master template shared by everything in the applica-

tion.

These views will have common features like a headers, navigation bars,

and logos that appear on all of your pages. You can also use stylistic

elements, such as particular fonts, text styles, and color schemes to

make the pages of your application share a look and feel. All of the

elements are shared between the different views. The pages have their

own specific content, providing the page functionality, but the style of

the pages is all the same, and comes from the same code.

There’s a basic rule in programming: putting multiple copies of the

same thing in different places is a bad idea. Eventually you’ll need to

change something, and when you do, it’s too easy to miss one of the

copies. We’d really like to be able to do all of the common page parts

once, and reference them from the specific pages.

Template Inheritance

One of the most powerful features of Django templates is designed

to solve exactly this problem. It’s called template inheritance. You can

define the broadest common structure of all of the pages in your website

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=75

BUILDING RELATED VIEWS WITH TEMPLATES 76

as a master template, and then define the individual pages as variations

on that template. You can even create whole hierarchies of templates

that become progressively more specialized.

Let’s take advantage of that. We’ll create a master page layout, with a

logo on top, and a couple of customizable sections. The master template

for our chat application is shown below.

Download multichat/master.html

<html>

<head>

<title>{{ title }}</title>

</head>

<body>

{% block navbar %}

<div id="navbar">

{% for c in chats %}

c.name {% end for %}

</div>

{% endblock %}

<h1>Welcome to {{ title }} </h1>

<p> Current time is {% now "F j Y H:i" %}</p>

{% block pagecontent %}

<p> This is template text. If you're seeing this in a page rendered

by chat, something is wrong.</p>

{% endblock %}

</body>

</html>

The master template isn’t intended to be used directly. If it was, it would

generate a web page containing the message, “This is template text. If

you’re seeing this in a page rendered by chat, something is wrong.” It

provides a basic format, which other templates can build on.

The basic page layout is pretty much the same as what we’ve been

doing all along. The only change visible to a user is that I’ve added a

new logo to the top of the page. But I’ve also added a bunch of block tags

to the template. A block tag identifies a section of the template contents

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/multichat/master.html
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=76

BUILDING RELATED VIEWS WITH TEMPLATES 77

that can be replaced by subtemplates. We could use master.html as the

template for our main chat application. To take the basic view of the

chat application, and build it to use this new master template, we’ll

create a new subtemplate like the following:

Download multichat/basic.html

Ê {% extends master.html %} {#}

Ë {% block pagecontent %} {#}

<p> All chat messages as of {% now "H:i" %}</p>

{% for m in msg_list %}

<p> {{ m.user }}@{{ m.timestamp }}: m.message </p>

{% endfor %}

{% endblock %}

We declare it as a subtemplate by using the extends tag, which must be

the first thing in the file. Then we put a block tag for the block we want

to override. The result will be a template that consists of the contents

of master.html, but with its pagecontent block replaced by the message

rendering loop that we’ve been using.

So far, templates look nice, because they’ve given us a clean way to

write the HTML separately from the Python code. We’ve been able to

separate the UI and the application logic, with nothing but a parameter

set passed between them. But that’s just scratching the surface of what

we can do using templates! Template inheritance is an incredibly useful

and powerful mechanism. We’ll be using them constantly in the rest of

this book for creating better and better interfaces for our application.

Customizing Chat Views Using Templates

Let’s use what we’ve learned about templates to make our chat applica-

tion better. One thing that we could do is to improve the “last 20” view.

In the current version, it shows a very verbose form of the date and time

when a message was sent. But since most of the time we’re going to be

showing an active chat, most of the text in those timestamps is going to

be identical. It takes up space, forces messages to take up more lines

of the display, and generally makes things harder to read. Ideally, we

don’t want to include full timestamps. But we do want some indication

of time. So we can change the display of messages in the “last 20” view

so that instead of showing the full timestamp, it just annotates each

message with the elapsed time since it was sent.

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/multichat/basic.html
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=77

BUILDING RELATED VIEWS WITH TEMPLATES 78

On the computation side of things, we’ll need to modify the Python code

so that it computes the elapsed time, and adds it the messages that we

pass to the UI template; and in the UI code, we’ll need to create a new,

modified showmessage block to display the elapsed time instead of the

timestamp.

First, we need to update the computation part of the application to add

the timestamp. It’s pretty straightforward: just use Python’s standard

timedelta class:

Download multichat/tchat.py

class ChatRoomCountedHandler(webapp.RequestHandler):

def get(self):

user = users.get_current_user()

if user is None:

self.redirect(users.create_login_url(self.request.uri))

else:

self.response.headers["Content-Type"] = "text/html"

messages = db.GqlQuery("SELECT * From ChatMessage ORDER BY time "

"DESC LIMIT 20")

msglist = list(messages).reverse()

for msg in msglist:

msg.deltatime = datetime.datetime.now() - msg.timestamp

template_values = {

'title': "MarkCC's AppEngine Chat Room",

'msg_list': messages,

}

path = os.path.join(os.path.dirname(__file__), 'count.html')

page = template.render(path, template_values)

self.response.out.write(page)

The only change in this code is the addition of the loop after the GQL

query, which adds the timedelta field to the message objects. The inter-

esting thing about this little bit of code is that we’ve added a field to a

datastore object. But since it’s not a field that was declared as a data-

store property, it has no effect on the stored object—even if we were to

call put on one of the messages that we modified by adding a time delta,

it wouldn’t change anything about the stored object.

Now that we’ve updated the computational part of our application so

that it computes and stores the time since the message was sent, we

need to update the interface by replacing the showmessage block. We do

that by creating a template like the following:

Download multichat/count.html

Ê {% extends master.html %} {#}

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/multichat/tchat.py
http://media.pragprog.com/titles/mcappe/code/multichat/count.html
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=78

MULTIPLE CHAT ROOMS 79

Ë {% block pagecontent %}{#}

<p> Last 20 messages as of {% now "H:i" %}</p>

{% for m in msg_list %}

<p> {{ m.user }}: m.message ({{ m.deltatime }} seconds ago)</p>

{% endfor %}

{% endblock %}

Ê We start by declaring that this is a template extension of mas-

ter.html. That means the generated page will look like master.html,

except where we specifically override blocks.

Ë Here we override the pagecontent block from the master page. It

will replace the original block with this one, which renders a list

of messages.

6.3 Multiple Chat Rooms

Now that we know how to use templates, we can easily put together

a range of different views. Let’s use that knowledge and change our

chat application to make it more useful. In our original application

sketch, we wanted to support multiple chats with subscriptions. Let’s

get started on that by providing multiple chats; we’ll worry about the

subscription part later.

Updating the Logic for Multiple Chats

Since we want to support multiple chats, we need a way to keep a

list of the available chats. Later on, we’ll add an administrative view,

which we’ll be able to use to manage the list of chats. But for now, we’ll

just hardcode it. We don’t need to worry about inconsistent updates,

because it’s never going to be updated. It will reset to the same value

every time a chat message is initialized.

In addition, we’ll add something to the chat messages, so they know

which chat they belong to. That’s pretty trivial: just add a datastore

field to the class. We’ll also need to modify our post handler to make

it set the chat field—but we’ll see how to do that when we set up the

chat pages. The modified ChatMessage and the hardcoded chat list are

shown below.

Download template-chat/tchat.py

class ChatMessage(db.Model):

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/template-chat/tchat.py
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=79

MULTIPLE CHAT ROOMS 80

user = db.StringProperty(required=True)

timestamp = db.DateTimeProperty(auto_now_add=True)

message = db.TextProperty(required=True)

chat = db.StringProperty(required=True)

CHATS = ['main', 'book', 'flame']

We also need to make the post method that creates a chat message, so

that it sets the chat field of the chat message. We’ll do that by adding

a field to the request that triggers the post. In the post handler, we

retrieve the “chat” field from the request, and add it to the chat initial-

izer. The code for the modified post handler is shown below.

Download template-chat/tchat.py

class ChatRoomPoster(webapp.RequestHandler):

def post(self):

user = users.get_current_user()

msgtext = self.request.get("message")

chat = self.request.get("chat")

msg = ChatMessage(user=user.nickname(), message=msgtext, chat=chat)

msg.put()

Now that we've added the message to the chat, we'll redirect

to the root page,

self.redirect('/')

Building the Multiple Chat Landing Page

When someone first comes to the chat application, we want them to

get a landing page: a generic front page. For our application, that front

page shows users the last 20 messages posted to any chat. From this

page, they can see which chats are active, and then select one from the

navigation bar. From the landing page, they can’t post messages—since

they haven’t selected a chat, we don’t yet know which chat to post it to.

Now, we’ll fill in the first real page, the landing page. We’re not going

to change the toolbar. For the content, we’ll do a simple view, based on

what we did in past versions.

Download multichat/landing.html

{% extends master.html %}

{% block pagecontent %}

{% for m in msg_list %}

<p> ({{ m.chat }}) {{ m.user }} ({{ m.timestamp }}):

{{ m.message }} </p>

{% endfor %}

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/template-chat/tchat.py
http://media.pragprog.com/titles/mcappe/code/multichat/landing.html
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=80

MULTIPLE CHAT ROOMS 81

{% endblock %}

That’s exactly the body that we used in our original chat template

in Section 6.1, Template Basics: Using Templates to Render Chats, on

page 70, with one addition: the chat message displays the chat that it’s

a part of, in bold, at the beginning of the line.

To render that, we create a new request handler. It’s pretty much like

the request handlers we’ve done so far, such as the one we used for

ChatRoomCounted above.

This new chat landing page, though, has something different because

of its navigation bar: it’s got a list of chats, which the users can select.

When the users click on one of those, they get sent to a specific chat

room. The next thing we need to do is create those chat pages.

The Chat Page Template

For the actual chat pages, we’re going to be clever. Up until now, each

time we’ve wanted to change anything, we’ve created a new request

handler. But the chat pages are all identical except for the name of the

chat—and in fact, later we’re going to want to be able to create and

destroy chat pages on the fly. So we’re going to use a combination of a

chat-page template and some clever URL-handling logic in the Python

code so that we only have one handler class for all of the chats. The

Python code will use the request URL to figure out what chat room is

being requested.

The basic chat template is simple. It’s the same old message-rendering

loop that we’ve done time and again, but this time, we put the name of

the chat up in the page header, and remove it from the messages—after

all, there’s no reason to keep repeating it, since all of the messages are

part of the same chat! The template is shown below.

Download multichat/multichat.html

{% extends master.html %}

{% block pagecontent %}

{% for m in msg_list %}

<p> ({{ m.chat }}) {{ m.user }} ({{ m.timestamp }}): {{ m.message }} </p>

{% endfor %}

<form action="/talk&chat={{ chat }}" method="post">

<p>Message</p>

<div><textarea name="message" rows="5" cols="60"></textarea></div>

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/multichat/multichat.html
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=81

MULTIPLE CHAT ROOMS 82

<div><input type="submit" value="Send ChatMessage"/></div>

</form>

{% endblock %}

It’s almost the same as what we did before, except that we added a

parameter to the POST request generated by the entry form at the end

of the page, which we then use to include the name of the chat from

which a message was posted.

The code is where the cleverness comes in. We must to do two things:

we need to validate the request, and we need to customize the output

based on the URL used in the request.

That validation step is something new. Until now, we’ve relied on AppEngine

to take care of the validation for us. We mapped each specific URL onto

one specific request handler, so we always knew that an invalid request

would generate an error. But now we’re going to be mapping multiple

requests onto a single handler: every request to view a chat is going

to be handled by the same RequestHandler. Since we’re going to eventu-

ally be able to add and remove chats, there’s no fixed list of chats that

we can hardcode into the app.yaml file, or the WSGIApplication instance.

When we get a request to view a particular chat, or to post a message

to a particular chat, we need to check that the chat in the request is

valid.

Download multichat/tchat.py

class GenericChatPage(webapp.RequestHandler):

def get(self):

Ê requested_chat = self.request.get("chat", default_value="none")

Ë if requested_chat == "none" or requested_chat not in CHATS:

template_params = {

'title': "Error! Requested chat not found!",

'chatname': requested_chat,

}

error_template = os.path.join(os.path.dirname(__file__), 'error.html')

page = template.render(error_template, template_params)

self.response.out.write(page)

else:

Ì messages = db.GqlQuery("SELECT * from ChatMessage WHERE chat = :1 "

"ORDER BY time", requested_chat)

template_params = {

'title': "MarkCC's AppEngine Chat Room",

'msg_list': messages,

'chat': requested_chat

}

path = os.path.join(os.path.dirname(__file__), 'multichat.html')

page = template.render(path, template_params)

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/multichat/tchat.py
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=82

MULTIPLE CHAT ROOMS 83

self.response.out.write(page)

Ê We get the name of the chat that the user requested by decompos-

ing the URL. The new URL form has three parts: the hostname,

the resource identifier, and a query. The query consists of a set

of name/value pairs. In our case, the query will be one pair: the

query parameter name “chat”, and the requested chat name. So,

for example, to see the chat "Random", the URL would be http://

markcc-chatroom-one.appspot.com/enterchat&chat=Random.

Examining the elements of an HTTP request is a common task in

AppEngine programs, so webapp supplies an extensive library of

methods for examining and manipulating URLs. To get at query

parameters from a request URL, it provides a method get, which

takes the name of a designed query parameter, and an optional

default value to return if the query doesn’t include that parameter.

Ë As we discussed before, we need to check to make sure that the

chat requested by the URL is valid. We do that by checking it

against the global list of known chats. If the requested chat doesn’t

exist, we render an error page. The error page is generated from a

template derived from our master, so it looks like an error gener-

ated by our application, not just a typical “page not found” error.

Ì If the chat room is known, we follow the pattern we’ve used all

along, and render the chat. The only difference from what we’ve

done before is that in the query, we select only messages whose

chat field matches the chat selected by the user.

We’ve got a generic page-handler for rendering and posting messages to

all chats. What’s left? We need to update the handler for posts, to get

the chat from the message. That’s easy: we just need to add one line to

our post handler: chat = self.request.get("chat"), and then add chat=chat

to the parameters for the ChatMessage constructor call.

Just one piece remains. We have request handlers for all of our requests,

and templates for all of the pages we need to render. We need to change

the application code that maps incoming requests to the appropriate

request handler. To do that, all we have to do is change the WSGIAp-

plication record for our app. Now it needs entries for the landing page,

the generic chat page, and the post page. The updated code is shown

below.

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://markcc-chatroom-one.appspot.com/enterchat&chat=Random
http://markcc-chatroom-one.appspot.com/enterchat&chat=Random
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=83

MULTIPLE CHAT ROOMS 84

Download multichat/tchat.py

chatapp = webapp.WSGIApplication([('/', ChatRoomLandingPage),

('/talk', ChatRoomPoster),

('/enterchat', GenericChatPage)])

In this chapter, we’ve taken a big step forward in terms of the func-

tionality of our chat application. We separated the program logic from

the user interface using templates, and started to use a common page

structure, defined using a master template and template extensions, to

provide all of the pages of our application with a common appearance.

Unfortunately, despite the added function, our application is still ugly.

It doesn’t really look like an application—it looks like a bunch of web

pages. The page layouts are sloppy and generic. In the next chapter,

we’ll look at cascading style sheets (CSS), which let us describe how to

define and lay out a really nice-looking application in a web page, and

how to use CSS with templates to turn our chat application from an

ugly-but-functional system to something much better.

References and Resource

The Django Template Language: for Template Authors. . .
. . . http://www.djangoproject.com/documentation/0.96/templates/

The official Django template documentation.

Googe AppEngine Template Documentation. . .
. . . http://www.djangoproject.com/documentation/0.96/templates/

Google’s documentation on using Django templates in AppEngine applications.

The Django Book 2.0 . http://www.djangobook.com/en/2.0/

An online version of a book on the full Django framework, included a detailed

presentation of the template language.

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/multichat/tchat.py
http://www.djangoproject.com/documentation/0.96/templates/
http://www.djangoproject.com/documentation/0.96/templates/
http://www.djangobook.com/en/2.0/
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=84

Chapter 7

Making the UI Pretty: Templates
and CSS

In the last chapter, we went a long way towards filling in the missing

functionality of our application. But, to be blunt, our application is

still ugly. In this chapter, we’re going to pull our application together,

formatting and styling it using a combination of templates and CSS.

Figure 7.1: The unstyled, ugly chat interface.

Prepared exclusively for Jose Sierra

INTRODUCING CSS 86

7.1 Introducing CSS

In Figure 7.1, on the previous page, there’s a screenshot of a chat in our

application. It’s ugly, isn’t it? Or if not ugly, at least extremely bland.

It’s just a standard web page. In fact, it looks quite a bit worse than

a typical web page, because these days, pretty much every web page

uses at least some styling. We need to do something to make it look

good—make it look less like a web page, and more like an application.

We need to piggyback on the work done by the people who’ve designed

our web browsers. None of what we’re going to do to make things look

better is specific to AppEngine. In fact, it’s not really even specific to

cloud programming. We’re going to use standard HTML-based format-

ting techniques. The main difference in what a cloud application is

doing is that we’re using them to render a UI for an application, rather

than just present a pretty web page. The techniques are the same; the

goal is different. It’s going to be a bit on the awkward side: HTML and

CSS weren’t originally designed for building UIs; the functionality that

we’re going to rely on was really hijacked by early cloud-application

builders. It does the job, but it takes some getting used to.

To understand it, you need to know about about where it came from. In

the early days of the Web, people used to tweak HTML to try to produce

UIs. By creating elaborately structured documents, with tables nested

in tables nested in frames, they were able to create something that

looked OK—provided you were using the right browser version on the

right operating system and with the right screen size. But the resulting

HTML was incredibly complicated, extremely difficult to maintain, and

it wasn’t even portable between browsers.

That strategy is clearly unmanageable. Trying to combine the content

of a page with the way it should be rendered just makes a mess. What

was needed was a way of separating things: to let the appearance of a

page be something separate from the content of the page. The solution

was something called Cascading Style Sheets (CSS).

CSS allowed web developers to separate structure from appearance.

HTML is used to describe the structure of a page; you mark-up a page

based on its structural elements: sections, paragraphs, lists. CSS is all

about appearance: it provides a way of taking the structural elements

of an HTML document, and describing how they should look.

CSS separates style from structure. The idea behind CSS is roughly

analogous to what we did in the previous chapter by separating the

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=86

STYLING TEXT USING CSS 87

application logic from the UI: CSS allows us to separate the structure

of the document from its appearance. The structure is written in HTML,

and the appearance is described using CSS. There are three good rea-

sons for making this separation:

Separation of concerns. Separation of concerns is a fancy term for a

general software engineering principle: entangling different con-

cepts in one piece of code always makes things difficult. As I

described above, trying to interleave the structure of an HTML

document with the way that it’s displayed created nonportable,

unmaintainable messes. This is a principle that we’ll keep coming

back to: separating the application logic from the page rendering

in the last chapter; separating structure from appearance in this

chapter; separating rendering the basic UI from the data in the

next chapter.

Reusability. A style isn’t usually specific to a single web page. All of

the pages on a site, or all of the views that make up an appli-

cation, are usually styled in the same way. Separating the style

information lets you write it once, and then re-use it in all of your

pages, instead of generating the same boilerplate style information

over and over again. Each new page just needs to include one line

specifying the CSS document that describes its style.

Flexibility. Users may want to change attributes of the style of your

page. For example, users with visual impairments may want to

switch to a larger, easier-to-read font, or increase the color con-

trast between different elements. When the stylesheet is kept sep-

arate from the document, it’s easier for the users to tell their

browser to replace it with their own, specific style.

7.2 Styling Text Using CSS

CSS is based a very simple concept: you specify a structural element,

called a selector, and for that selector, you specify a list of property/value

pairs. For example, if we wanted to make our chatroom’s background

blue, and underline the text in the headers, we could use the CSS below:

Download css-chat/snippets.css

body {

background-color: #8888FF;

}

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/css-chat/snippets.css
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=87

STYLING TEXT USING CSS 88

h1 {

text-decoration: underline;

}

This code includes two CSS statements. The first uses the selector body,

so it will apply to the entire content of the HTML document. Inside the

style, it specifies one property, background-color, and defines the color

value using a hexidecimal RGB code for a medium blue.

The second statement is more specific. It’s selector is h1—so it only

applies to top-level headers. The property it specifies is text-decoration,

which is used to modify text by adding things like underlines, shad-

ows, and strikethroughs. This statement specifies that level-one head-

ers should be underlined.

To apply this to our chat pages, we need to save it in a file, and then

add a snippet to our HTML page template to tell the users’ browser to

retrieve the CSS file, and use it to render the page. If we put the CSS

into a file named chat-style.css, we could apply the style to the page by

adding a stylesheet link to the head part of the HTML document, as in

the following:

Download css-chat/snippets.html

<head>

<title>{{ title }}</title>

<link rel="stylesheet" media="screen"

type="text/css" href="chat-style.css"/>

</head>

With these basics in mind, let’s build a version of our chatroom using

styles. Along the way, we’ll start to see how to use CSS selectors in a

more flexible way.

Let’s start simple. Make the background of the entire page dark blue.

The welcome header will be a large attractive font, in white text, with a

medium-blue background:

Download css-chat/snippets.css

h1 {

font-family: 16px Helvetica, sans-serif;

color: #FFFFFF;

background-color: #0000A0;

}

The only new thing in this step is how we specify fonts. Fonts are a bit

complicated, because different browsers on different operating systems

have varying sets of available fonts. Instead of specifying a single font,

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/css-chat/snippets.html
http://media.pragprog.com/titles/mcappe/code/css-chat/snippets.css
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=88

STYLING TEXT USING CSS 89

we can specify a series of fonts in order of preference. If the first font

is available on the browser rendering the page, it will use that font. If

not, it will try the next, and so on. If none of the fonts listed in our style

file are available in the browser, it will use its own default. What our

code does is say that the font should be rendered in 16 point size, and

that our font preference is Helvetica; if Helvetica isn’t available, then

the browser should use its default sans-serif font.

We also specified background-color property for both the <body> ele-

ment, and the <h1> element. That’s an extremely simple use of cas-

cading. Styles, both from multiple stylesheets and from multiple state-

ments within the stylesheets, follow a set of rules about how to resolve

things when there are multiple declarations. The complete rules are

fairly complex, but the general idea is this: the most specific CSS decla-

rations always take precedence. CSS in the HTML file takes precedence

over a linked stylesheet; a page-specific linked stylesheet will take pref-

erence over a site-default stylesheet; a style property set on a nested

element will take preference over the same style property set on an

enclosing element. So the background of the h1 element will take prece-

dence over the background of the body element.

Next, we want to update the navbar. It’s going to be on lots of pages, so

we don’t want it to take up much space, but we want it to be noticeable.

We’ll make it small black text with a white background. To do this, we’ll

need to change both the HTML and the CSS. For the HTML, we’ll just

change the navbar block to the following:

Download css-chat/snippets.html

{% block navbar %}

<p id="navbar">

{% for c in chats %}

c.name

{% endfor %}

</p>

{% endblock %}

We changed the navbar so that it’s a horizontal bar of chatroom names,

and wrapped it in an annotated <p> tag. The tag includes an attribute

id=. IDs are one of the mechanisms added to HTML specifically for work-

ing with CSS. They allow us to write a CSS rule that affects one specific

element in an HTML document. Since our navbar is unique—we know

that there will only ever be one navbar in a chatroom—we can use an

identifier for it. Then we can style the navbar using a selector #navbar.

It doesn’t matter what element that ID is attached to: it could be any

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/css-chat/snippets.html
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=89

STYLING TEXT USING CSS 90

element in an HTML document. So we can change the navbar from a

paragraph to a div, or a span, or a list—and we don’t need to change

the CSS at all. The CSS for styling our navbar is shown below:

Download css-chat/chat.css

#navbar {

font-family: 8px Helvetica, sans-serif;

color: #000000;

background-color: FFFFFF;

}

The CSS here is very straightforward. We use the #navbar ID selector,

and declare the appropriate properties.

Now, let’s get to the rendering of the actual chat. In the chat, each mes-

sage is rendered as a paragraph using a <p> tag. We want some<p>

tags to be rendered as messages from other users, and some to be ren-

dered as messages from the user viewing the page—and we want all

of the message paragraphs to be rendered differently from other para-

graphs on the page.

Once again, HTML comes to the rescue. There’s a way to mark tags on

the page that allows us to specify certain instances of a particular XML

tag that should be rendered in a particular way. You can annotate any

HTML tag with a class= attribute, and then you can write selectors that

apply to any tag that declares a particular class= value, or to a specific

tag (like <p>) that declares a class. In our chat application, we’ll do the

specific one first. The CSS styles can specify a style for unmarked <p>

tags, and a special style for marked tags. According to the usual CSS

“most specific rule,” the style for the specific tags will overrule the style

for the generic tags. So we’ll write two styles for the two types of chat

messages. For messages sent by the user viewing the page, we’ll draw

the text in plain white. For messages sent by anyone else, we’ll draw

the messages in yellow, with a darker background. The CSS to do that

is shown below:

Download css-chat/chat.css

p.sentbyme {

color: #FFFFFF;

font-family: 9px Helvetica, sans-serif;

}

p.sentbyother {

color: #DDDDFF;

font-family: 10px Helvetica, sans-serif;

background-color: #000080;

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/css-chat/chat.css
http://media.pragprog.com/titles/mcappe/code/css-chat/chat.css
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=90

STYLING TEXT USING CSS 91

}

As you can see, the selector for a <p> with the attribute class= set to

sentbyme is written p.sentbyme.

Now, to use that CSS, we need to modify either the HTML page tem-

plate or the Python application logic in order to cause it to attach dif-

ferent classes to messages sent by the user viewing the page, versus

messages sent by other users. We make this decision by asking what’s

being changed. Is this a change in the application logic, or just the

application’s appearance?

In this case, it’s just appearance, so we’ll do it with the template. We’ll

render the chat page using a template extension that includes a condi-

tional test to decide which class to use for each message. The template

is shown below:

Download css-chat/distinct-messages.html

{% extends master.html %}

{% block pagecontent %}

{% for m in msg_list %}

Ê {% ifequal msg.sender m.user %} {#}

<p class="sentbyme">

{% else %}

<p class="sentbyother">

{% endifequal %}

({{ m.chat }}) {{ m.user }} ({{ m.timestamp }}): {{ m.message }} </p>

{% endfor %}

<form action="/talk&chat={{ chat }}" method="post">

<p>Message</p>

<div><textarea name="message" rows="5" cols="60"></textarea></div>

<div><input type="submit" value="Send ChatMessage"/></div>

</form>

{% endblock %}

At Ê, we use a new bit of Django templates. The ifequal tag takes two

variables, and checks to see if, according to Python, they’re equal. If so,

it outputs the HTML text between the ifequal and the else; otherwise, it

outputs the text between the else and the end of the ifequal block. So

our code checks to see if the sender of a message is the same as the

name of the user viewing the page—if they are the same, it generates

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/css-chat/distinct-messages.html
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=91

PAGE LAYOUTS USING CSS 92

a <p> tag specifying the sentbyme class; otherwise, it generates a <p>

tag specifying the sentbyother class.

We can often dispense with the tag-names in the CSS. We can specify a

style rule that applies to any tag with a particular class. If we were to

leave out the p in the style rules above, so that the selectors were just

.sentbyme and .sentbyother, those style rules would apply to any tag that

had the class. That can be a very useful thing, for two reasons:

1. There are properties that we might want to use in many places

in our document. For example, we might want to be able to make

some of our text red; we could create a class red. Then anywhere

we wanted to use red text—whether it was a header, a paragraph,

a small section of boldfaced text—we could add class="red" to the

tag.

2. When building an application, we can experiment with different

layouts. For example, we started with our navigation bar as a bul-

leted list, and then changed it to a horizontal list. We can set dec-

orative properties of the user interface elements (such as colors

and font styles) using a class, and then when we change the way

that we write them in XML, we won’t need to change our CSS.

7.3 Page Layouts Using CSS

We’ve seen how CSS makes things look more visually attractive by con-

trolling fonts, colors, and decorations. But for building a user interface,

we’re still missing something incredibly important: layout. To make a

UI that is both attractive and usable, we need to control where things

are on our screen. Leaving the layout of our user interface up to the

layout engine of the users browser really isn’t an acceptable option.

Browsers render simple HTML to be good for reading a web page, not for

automatically producing polished user interfaces.

Our user interface is composed of a collection of boxes; a mockup of

what we’d like it to look like is shown in Figure 7.2, on the following

page. It’s got a welcome header, which is a box the full width of the

screen; a navigation bar running vertically up the left-hand side of the

screen; an area showing the chat transcript; and beneath the transcript

is the entry form. Each of those elements are, basically, a rectangular

region, and we want them to be laid out in a specific way.

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=92

PAGE LAYOUTS USING CSS 93

 MarkCC (10:46): Hello, is there anybody there?
 Prag (10:47): Yup, I'm here.
 Prag (10:47): So how's the book coming?
 User Jim has entered.
 MarkCC (10:48): It's coming along well. I'm writing about the chat
 application.

Transcript Area

Entry Area

Title/Welcome header

N

a

v

b

a

r

Figure 7.2: The block structure of the chat user interface

We must define what the boxes are, and how they should be laid out.

From what we’ve done so far, you can probably guess what’s coming:

there’s an HTML element for describing what’s in a box (the structure),

and CSS properties for describing how to lay it out (the appearance).

Structuring Documents with div Elements

The HTML<div> element can contain any collection of other HTML tags

and elements—including other <div>s. Its only purpose is to describe

a structure made up of a collection of other elements. Without CSS

altering layout and appearance, you can’t even see where the <div>s

are in a document—by default, they have no visual properties at all.

They just produce a box that you can then reference via CSS selectors.

Let’s update our basic page template so it’s structured using <div>

elements.

Download css-chat/master.html

<html>

<head>

<title>{{ title }}</title>

<link rel="stylesheet" media="screen"

type="text/css"

href="chat-style-layout.css"/>

</head>

<body>

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/css-chat/master.html
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=93

PAGE LAYOUTS USING CSS 94

<div id="header-block">

<h1>Welcome to {{ title }} </h1>

<p> Current time is {% now "F j Y H:i" %}</p>

</div>

<div id="navbar-block">

{% block navbar %}

<div id="navbar">

{% for c in chats %}

c.name {% end for %}

</div>

{% endblock %}

</div>

<div id="content">

{% block pagecontent %}

<p> This is template text. If you're seeing this in a page rendered

by chat, something is wrong.</p>

{% endblock %}

</body>

</div>

<div id="entry-form">

{% block entry %}

{% endblock %}

</div>

</html>

This is really just the master template from the last chapter—except

that we took each of the blocks from our UI sketch in Figure 7.2, on the

previous page, surrounded the HTML for that part of the UI in a <div>

element, and tagged it with an id= attribute.

Flow-Based Layout

We have the HTML for our applications view structured into a collection

of boxes. Now we need to write the CSS to lay it out. CSS provides a

huge number of properties that we can use to manage the way that the

page gets laid out, to make it look like a natural user interface.

The catch (and there’s always a catch, isn’t there?) is that layout is very

complicated. It’s just the nature of the beast: we’re trying to describe

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=94

PAGE LAYOUTS USING CSS 95

how to lay things out in browsers windows that could be any size,

on computer displays with different resolutions, using different layout

engines in different browsers.

We describe layout using flow constraints. The basic idea is that without

CSS layout properties, browsers lay the elements of an HTML page out

by flowing text into the page. An HTML page starts with a rectangle

representing a blank line. Text is flowed into that line until it’s full.

Once it fills up, a new line is created beneath it, and then the text is

flowed into that box. So we wind up with the page laid out by flow

text into rectangular regions of the screen: left to right and then top

to bottom. To alter layout, we jump in to that process. For example,

we can interrupt it by positioning a box in a specific position on the

screen—and the rest of the page content will flow around it.

The way we describe how to lay things out on the screen is going to be

based on flow. Our HTML can’t just be a collection of <div>s in any old

order, which we’ll then position on the screen using layouts—the order

in which things appear is going to have a major effect on where they’re

going to wind up, and what our user interface is going to end up looking

like.

CSS gives us two real tools for building a layout: floats and clears.

Floats

A float is a <div> (or other HTML element) whose CSS style includes a

float attribute. In layout, floats (true to their name) float between the

sides of the page. The way that they work is very simple: the float gets a

vertical position by following the standard flow layout. But then, instead

of sitting wherever it landed, it gets floated to the side, and other ele-

ments can then be flowed around it.

That’s confusing enough that we’ll look at an example. Let’s put together

a little mockup of our chat UI, and see what it looks like without using

floats, and then we’ll add the floats and see how it changes. We’ll do

mockups of a navigation sidebar, and a chat view area. The HTML is

shown below, and you can see what it looks like when it’s rendered

without any CSS in Figure 7.3, on the following page.

Download css-chat/flow-mockup.html

<html>

<head>

<title>Flow UI Mockup</title>

<link rel="stylesheet" media="screen"

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/css-chat/flow-mockup.html
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=95

PAGE LAYOUTS USING CSS 96

Figure 7.3: A mockup of the chat interface

type="text/css" href="flow-mockup.css"/>

</head>

<body>

<div id="sidebar">

Chatter

Work

Play

Planning

Family

</div>

<div id="body">

<p>"Lorem ipsum dolor sit amet, consectetur adipisicing

elit, sed do eiusmod tempor incididunt ut labore et

dolore magna aliqua. </p>

<p> Ut enim ad minim veniam, quis nostrud exercitation

ullamco laboris nisi ut aliquip ex ea commodo

consequat. </p>

<p> Duis aute irure dolor in reprehenderit in voluptate

velit esse cillum dolore eu fugiat nulla pariatur. </p>

<p> Excepteur sint occaecat cupidatat non proident, sunt

in culpa qui officia deserunt mollit anim id

est laborum.</p>

</div>

</body>

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=96

PAGE LAYOUTS USING CSS 97

Figure 7.4: A mockup of the chat interface

We can add make the sidebar float using CSS:

Download css-chat/flow-mockup.css

#sidebar {

Ê float: left;

Ë border: 2px solid #0000FF;

Ì padding: 5px;

margin-right: 5px;

}

Ê The float property can be set to either left, right, or none. left, as in

our example, means that the element should be floated to the left;

right means that the element should float over to the right; none

allows you to unfloat something that inherited a float property

from its class.

Ë The border property lets you draw a border around the edges of

that <div>. It’s got the format “width style color”. style describes

what the border outline should look like: it can be solid, dotted,

dashed, doublegrooved, ridge, inset, or outset. For this, we’ll use a

simple solid outline.

Ì To make things look good, we’ll frequently want to add small amounts

of space around things. CSS allows you to use two kinds of space:

margins and padding. Margins are space added outside of a <div>

box; padding is space added inside the box.

The result of using this style is shown in Figure 7.4.

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/css-chat/flow-mockup.css
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=97

PAGE LAYOUTS USING CSS 98

Figure 7.5: Chat mockup with two-column floats

Figure 7.6: Chat mockup with floats and non-floats

Clears

As you can see in Figure 7.4, on the preceding page, the text of the body

block flows around the sidebar. It appears next to the sidebar, up to the

point where the sidebar ends, and then it flows to the left margin.

We could prevent the transcript text from flowing around the sidebar

by making it into a float as well. If we did that naively—just setting

float: right;—what we’d get would look just like Figure 7.3, on page 96.

By default, floats are kept separate, and when it comes to positioning

them, each float is treated as if it were the full width of the page. Since

the transcript is a float that floats right and the navbar is a float that

floats left, and they’re both treated as full-page-width floats in the flow

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=98

PAGE LAYOUTS USING CSS 99

layout, they won’t appear side by side; they’ll be vertically stacked in

the layout. What we need to do in order to get them to position nicely

is to give them widths. Since we’re doing this inside a web browser, the

page-width is variable—so we’ll usually describe positions and widths

using percentages. We can use absolute measures, but most of the

time, it’s better to use relative ones. In order to position the elements

in our mockup the way we want, we’ll need to set widths. An updated

stylesheet is below; the result is show in Figure 7.5, on the preceding

page.

Download css-chat/flow-twocol.css

#sidebar {

float: left;

border: 2px solid #0000FF;

padding: 5px;

margin-right: 5px;

width: 20%;

}

#body {

float: right;

width: 70%;

}

p.allclear {

clear: both;

}

This looks good, for what it is—but if we tried to add more to the UI,

such as the entry block at the bottom, as in our mockup, it would

end up flowing around the two floats. If the navbar was shorter than

the transcript, other things would flow to the left around it—as in Fig-

ure 7.6, on the previous page.

What we need is a way of saying “Don’t flow around this.” And that’s

what a clear is for. If we add clear: both; to our CSS for any element, we’ll

get what we wanted. You can say clear: left;, which will clear left-floats;

right, which will clear right-floats; or both, which will clear all floats.

Let’s add a class “allclear” to the <p> tag for the additional text, and

add p.allclear { clear: both; } to our stylesheet. The result is in shown in

Figure 7.7, on the following page: exactly what we wanted.

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/css-chat/flow-twocol.css
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=99

BUILDING OUR INTERFACE USING FLOWED LAYOUT 100

Figure 7.7: Chat mockup with floats and clears

7.4 Building Our Interface Using Flowed Layout

Now we have a basic idea of how to put our interface together. We

just need to polish it a bit, and write the CSS to make it look the way

we want. Once we understand how CSS works, getting a respectable-

looking interface is pretty easy—and getting from that to something

that’s really terrific isn’t difficult, but it’s time-consuming. We will want

spend some time tweaking various options, shifting margins, chang-

ing colors, re-arranging elements, and so on. It takes time, but it’s

worth the effort: the difference between something that looks terrific,

like GMail, and something that looks mediocre (like the current version

of our application) is just the amount of time spent polishing the CSS.

Getting back to our chat app, we’ve got four basic elements to our inter-

face. There’s a welcome bar at the top of the application. Beneath that,

there’s a navigation bar over to the left, and beside it, there’s the chat

transcript. Beneath those, taking up the full width of the window, is

a pane containing the new-message entry form. The CSS for rendering

that is below.

Download css-chat/app.css

body {

background-color: #8888FF;

}

#header-block {

font-family: 16px Helvetica, sans-serif;

color: #FFFFFF;

background-color: #0000A0;

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/css-chat/app.css
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=100

BUILDING OUR INTERFACE USING FLOWED LAYOUT 101

border: 2px ridge #0000F0;

}

#navbar-block {

float: left;

width: 20%;

font-family: 8px Helvetica, sans-serif;

color: #000000;

background-color: FFFFFF;

border: 2px ridge #0000F0;

padding: 4px;

margin-right: 4px;

}

#transcript-block {

padding: 4px;

float: right;

width: 75%;

font-family: 8px Helvetica, sans-serif;

background-color: 444444;

color: #FFFFFF;

border: 2px ridge #0000F0;

}

#entry-block {

clear: both;

border: 2px ridge #0000F0;

margin-top: 4px;

}

p.sentbyme {

color: #FFFFFF;

font-family: 9px Helvetica, sans-serif;

}

p.sentbyother {

color: #DDDDFF;

font-family: 10px Helvetica, sans-serif;

background-color: #000080;

}

There’s nothing complicated here: we just put the things we’ve been

talking about together. We’re using colors, padding, borders, floats, and

clears to create the user interface structure that we want. We can test

the CSS by using a fake-file; that is, a simple HTML file that follows the

same structure as the pages that will be generated by our application’s

templates. The fake file contains:

Download css-chat/fake-ui.html

<html>

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/css-chat/fake-ui.html
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=101

BUILDING OUR INTERFACE USING FLOWED LAYOUT 102

<head>

<title>MarkCC's AppEngine Chatroom</title>

<link rel="stylesheet" media="screen"

type="text/css" href="app.css"/>

</head>

<body>

<div id="header-block">

<h1>Welcome to MarkCC's AppEngine Chatroom </h1>

<p> Current time is August 25 2009 8:39</p>

</div>

<div id="navbar-block">

<p>CHATS</p>

Work

Play

Write

Misc

</div>

<div id="transcript-block">

<p class="sentbyother">Hi. How's it going?</p>

<p class="sentbyme">Not bad. Making progress, slowly.</p>

<p class="sentbyother">That's good. What about work?</p>

<p class="sentbyme">Work is cool, going really well.</p>

</div>

<div id="entry-block">

<form action="/talk&chat=thischat" method="post">

<p>Message</p>

<div><textarea name="message" rows="5" cols="60"></textarea></div>

<div><input type="submit" value="Send ChatMessage"/></div>

</form>

</div>

</body>

</html>

And the rendered result is shown in Figure 7.8, on the next page.

Once we’re happy with how the faked one looks, we can hook it up to

the live application: add the stylesheet link line to the master template,

and upload it to AppEngine.

As we’ve seen in this chapter, styling an AppEngine application to make

it look good is a big job. We need to interact with the browser layout

algorithm to get things positioned the way we want, but with the capa-

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=102

BUILDING OUR INTERFACE USING FLOWED LAYOUT 103

Figure 7.8: Faked chat interface for testing CSS

bilities given to us by HTML and CSS, we’ve been able to get to the point

where our chat application looks good.

In the last couple of chapters, we’ve been going through a process of

separation of concerns: we’ve separated storage from application state,

rendering from application logic, and now page structure from appear-

ance. In the next chapter, we’ll continue this process, using a web tech-

nology called AJAX to separate out user interface controls from the

other aspects of our program—and in the process, we’ll make our appli-

cation behave more like a traditional desktop application. Users won’t

need to do things like hit the refresh button to see new chat messages—

our interface control layer will take care of that automatically.

References and Resources

CSS: the Definitive Guide http://oreilly.com/catalog/9781565926226

An excellent book that provides a detailed description of CSS, selectors, style

attributes, and all of the other things that you’ll need.

The Art and Science of CSS. . .
. . . http://pragprog.com/titles/stp-ascss/the-art-science-of-css

Another textbook providing a very guide to how to use CSS to produce visually

pleasing web applications.

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://oreilly.com/catalog/9781565926226
http://pragprog.com/titles/stp-ascss/the-art-science-of-css
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=103

BUILDING OUR INTERFACE USING FLOWED LAYOUT 104

CSS Tutorial . http://www.w3schools.com/css/

An online CSS tutorial with interactive testing of different CSS styles and

attributes.

IronMyers Layout Examples http://layouts.ironmyers.com/

An excellent online resource containing HTML and CSS templates for 224 dif-

ferent web element layouts.

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://www.w3schools.com/css/
http://layouts.ironmyers.com/
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=104

Chapter 8

Getting Interactive
In this chapter, we’re going to make a huge leap forwards in terms of

how our application behaves. Instead of relying on the user to con-

stantly hit refresh to see new messages, we’re going to make our chat

service interactive. In order to do that, we’ll learn about:

• JavaScript, the programming language embedded in your web browser.

You can create interactive elements in your interface by embed-

ding JavaScript programs in an application page.

• The document object model, which represents HTML as a pro-

grammable object, allowing you to change parts of your UI using

content of a web page that you can alter using JavaScript pro-

grams.

• AJAX (asynchronous JavaScript and XML), a technique that lets

you send commands and requests to a server without reloading a

page, allowing you to handle actions and updates in your interface

without having to do reloads.

• The model-view-controller (MVC) paradigm for applications design,

which is a powerful standard architecture for separating the com-

ponents of an interactive application.

8.1 Interactive Web Services: The Basics

So far, our chat room has been frustratingly static. When we look

at a chat in our browser, we see only the messages posted the last

time the user manually loaded the page, either by posting new mes-

sages or clicking the refresh button in the browser. That’s not really

Prepared exclusively for Jose Sierra

INTERACTIVE WEB SERVICES: THE BASICS 106

how we expect applications to work—we expect them to be dynamic—

constantly updating themselves as the data underlying them is updated.

In a chat room, we expect to see chat messages posted by other users

as soon as they post them—we don’t expect to have to manually ask the

application if there are any new messages!

The problem is we don’t have any way to make things interactive. We

built our application using a client-server request-response model. In

fact, we didn’t really build a client at all. We implemented a server, and

used the pre-packaged functionality of the web browser as a client. In

the current version of our cloud-programming model, the browser is the

client, and all it does is render content. If we want to make our cloud

service work like a real application, we need to add code that runs on

the client. The key to building an interactive UI is a technology called

AJAX, which lets us use JavaScript code that runs inside the browser,

providing rich client functionality.

How does it work? First, modern browsers include an interpreter for

JavaScript, a programming language that can be embedded in HTML.

With JavaScript, you can embed programs in your application’s pages

that respond to user as on actions. So when a user clicks on a button,

you can handle it immediately, in the browser.

Second, your JavaScript program can manipulate the entire HTML page,

or any portion of it, as a object, called a DOM (document object model)

object. When you change the DOM object for your page, that immedi-

ately changes what the user sees in their browser. With JavaScript and

the DOM object for your application’s pages, you can create applica-

tions that immediately respond to user actions.

Enough theory—let’s try a bit of programming. We’re not going to do

anything too fancy yet. In the last chapter, we changed the display of

chat messages to distinguish between different messages. What we’re

going to do now is add a button that turns that on and off. When the

users first load the application, all of the messages in the chat tran-

script will be displayed in the same font. When they click the button,

the display will change so that messages sent by other users are high-

lighted.

We’re going to handle this step with CSS classes. We’ll place a CSS

class on messages from other users to distinguish them from mes-

sages sent by the user viewing the page. When the user clicks the color-

change button, we’ll walk through the DOM for the chat messages, and

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=106

INTERACTIVE WEB SERVICES: THE BASICS 107

change attributes of those messages to make them appear differently.

We’ll have three different CSS classes for messages: “self”, “other“, and

“other-colored”. When the user first loads the page, all of the chat mes-

sages will be tagged with either “self” or “other”. When the user clicks

the “highlight” button, we’ll go through and change all of the “other”

messages to “other-colored”. In order to be able to recognize the mes-

sages that we need to change, we’ll tag them with a name= attribute—

then we’ll be able to change the styling of messages by searching for

elements with the attribute, and changing their class= attribute.

Before we put things together, let’s start with the JavaScript, which will

find the chat section of the page, and then walk through that structure

looking for <p> tags that have the other class. To make it easy to find

the appropriate section, we’ll attach an ID to the <div> for the chat

transcript section.

Download interactive/twiddle.js

Ê <script type="text/javascript">

function highlightMessages() {

Ë var chatBlock = document.getElementById("chat-transcript");

Ì var chatMessages = doc.getElementsByName("other");

for (c in chatMessages) {

// Change the class attribute to be "other-highlight"

for (a in c.attributes) {

if (a.name == "class") {

Í a.value = "other-highlight";

break;

}

}

}

}

</script>

Î <input type="button" value="Highlight Others"

id="HighlightButton" onclick="highlightMessages()"/>

Ê To embed JavaScript code in an HTML page, put it inside a <script>

tag.

Ë To change the styling of other users’ messages, we must find the

elements whose class= tag needs to be changed. We’ll start by find-

ing the <div> element. In JavaScript, we can always access the

DOM object for the document being displayed using the global vari-

able document. The DOM provides lots of methods for finding and

manipulating the elements of the page. Right now, we’ll use getEle-

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/interactive/twiddle.js
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=107

THE MODEL VIEW CONTROLLER DESIGN PATTERN 108

mentById, which returns us the DOM object for the element that’s

tagged with an id= element that has the value “chat-transcript”.

Ì Next, we want to find the set of messages nested in the transcript

with their name=; attribute set to the value “other”—that is, the

set of messages sent by other users. Again, the DOM provides a

method to do exactly what we want: getElementsByName, which

returns an array of the elements that have a particular value for

their name attribute.

Í Now, finally, we can update the class= attribute to highlight the

messages. For each element in the array of messages to update,

we need to find its class= element, and then update it. To change

something in the DOM, we just alter the properties of the objects

directly: so we can update the class= attribute just by assigning a

new value to its value property.

Î Now all we need to do is hook the JavaScript function into the UI.

Create a button element in the <form> part of the page, and con-

nect the function to the button by putting a call into the onclick=

attribute of the button.

On the server side, we need to make a very small change. Up to now,

we haven’t been applying name attributes to messages in the transcript.

Doing that is simple: it’s just a one-line change to the template.

8.2 The Model View Controller Design Pattern

When we started our chat application, the code was pretty simple:

we had a couple of message handlers in Python, and those handlers

printed out HTML for the interface. As we expanded the chat applica-

tion and made it more powerful, flexible, and attractive, we’ve added

new techniques and languages for managing the complexity of the var-

ious bits and pieces of our program. But now we’re getting to the point

where the number of bits and pieces is starting to get confusing.

Now, our application consists of:

1. Server-side message handlers written in Python.

2. Templates for HTML pages written using Django.

3. User interface layout management written in CSS.

4. User interface interaction code written in JavaScript.

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=108

THE MODEL VIEW CONTROLLER DESIGN PATTERN 109

All of this has been manageable so far because our code has always

followed a basic structure. We’ve built everything by focusing the struc-

ture of our code around individual HTML pages. We wrote request han-

dlers, and in each request handler, we generated a full HTML page for

rendering on the users browser. That’s given us an organized architec-

ture for our application.

But now we’re about to take another step toward making our appli-

cation even more interactive, using AJAX. With AJAX, we’re no longer

going to be writing code in which each page is generated completely by

one handler. In order to keep things organized and maintainable, we

must think about the architecture of our system: we need a disciplined

way of organizing all of the pieces that combine to become our cloud

application.

Fortunately, cloud applications are well-suited to one of the oldest and

most powerful design patterns for user interfaces: model-view-controller.

If you hark back to the early days of graphical user interfaces, you’ll

wind up looking at Smalltalk, which is where most modern GUI ideas

got their start. Windows, buttons, mice, and menus all came from

Smalltalk. In Smalltalk, programmers built their interfaces using a

three-part design pattern. More than 30 years later, we’re still using

that design—and it’s an almost perfect match for the way that we’ll

build user interfaces for cloud applications. The structure of an MVC

application is illustrated in Figure 8.1, on the following page.

In MVC, the interface has three components:

The model. The application logic of the system. The model is imple-

mented around the basic concepts of the data and operations that

the application is intended to perform. In the model, you don’t

really consider the interface at all: the model is completely sepa-

rate, and only works in terms of the underlying application data.

For cloud applications, the model is the server code: the server

can’t really talk to the client—it needs to wait for the client to send

it requests. It’s totally decoupled from the user interface.

The view. The view is the visible user interface: the display elements,

entry boxes, and so on. In a cloud application, the view is written

in HTML. It’s got no real behavior of its own: it’s just a bunch of

display elements, and the code (in HTML and CSS) that’s needed to

render it in an attractive way. The view really doesn’t care about

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=109

THE MODEL VIEW CONTROLLER DESIGN PATTERN 110

MODEL

- Manages application state
- Responds to queries about state
- Performs state changes in response to commands

VIEW

- Displays application views
- Sends user gestures to controllers
- Renders state updates from either
 model or controller

CONTROLLER
- Manages interactions between model and view.
- Selects views
- Translates view actions into commands or requests
- Notifies views when to update.

msg: string

ChatMessage

name: string

ChatRoom

name: string

ChatUser

layout
document

updatesactions

requests/
commands

data/responses

Figure 8.1: The structure of a cloud MVC application

the application logic or data: it’s capable of rendering things when

it’s told to.

The controller. The controller is the bridge between the client and the

server. It’s the fundamental piece that we’ve been missing so far.

The controller takes interface actions that are produced in the

view, and translate those into operations that can be performed

in the model, and to take content data produced by server, and

translate it into a form that the view can render. In the cloud, the

controller is the JavaScript code that’s executed inside the users’

browser.

MVC is a natural way for us to build cloud applications, because the

concepts of the MVC model fit well with the set of pieces we’ll build for

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=110

TALKING TO THE SERVER WITHOUT DISRUPTION 111

our applications. The different languages we need to use to build a good

cloud app force us to separate the application into at least three com-

ponents: server code (in Python or Java), rendering code (in HTML and

CSS), and interaction code (in JavaScript). MVC provides us with an easy

way to understand what functionality belongs in which components.

In addition, it brings with it a long history of designing applications

using those three basic components, which we can take advantage of

in designing our cloud applications. Of course, the cloud is different, so

the architecture isn’t exactly the same as the old Smalltalk UIs, but the

basic idea holds. The main difference is that in cloud MVC, there’s less

direct contact between the model and the view. In classic MVC, when

data in the model is modified, the model sends updates directly to the

view; in cloud MVC, once the view is created, the model doesn’t get to

talk to it directly, but instead it needs to send all of its updates to the

controller, which then updates the view.

If you think about it, MVC is really nothing but the next step in the

process we’ve been following all along. As our application has gotten

more complicated, we’ve been decoupling things—separating compo-

nents. We’ve separated rendering from computation by putting the ren-

dering in templates and the computation in Python. We’ve separated

style from content, by putting the content in HTML, and the style in

CSS. And now we’re just adding another layer of separation in exactly

the same style: our client is going to have both a user interface (content

and style) and executable code; we’re separating those into the view (in

HTML and CSS) and the controller (JavaScript).

As we continue to develop our chat application, we’re going to keep MVC

in mind: it’s the best basic structure to describe the way a cloud appli-

cation can be divided into logical pieces. That’s what we did earlier in

this chapter: we separated chat into the model (the server, with its data-

store storing the chats, and query handlers managing interaction with

clients), the view (the HTML and CSS documents that provided the basic

UI), and the controller (the JavaScript that did all of the interaction).

8.3 Talking to the Server without Disruption

At the beginning of this chapter, we used JavaScript to create dynamic

interactions in the user interface, without needing to talk to the server.

That’s useful, but it’s also very limiting: we can only build features that

use data in the HTML document being displayed by the user’s browser.

We can’t do anything that needs more data.

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=111

TALKING TO THE SERVER WITHOUT DISRUPTION 112

Of course, we want to be able to do things that rely on getting data from

the server. We can get data from the server with what we know, but

always within the standard synchronous cycle of client-server inter-

action of the browser: we write client code that sends requests to the

server; the server responds to those requests; and when the clients

browser receives the response, it renders it. Without doing something

special, we can’t avoid that basic request-response-render process.

The request-response-render cycle really isn’t enough. We really want

to write our chat application so that it automatically updates the dis-

play whenever there’s a new chat message. But our chat application

waits for the user to do a manual refresh. We could write a piece of

JavaScript with a timer, which automatically refreshes once a second.

But every time that refresh happened, it would be very disruptive to the

users. Their interfaces would go blank, and then redraw. If they started

typing a new message, that message would be lost when the browser

refreshed. That’s absolutely not what we want.

What we need to do is talk to the server asynchronously. That is, we

need to write some code that runs separately from the usual request-

response-render cycle. Code that does that is called AJAX: asynchronous

JavaScript and XML. It uses a JavaScript construct called an XMLHttpRe-

quest. XMLHttpRequest is, frankly, rather an ugly hack. Like a lot of

the tools that we use for programming the client-side of a web-based

cloud app, it’s basically an ad-hoc thing that someone slapped together

because they really needed it, rather than something carefully designed

as part of a toolkit for building UIs. Once people starting using it, it

became a standard, and now we’re pretty much stuck with it. (As we’ll

see in Section 9.3, RPC in GWT , on page 133, the AJAX can be wrapped

up and hidden under the covers, so that you don’t need to deal with the

ugliness—but it’s always best to understand what’s really going on.)

The key thing about an XMLHttpRequest is that it’s asynchronous, which

means when a request is sent, the sender doesn’t wait for a response.

Normally, when we write code that makes HTTP requests, we do it

with a function call: we call a method to send the request, and the

return value of that function call is the response to the query. The

code blocks—it does nothing but wait until it gets a response. But an

XMLHttpRequest doesn’t block. Instead, when we create an XMLHttpRe-

quest, one of the parameters is a function, called a callback. When the

client’s browser receives a response to the request, it invokes the call-

back function. So the client never blocks—it just continues along, and

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=112

TALKING TO THE SERVER WITHOUT DISRUPTION 113

XMLHttpRequest Is Not an XML HTTP Request

XMLHttpRequest is incredibly poorly named. In reality, it’s not a
request, and it’s got nothing to do with XML.

XMLHttpRequest is a request manager. It’s an object used to cre-
ate requests, send requests that it was used to create, and han-
dle the responses to requests that it sent.

The most important thing about XMLHttpRequest is that it’s capa-
ble of generating and sending a request outside of the normal
browser request-response-render cycle, and it can handle the
requests asynchronously, so that your program doesn’t need to
wait for a response.

the user gets a very smooth user interface, without any interruptions

or refreshes. As soon as a response is received, the callback is invoked,

and the user interface is updated with the latest information.

Described that way, it all sounds very abstract. But it’s really pretty

simple—and the best way to show that is by writing code. We’ll go

straight to what we really want: a dynamically updated chat view.

To do that, we need to write a bunch of pieces:

1. A server request handler that serves the user interface frame with-

out any chat data.

2. A server request handler for fetching chat data (new messages).

3. A JavaScript component that requests updates from the server,

and then adds messages to the transcript whenever it recieves

new data.

The Model: Chat’s Request Handlers

The first thing we need to do is build a request handler on the server.

We’re going to split our request handler into two pieces by separating

the handler that sends the user interface to the client from the handler

that sends the data to the client. The first handler, which sends the

UI to the client, is basically sending the view and the controller to the

browser, so that it can run as the client for our application. Then the

controller will send requests for data to the server, which will be sent

by the second handler.

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=113

TALKING TO THE SERVER WITHOUT DISRUPTION 114

The basic request handler is trivial. We’ll take the same template we’ve

been using, and create a specialization of it that emits a blank tran-

script area. You can see the template in Section 8.3, The Chat View, on

page 117. The handler will just be the same handler we’ve been using,

only with that template.

Download interactive/chat.py

class InterfaceServerHandler(webapp.RequestHandler):

def get(self):

Ê requested_chat = self.request.get("chat", default_value="none")

Ë if requested_chat == "none" or requested_chat not in CHATS:

template_params = {

'title': "Error! Requested chat not found!",

'chatname': requested_chat,

}

error_template = os.path.join(os.path.dirname(__file__), 'error.html')

page = template.render(error_template, template_params)

self.response.out.write(page)

else:

template_params = {

'title': "MarkCC's AppEngine Chat Room",

'msg_list': messages,

'chat': requested_chat

}

path = os.path.join(os.path.dirname(__file__), 'interface.html')

page = template.render(path, template_params)

self.response.out.write(page)

For the data, we’re going to do something a bit different. Up to now,

we’ve had the client operating in a stateless mode—that is, the client

has never sent requests to the server that are based on anything that

it remembers. But in interactive operation, as the client runs, it’s going

to keep sending requests to the server, and we want to send it only new

messages—that is, messages that were posted after the last time that

the client got data from the server. So the request is going to include a

time, and the response is only going to send messages that were posted

after that time.

We also need to include a time in the response sent to the client. After

all, we’re in the cloud: our client and our server are on different com-

puters, possibly in different parts of the world. Their clocks might be

set differently, and there’s a time delay between when the server sends

a response and when the client receives it. In order to make sure that

the client doesn’t miss any messages, we want to know what time the

server thought it was when it sent the last message to the client.

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/interactive/chat.py
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=114

TALKING TO THE SERVER WITHOUT DISRUPTION 115

The code to do all that is pretty straightforward. We’ll just sent a XML

document. The top-level element will be a our own <ChatUpdate> ele-

ment, which will include a time= element. Inside the <ChatUpdate>,

we’ll put the HTML<p> tags containing the chat messages. And as

usual, we’ll use a Django template to generate the XML. The template

is pretty straightforward:

Download interactive/update.html

<?xml version="1.0" encoding="UTF-8"?>

<ChatUpdate chat="{{ chat }}" time="{{ time }}">

{% for m in msg_list %}

{% ifequal msg.sender m.user %}

<p class="sentbyme">

{% else %}

<p class="sentbyother">

{% endifequal %}

{% endfor %}

</ChatUpdate>

And the request handler that fills in the template is also very straight-

forward:

Download interactive/chat.py

def DataRequestHandler(webapp.RequestHandler):

def get(self):

requested_chat = self.request.get("chat", default_value="none")

Ê messages = db.GqlQuery("SELECT * from ChatMessage WHERE chat = :1 "

"ORDER BY time", requested_chat)

template_params = {

'title': "MarkCC's AppEngine Chat Room",

'msg_list': messages,

'chat': requested_chat

'time': self.request.get("time", default_value="0")

}

path = os.path.join(os.path.dirname(__file__), 'update.html')

page = template.render(path, template_params)

self.response.out.write(page)

That’s it for the model part. As you can see, the model really doesn’t

need much specialization in order to work in interactive mode. The only

thing you need to do is separate the process of serving the interface

from the process of serving the data.

The Controller: JavaScript on the Client

In the server discussion in the previous section, I said that we’d send

the JavaScript controller code with the user interface in the initial

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/interactive/update.html
http://media.pragprog.com/titles/mcappe/code/interactive/chat.py
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=115

TALKING TO THE SERVER WITHOUT DISRUPTION 116

handler—but in the code, all that I showed was a script line that would

include the JavaScript. Now we’re going to implement to controller. Let’s

jump right in to the code:

Download interactive/asynch.js

Ê var request = new XMLHttpRequest();

var BASE_URL = "http://mcc-chatroom-one.appspot.com";

Ë var transcript = document.getElementById("chat-transcript");

function SetUpAndSendRequest(time) {

Ì request.open("GET", BASE_URL + "latest?time=" + time, true);

Í request.onreadystatechange = function() {

// Wait until the request is done. Done == ready state 4.

if (request.readyState != 4) {

return;

}

Î var xmlData = request.responseXML;

messages = xmlData.getElementsByTagName("p");

Ï for (m in messages) {

transcript.appendElement(m);

}

Ð newtime = xmlData.getElementsByTagName("time").getAttribute("latest");

Ñ SendUpAndSendRequest(newtime);

}

request.send("");

}

Ê First, we set up a few global variables that we’ll need. The most

important one is the XMLHttpRequest. In addition, we set up global

references to the main application URL, and to the part of the

HTML page that contains the chat transcript.

Ì It’s time to start the actual request code. The first thing we need

to do is open a request. The XMLHttpRequest object isn’t a request;

it’s an object we use to create and send requests. To make it send

a request, first open a new request, telling it what the parameters

of the request are.

Í Now we get to the heart of the asynchronous part of AJAX. We’re

not going to wait for a response; we provide a function the XML-

HttpRequest object invokes when it gets its response. In this case,

we put the callback function in-line.

The main callback for XmlHttpRequest is called onreadystatechange.

It is called when there is any change in the status of the request.

There’s a lot of power in being able to respond to all of the dif-

ferent states that a request can pass through, but that’s beyond

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/interactive/asynch.js
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=116

TALKING TO THE SERVER WITHOUT DISRUPTION 117

the scope of this book. There are lots of excellent books on AJAX—

if you’re going to do a lot of interactive cloud development, you

should really read one of them! A few suggestions for good ones

are in the resources at the end of the chapter.

Here, our program will do something with the result of the request

when we’ve received the complete result. That’s called ready-state

4. The first thing we need to do in the callback is make sure that

we’re at state 4. If not, the callback returns; it will get called again

the next time the state changes.

Î When the callback function is finally invoked in ready-state 4,

we know we received the latest chat data from the server, so we

can update the chat view. We grab the data from the response,

using the responseXML field of the XMLHttpRequest. All of the chat

messages will be put into <p> tags, so we retrieve them.

Ï Update the chat transcript by appending the new messages.

Ð At this point, the user interface has been updated with the lat-

est chat messages. But we need to re-issue the XMLHttpRequest so

when more messages are posted, the display updates again. We

don’t want to re-fetch any messages that we’ve already displayed.

So we grab the time when the response was sent.

Ñ Finally, we send the request by invoking this function, effectively

giving us a loop: SetUpAndSendRequest creates and issues a request

via XMLHttpRequest, and registers a callback function to update the

user interface when the new data is received. The callback re-

invokes SetUpAndSendRequest. And so on.

That’s the basic pattern: we use JavaScript to create an XMLHttpRequest

that issues the request and sets up a callback.

The Chat View

The view for our new interactive MVC chat service is the easiest part. It’s

just a template extension, almost identical to what we’ve done before:

Download interactive/interface.html

{% extends master.html %}

Ê <script src="asynch.js"/>{#}

{% block pagecontent %}

Ë <div id="transcript"> {#}

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/interactive/interface.html
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=117

REFERENCES AND RESOURCES 118

</div>

{% endblock %}

Ê Our new template extension needs to include the JavaScript source

file containing the controller code. The <script> tag can be used

for either inline code, or for code from an external source file; here,

we include it from the source file.

Ë We need to create an empty<div> with the “transcript” id, which

is what the JavaScript will use to insert the chat messages. The

included JavaScript contains the code needed to start the interac-

tive process, and it takes care of rendering the chat messages.

With those pieces in place, we’re pretty much done. We’ve got a chat

system in which the client continually handshakes with the server, get-

ting the latest chat messages, and updating the transcript view with

new chat messages as they’re posted. We need to update our app.yaml

filename, but that’s easy: we just need to make sure that it includes all

of our new template files. We also need to update the application object

in Python to route requests to the right handler. We’re pretty close to

being done with basic chat: we’ve got multiple chat rooms, user login,

full interactivity, and a pretty interface. We’ve set up a solid architec-

ture for dividing up the parts of our system, both in terms of separating

data from code, and in terms of separating the model, view, and the

controller.

We’re ready to move on to some more complicated things! AppEngine

doesn’t limit you to writing your code in Python: you can use other lan-

guages, too. Currently, the main alternative is Java. In the next chap-

ter, we’ll look at how to use Java instead of Python for our application.

Then we’ll get into some advanced topics like advanced data storage,

security, and debugging.

8.4 References and Resources

XMLHttpRequest. .http://www.w3.org/TR/XMLHttpRequest/

The official W3C standards document describing the Javascript XMLHttpRe-

quest.

AJAX Tutorial .http://www.w3schools.com/Ajax/Default.Asp

An online interactive tutorial on AJAX.

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://www.w3.org/TR/XMLHttpRequest/
http://www.w3schools.com/Ajax/Default.Asp
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=118

REFERENCES AND RESOURCES 119

Ajax: the Definitive Guide. . .
. . . http://oreilly.com/catalog/9780596528386/?CMP=OTC-KW7501011010&ATT=9780596528386

An excellent textbook on AJAX.

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://oreilly.com/catalog/9780596528386/?CMP=OTC-KW7501011010&ATT=9780596528386
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=119

Part III

Programming AppEngine with

Java

Prepared exclusively for Jose Sierra

Chapter 9

AppEngine and Java
We’ve been doing all our development of AppEngine services and appli-

cations in Python. For lots of applications, Python is a terrific language.

In fact, for many developers, there’s no reason to ever look at anything

but Python. For the stuff we’ve been doing so far, it’s excellent: it’s nice

and light, and its lightness allowed us to build a cloud application one

layer at a time, seeing all of the details of how the inner plumbing of a

cloud application really works.

To be honest, I prefer something that can catch my silly mistakes at

compile-time, instead of waiting to see a stack-trace in my browser

when things go wrong. For example, while I was writing the Python

code for this book, I ran into a problem where I accidentally passed a

string from a request handler as a parameter to a template, which was

expecting a list of strings. The result was an ugly stack dump in my

browser window. In my opinion, there’s no good reason to deal with

an error like that at runtime when it could have been caught ahead of

time.

And that brings us to Java. AppEngine supports two main program-

ming languages: Python and Java. Python is the lightweight dynamic

language. Java is the heavy artillery. And in AppEngine, you build Java

applications using a toolkit call GWT, which is (without any exaggera-

tion) a work of genius.

Even if you’re a Python fan, there are some good reasons to consider

using Java for your cloud applications, including:

Strong typing. Strong typing can catch many kinds of type errors. Depend-

ing on your programming style, strong typing can make your life

much easier, by catching many of your errors when you compile

Prepared exclusively for Jose Sierra

CHAPTER 9. APPENGINE AND JAVA 122

Static Versus Dynamic Languages

One of the great debates among programmers is static ver-
sus dynamic languages. It’s a debate that will go on forever,
because both sides have good points. The basic difference has
to do with when errors are detected. In a dynamic language,
errors aren’t caught until the bad code is executed. For exam-
ple, in a dynamic language like Python, if you write a method
call like x.foo(), and x doesn’t have a “foo” method, you won’t
get an error message until that statement actually executes.

In a static language, you need to declare types for things. Then,
using the information provided by those declarations, errors like
the undefined method in the example above can be caught
at compile time.

It’s a tradeoff: in dynamic languages, you don’t need to write
type declarations to prove to the compiler that your program
is correct. That’s very convenient, and it can lead to a style of
programming in which your code is much simpler—and simpler
code is less likely to have hard-to-find errors.

On the other hand, static languages do catch a lot of mistakes
for you. They force you to be more rigorous about how you write
your code in order to make sure that it passes the compiler, and
that process causes you to produce better-designed code.

Personally, I fall on the static language side of things. I find that
the extra work of dealing with the type system saves me a huge
amount of effort in the long run. Most of the silly mistakes that I
make get caught by the compiler, and never cause problems
at runtime. In fact, my own preference is for very strongly typed
languages, like the functional language ML. ML’s type system is
incredibly expressive and incredibly strict, much more so than
more familiar static languages like Java and C++. But in return,
my ML programs almost never have runtime errors. Nearly all
of the mistakes that I make end up getting reflected as incon-
sistencies in types. I’ve written thousand-line programs in ML,
and had them work without a single error on the first run—after
spending days working with the compiler to get rid of the stati-
cally detected type errors.

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=122

INTRODUCING GWT 123

your program. This is particularly valuable in an environment like

the cloud, where it’s harder to debug your program. You can’t just

fire up a debugger and probe it. You can’t add print statements

to find where things went wrong. Anything that helps you catch

problems ahead of time can be a huge time-saver.

Style. As you’ll see later in this chapter, developing a cloud application

in Java has a very different style and structure from Python. For

some developers, the style of Java development in AppEngine can

be much more comfortable than Python.

Tools. Google released a set of plugins for the free Eclipse IDE for build-

ing Java/GWT AppEngine services and applications. Eclipse is an

absolutely amazing tool, and the AppEngine plugins make every-

thing easier. (You can use Eclipse with Python, but there’s no spe-

cific AppEngine support, so it ends up being pretty painful.)

In this chapter, we’ll take a look at developing cloud applications using

GWT. We’ll do that by taking our chat application, and porting it to

Java/GWT. We’ll go through a compressed version of our journey so

far, looking at how to do what we’ve already done, this time in Java.

9.1 Introducing GWT

There’s one reason for using Java that completely outweighs all of the

others: GWT. GWT is amazing. It lets you write your entire cloud appli-

cation in Java. The server side is compiled in the usual way for Java:

compiled into Java bytecodes that are executed on the JVM. On the

server side, it’s a nice framework, but it’s not particularly special. But

then there’s the client: GWT lets you write your client as a Java pro-

gram. You write the client in Java almost like a traditional GUI appli-

cation: you build a UI from a collection of widgets using layout man-

agers, attach event handlers, and so on—absolutely typical GUI code.

But GWT translates that GUI code into HTML and JavaScript: instead of

compiling Java to Java bytecodes, it compiles Java to JavaScript source

code, which then executes on the client. And for all of the AJAX stuff

in which the client and server needs to communicate, GWT can gen-

erate remote procedure calls. It’s not a totally automatic process, but

it’s vastly easier and more robust than writing JavasScript AJAX code

manually. (To be honest, my first reaction when I heard about this was,

“They’re out of their minds; that’s ridiculous!”. Which goes to show you

why I’m not rich and famous.)

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=123

INTRODUCING GWT 124

Because of the way it’s set up, building an application in GWT is dif-

ferent from what we did in Python with webapp. Our first example is

going to have a beautiful UI; we don’t need to wait to get to how to set

up templates and floats with CSS—we’ll just dive right in, and let GWT

do what it does best.

Programming in GWT is, in many ways, much more like program-

ming an application with a traditional desktop GUI framework. You

define your UI almost the same way you would for a traditional desktop

app, and GWT takes care of generating most of the HTML, CSS, and

JavaScript that’s necessary for making that app work. Most of Google’s

recent applications (including things like Wave) are implemented using

GWT.

To start looking at GWT, download the AppEngine SDK for Java. I’m

not going to walk through it in detail, because it’s basically the same

process that you used to download the Python SDK in Chapter 2, Get-

ting Started, on page 19. In addition to the basic framework, you can

also install a set of plugins for Eclipse, which provide an excellent pro-

gramming environment. I highly recommend downloading Eclipse and

the AppEngine plugins. The ability to use Eclipse for AppEngine devel-

opment is one of the best reasons for working with Java! Eclipse is free,

and it’s really easy to set up. The downside to GWT is that there’s a lot

of metadata; that is, a lot of extra files that tell GWT what to do with

the Java source, things like which parts to compile to JavaScript for the

client, which parts to set up as a servlet bundle for the server, and so

on. Maintaining all of those files can be painful, but the Eclipse tooling

is a huge help. You can program in GWT without using Eclipse, but you

really shouldn’t. From here on, I’m going to assume that you’re using

Eclipse with the GWT plugins.

GWT constitutes a very different approach to building a cloud applica-

tion. In Python and webapp, everything was focused on the server. Of

course, we built client UIs, but we did it by focusing on what the server

needed to do to generate the UI on the client. The process centered on

building request handlers, and the CSS and templates that the request

handlers needed. GWT is almost exactly opposite: in GWT, you focus

on the client. You build a client UI using a framework that looks like a

traditional client application. When your client needs something from

the server, you make a remote procedure call (RPC) to invoke it; GWT

takes care of most of the work of turning that RPC into an AJAX call.

With that in mind, let’s start building a GWT application.

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=124

GETTING STARTED WITH JAVA AND GWT 125

9.2 Getting Started with Java and GWT

To begin, we’ll look at something like a basic “Hello World” program.

The GWT tools for Eclipse automatically build a project skeleton, which

is a basic GWT hello-world; so instead of writing our own, we’ll just

let Eclipse do it, and walk through the pieces, seeing how it’s all put

together. In Eclipse, select “New” from the “File” menu. In the dialog

that comes up, pick “New Web Application Project”. Then fill in the

resulting dialog box with a project name, and the name of the Java

package you want to use for your Java code. I selected “HelloChat”

as the project name, and “com.pragprog.aebook.hellochat” for the Java

package name.

The starter application sets up a page that prompts users for their

name; when users enter their names, it pops up a dialog box saying

hello to them.

The Structure of a GWT Application

A GWT application consists of a set of modules. A module is a GWT

package consisting of Java code, JavaScript, HTML files, images, data

definitions, and whatever else you need in a web application. The direc-

tory structure that you get when you create a GWT/AppEngine project

in Eclipse is based on the structure of the GWT module that it imple-

ments.

To begin with, let’s look at that directory structure. You can see the

structure in the Eclipse package browser in Figure 9.1, on the follow-

ing page. Inside the AppEngine project, there are a collection of GWT

libraries, plus two main components: a source directory named src, and

a target directory named war. “war” stands for “web archive”: the deploy-

able application that you upload to app-engine is a war file.

The source directory itself is also divided into three parts: a module

declaration, a package for the client-side Java code, and a package for

the server-side Java code.

The server package, com.pragprog,aebook.hellochat.server, is deceptively

simple, consisting of one, almost trivial source file, because GWT is

going to automatically generate the server-side plumbing.

The client side has a three files. One of them, HelloChat.java is the main

body of our application. The other two, GreetingService.java and Greet-

ingServiceImpl.java are part of the setup for a GWT remote procedure call.

These files contain the declarations that GWT needs in order to allow

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=125

GETTING STARTED WITH JAVA AND GWT 126

Figure 9.1: The GWT project directory structure in Eclipse

us to do AJAX client/server applications without explicitly setting up

XMLHttpRequests. We’ll look at how those files work in Section 9.3, RPC

in GWT , on page 133.

The way that these pieces fit together is determined by the GWT module

declaration.

Download workspace/HelloChat/src/com/pragprog/aebook/hellochat/HelloChat.gwt.xml

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE module PUBLIC "-//Google Inc.//DTD Google Web Toolkit 1.7.1//EN"

"http://google-web-toolkit.googlecode.com/.../gwt-module.dtd">

Ê <module rename-to='hellochat'>

<inherits

Ë name='com.google.gwt.user.User'/>

<inherits

Ì name='com.google.gwt.user.theme.standard.Standard'/>

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/workspace/HelloChat/src/com/pragprog/aebook/hellochat/HelloChat.gwt.xml
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=126

GETTING STARTED WITH JAVA AND GWT 127

<entry-point

Í class='com.pragprog.aebook.hellochat.client.HelloChat'/>

</module>

Ê The fundamental unit of code in GWT is a module. A module

consists of a collection of things: Java code; resources like CSS,

HTML, or image files; and GWT customizations, like Java to JavaScript

compiler extensions. This line declares the module that will con-

tain our application. The "rename" element is part of GWT’s URL

handling: GWT will tell the server to set this module up at a URL

path ending with “hellochat”.

Ë Modules in GWT can inherit things from other modules. It works

pretty much like object-oriented inheritance. Our application is

a sub-module of com.google.gwt.user.User, which is the standard

module for an application with a user interface. Most of the basic

functionality of GWT—the UI widgets, the remote procedure call

plumbing, and the basic server-side servlet infrastructure—are

inherited through this declaration.

Ì Part of the reason GWT defines modules in addition to using class

inheritance in the Java code is because there are a lot of resources

in a GWT module besides code. A module can include things like

CSS. The inherit statement pulls in the CSS files that define the

look of the UI widgets in our application. We can change the look

of our application by inheriting from a different style module.

Í The Java code for a GWT application starts with an entry point.

An entry point is, pretty much, the GWT GUI equivalent of a main

function. In the module file, you declare entry points for code you

want executed in your GWT application. In this case, the entry

point is the class HelloChat.

Setting Up the UI in GWT

Within a GWT module, the user interface frame is defined by an HTML

file. The HTML file isn’t considered source code, so it doesn’t get put into

the src directory. It’s a static resource: a file that contains information

that will be used by the code. So the HTML file ends up in the war

directory. Let’s take a look at its contents:

Download workspace/HelloChat/war/HelloChat.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/workspace/HelloChat/war/HelloChat.html
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=127

GETTING STARTED WITH JAVA AND GWT 128

<html>

Ê <head>

<meta http-equiv="content-type" content="text/html; charset=UTF-8">

<link type="text/css" rel="stylesheet"

href="HelloChat.css"/>

<title>Web Application Starter Project</title>

<script type="text/javascript" language="javascript"

Ë src="hellochat/hellochat.nocache.js"></script>

</head>

<body>

<h1>Hello World</h1>

Ì <table align="center">

<tr>

Í <td colspan="2" style="font-weight:bold;">Please enter your name:</td>

</tr>

<tr>

Î <td id="nameFieldContainer"></td>

<td id="sendButtonContainer"></td>

</tr>

</table>

</body>

</html>

Ê The HTML frame file is a standard HTML file. It starts off with the

usual HTML stuff: the doctype declaration, the head block with

the usual meta-tags.

Ë This is the most important line of the entire file! What makes the

HTML file into a GWT application frame is this include line. It

pulls in the JavaScript file that’s going to be generated by GWT,

containing all of our application code.

Ì As I’ll explain in more detail later, you can do layout in the UI

using either static structures defined in the HTML file, or dynamic

structures defined in Java code. For our application, that HTML

frame defines a static structure for the main UI page. The easiest

way to do that is using HTML tables. (We could also do it using

CSS floats, as we saw in the Python code, but if we want to do

dynamic layout, it would be much better to let GWT take care of

it.) So we set up a two-column table: one column for the text entry

box, and one for the “send” button.

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=128

GETTING STARTED WITH JAVA AND GWT 129

Í The HTML static structure can include static content as well as

static structure. As usual, if we can separate things like static

content from program logic, we should. So we use the static frame

here to insert a title line, and use the HTML table layout controls

to make it spans both columns of the layout.

Î Now we get to something interesting. What we’re doing here is

creating an empty box in the UI. The <td> tag creates a box in the

HTML layout, but it’s empty—there’s nothing inside of the tag. In

our Java code, we’ll insert something, referencing it using its id=

tag. We create two boxes this way: one for the text box, and one

for the button.

Now we can get to some code. As we saw above in the module declara-

tion, the application has one entry point. The full entry point method

is pretty long; it incorporates both the creation of the UI elements, set-

ting up event handlers, and setting up remote procedure calls for the

client/server communication. Let’s look at it in pieces. We’ll start with

the part that builds the main UI; that is, the main page that prompts

the users for their names.

Download workspace/HelloChat/src/com/pragprog/aebook/hellochat/client/HelloChat.java

Ê public void onModuleLoad() {

Ë final Button sendButton = new Button("Send");

final TextBox nameField = new TextBox();

nameField.setText("GWT User");

// We can add style names to widgets

Ì sendButton.addStyleName("sendButton");

// Add the nameField and sendButton to the RootPanel

// Use RootPanel.get() to get the entire body element

Í RootPanel.get("nameFieldContainer").add(nameField);

RootPanel.get("sendButtonContainer").add(sendButton);

// Focus the cursor on the name field when the app loads

Î nameField.setFocus(true);

nameField.selectAll();

Ê An entry point class is a container for the GWT equivalent of a

“main” function. Conceptually, it really is like the main program in

a non-GUI tool. But in Java, everything needs to be enclosed in a

class, so we must create a skeleton class around the actual main.

In a typical GWT application, this is the only method that’s defined

on the entry point class—it’s just an overcomplicated wrapper for

a single method. The real main function is the “onModuleLoad”

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/workspace/HelloChat/src/com/pragprog/aebook/hellochat/client/HelloChat.java
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=129

GETTING STARTED WITH JAVA AND GWT 130

method of the entry point. As the name suggests, this is what gets

executed when the GWT module is loaded by the client. Inside

this method, we create the UI widgets, lay them out, and set up

the event handlers.

Ë The first thing we do inside of onModuleLoad is create the UI wid-

gets. For basic cases, it looks pretty much like the way we’d do it

if we were building a non-browser UI. We create a button, and a

text box where the users will enter their names.

Ì The first place that things start to look different from a traditional

non-browser UI is in the management of the style attributes of

the widgets. In a typical GUI toolkit, there are a set of methods to

call for various style attributes. For example, in the Mac OS Cocoa

widgets, we could modify the gradient of a button using a call like

[button setGradientType: NSGradientConcaveWeak]. In GWT, that’s all

done using CSS: we’d set a CSS attribute to create a gradient

image for the button background; we’d add the line background:

url("images/gradient.png") to the CSS style block for .gwt-Button. The

only call for managing style is one that sets up a connection to a

CSS style. The style name is translated by GWT into a CSS class=

attribute. It might seem a bit strange at first, but it’s really nice in

practice: it helps maintain that separation of concerns—you really

shouldn’t clutter your code with visual style stuff, and you should

have all of the style stuff in one place. The way GWT uses CSS

gives you a really convenient way of doing that.

Í Now we get to layout. GWT provides you with a GUI context that’s

basically the contents of the browser page, called the RootPanel.

To access the root panel directly, call RootPanel.get(). We can also

do part of our layout using HTML, as in this example. If the appli-

cation’s main HTML page contains elements that are named with

an id= attribute, we can access those elements using get(name). In

this case, the root page for our application did provide elements

for pieces of our application. This is pretty typical of GWT style:

we’ve got a choice between doing things like layout statically (by

doing it in HTML), and doing them dynamically (by writing layout

code in Java). In general, when the layout is pretty much fixed

(like in this case), it’s easier to write an HTML table and just fill it

in from Java. To create something on the fly, like the dialog box

we’ll see in a few minutes, use a GWT layout manager. In the static

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=130

GETTING STARTED WITH JAVA AND GWT 131

layouts, we can get a layout box on the page by calling get, and

then inserting a GUI widget into it, using add(widget).

Î Finally, when the UI loads, we’d like it to work so that if the user

starts typing, it will show up in the text box. We do that by setting

the focus: the focus is the widget on the screen that receives UI

events like keystrokes. Users can set the focus by clicking the

mouse inside of a widget, but it’s annoying to be forced to do that

when there’s only one place where it makes sense for the focus

to be. So we set it to focus on the text entry box. We also have it

automatically select the place-holder text that we put into the box,

so if the users start typing, their text will replace the placeholder.

That’s it for the basic building of the GUI.

That leaves us with two other important pieces. Our application is going

to get a name from a user, and send it to the server. The server puts

that name into a hello message, and sends it back to the client to dis-

play in a pop-up dialog box. What we still need to do is put together

the client/server communication, and the dialog box. We’ll look at the

client/server communication in the next section. First, we’ll look at the

dialog, which is more GWT UI work, but instead of using a static layout

from an HTML file, the dialog is fully dynamic.

Download workspace/HelloChat/src/com/pragprog/aebook/hellochat/client/HelloChat.java

// Create the popup dialog box

Ê final DialogBox dialogBox = new DialogBox();

dialogBox.setText("Remote Procedure Call");

dialogBox.setAnimationEnabled(true);

Ë final Button closeButton = new Button("Close");

// We can set the id of a widget by accessing its Element

closeButton.getElement().setId("closeButton");

final Label textToServerLabel = new Label();

final HTML serverResponseLabel = new HTML();

Ì VerticalPanel dialogVPanel = new VerticalPanel();

dialogVPanel.addStyleName("dialogVPanel");

dialogVPanel.add(new HTML("Sending name to the server:"));

dialogVPanel.add(textToServerLabel);

dialogVPanel.add(new HTML("
Server replies:"));

dialogVPanel.add(serverResponseLabel);

dialogVPanel.setHorizontalAlignment(VerticalPanel.ALIGN_RIGHT);

dialogVPanel.add(closeButton);

Í dialogBox.setWidget(dialogVPanel);

Î closeButton.addClickHandler(new ClickHandler() {

public void onClick(ClickEvent event) {

dialogBox.hide();

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/workspace/HelloChat/src/com/pragprog/aebook/hellochat/client/HelloChat.java
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=131

GETTING STARTED WITH JAVA AND GWT 132

sendButton.setEnabled(true);

sendButton.setFocus(true);

}

});

Ê First, we need to create the dialog box. This is a popup, so it’s

not contained in the browser frame. That means that we can’t

just grab the RootPanel; we need to create a free-standing widget.

In GWT, that’s easy: DialogBox is a free-standing window frame

that can embed any GWT widget—we just create its contents, and

insert them. Since it’s a window, it has a title bar, and we can set

its contents using its setText method.

Ë We want the users to be able to get rid of the dialog box when-

ever they want, so we create a close button, which we’ll add to the

dialog box frame later. As usual, we can set the attributes of the

widget with CSS. In this case, we do it by diving down directly to

the HTML. Given any widget, we can get the XML element corre-

sponding to that widget by calling getElement(). Then we set its ID,

to allow a CSS style to reference it, using the setId() method of the

XML element.

After the close button, create another couple of widgets. There’s a

Label, which is a piece of non-editable text embedded in a widget.

Then there’s something interesting: an HTML widget, which is a

wrapper for a chunk of literal HTML text. Whatever is inside of

the HTML widget is rendered directly into the HTML page for the

UI. That’s useful for embedding things like styled text, where it’s

often easier to just use HTML markup around a piece of text than

it would be to do the programmatic manipulation to produce the

same effect.

Ì Now, we’re going to lay out a series of elements. Since we don’t

have a static HTML frame, we need to specify how to lay them

out using GWT. The layout is pretty simple: it’s just a bunch of

stuff stacked vertically. GWT has a widget for doing that: the Ver-

ticalPanel. We just add the widgets of the UI to the panel in order.

Notice the HTML markup here: there’s some text we want to show

in boldface. Instead of creating a label widget and setting its style

attributes to make it bold, we can just wrap the text in tags.

Í We’ve got the UI elements laid out in a VerticalPanel. All we need

to do is tell the dialog box that the panel is what it should show:

we do that by setting the dialog box’s widget. Now the visual parts

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=132

RPC IN GWT 133

of the box are all done. The box starts off invisible: standalone

widgets like this don’t actually appear on the users’ screen until

we explicitly tell them to. As we’ll see later, we can do that with a

dialog box by telling it where it should appear. Most of the time,

that’s in the center of the browser window—so the dialog will be

made visible by calling its center() method.

Î With the basic UI set up, we can finally look at how to handle

events in GWT! It’s pretty much the same as in Java’s Swing

library. Create a handler object, and attach it to the appropriate

widget using an addXXXHandler method. In this case, we’re attach-

ing the handler that closes the dialog box when the user clicks

its close button, so we attach a ClickHandler object. In its onClick

method, we make the dialog box invisible, and enable the entry

area of the main page.

9.3 RPC in GWT

Now we get to the complicated part.

As I mentioned before, AJAX code is not written explicitly in GWT.

Instead, we write something called a remote procedure call (RPC). An

RPC is something that looks almost like a normal method call, but

under the covers, it’s translated by the system into a request sent from

the client to the server. The return value of the RPC is the response

sent from the server back to the client.

Just like any other RPC system, there’s a client side and a server side

in GWT. We can look at the code for them separately; it’s up to the GWT

RPC system to string them together.

If you’ve done any distributed programming, Google-style RPC is proba-

bly not what you’re used to. Traditionally, RPC tries to appear as much

like a traditional function call as possible. In other words, if we want

to provide an RPC for a factorial function, the function implementation

would look like a traditional function declaration, and an invocation

of it would look like a traditional invocation. For example, Java has a

native RPC layer, where we define a remote object by an interface, and

then we can invoke methods on an object of the interface type.

We could define a factorial service as a Java interface:

public interface Fact extends Remote {

int fact(int n);

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=133

RPC IN GWT 134

}

Then in code that uses it, we’d acquire a handle for the remote interface,

and invoke it directly with something like:

int j = f.fact(n);

Wrapped around that, we’d have some plumbing in the server to make

the object available so that the client can get a handle for it, and we

would likewise have code on the client to get hold of a handle on the

remote object. But the invocation itself looks like a normal, local invo-

cation.

The problem with this approach is that communication is slow. A remote

procedure call can easily take two orders of magnitude more time than

a local call. In a traditional call, the code is stuck waiting until it gets

the response back from the server. That’s a huge waste of time, and it

can create unacceptable delays in our user interface.

Google therefore uses something called asynchronous or continuation

passing style for remote calls. The call itself returns nothing. Instead, it

takes an extra parameter, which is a function to invoke on the result of

the RPC whenever it’s recieved.

For example, imagine we have a factorial service. In traditional style,

what we want to do is:

System.out.println("Foo = " + Math.log(3 * f.fact(n)));

In continuation passing style, that would be something like:

f.fact(n, new AsynchCallback<int>() {

public void onSuccess(int result) {

System.out.println("Foo = " + Math.log(3 * result));

}

});

All I did was take the original code that was going to use the return

value of the RPC, and wrap it up in an object that I could pass to the

remote call. All that does is start the process. My code can go off and do

other things while the RPC is translating the call to a message, sending

it, waiting for the server to send a respond, and then translating the

response message back to a result value. Whenever the result comes

back, the callback will be invoked, and the result of the call will be

processed.

It’s a bit unnatural when you’re used to imperative programming. (Func-

tional programmers do this all the time, even when they’re not doing

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=134

RPC IN GWT 135

distributed programming.) It takes some time to get used to, and even

then, it sometimes seems a bit twisted. But overall, the advantage of

not having to wait for the RPC outweighs the problems. It makes appli-

cations more responsive to the users, and that’s the most important

thing.

Client-Side RPC in GWT

No matter how great a toolkit is, communication is never simple. We

need to be able to deal with translating parameters into a format that

can be passed as a message, and we need to be able to deal with delays

or even failures due to the network. To cope with that, GWT uses a very

Google-ish idiom. At Google, we have some very distinctive and stylized

ways of handling certain basic problems. In particular, we have a way of

doing remote procedure calls using an asynchronous response handler.

It’s pretty foreign to people who haven’t done a lot of distributed pro-

gramming in the Google style. In general, GWT is really terrific about

making plumbing invisible. However, in this case they decided not to.

GWT was originally developed for Google to use internally, and Google

engineers spend so much time working in this style that it becomes nat-

ural. It’s a bit strange, but it’s really the simplest way to solve many of

the traditional problems with RPC. With asynchronous RPC, we don’t

need to write multi-threaded code on the client, but we still get code

that responds to updates as soon as they become available, and that

doesn’t block while it’s waiting for a response.

At any rate, that’s more than enough background. Time to get down to

the nitty gritty, and look at what’s involved in writing RPCs in GWT. For

our hello-world program, there’s one remote call. It sends a user’s name

to the server, and gets back an HTML fragment containing a greeting

addressed to that user. In GWT terms, that’s going to be a service pro-

vided by code on the server. The first thing we do in GWT is write a

synchronous interface for the service methods. In our hello-world appli-

cation, it’s called the greeting service. Somewhat surprisingly, the greet-

ing service interface is written in the client package (Remember, GWT is

always client-focused; the client is going to be the user of the interface,

so it’s located in the client package.) The basic synchronous greeting

service interface is shown below:

Download workspace/HelloChat/src/com/pragprog/aeb . . . ok/hellochat/client/GreetingService.java

package com.pragprog.aebook.hellochat.client;

import com.google.gwt.user.client.rpc.RemoteService;

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/workspace/HelloChat/src/com/pragprog/aebook/hellochat/client/GreetingService.java
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=135

RPC IN GWT 136

import com.google.gwt.user.client.rpc.RemoteServiceRelativePath;

Ê @RemoteServiceRelativePath("greet")

Ë public interface GreetingService extends RemoteService {

Ì String greetServer(String name);

}

Ê GWT service interfaces can be annotated with information about

how they’ll fit into the URL structure of the application. The appli-

cation has a root URL, and all of the application addresses will

have that root URL as a prefix. This annotation specifies the path

of this service relative to the root URL. So if the application is at

http://gwt.appspot.com/foo, then this service would be at http://gwt.appspot.com/foo/greet.

Service interfaces should always specify their relative path this

way.

Ë The service declaration is a standard interface declaration, except

that it must extend com.google.gwt.user.client.rpc.RemoteService. The

super-interface specifies that this interface is intended for ser-

vice in a GWT application, and that GWT should translate it to

JavaScript.

Ì This is the synchronous method declaration. Any parameters to

a service method must extend either java.lang.Serializable, or the

GWT specific variant com.google.gwt.user.client.rpc.IsSerializable. One

thing that’s very important to understand here is that GWT uses

the Java synchronization interface to mark classes that will be

passed in an RPC does not mean that it uses Java serialization. It

doesn’t. The use of either IsSerializable or Serializable is just a marker

to tell GWT that it needs to generate code to serialize and deseri-

alize the type. The actual format that GWT uses is not even close

to compatible with Java’s standard serialization.

The method declaration itself is completely standard: it’s just a

normal interface method declaration.

In addition to the synchronous interface, we also need to write an asyn-

chronous interface. This is one of the places where I’m frankly mystified

why the GWT guys didn’t provide some automatic support. To gener-

ate the asynchronous interface, we just write another interface. which

is a pure boilerplate translation of the synchronous interface. It must

have methods with exactly the same name as the methods in the syn-

chronous interface; each method must have return type void; and each

method adds a parameter at the end, which is an AsyncCallback and

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=136

RPC IN GWT 137

whose type parameter is the return type of the synchronous method.

For example:

Download workspace/HelloChat/src/com/pragprog/aeb . . . llochat/client/GreetingServiceAsync.java

package com.pragprog.aebook.hellochat.client;

import com.google.gwt.user.client.rpc.AsyncCallback;

/**

* The async counterpart of <code>GreetingService</code>.

*/

public interface GreetingServiceAsync {

void greetServer(String input, AsyncCallback<String> callback);

}

The asynchronous interface doesn’t have any explicit connection to the

synchronous interface, and it doesn’t have to use any special anno-

tations or inherit from any special class. It’s really only used by the

client—the actual plumbing to map between the asynchronous and

synchronous interfaces is generated by GWT. The only purpose of the

asynchronous interface is to provide the call-interface that the client

will use.

Server-Side RPC in GWT

The server side of GWT RPC is amazingly simple. We just implement

the synchronous client interface using a class that extends RemoteSer-

viceServlet. For our greeting service, that implementation is:

Download workspace/HelloChat/src/com/pragprog/aeb . . . ellochat/server/GreetingServiceImpl.java

package com.pragprog.aebook.hellochat.server;

import com.pragprog.aebook.hellochat.client.GreetingService;

import com.google.gwt.user.server.rpc.RemoteServiceServlet;

/**

* The server side implementation of the RPC service.

*/

@SuppressWarnings("serial")

public class GreetingServiceImpl extends RemoteServiceServlet implements

GreetingService {

public String greetServer(String input) {

String serverInfo = getServletContext().getServerInfo();

String userAgent = getThreadLocalRequest().getHeader("User-Agent");

return "Hello, " + input + "!

I am running " + serverInfo

+ ".

It looks like you are using:
"

+ userAgent;

}

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/workspace/HelloChat/src/com/pragprog/aebook/hellochat/client/GreetingServiceAsync.java
http://media.pragprog.com/titles/mcappe/code/workspace/HelloChat/src/com/pragprog/aebook/hellochat/server/GreetingServiceImpl.java
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=137

TESTING AND DEPLOYING WITH GWT 138

}

The only unusual thing in this code is the use of the @SuppressWarning

annotation, and it’s there because in the later generations of the Java

virtual machine, Java serialization uses a version identifier for each

class file. If we have a class which implements java.lang.Serializable, Java

generates a warning if we don’t provide it with a version identifier field.

Service implementations always implement Serializable, because Remote-

ServiceServlet inherits from the standard servlet class, which implements

Serializable. Since GWT doesn’t use the version identifier, including in

the code would just be pointless clutter; the annotation prevents the

compiler from generating a confusing warning message.

And that’s all we need to do on the server side. Of course, it gets more

complex when we want to do persistence using datastore. But we’ll save

that for the next chapter.

So now we’ve got the full RPC for our hello application in place. It’s a

lot cleaner than the way we did AJAX back in Python: we have a well-

defined interface, and we can invoke it just by making a method call. We

don’t need to worry about creating XmlHTTPRequests, parsing parameters,

checking status codes, or any of the messy and error-prone things we

needed to do in Python.

9.4 Testing and Deploying with GWT

Now that we’ve got a basic GWT application, let’s run it. Just like in

Python, there are two ways of running a GWT application in AppEngine:

a local mode, where the application runs on your machine; and a deployed

mode, where the application runs in the AppEngine cloud.

The local mode in GWT is very different from the local mode in Python.

In Python, local mode was nice for testing without deploying, but it

didn’t really add much in the way of support for debugging. But with

GWT, in the local mode, the both the client and the server run in Java,

and we can use all of the capabilities of Eclipse to debug the GWT

application. That makes a huge difference: we have full access to break-

points, traces, stepping, and all of the other Java debugging tools.

To run in local mode using Eclipse, go to the “Run” menu, and pick

“Run As.../Web Application”. GWT will open a local simulated browser

environment to display the client, and start a local Tomcat web server

to execute the server.

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=138

TESTING AND DEPLOYING WITH GWT 139

To deploy it to AppEngine, go to the package explorer view, and right-

click on the project. In the project menu that comes up, there’s a Google

submenu. Just select “Deploy to AppEngine”, and your program will be

live in the AppEngine cloud. If there’s any information about the project

that it needs, it will prompt us to fill it in the first time we run the deploy

command.

We finished our first basic GWT application. It’s as full-featured as our

Python chat application yet, but it’s got a better UI, and a cleaner com-

munication layer. In the next chapter, we’ll take what we’ve learned

about GWT and use it to build a Java version of our chat application.

In the process, we’ll learn about the Java interface to the datastore,

and about the restrictions that GWT puts on server-side Java code.

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=139

Chapter 10

Managing Server-Side Data in
AppEngine

In the previous chapters, we examined the pieces of a basic GWT appli-

cation in AppEngine. We built a GUI, set up a simple RPC, and strung

all of the plumbing together to get an application working. In this chap-

ter, we’re going to implement our chat program using GWT. We won’t

spend much time looking at how to build the GUI—there are entire

books on building GUIs in GWT, and GWT’s own documentation of

its UI classes is excellent. What we’ll spend most of our time on is

datastore, the mechanism that lets us work with persistent data in

AppEngine. Just like in Python, we need to do some extra work to make

classes persistent and queryable. Now we’ll look at how to do that using

Java.

We’ll also touch on some other issues of the server-side plumbing in

the Java side of AppEngine; specifically, AppEngine puts some restric-

tions on what code can do, and how it can run in the AppEngine cloud

environment, and we’ll examine what those restrictions are, and what

effect they have on how we write the server side of our AppEngine appli-

cations.

10.1 Data Persistence in Java

If you look back at Chapter 4, Managing Data in the Cloud, on page 52,

you’ll remember that we needed to do some extra work in our Python

code to store data, and to make things work correctly in the cloud.

The same thing is true in Java. Unfortunately, this is one of the places

Prepared exclusively for Jose Sierra

DATA PERSISTENCE IN JAVA 141

where the static typing of Java makes things a bit more cumbersome.

The basic backend datastore used by AppEngine is exactly the same as

in Python, but making it work with Java takes a bit more thought. It’s

not difficult, but there’s a bit more boilerplate that we need to put into

our code. As usual, Eclipse can take care of a lot of that for us. Let’s get

started without Eclipse’s help, though. We’ll write everything by hand,

so that we understand all of the details.

In typical Google style, what AppEngine does to make datastore work

with Java is grab a standard Java API—Java Data Objects (JDO)—and

pick out a useful subset of its functionality. JDO is a hugely complex,

bloated API (typical of standards). But there’s a kernel of goodness to

it. AppEngine uses that kernel.

Below, we’ll see how JDO persistence works for describing persistent

objects, and storing, querying, and retrieving them.

Storing Java Classes

In Python’s datastore interface, we created a persistent class by adding

attributes to the class object. In Java, we’ll do something similar—but

in Java, add attributes are added through the use of annotations in the

class declaration. It’s easiest to describe by example, so we’ll take our

chat message, and translate it into a data object:

Download workspace/PersistChat/src/com/pragprog/aebook/persistchat/ChatMessage.java

package com.pragprog.aebook.persistchat;

import java.util.Date;

import javax.jdo.annotations.IdGeneratorStrategy;

import javax.jdo.annotations.IdentityType;

import javax.jdo.annotations.PersistenceCapable;

import javax.jdo.annotations.Persistent;

import javax.jdo.annotations.PrimaryKey;

import com.google.appengine.api.datastore.Key;

Ê @PersistenceCapable(identityType = IdentityType.APPLICATION)

public class ChatMessage {

public ChatMessage() {

}

public ChatMessage(String sender, String msg, String chatname) {

this.senderName = sender;

this.message = msg;

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/workspace/PersistChat/src/com/pragprog/aebook/persistchat/ChatMessage.java
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=141

DATA PERSISTENCE IN JAVA 142

this.chat = chatname;

}

Ë @PrimaryKey

@Persistent(valueStrategy = IdGeneratorStrategy.IDENTITY)

private Key key;

Ì @Persistent

protected String senderName;

@Persistent

protected String message;

@Persistent

protected String chat;

@Persistent

protected long date;

public Key getKey() {

return key;

}

public String getSenderName() {

return senderName;

}

public void setSenderName(String senderName) {

this.senderName = senderName;

}

public String getMessage() {

return message;

}

public void setMessage(String message) {

this.message = message;

}

public String getChat() {

return chat;

}

public void setChat(String chat) {

this.chat = chat;

}

public long getDate() {

return date;

}

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=142

DATA PERSISTENCE IN JAVA 143

public void setDate(long date) {

this.date = date;

}

}

Let’s take a closer look at this example:

Ê For a Java object to be stored in the AppEngine datastore, the

class needs to be declared as persistent. In JDO, this is accom-

plished by attaching a @PersistenceCapableannotation. In full JDO,

we need to declare an identity type. AppEngine only supports

IdentityType.APPLICATION, but because Java’s type system requires

annotations to match their declaration, the field must always be

declared.

Ë To be able to store, retrieve, or search for a particular object, the

object must have a unique key that is used to identify it. In Python,

when we defined a persistent object, the framework automatically

added an invisible key field which was used by datastore. In Java,

everything needs to be declared statically. So we need to manually

insert the key declaration in the source code, and annotate it as

being a key. We mark it as a tree using the @PrimaryKey annotation,

and we tell it that the way to compare primary keys is through

object identity using the valueStrategy = IdGeneratorStrategy.IDENTITY

attribute of the @Persistent annotation.

Most of the time, we’ll use a key object like this, which is initial-

ized automatically, and which we won’t usually use directly. As

we’ll see later, we can do some customization of keys—but there’s

usually no need.

Ì Each field of a persistent object that should be stored needs to be

annotated with @Persistent.

There are some restrictions on the data objects in Java. They’re mostly

requirements to keep the tangle of object pointers manageable:

1. When a persistent object contains another persistent object as a

field, it owns that object, and no other persistent object is allowed

to have a reference to the owned object. This means that we some-

times need to save objects.

2. When a persistent object has a collection of other persistent objects,

it owns all of the objects in the collection.

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=143

STORING PERSISTENT OBJECTS IN GWT 144

3. We’re limited to the basic Java collection classes. We can’t use

arrays, and we can’t use any of the extended collection types. We

can use concrete classes ArrayList, LinkedList, HashSet, TreeSet, Stack,

and Vector. We can also use the more abstract interfaces, like List,

but when we save and then reload an object, we can’t guarantee

that the type of list will be the same in the restored object. (Mean-

ing that we might save something that uses a LinkedList, and get

back something that uses an ArrayList.) Since that can have pretty

dramatic performance implications, I recommend explicitly using

the concrete collection types for JDO fields.

4. We can use Java serializable types in data objects, by marking

them with the annotation @Persistent(serialized=true). But their behav-

ior is a bit different than you’d normally expect from Java. For

example, suppose we had two copies of a serializable object in a

list field of a persistent object. If we saved that object and then

loaded it, the two copies would not be guaranteed to be ==, and

whether they would be equals() is dependent on how the equals()

method is implemented for our class.

5. Fields of type String are not allowed to be any longer than 500

bytes. We can store longer strings using the Text class from the

datastore package for the field—but we won’t be able to perform

queries based on the value of the field.

6. If we’re not using Eclipse, we need to add an extra compilation step

called code augmentation. During augmentation, the AppEngine

JDO implementation adds code to classes based on the persis-

tence annotations that allow them to be stored and queried by

datastore. We need to make sure that the augmentation process

gets executed each time we recompile our Java sources. (Eclipse

automatically includes JDO augmentation into the project build,

so it’s taken care of. Yet another reason to use Eclipse!)

10.2 Storing Persistent Objects in GWT

In Python, storing things in the datastore was incredibly simple. We

created a persistent object, and then we called its put method—and

presto! It was stored. In Java, we need to do a bit more work. Again, it’s

a bit of static boilerplate. Java provides us with a lot of advantages, but

it does require a lot more boilerplate.

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=144

STORING PERSISTENT OBJECTS IN GWT 145

To be able to store and retrieve objects, we need something called a

PersistenceManagerFactory. The factory is very expensive to create, and

we don’t want to re-initialize it every time we process a request; instead,

we set it up so it is created when our application is loaded into a server

in the AppEngine cloud. And we want it created in a nice, centralized

place, to be sure that anyone who needs a PersistenceManager knows

where to find the one instance of the factory. There’s a natural solution

to that: the singleton design pattern. We’ll create a singleton class that

statically creates a single instance of a PersistenceManager, which can

then be accessed by anyone who needs it.

Download workspace/PersistChat/src/com/pragprog/aebook/persistchat/server/Persister.java

package com.pragprog.aebook.persistchat.server;

import javax.jdo.JDOHelper;

import javax.jdo.PersistenceManager;

import javax.jdo.PersistenceManagerFactory;

public final class Persister {

private static final PersistenceManagerFactory pmfInstance =

JDOHelper.getPersistenceManagerFactory("transactions-optional");

private Persister() {}

public static PersistenceManagerFactory get() {

return pmfInstance;

}

public static PersistenceManager getPersistenceManager() {

return get().getPersistenceManager();

}

}

Now, any client code that needs to use a persistence manager can just

invoke Persister.getPersistenceManager(). With a persistence manager, we

can store an object o by calling PersistenceManager.makePersistent(o), fol-

lowed by PersistenceManager.close().

This is a lot more trouble than the Python o.put() call: we need to set

up a persistence manager factory, allocate a PersistenceFactory, and call

close() when we’re finished. Fortunately, there are benefits. The inter-

face through the PersistenceFactory provides support for transactions.

From the time that we allocate a persistence manager until we call

its .close() method, everything we do is part of an atomic unit—that is,

it either all succeeds, or it all fails. Every object that we store, every

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/workspace/PersistChat/src/com/pragprog/aebook/persistchat/server/Persister.java
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=145

STORING PERSISTENT OBJECTS IN GWT 146

Transactions

You will constantly hear about transactionality when you talk to
anyone about distributed applications. Here’s why.

Transactionality prevents corruption of data. Without transac-
tionality, if you’re interrupted while storing something—because
of a network glitch, or a crash of some computer involved—you
could end up with your data storage in an inconsistent state.

For example, imagine that you’re writing an online store. You
create an order record, which instructs your shipping depart-
ment to ship an order to a customer; then you create a billing
record that tells your bank how to collect the payment for the
order. If your system crashes between the time you store the
shipping record and the time you store the billing record, you
could ship a product without ever collecting a payment!

You want the two steps to be atomic, which means that either
both are successfully stored, or neither. The atomic unit in which
everything gets stored successfully or nothing gets stored is
called a transaction.

Java datastore makes it really easy to collect multiple storage
operations into a single transaction.

change that’s made to a persistent object, will either all be stored, or

none of it will. That’s the beauty of transactions: we get the safety and

security of a relational database. The boilerplate code can seem annoy-

ing, but there are advantages.

We’re ready to post a new message. We need to create an RPC service,

which is how the client is going to tell the server when it gets a new mes-

sage to post. (Again, it’s worth pointing out that in GWT we implement

the post operation as an asynchronous RPC—which is exactly what it

is, in terms of the operation of our program—instead of getting tangled

in the mess of the XMLHttpRequest.) Our RPC service needs two meth-

ods: one for posting a new message, and one for fetching messages. The

basic interface is shown below:

Download workspace/PersistChat/src/com/pragprog/a . . . stchat/client/ChatSubmissionService.java

package com.pragprog.aebook.persistchat.client;

import java.util.Date;

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/workspace/PersistChat/src/com/pragprog/aebook/persistchat/client/ChatSubmissionService.java
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=146

STORING PERSISTENT OBJECTS IN GWT 147

import java.util.List;

import com.google.gwt.user.client.rpc.RemoteService;

import com.google.gwt.user.client.rpc.RemoteServiceRelativePath;

import com.pragprog.aebook.persistchat.ChatMessage;

@RemoteServiceRelativePath("chat")

public interface ChatSubmissionService extends RemoteService {

List<ChatMessage> postMessage(ChatMessage messages);

List<ChatMessage> getMessages(String room);

List<ChatMessage> getMessagesSince(String chat, Date timestamp);

}

We turn it into an asynchronous interface as usual:

Download workspace/PersistChat/src/com/pragprog/a . . . t/client/ChatSubmissionServiceAsync.java

package com.pragprog.aebook.persistchat.client;

import java.util.Date;

import java.util.List;

import com.pragprog.aebook.persistchat.ChatMessage;

import com.google.gwt.user.client.rpc.AsyncCallback;

public interface ChatSubmissionServiceAsync {

void postMessage(ChatMessage messages,

AsyncCallback<List<ChatMessage>> callback);

void getMessages(String chatroom,

AsyncCallback<List<ChatMessage>> callback);

void getMessagesSince(String chat, Date timestamp,

AsyncCallback<List<ChatMessage>> callback);

}

We implement that with a class in the server package. The implemen-

tation is very straightforward: we use the Persister that we just imple-

mented to get a PersistenceManager for the operation; make the message

object persistent, so that it will be saved as part of a transaction; and

then close the persistence manager, which will execute the transac-

tion. Finally, we use the other service method, invoked directly from

the server, to provide the user with an updated list of the messages in

the chat.

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/workspace/PersistChat/src/com/pragprog/aebook/persistchat/client/ChatSubmissionServiceAsync.java
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=147

RETRIEVING PERSISTENT OBJECTS IN GWT 148

Download workspace/PersistChat/src/com/pragprog/a . . . at/server/ChatSubmissionServiceImpl.java

public List<ChatMessage> postMessage(ChatMessage message) {

PersistenceManager persister = Persister.getPersistenceManager();

persister.makePersistent(message);

persister.close();

return getMessages(message.getChat());

}

If we want to save any other objects as part of the same transaction as

the chat message, we just add more calls to makePersistent to store them

before the call to close.

10.3 Retrieving Persistent Objects in GWT

In Python, we needed to use a SQL-like query language called “gql”

in order to retrieve objects from the datastore. In Java, we do the same

thing, but because we’re working as part of a standard Java persistence

framework, we use its query language, rather than the custom language

built for Python. The standard query language for Java Data Objects is

called “JDOQL”; like GQL, it looks a lot like SQL.

To be honest, we don’t really need to use JDOQL. If we know the key for

an object that we want to retrieve, we can fetch it using the Persistence-

Manager method getObjectById. For example, if x were the ID of one of

our chat-message objects, we could retrieve it by:

PersistenceManager pm = Persister.getPersistenceManager();

try {

pm.getObjectByID(ChatMessage.class, x);

} finally {

pm.close();

}

The catch is, obviously, that we need to know the key. There are defi-

nitely cases where we’re retrieving an object for which we either know

the key, or we can figure out what it is. (We’ll look at how to do things

like that in Chapter 13, Advanced Datastore, on page 191.) But for now,

retrieving by key isn’t particularly useful.

There is one part of the fragment above that’s important: the use of

try...finally. As I mentioned, persistence objects aren’t lightweight. There’s

a lot of resources associated with one, and the longer it hangs around,

the more cruft it’s liable to accumulate. You must be sure that it gets

closed, so the resources can be reclaimed. Without the use of try...finally,

if any of your code between the pm.getObjectById(...) and the close()

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/workspace/PersistChat/src/com/pragprog/aebook/persistchat/server/ChatSubmissionServiceImpl.java
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=148

RETRIEVING PERSISTENT OBJECTS IN GWT 149

encountered an error or threw an exception, the close() call could get

skipped—which would be very bad. This is more of an issue with retrieves

than with stores, because when you start a transaction to store some-

thing, you generally know all of the things you’re going to store, so you

rarely do any computation that could generate an error; and if you did,

you don’t want the transaction be be committed by a close()! But with

retrieves, you often do things iteratively: you retrieve one object, which

gives you the information you need to identify other objects that you

want to retrieve. So the safety of the try...finally block is important for

retrieval.

Most of the time—and specifically this time, for our chat application—

we’ll use JDOQL queries to describe what we want to retrieve from the

datastore. To retrieve all of the chat messages for a particular chatroom,

the JDOQL query would be:

select from ChatMessage

where chat=desiredRoom

parameters String desiredRoom

order by date

Our JDOQL query (and in fact, most JDOQL queries) consists of four

parts:

select from ChatMessage The select clause specifies what set of objects

should be searched for the query. It looks like the select clause

from a SQL query, and basically does the same thing. A SQL query

selects a set of table rows that match some filter, and the select

clause says what table to select from. A JDOQL query selects a set

of objects that match some filter, and the select clause says what

class to select from. We want to retrieve a set of ChatMessages, so

we select from ChatMessage.

where chat=desiredRoom The where clause is much like SQL: it provides

a predicate (that is, an expression that will only be true for the

objects we want to retrieve). We want to retrieve the messages from

a particular room. The actual value of the room whose messages

we want to retrieve is a parameter named desiredRoom.

parameters String desiredRoom The parameters clause doesn’t have any equiv-

alent in SQL—but it should. In most SQL libraries, we have to

specify parameters using some really painful and awkward syntax.

In JDOQL, the parameters clause declares a list of typed variables,

and wherever those variables are used in the query string, they’ll

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=149

GLUING THE CLIENT AND SERVER TOGETHER 150

be replaced by the parameter values from the query invocation. So

we say that desiredRoom is a parameter of type String.

order by date The order by clause is again the same as SQL: it specifies

what order the objects selected by the query should be returned

it. We want to see the chat messages in the order in which they

were posted, so we do it by date.

JDOQL also has an alternative syntax: instead of using a string for the

query, we can compose it programmatically. We’ll use the programmatic

version in the code below.

Download workspace/PersistChat/src/com/pragprog/a . . . at/server/ChatSubmissionServiceImpl.java

@SuppressWarnings("unchecked")

public List<ChatMessage> getMessages(String chat) {

PersistenceManager persister = Persister.getPersistenceManager();

try {

Query query = persister.newQuery(ChatMessage.class);

query.setFilter("chat == desiredRoom");

query.declareParameters("String desiredRoom");

query.setOrdering("date");

return (List<ChatMessage>)query.execute(chat);

} finally {

persister.close();

}

}

This is fairly straightforward. @SuppressWarnings is an artifact of the way

that Java handles typed lists; because Java uses something called type

erasure to simplify compilation of typed collections, it can’t verify that

the cast to a typed list is valid. Since the compiler can’t guarantee that

you’re not making a mistake, it generates a warning to let you know

that there might be an error. The SuppressWarnings annotation basically

tells the compiler, “Shut up, I know what I’m doing!” Aside from that

little change, this is identical to the query we looked at above, trans-

lated into the programmatic form. It’s better this way because it sepa-

rates the different elements of the query and makes the code easier to

understand.

10.4 Gluing the Client and Server Together

Now we just need to tell AppEngine how to glue the client and server

code together, so the chat app client can call the RPC methods that

allow it to store and retrieve messages from the datastore. That’s done

using the AppEngine web.xml, which is located in the war/WEB-INF direc-

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/workspace/PersistChat/src/com/pragprog/aebook/persistchat/server/ChatSubmissionServiceImpl.java
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=150

GLUING THE CLIENT AND SERVER TOGETHER 151

tory of our AppEngine project. This file declares the servlets that are

part of our application, tells AppEngine where to set them up on the

server side, and tells GWT how to find them.

Download workspace/PersistChat/war/WEB-INF/web.xml

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE web-app

PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

"http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

<!-- Servlets -->

Ê <servlet>

<servlet-name>chatServlet</servlet-name>

<servlet-class>com.pragprog.aebook.persistchat.server.ChatServiceImpl

</servlet-class>

</servlet>

Ë <servlet-mapping>

<servlet-name>chatServlet</servlet-name>

<url-pattern>/chat/chat</url-pattern>

</servlet-mapping>

<!-- Default page to serve -->

<welcome-file-list>

<welcome-file>Chat.html</welcome-file>

</welcome-file-list>

</web-app>

Ê Tell AppEngine what servlets need to be deployed on the server

for the application to run. Each servlet is given a name, which is

associated with the class that implements that servlet.

Ë For each applet specified in the servlets clause, give AppEngine

the URL where the application should run the servlet.

In this chapter, we built up the infrastructure of our chat application:

we’ve got the client interfaces for making RPCs to post new chat mes-

sages, and to retrieve the messages. We built the servlet implementation

of the RPC methods, using the AppEngine JDO interface to the data-

store. By doing that, we learned the basics of how to both store and

retrieve objects from the datastore.

In the next chapter, we’re going to return to UIs, and look at how to

build a really great-looking GUI for our chat application using the RPC

services we just built. As we do, we’ll explore the available GUI widgets.

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/workspace/PersistChat/war/WEB-INF/web.xml
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=151

REFERENCES AND RESOURCES 152

We will cover how to create GUI layouts in GWT, update the data being

displayed in the UI without doing a full page-refresh, and respond to

user actions.

Finally, we’ll look at some more sophisticated ways of using the data-

store. You can do a lot of really interesting things with datastore, but

it’s also got some rather peculiar limitations. We’ll look in depth at both

the power and the limitations of the datastore.

10.5 References and Resources

The Java Datastore API. . .
. . . http://code.google.com/appengine/docs/java/datastore/

The official AppEngine java datastore documentation.

Java Data Objects . http://java.sun.com/jdo/

The JDO standard documentation. JDO is the basic technology that the Java

interface to the AppEngine datastore is based on.

The Java Persistence API - A Simpler Programming Model for

Entity Persistence. . .
. . . http://java.sun.com/developer/technicalArticles/J2EE/jpa/

An article with an overview of the Java persistence API used by AppEngine.

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://code.google.com/appengine/docs/java/datastore/
http://java.sun.com/jdo/
http://java.sun.com/developer/technicalArticles/J2EE/jpa/
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=152

Chapter 11

Building User Interfaces in Java
Now we’ve seen some of the basics of how to do things in AppEngine

using Java. We learned the basics of how to use the datastore for per-

sistence, and examined the general structure of how to build a com-

plete Java cloud application using GWT. In this chapter, we’ll look in

more detail at how to work with GWT to build user interfaces for cloud

applications.

11.1 Why Use GWT?

Before we dive in, it’s worth mentioning: you don’t need to use GWT

to build AppEngine services using Java. You can use any Java web

application development framework you want—subject to a few lim-

its imposed by the AppEngine runtime. (Java programs running in

AppEngine can’t use threading, locking, or runnable objects, which can

be limiting.)

But you can use most of the common Java-based web application frame-

works. You could use a standard servlet environment, or Struts, or even

Grails. GWT isn’t an essential part of AppEngine—so why am I focusing

on GWT?

The answer is partially just because I like it. I’ve played around with a

lot of different toolkits for building web and cloud-based applications.

My experience is that GWT is by far the best. The worst pain-points,

the places that causes the greatest amount of trouble, are all generated

automatically by GWT, using a well-tested standard code generator.

Let me expand on that a bit. What GWT does for you is that it makes

writing the user interface for a cloud application as natural as writing a

Prepared exclusively for Jose Sierra

BUILDING GWT UIS WITH WIDGETS 154

user interface for a traditional application. It gives you tools for testing

and debugging that make it easy to debug even where your code crosses

the boundary between different languages—like your Java server, and

your client UI, which is really running in JavaScript or HTML5.

And that’s the most valuable thing about GWT. You see, the biggest

problem with cloud programming in general, is that it’s painful and dif-

ficult to test and debug. In a cloud application, you need to deal with

the client program (HTML + JavaScript), plus whatever programming

language the server is implemented in, plus XML and HTTP. That’s a

lot of complexity. But that’s not the worst of it. You don’t just need

to deal with those languages: you also need to deal with the bound-

aries between them. You don’t just need to write JavaScript code on

the client: you need to write JavaScript code that knows how to gen-

erate HTTP requests, how to parse the XML response and generate

JavaScript objects from them. Your server doesn’t just need to have

code to perform its basic operations: it needs to know how to parse

HTTP requests to figure out what operation a client wants it to perform;

and it needs to take the result of that operation, and translate it into

XML. And both the client and the server need to agree perfectly on what

the requests, responses, and XML encodings are. Any problem with

any piece of the code—particularly with code in the boundary regions

between languages—-can cause subtle, hard-to-find problems. I have

no idea how many hours of my life I’ve wasted tracking down errors

involving trivial mistakes in XML formats or HTTP message headers.

The most important thing about GWT isn’t that it lets you write your

UIs using widgets, like a native UI toolkit. That’s really nice, and valu-

able. But far more important and valuable is the fact that GWT takes

care of the boundaries: you write all of your code in Java, and GWT

takes care of translating that Java into XML, HTTP, JSON, JavaScript,

HTML, and CSS, and generates the code that bridges the boundaries

between them. All of that stuff is still going on under the covers—but

with GWT, you don’t need to deal with it. You won’t have problems with

those boundaries, and the amount of time and effort that you’ll save is

astonishing.

11.2 Building GWT UIs with Widgets

It’s time to build our own UI using GWT. We’ll take our chat application

and build the same basic UI that we built in Python, this time using

GWT. To start, we’ll concentrate on the real UI aspects—except where

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=154

BUILDING GWT UIS WITH WIDGETS 155

necessary, we’ll ignore the application logic, and focus on presentation.

This is typical of how you’ll build a GWT-based AppEngine service: you

start by figuring out what you want the service to do; as we did in the

previous chapter, figure out the basic data you want to manipulate and

what kinds of RPC calls you’ll need. Then sit down with GWT, and put

together the UI.

Like most UI toolkits, in GWT, you work with widgets. A widget is a basic

element of the user interface. There are widgets for all of the basic com-

mon user interface elements you’re used to: text boxes, buttons, radio

buttons, drop downs, menus, and so on. There are also container wid-

gets for managing layout. This whole structure is, as I’ve said before,

one of the great reasons for using GWT: you don’t need to worry about

how to do the CSS to make your UI layout work. You don’t need to figure

out how to set up all of the JavaScript to draw your UI. You build your

UI out of widgets—including layout widgets—and then you let GWT do

the work. You can focus on the what, rather than the how.

In a traditional GUI toolkit, you start off with a window and place the

widgets in it. With GWT, you’re putting your application into a web page,

and putting widgets into that. So in GWT, the starting point is an HTML

page. You can put whatever HTML you want into the basic page; in fact,

if you want to, you can do almost all of the GUI layout using HTML. Back

in Chapter 9, AppEngine and Java, on page 121, we did use HTML to do

the basic layout. But you don’t have to do that: you can use an HTML

page that is totally blank, and just use GWT to do all of the layout.

That’s what we’ll do in this chapter. We do still need an HTML page—the

only way of loading a cloud application is through a web page. So we

use a minimal skeleton page, shown below; all this it does is set the

links to load the GWT UI, using a <link> tag to load the CSS, and a

<script> tag to load the UI code.

Se we start with an HTML page. To tell AppEngine exactly which page

is the main frame of our application, we edit the web.xml file - the same

way we did in the previous chapter. We’d like the main page of our

application to be called Chat.html, so we just edit the welcome-file-list

entry:

<welcome-file-list>

<welcome-file>Chat.html</welcome-file>

</welcome-file-list>

Once the system knows what page provides our application frame, we

can set that frame up, by creating the Chat.html page:

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=155

BUILDING GWT UIS WITH WIDGETS 156

Download workspace/PersistChat/war/Chat.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<html>

<head>

<meta http-equiv="content-type" content="text/html; charset=UTF-8">

<link type="text/css" rel="stylesheet" href="Chat.css">

<title>AppEngine Chat</title>

<script type="text/javascript" language="javascript" src="persistchat/persistcha...*TRUNC*
</head>

<body>

</body>

</html>

There’s not much to it; it’s a very minimal file. The body is completely

empty: we’re going to populate it completely using dynamic layout code

in GWT. The important things are:

1. A link to the css page for the application. You’ll usually use the

same name for the CSS and HTML files, so the CSS is Chat.css.

2. A script tag, which loads the GWT-generated javascript code.

With the page in place as a frame for our application, we can start

on the real work. What do we want in our Chat UI? Let’s look at the

mockup we put together previously, in Figure 7.8, on page 103. We’ve

got a title bar up at the top; under the title bar, there’s a sub-header

with the current time and date; then there’s a box containing a list of

chats and a box containing the chat messages side by side. Underneath

these boxes is the entry box where we can type new messages, and a

button to send them.

In GWT, we can set up exactly what we just described. The basic struc-

ture of the UI is a vertical layout: a top-box with the title and sub-title,

a middle box with the chat list and chat messages, and a bottom box

with the text entry. We want to write GWT code that will set up those

widgets, and arrange them into our UI.

In GWT, the client application always starts by calling the onModuleLoad

method of the application’s main class. onModuleLoad is basically the

main function of a GWT application—and since the first thing that a GWT

application needs to do is set up its user interface, put the UI construc-

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/workspace/PersistChat/war/Chat.html
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=156

BUILDING GWT UIS WITH WIDGETS 157

tion code right there. In the rest of this section, we’ll be building up the

implementation of onModuleLoad.

We’ll start by creating the basic frames of our UI.

Download workspace/PersistChat/src/com/pragprog/aebook/persistchat/client/Chat.java

Ê final VerticalPanel mainVert = new VerticalPanel();

Ë final VerticalPanel topPanel = new VerticalPanel();

final HorizontalPanel midPanel = new HorizontalPanel();

final HorizontalPanel bottomPanel = new HorizontalPanel();

Ì mainVert.add(topPanel);

mainVert.add(midPanel);

mainVert.add(bottomPanel);

Ê In order to set up a UI with a series of stacked UI elements, we

must create a Panel widget and insert the other elements into it.

First, we create a VerticalPanel, which is the main element of the

UI.

Ë Now, we want to create the vertical elements of the UI. We’ve got

three things. At the top, we’ve got something that is going to verti-

cally stack a title bar and a subtitle—so it’s another VerticalPanel.

In the middle, we’ll have two things side-by-side (the chat list and

the chat transcript)—so that’s going to be a HorizontalPanel. Finally,

at the bottom, we’re going to have the entry box and send button—

again, stacked vertically, so it’s another VerticalPanel.

Now we want to put the title and subtitle into the top panel:

Download workspace/PersistChat/src/com/pragprog/aebook/persistchat/client/Chat.java

Ê final Label title = new Label("AppEngine Chat");

final Label subtitle = new Label(new Date().toString());

Ë title.addStyleName("title");

Ì topPanel.add(title);

topPanel.add(subtitle);

Ê In the top panel, we’re going to want to put two widgets, both of

which only display some text. The easiest way to put text into a

GWT UI is to use the Label widget. We create label widgets for both

the title and subtitles. Since they’re passive, and don’t change, we

can just put the text into them when we create them.

Ë The contents of the subtitle widget is just plain text. But for the

title, we want to make it look different: the title should be bigger

and bolder than the text beneath it.

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/workspace/PersistChat/src/com/pragprog/aebook/persistchat/client/Chat.java
http://media.pragprog.com/titles/mcappe/code/workspace/PersistChat/src/com/pragprog/aebook/persistchat/client/Chat.java
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=157

BUILDING GWT UIS WITH WIDGETS 158

Most UI toolkits provide some way of managing styles to set things

like text size, font, color, and so on. But we’ve already seen a way

of doing that in a web environment: CSS is a really nice, flexible

way of managing style attributes. Why reinvent the wheel? Instead

of defining a new API for doing styles, GWT uses CSS. You don’t

need to write much of it: GWT has default styles for its widgets

that look good. But when you want to customize something, you

specify the attribute using CSS. Write the CSS for the style you

want in your applications CSS file, and then tell GWT to use a par-

ticular style for a widget by calling addStyleName("style"). We’ll put

the style “apptitle” on the title label. (There is a setStyle name, but

it clears all of the other style attributes associated with the wid-

get. GWT automatically sets a lot of attributes to make the widgets

look right, and you don’t want to clear those. addStyleName just

adds your style to the CSS cascade, so it still inherits all of the

style attributes other than the ones you specifically set.) We’ll get

to where to put the CSS in a moment.

Ì Once the widgets are created, we need to add them to their panel.

In the code above, we called addStyle to alter the appearance of the

label widget containing our application title. What we did was insert a

reference to a CSS style. This is how we alter anything about the style

of our application’s widgets using GWT. GWT does a really good job

of setting attractive defaults, but in any real application, there will be

places where you’ll want to customize. CSS is a great way of doing that:

CSS provides a complete set of style attributes in a standard way, and

with the cascade structure of CSS, it’s very easy to set up a general

style for your application, and customize it where necessary.

We’re going to change a couple of styles - but the basic pattern is always

the same. In the Java code, we add a CSS class attribute to the element

whose style we want to change; then in the CSS file, we write a class

entry for that. Here’s what we add to the default CSS:

Download workspace/PersistChat/war/Chat.css

.title {

font-size: 4em;

font-weight: bold;

color: #4444FF;

}

.messages {

background: #AAAAFF;

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/workspace/PersistChat/war/Chat.css
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=158

BUILDING GWT UIS WITH WIDGETS 159

}

.bold {

font-weight: bold;

background: #FFFF88;

}

We’re doing three style classes, but they’re all straightforward. I’ll describe

the first one in a bit of detail, and the other two should make sense. The

first CSS class is the one for the title label we just created. We want to

make the title text big and bold, with a colored background. So in our

CSS class, we change its font-size attribute to make it big; we change

its font-weight attribute to make it bold; and we modify its background

element to chage the background color.

That’s it; we’ve changed the style.

We also need to set up the contents of the other two subpanels. The

basic mechanics are similar to what we’ve just seen—but we use some

more interesting widgets. The chat list panel is particularly interesting,

because its contents are a set of links that are generated dynamically,

based on which chats are available. That’s a bit complicated, so we’ll

come back to that: first, let’s finish looking at the basic layouts of the

other subpanels. Here’s the basic layout code for the middle panel:

Download workspace/PersistChat/src/com/pragprog/aebook/persistchat/client/Chat.java

Ê final VerticalPanel chatList = new VerticalPanel();

chatList.setBorderWidth(2);

final Label chatLabel = new Label("Chats");

Ë chatLabel.addStyleName("bold");

chatList.add(chatLabel);

Ì chatList.setWidth("10em");

Í populateChats(chatList);

// "TextArea text" is defined as a field of the class, so that

// the textarea can be referenced by handler methods.

Î text = new TextArea();

text.addStyleName("messages");

text.setWidth("60em");

text.setHeight("20em");

midPanel.add(chatList);

midPanel.add(text);

Ê We’re going to put the list of chats in a column on the left — so we

create a vertical panel. Then we give it a visible border, by setting

its border-width to 2, and put a label on top of it.

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/workspace/PersistChat/src/com/pragprog/aebook/persistchat/client/Chat.java
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=159

BUILDING GWT UIS WITH WIDGETS 160

Ë As we did before, we’re going to change the style of the label on

the chatlist. This time, we’ll use the style “bold”, whose definition

you can see in the CSS above.

Ì Normally, GWT picks a default size for panels, based on the size

of the largest thing inside of the panel. We want a bit more con-

trol than that, so we explicitly set its width to 10ems. The 10ems

figure seems random, but it’s not. The text area displaying the

chat transcript is going to be 60ems, because that’s a width that

will fit most messages cleanly. After experimenting with different

sizes, making the chat list 1/6th the width of the transcript has

the nicest appearance. Making it any narrower gives it an awk-

ward skinny look; making it wider puts too much whitespace on

the left side of the window.

Í To populate the contents of the chatlist, we need to set up some

RPCs and callbacks; putting that stuff inline here where we’re con-

structing the basic UI layout would be awkward at best, and it

would violate our principle of separation of concerns. Layout of

the UI is one concern; RPCs and event handling is a different one.

So we just call the code that does that work. We’ll look at it a bit

later.

Î And finally, we create the text area. We set its width to 60emss,

and it’s height to 20ems. Then we finish adding all of the wid-

gets we’ve just created to the panel, and the layout of our middle

section is all done!

Finally, we’ll lay out the bottom portion:

Download workspace/PersistChat/src/com/pragprog/aebook/persistchat/client/Chat.java

final Label label = new Label("Enter Message:");

label.addStyleName("bold");

final TextBox messageBox = new TextBox();

messageBox.setWidth("60em");

final Button sendButton = new Button("send");

bottomPanel.add(label);

bottomPanel.add(messageBox);

bottomPanel.add(sendButton);

setupSendMessageHandlers(sendButton, messageBox);

This is pretty much the same sort of stuff. We create the widgets, and

lay them out. Again, we need to set up some event handlers and call-

backs; again, we keep our concerns separate, and just use a call to the

setup.

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/workspace/PersistChat/src/com/pragprog/aebook/persistchat/client/Chat.java
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=160

MAKING THE UI ACTIVE: HANDLING EVENTS 161

Now that we’ve got the UI laid out, the only layout thing remaining is

focus management. The focus of a UI is the widget that is selected as the

default target of any actions. If you start typing, the focus is whatever

widget recieves the characters that you type. Setting the focus is a small

detail in some ways, but for a user, making sure that the focus is in the

right place has a big effect in making your application work smoothly.

Download workspace/PersistChat/src/com/pragprog/aebook/persistchat/client/Chat.java

Ê RootPanel.get().add(mainVert);

// focus the cursor on the message box.

Ë messageBox.setFocus(true);

messageBox.selectAll();

setupTimedUpdate();

}

When a user runs a chat application, they’re going to expect to be able

to start typing chat messages - so we want to make sure that the widget

that lets them type messages is active.

11.3 Making the UI Active: Handling Events

We’ve got a UI now, and if we were to try to display it, it would look

pretty good. But it wouldn’t do anything. There’s no activity. It doesn’t

know how to respond to any actions that the user takes, and it doesn’t

know how to fetch data from the server. The key to making the UI active

in GWT is callbacks.

What we’ve got so far produces a UI that looks like what we want—but

it’s completely passive. It doesn’t do anything. To get it to do something,

we need to set up event handlers. Event handler code is intrinsically

asynchronous. It’s built entirely from callbacks. Instead of something

like a windows event loop, where you write a loop that watches for user

interface actions and then makes a decision, GWT event handler code

creates objects containing code to handle a particular event.

Even before we worry about handling user actions, we need to handle

some activities. We left out one bit of laying out the UI: the list of active

chats. The problem is, we don’t know what chats exist on the server, so

we can’t just generate the list when we’re populating the UI. We need

to retrieve that list, and we need to do it without interfering with the

display of the application.

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/workspace/PersistChat/src/com/pragprog/aebook/persistchat/client/Chat.java
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=161

MAKING THE UI ACTIVE: HANDLING EVENTS 162

Continuation Passing Programming

This kind of callback-based programming is sometimes called
continuation passing style (CPS) code, a term that came from
the functional programming community. It’s based on the idea
that any program can be written in a completely asynchronous
style. Wherever you have code that calls a function, f, and then
uses its result, you can replace it by adding a new parameter
to f containing a function, and then invoking that function with
fs result.

For example, you could think of a function to multiply two num-
bers:

def mult(m,n):
return m*n

In continuation passing style, you’d write:

def cpsmult(m, n, done):
done(m * n)

If you think about GWT, you’ll see CPS all over the place. The
UI event handlers are all basically CPS code; and the asyn-
chronous form of GWT RPC is precisely the CPS form of the pro-
cedure call.

This process is typical of a lot of things in AppEngine using GWT. We

need to send a request to the server to get the list of chats. But we don’t

want our program to just stall and show nothing in the user’s window

while it waits for a chat response. In a typical Java program, we’d prob-

ably get around that using threads—we’d create a Runnable object, and

spawn it off to take care of retrieving and populating the chat list. But

AppEngine provides us with a controlled, limited environment: it does

not permit us to create threads! So we can’t do that.

What we can do is use GWTs asynchronous calls, which involves several

steps. We need to add a method to the service containing our RPC calls

to get the list of chats. We’ll look at how to do that in more detail later

on. Then we we’ll create a vertical panel in the onModuleLoad method.

Finally, we’ll call a populateChats method, which will use a GWT asyn-

chronous RPC to retrieve the list of chats, and populate the list. The

implementation is shown below:

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=162

MAKING THE UI ACTIVE: HANDLING EVENTS 163

Download workspace/PersistChat/src/com/pragprog/aebook/persistchat/client/Chat.java

/**

* Sets up a call and callback to retrieve the list of available chats. When

* the server responds, this will create the link widgets, and add them to

* the chatListPanel.

*

* @param chatListPanel

*/

public void populateChats(final VerticalPanel chatListPanel) {

Ê chatService.getChats(new AsyncCallback<List<String>>() {

Ë public void onFailure(Throwable caught) {

chatListPanel.add(new Label("Couldn't retrieve chats: " + caught));

}

Ì public void onSuccess(List<String> chats) {

for (String chat : chats) {

Button chatButton = new Button(chat);

chatListPanel.add(chatButton);

Í Chat.this.setupChatClickHandler(chatButton,

chat);

}

setCurrentChat(chats.get(0));

}

});

}

This is a relatively straightforward use of RPC and asynchronous operations—

it’s the same basic pattern that you’ll use over and over again in AppEngine/GWT.

Ê We make an RPC call. Instead of actively waiting for a response

and then returning it, we’ll set up a callback object, which will be

invoked whenever the result of the RPC becomes available. This

pattern is used a lot—and not only for RPC. Because of the lack

of threading, almost anywhere where we’d use threads in a typical

Java program, we set up some kind of a callback in AppEngine.

Nearly all of the real code of our application will run in callbacks.

Ë Most of the time, the RPC should succeed. As you’ll see when

we write the server-side code, there’s no way that our server will

return an error. But when you’re programming for the cloud, there’s

a layer between your client and your server: the network itself. And

that’s a potential source of errors that’s beyond your control—so

program carefully to make sure that you’re prepared for it. In this

case, we’ll handle it in a really simple way: if the getChats call fails,

we’ll just put an error message into the chat-list widget.

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/workspace/PersistChat/src/com/pragprog/aebook/persistchat/client/Chat.java
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=163

MAKING THE UI ACTIVE: HANDLING EVENTS 164

Ì If the RPC succeeds as expected, then we populate the chatlist

panel. For each chat, we create a Button widget containing the

name of the chat, and add it to the panel.

Í Then we need to set up event handlers. We want the UI to do

something when we click on one of those chat buttons. To do that,

we need to set handlers. We’ll look at how to do that in the next

section.

In order to make our application take action in response to events, we

need to set up event handlers. Event handlers are callbacks that are

invoked whenever the user does something that your program is inter-

ested in. For example, we just made a bunch of buttons for selecting

chats. But those buttons don’t do anything. So:

Download workspace/PersistChat/src/com/pragprog/aebook/persistchat/client/Chat.java

protected void setupChatClickHandler(final Button chatButton, final String chat) {

chatButton.addClickHandler(new ClickHandler() {

public void onClick(ClickEvent event) {

setCurrentChat(chat);

text.setText("Current chat: " + chat + "\n");

currentChat = chat;

chatService.getMessages(currentChat, new MessageListCallback());

}

});

}

This attaches a handler to a button. The handler is an instance of Click-

Handler. The onClick method of the handler will be called whenever the

button is clicked. When the user clicks the button for a particular chat,

the handler will set the current chat for the program, and it will invoke

an RPC which will retrieve the messages from the selected chat.

There are more event handlers that we need to write. When the user

tries to send a chat message by clicking the send button, something is

supposed to happen: the system is supposed to take the contents of the

text entry box, send it to the server as a new chat message, update the

transcript, and clear the entry area to get it ready for the next message.

We’ll set up a callback that is invoked when users click on the “send”

button, or when they press the enter key on text in the message entry

area.

Download workspace/PersistChat/src/com/pragprog/aebook/persistchat/client/Chat.java

private void setupSendMessageHandlers(final Button sendButton,

final TextBox messageBox) {

// Create a handler for the sendButton and nameField

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/workspace/PersistChat/src/com/pragprog/aebook/persistchat/client/Chat.java
http://media.pragprog.com/titles/mcappe/code/workspace/PersistChat/src/com/pragprog/aebook/persistchat/client/Chat.java
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=164

MAKING THE UI ACTIVE: HANDLING EVENTS 165

Ê class SendMessageHandler implements ClickHandler,

KeyUpHandler {

/** Fired when the user clicks on the sendButton. */

Ë public void onClick(ClickEvent event) {

sendMessageToServer();

}

/** Fired when the user types in the nameField. */

Ì public void onKeyUp(KeyUpEvent event) {

if (event.getNativeKeyCode() == KeyCodes.KEY_ENTER) {

sendMessageToServer();

}

}

/** Send a chat message to the server. */

Í private void sendMessageToServer() {

ChatMessage chatmsg = new ChatMessage(user,

messageBox.getText(), getCurrentChat());

messageBox.setText("");

chatService.postMessage(chatmsg,

new AsyncCallback<Void>() {

public void onFailure(Throwable caught) {

Chat.this.addNewMessage(new ChatMessage(

"System", "Error sending message: " +

caught.getMessage(),

getCurrentChat()));

}

public void onSuccess(Void v) {

chatService.getMessagesSince(getCurrentChat(),

lastMessageTime,

new MessageListCallback());

}

});

}

}

Î SendMessageHandler handler = new SendMessageHandler();

sendButton.addClickHandler(handler);

messageBox.addKeyUpHandler(handler);

}

Ê We’re writing a handler that will be invoked for two kinds of events:

when the users click the send button, and when they hit the

return key in the message box. We need to implement an interface

to handle each event: for a button click, there’s the ClickHandler

interface; for the enter key, there’s the KeyUpHandler.

Ë The ClickHandler interface has a method onClick; your handler’s

onClick will be invoked whenever the button is clicked. The but-

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=165

MAKING THE UI ACTIVE: UPDATING THE DISPLAY 166

ton click handler and the enter key handler do the same thing, so

we abstract that into a single function.

Ì The KeyUpHandler interface has a method onKeyUp that is invoked

whenever a key is pressed. The main difference is that onKeyUp

will be invoked whenever any key is pressed—but we only want to

send the message when the enter key is pressed. So we need to do

a test to check what key was pressed, and only do the send when

the enter key is pressed.

Í Here’s where we do the real work. First, we create the chat mes-

sage and then, using the usual GWT asynchronous style, we invoke

GWT RPC message.

Î Finally, we create an instance of the callback object, and we regis-

ter it as the event handler for clicking the send button, or pressing

enter in the text box.

11.4 Making the UI Active: Updating the Display

We’ve laid out our user interface, and we’ve built callbacks and event

handlers to make it actually do things in response to user actions. But

we’re still missing one key bit: updating the display. When a user selects

a chat room, the UI is supposed to update so that it displays the mes-

sages in that chatroom, and then it’s supposed to keep updating when-

ever new messages get posted.

In the handler code up above, in the chat selection handler (and one or

two other places) we created a MessageListCallback. That’s actually the

code that updates the display with collections of new messages. The

MessageListCallback is used in two ways:

1. When the user selects a new chat, it’s invoked to display the new

messages. In that case, it retrieves a complete list of all messages

in the chatroom up to the current moment.

2. In order to keep the UI up-to-date, we have a scheduled callback

that keeps retrieving new messages — it doesn’t get the entire list

of all messages in a chat; it just gets the ones that haven’t been

seen yet by this client. (We’ll look at how it determines what has

or hasn’t been seen yet by the client in the next chapter.)

Updating the UI is really easy. Basically, all of your UI widgets have

methods to change their contents - and all you need to do is convert

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=166

MAKING THE UI ACTIVE: UPDATING THE DISPLAY 167

things into strings, and then add them to the widgets. That’s all that

you need to do.

So let’s take a look at the MessageListCallback.

Download workspace/PersistChat/src/com/pragprog/aebook/persistchat/client/Chat.java

public class MessageListCallback implements AsyncCallback<List<ChatMessage>> {

public void onFailure(Throwable caught) {

}

public void onSuccess(List<ChatMessage> result) {

addNewMessages(result);

}

}

protected void addNewMessages(List<ChatMessage> newMessages) {

StringBuilder content = new StringBuilder();

content.append(text.getText());

for (ChatMessage cm : newMessages) {

content.append(renderChatMessage(cm));

}

text.setText(content.toString());

}

protected String renderChatMessage(ChatMessage msg) {

Date d = new Date(msg.getDate());

String dateStr = d.getMonth() + "/" + d.getDate() + " " + d.getHours() + ":" + d...*TRUNC*
return "[From: " + msg.getSenderName() + " at " + dateStr + "]: " + msg.getMess...*TRUNC*

}

protected void addNewMessage(ChatMessage newMessage) {

text.setText(text.getText() + renderChatMessage(newMessage));

}

1. The callback itself is trivial: it recieves the list of messages to add

to the display, and it just invokes addNewMessages.

2. The implementation of addNewMessages is nearly as simple. It ren-

ders the chat messages as strings, concatenates the string con-

taining the new messages with what was already in the transcript

window, and then sets the window contents.

There’s one more piece to really making the UI active the way we’d like

it to. We want the UI to automatically update when other users post

new messages. In a cloud environment, we can’t really do something

where we say, “Update whenever someone else posts a message:” our

client doesn’t know when someone else has posted a message. There’s

no way for it to know: only the server knows, and the server can only

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/workspace/PersistChat/src/com/pragprog/aebook/persistchat/client/Chat.java
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=167

WRAPPING UP WITH GWT 168

respond to requests from the client. So we create a periodic update:

we set up a request that will automatically be sent to the server on

a regular schedule asking it for any updates. This is a very common

pattern in GWT UIs, so GWT makes it easy to do. And, of course, it’s

basically another callback, called a Timer: a Timer is a runnable object,

which GWT will invoke on a schedule. We create and set up the timer

as the last section of our onModuleLoad method:

Download workspace/PersistChat/src/com/pragprog/aebook/persistchat/client/Chat.java

private void setupTimedUpdate() {

// Create a new timer

Timer elapsedTimer = new Timer() {

public void run() {

chatService.getMessagesSince(getCurrentChat(), lastMessageTime,

new MessageListCallback());

}

};

// Schedule the timer for every 1/2 second (500 milliseconds)

elapsedTimer.scheduleRepeating(500);

}

The creation of the timer object is absolutely bog-standard GWT-style

callback code. We create a Timer object. When invoked, the timer sends

a request to the server asking for updates. In more typical GWT code, it

provides yet another callback—this time, one that will be invoked when

the update request returns a result. When the getMessagesSince call

returns, the new messages will be displayed by calling addNewMessages.

Once the Timer object is created, we just need to tell it how often it

should be invoked. For a responsive UI, one half of a second is a pretty

good interval, so we tell it to invoke every 500 milliseconds.

11.5 Wrapping Up with GWT

In this chapter, we put together the basic GUI of our chat application. In

doing so, we examined the basic mechanisms for building GWT appli-

cations. We saw how to create widgets, and arrange them in the UI. We

looked at how to use CSS to customize styles of elements of the UI. We

examined how to create event handlers, and attach them to widgets to

make the UI active. In fact, we’ve seen everything we need to build a

complete AppEngine program in Java.

In the next chapter, we’ll put it all together. We’ll finish filling in the gaps

in our server, and in the client-side logic that interacts with the server.

In the process, we’ll look at some more of the interesting services that

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/workspace/PersistChat/src/com/pragprog/aebook/persistchat/client/Chat.java
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=168

RESOURCES 169

GWT provides. It should all look familiar: GWT uses a continuation-

passing callback style pretty ubiquitously. Most services are provided

through hooks where we can attach our own callbacks. By the end

of the next chapter, our chat application will be completely built and

deployed to AppEngine.

11.6 Resources

The GWT Widget Gallery. . .
. . . http://code.google.com/webtoolkit/doc/1.6/RefWidgetGallery.html

The single most useful resource for a GWT UI builder. This site is an up-to-date

list of every GWT widget, with visual examples of what the widgets look like,

complete specifications of what CSS attributes you can use to customize them,

and lists of the event handlers that you can use to program them.

The GWT 2.0 Developers Guide. . .
. . . http://code.google.com/webtoolkit/doc/latest/DevGuide.html

The official GWT documentation, describing everything you could want to know

about GWT.

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://code.google.com/webtoolkit/doc/1.6/RefWidgetGallery.html
http://code.google.com/webtoolkit/doc/latest/DevGuide.html
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=169

Chapter 12

Building the Server Side of a Java
Application

We’ve built most of our chat application; what’s left is the connec-

tion between the client and the server. Back in Chapter 10, Managing

Server-Side Data in AppEngine, on page 140, we put together a basic

RPC interface for connection between the client and the server. Unfor-

tunately, it turned out to be not quite right once we built our client.

In this chapter, we’ll look at what we did wrong in defining that inter-

face, and how to fix it. We’ll look in a bit more depth at what kinds of

objects and methods we really need in our server, and we’ll implement

the missing pieces. We’ll examine we else we need in our server beyond

just the handlers for client requests. And we’ll finally deploy our Java

chat application.

12.1 Filling in Gaps: Supporting Chat Rooms

If you were paying attention In the last chapter, you’ll notice that I

cheated in some of the client methods. The RPC interface that I defined

in Chapter 10, Managing Server-Side Data in AppEngine, on page 140

only had two methods—but I used a couple of extras. The original RPC

interface just didn’t have everything that I really needed to make the

application work. That kind of problem is really common when you’re

getting started with a system like AppEngine.

Programming distributed applications is very different from traditional

application program. When you’re not used to thinking in terms of such

Prepared exclusively for Jose Sierra

FILLING IN GAPS: SUPPORTING CHAT ROOMS 171

an extreme separation of the system into client and server pieces, it’s

very easy to forget about some of the basic things that you’ll need.

When we designed our original chat interface, we were completely focused

on how to get and post chat messages. After all, those are the two fun-

damental operations in a chat application.

But there’s more to chat. The main activities of a user of a chat appli-

cation are posting and reading messages. However, in order to post

and read messages, the users need to be able to see what chats are

available, and pick one. We need to cover the complete lifecycle of our

application. We can’t just focus on one or two key activities: we need to

think about how our users will get to the point where they can do those

activities; and we need to think about how we’ll set up the infrastruc-

ture we need in order to make those activities possible.

In terms of our chat application, we’re missing two important things:

1. We need a way of getting the list of available chat rooms, so users

can choose the one in which they want to participate.

2. We need a way of creating chat rooms. When we first deploy our

application to the server, our datastore will be completely empty.

There won’t be any rooms. In order to make a usable application,

we need to either seed the datastore by putting in a set of chat

rooms, or provide some way for users to define new rooms. Either

way, we must provide a call to create a chat room.

Let’s get started on creating those missing pieces.

Implementing Chatroom Classes

We need to add a couple of new RPC methods to our interface, but we’re

missing data types. As we just discussed, we need to be able to create

and query the list of chat rooms: to do that, we must have a persistent

ChatRoom class.

What should a ChatRoom object look like? To be able to create and

query rooms, we don’t need much: in fact, the only thing we really need

is the name of the chat.

But the first time we tried to define the interface, we messed up. We left

out things that we’ll really need. Rather than rushing ahead, this time

we’re going to be more careful, and make sure we get the design of the

ChatRoom class completely right. What sorts of things might we want

to have in the chat list? One thing that comes to mind is a timestamp

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=171

FILLING IN GAPS: SUPPORTING CHAT ROOMS 172

containing the time at which the last message was posted to the chat.

With that, we could have the UI show users which chats are active. So

we’ll write a persistent chat object that contains both the name of the

chat, and the timestamp of the last posted message. There’s nothing

particularly new about this class—it’s a typical persistent AppEngine

object, so we won’t discuss it in detail, but the code for it is shown

below.

Download workspace/Chat/src/com/pragprog/aebook/chat/client/ChatRoom.java

public class ChatRoom implements IsSerializable {

String name;

long date;

public ChatRoom(String chat, long date) {

this.date = date;

this.name = chat;

}

public ChatRoom() {

}

public String getName() {

return name;

}

public long getLastMessageDate() {

return date;

}

public void updateLastMessageDate(long d) {

date = d;

}

}

Persistent Classes and GWT: Ouch

And now, we encounter one of the few places where GWTs strategy of

translating Java to Javascript automatically causes real trouble. We’ve

got classes for chat messages and chat rooms, which we use both in

RPC calls, and in the server datastore persistence code. The problem

is, to use a class in a persistent way, it needs to have some persistence

annotations, and it needs a persistence key. But the annotations and

the key aren’t things that GWT can translate into Javascript! So we

can’t use the persistent classes for GWT RPC.

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/workspace/Chat/src/com/pragprog/aebook/chat/client/ChatRoom.java
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=172

FILLING IN GAPS: SUPPORTING CHAT ROOMS 173

We can’t use the GWT RPC version of those classes for persistence

either, because the RPC classes don’t have the annotations and fields

needed by the datastore JDO implementation. So we need to have two

versions of each of those classes: one for persistence, and one for RPC.

It’s annoying — but it’s the easiest way of working around this painful

problem.

So we put the RPC version of the ChatMessage and ChatRoom classes

in the client package; and we put the persistent version of them into

the server package. In order to make things easier to read, we prefix the

names of the persistent version of the classes with “P”; you’ll see why in

some of the code later, where we need to do the work to convert between

the two different versions.

For now, so that you can see the difference, let’s look at the persistent

version of our new ChatRoom. We just saw the RPC version of it: here’s

the datastore persistent PChatRoom.

Download workspace/Chat/src/com/pragprog/aebook/chat/server/PChatRoom.java

@PersistenceCapable(identityType = IdentityType.APPLICATION)

public class PChatRoom {

@PrimaryKey

@Persistent(valueStrategy = IdGeneratorStrategy.IDENTITY)

private Key key;

@Persistent

String name;

@Persistent

long date;

public PChatRoom() {

}

public PChatRoom(String chat, long date) {

this.date = date;

this.name = chat;

}

public ChatRoom asChatRoom() {

return new ChatRoom(name, date);

}

public String getName() {

return name;

}

public Key getKey() {

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/workspace/Chat/src/com/pragprog/aebook/chat/server/PChatRoom.java
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=173

FILLING IN GAPS: SUPPORTING CHAT ROOMS 174

return key;

}

public long getLastMessageDate() {

return date;

}

public void updateLastMessageDate(long d) {

date = d;

}

}

The Server ChatRoom Methods

Now that we have the ChatRoom class done, we can write the methods

that will work with it. What do we really want to be able to do with

ChatRooms?

Create rooms We need to be able to create chat rooms.

List rooms We need to be able to get a list of the available chat rooms.

Delete rooms This one is optional; it depends on just how we want our

system to behave. If we think that chats are intrinsically transient—

that is, constantly created and then discarded—we’ll want a way

to clean up and discard chats once they’re no longer being used.

On the other hand, if we want chats to be a permanent record of

an ongoing conversation, we shouldn’t delete them.

The way that I tend to use chat rooms is much more the latter: I

consider most chats to be part of an ongoing conversation. I may

stop talking today, but odds are, I’ll come back tomorrow when I

have more to say. Since I’m designing the application, I’ll leave out

delete.

We know what methods we want, so now we can add them to the Chat-

Service. Our new methods are shown below:

Download workspace/Chat/src/com/pragprog/aebook/chat/client/ChatService.java

List<ChatRoom> getChats();

void addChat(String chatname);

As always in GWT, we need to add corresponding methods to the asyn-

chronous version of the interface:

Download workspace/Chat/src/com/pragprog/aebook/chat/client/ChatServiceAsync.java

void getChats(AsyncCallback<List<ChatRoom>> chats);

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/workspace/Chat/src/com/pragprog/aebook/chat/client/ChatService.java
http://media.pragprog.com/titles/mcappe/code/workspace/Chat/src/com/pragprog/aebook/chat/client/ChatServiceAsync.java
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=174

PROPER INTERACTIVE DESIGN: BEING INCREMENTAL 175

void addChat(String chatname,

AsyncCallback<Void> callback);

Implementing these is easy. getChats is pretty much the simplest possi-

ble JDOQL query: fetch all objects of type ChatRoom, and return them.

Download workspace/Chat/src/com/pragprog/aebook/chat/server/ChatServiceImpl.java

@SuppressWarnings("unchecked")

public List<ChatRoom> getChats() {

PersistenceManager persister = Persister.getPersistenceManager();

try {

Query query = persister.newQuery(ChatRoom.class);

query.setOrdering("date");

return (List<ChatRoom>)query.execute();

} finally {

persister.close();

}

}

Adding a new chat is nearly as easy. We just create a chat object, and

make it persistent.

Download workspace/Chat/src/com/pragprog/aebook/chat/server/ChatServiceImpl.java

public void addChat(String chat) {

PersistenceManager persister = Persister.getPersistenceManager();

try {

PChatRoom newchat = new PChatRoom(chat, System.currentTimeMillis());

persister.makePersistent(newchat);

} finally {

persister.close();

}

}

12.2 Proper Interactive Design: Being Incremental

There’s one other big problem with our original interface. We only pro-

vided a message for getting all of the messages in a given chat. We’re

building a UI where chats never get deleted—messages just keep accu-

mulating. And we want the application to be interactive, which means

it’s going to constantly update the displayed list of messages. When we

put those two together, we’ve got a formula for wasted resources and

lousy performance. We’re going to be constantly resending the entire

list of messages. Even assuming we only retrieve the message list when

we post a new message, that means on our client we’re going to retrieve

message one the first time we post; message one and message two the

second time; messages one, two, and three the third time; one, two,

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/workspace/Chat/src/com/pragprog/aebook/chat/server/ChatServiceImpl.java
http://media.pragprog.com/titles/mcappe/code/workspace/Chat/src/com/pragprog/aebook/chat/server/ChatServiceImpl.java
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=175

PROPER INTERACTIVE DESIGN: BEING INCREMENTAL 176

three, and four—and so on. By the tenth message, we’ll have sent mes-

sage one 10 times. Remember, it’s going to automatically update twice

a second: in one minute of using the system, we’d fetch the same mes-

sages 120 times!

This is not the way a cloud application should work. Imaging scaling

this: an application isn’t going to have one user; it’s going to have hun-

dreds, thousands, or more! With a thousand users, we’d be resending

the same old messages 120,000 times per second. Not only is that a

waste of time: it’s going to cost money! In AppEngine, we pay for the

resources we use. If we resend the same thing a hundred thousand

times a second, we’re going to use up our free resources quickly, and

then we’ll need to start paying for bandwidth.

There’s absolutely no good reason for doing that. In a real cloud appli-

cation, we don’t worry very much about CPU time: CPU time is cheap.

But we focus on communication: communication is expensive in both

time and money. Sending things over the network is incredibly slow in

comparison to computing them ourselves. Most of the time, we should

focus our design work on minimizing communication. It’s faster and

cheaper to recompute the same thing many times than it is to send it

over the network once.

For our chat room, there’s no reason to ever re-send a message to a

single client. The client can remember the messages it’s already seen,

and just add new ones to its list. In a cloud implementation of this,

what we can do is retrieve updates of the list based on time: that is, to

be able to say “Give me all of the chat messages since the last time I

asked.”

We call this way of working an incremental update. Instead of re-fetching

an entire collection of data, we manage copies of the data on both the

client and the server, and only send minimal modifications. For pretty

much any cloud application, if we want it to be both efficient and afford-

able to operate, we need to design it for incremental update.

Data Objects for Incremental Updates

To be able to do incremental update, we usually need to build some

data structures to represent how an incremental update fits into the

structure as a whole. In our case, what that means is we can’t just

return a list of ChatMessages from the getMessages or getMessagesSince

methods: we need to return a list of messages and a timestamp. So we

need to create a new object type that wraps those two things. It doesn’t

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=176

PROPER INTERACTIVE DESIGN: BEING INCREMENTAL 177

need to be a persistent object: we’re never going to store it in the datas-

tore. We’ll generate it on the fly in response to a request from the client.

But it does need to be something that can be sent over the network. It

needs to be serializable, which means that GWT will generate code to

translate the object into a format that can be sent in a message, and

to translate messages back into the object. In GWT, we make an object

serializable by having it implement the interface IsSerializable. This inter-

face has no methods: it’s just a marker used to tell GWT that it needs

to generate code for serializing this object.1

With all of that out of the way, it’s pretty easy to write a serializable

object—just make it declare that it implements IsSerializable, and make

sure that it includes a default, no-argument constructor. So our seri-

alizable object just wraps a date object that we’ll use as a timestamp,

and a list of ChatMessages. We want GWT to translate this; the easiest

way to do that is to just put it in the client package.

Download workspace/Chat/src/com/pragprog/aebook/chat/client/ChatMessageList.java

public class ChatMessageList implements IsSerializable {

private List<ChatMessage> messages;

private long time;

private String chat;

public ChatMessageList(String chat, long time) {

this.chat = chat;

this.time = time;

this.messages = new ArrayList<ChatMessage>();

}

/**

* Default 0-argument constructor for GWT serialization.

*/

public ChatMessageList() {

messages = new ArrayList<ChatMessage>();

time = System.currentTimeMillis();

chat = null;

}

public String getChat() {

return chat;

1. We can actually use the standard Java interface Serializable for this. But Serializable

is used by the Java virtual machine to identify things that can be serialized using the

native Java serialization mechanism. GWT doesn’t use Java serialization—in fact, GWT

serialization doesn’t even resemble standard Java serialization. So I prefer to use GWTs

own marker interface, to make it clear that I’m using GWT serialization.

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/workspace/Chat/src/com/pragprog/aebook/chat/client/ChatMessageList.java
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=177

PROPER INTERACTIVE DESIGN: BEING INCREMENTAL 178

}

public List<ChatMessage> getMessages() {

return messages;

}

public long getTimestamp() {

return time;

}

public void addMessage(ChatMessage msg) {

messages.add(msg);

}

public void addMessages(List<ChatMessage> messages) {

messages.addAll(messages);

}

}

Making the Chat Interface Incremental

To start using this time-based incremental retrieval mechanism, we’ll

need to both modify some old methods, and add some new methods to

our interface:

Download workspace/Chat/src/com/pragprog/aebook/chat/client/ChatService.java

Ê void postMessage(ChatMessage messages);

Ë ChatMessageList getMessages(String room);

Ì ChatMessageList getMessagesSince(String chat, long timestamp);

Ê Our postMessage method originally returned the list of messages

in a chat. But the reason we wanted to add a method to get the

messages since a particular point in time (i.e., that we don’t want

to send the same old messages over and over again) applies just

as well to the result of the postMessage method as it does to the

result of getMessages. We have two choices: we can either add a

timestamp parameter to postMessage, or we can make postMessage

return no value, and instead have our client call getMessages after

a new message is posted.

As a general rule, it’s good to separate query methods (methods

that retrieve values) from update methods (methods that modify

values). We’ll follow that rule, and make postMessage have a void

return value.

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/workspace/Chat/src/com/pragprog/aebook/chat/client/ChatService.java
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=178

PROPER INTERACTIVE DESIGN: BEING INCREMENTAL 179

Ë When users first connects to a chatroom, their client should retrieve

all of the messages in that room. After that, they’ll start doing the

incremental fetches. In order to make that work, the client needs

to know the server time when they did their first fetch. We must

modify the return type of the getMessages call so that it returns a

ChatMessageList.

Ì Now, we finally get to a new method: getMessagesSince.

And as usual for GWT, we need to provide an asynchronous version of

it:

Download workspace/Chat/src/com/pragprog/aebook/chat/client/ChatServiceAsync.java

void postMessage(ChatMessage message,

AsyncCallback<Void> callback);

void getMessages(String chatroom,

AsyncCallback<ChatMessageList> callback);

void getMessagesSince(String chat, long timestamp,

AsyncCallback<ChatMessageList> callback);

Dealing with Time

Time-based work in the cloud is a bit tricky. Our client isn’t running

on the same machine as our server. In fact, we don’t have a server; our

server code might be running on lots of different machines in the cloud.

There is no guarantee that the clocks used by our client and our server

are in sync. The time the client thinks it last retrieved messages might

not be the same time the server thinks it was. To make matters worse,

the fact that things are happening on a network adds a delay, which can

make timing-based things even more complicated. This is potentially a

serious and painful problem—fortunately, it’s easy to solve. Let’s begin

by examining the problem itself.

Suppose the clocks on the client and the server are perfectly in sync. We

could still run into conflicts as a result of simple timing issues caused

by network delays. Imagine:

09:34:58.1432 The client sends a request for messages.

09:23:58.1894 The server receives that request after a slight delay for

transmission time over the network.

09:23:59.2401 The server processes the request, and sends the response.

09:24:59.4019 The client receives the response over the network.

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/workspace/Chat/src/com/pragprog/aebook/chat/client/ChatServiceAsync.java
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=179

PROPER INTERACTIVE DESIGN: BEING INCREMENTAL 180

What time should the client use for the time of its request? Suppose

that it used the time it sent the request: 58.1432. Another client could

have sent a message X at 58.1434. When the server receives the request,

it will return a list containing X. And the next time the client asks for

messages, it will ask for messages newer than 58.1432. Since X’s times-

tamp is 58.1434, it’s newer than 58.1432, and so the server will include

X in its response again. That means the client will see message X twice.

That’s clearly not what we want.

We could use the time that the client receives the response: 59.4019.

Perhaps another client sent a message Y at 59.2530. Message Y will

not be in the list of messages received by the client—because it was

posted after the server sent its response to the client. The client’s next

request will be for messages posted after 59.4019; since Y’s timestamp

is 59.2530, that would mean it wouldn’t be included. Message Y will

never be sent to the client. Once again, that’s clearly not what we want.

It seems like no matter what we choose, we’re going to miss messages.

In general, the solution is to use a single clock: anything in a cloud

application that relies on two different clocks is bad news. We must

always work in terms of one clock. We can’t work in terms of the client’s

clock, because clients’ clocks are out of our control: there will be multi-

ple clients, and there’s no way to know whether they’re anything close

to being synchronized. But we can rely on the clocks in the AppEngine

servers; they’re synchronized using the network time protocol. We can

be certain that the differences between their clocks are smaller than

the units that we’ll be measuring time in.

The server clock—the clock provided by AppEngine in our server code—

should be the only clock we use. And that means we need to tell the

client what time it was on the server when a request was served.

Implementing the Server Methods

Now that we’ve got the interface between the client and the server

worked out, let’s implement the server code. We implemented parts of

it before, but we’ve changed things and added more methods. We’re

almost starting from scratch in our server.

We can begin with getMessages. This is nearly the same as before: the

only difference is that now we wrap the result in a MessageList object

with a timestamp.

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=180

PROPER INTERACTIVE DESIGN: BEING INCREMENTAL 181

Download workspace/Chat/src/com/pragprog/aebook/chat/server/ChatServiceImpl.java

@SuppressWarnings("unchecked")

public ChatMessageList getMessages(String chat) {

PersistenceManager persister = Persister.getPersistenceManager();

try {

Query query = persister.newQuery(PChatMessage.class);

query.setFilter("chat == desiredRoom");

query.declareParameters("String desiredRoom");

query.setOrdering("date");

List<PChatMessage> messages = (List<PChatMessage>)query.execute(chat);

// Get the most recent message.

ChatMessageList result = null;

if (messages.size() > 1) {

Ê PChatMessage lastMessage = messages.get(messages.size() - 1);

result = new ChatMessageList(chat, lastMessage.getDate());

for (PChatMessage pchatmsg : messages) {

result.addMessage(pchatmsg.asChatMessage());

}

} else {

result = new ChatMessageList(chat, System.currentTimeMillis());

}

return result;

} finally {

persister.close();

}

}

There’s one interesting snippet in this code, related to the discussion

about time in Section 12.2, Dealing with Time, on page 179. At Ê, we

get the last message retrieved by the query, and use its timestamp as

the time. The reason that we do this instead of using the system clock

is because our app isn’t running on one server. There could be one

server in the cloud handling a post request at the same time that this

server is handling a get request—and that could result in a new post

being added between the time the query finishes, and when the getMes-

sages implementation gets the time. So there could be a message whose

timestamp is between the last retrieved message and the current time

recorded by getMessages. In order to avoid that situation, we just use

the time of the last message. This strategy gives us a consistent view of

times so that our incremental message retrieval works properly.

Next, we can look at posting a message. That’s where things start to get

really interesting.

Download workspace/Chat/src/com/pragprog/aebook/chat/server/ChatServiceImpl.java

@SuppressWarnings("unchecked")

public void postMessage(ChatMessage message) {

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/workspace/Chat/src/com/pragprog/aebook/chat/server/ChatServiceImpl.java
http://media.pragprog.com/titles/mcappe/code/workspace/Chat/src/com/pragprog/aebook/chat/server/ChatServiceImpl.java
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=181

PROPER INTERACTIVE DESIGN: BEING INCREMENTAL 182

UserService userService = UserServiceFactory.getUserService();

User user = userService.getCurrentUser();

PersistenceManager persister = Persister.getPersistenceManager();

try {

PChatMessage pmessage = new PChatMessage(user.getNickname(), message.get...*TRUNC*
Ê long timestamp = System.currentTimeMillis();

pmessage.setDate(timestamp);

persister.makePersistent(pmessage);

Ë Query query = persister.newQuery(PChatRoom.class);

query.setFilter("name == " + message.getChat());

List<PChatRoom> chats = (List<PChatRoom>) query.execute();

Ì PChatRoom chat = chats.get(0);

Í chat.updateLastMessageDate(timestamp);

} finally {

persister.close();

}

}

We start off with some typical AppEngine boilerplate: create a Persis-

tenceManager, and make the chat message object persistent, so that it

will be stored in the datastore. Then we get to the new stuff.

Ê We modify the date on the message. As I explained before, we have

to be very careful to only use one clock—AppEngine’s clock. We

don’t care what the client thought the date and time was; we need

to use the date here on the server.

Ë Our Chat objects must include the timestamp of the last posted

message. So we need to retrieve the chat object, in order to update

its last-message time to the time of this message.

Ì The query returns a list of chats, but we know that the list will

only have one entry, so we can just grab the only entry out of the

list.

Í Now we update the last message date in the chat object. We don’t

need to do anything to store it: since we retrieved the message

using a PersistenceManager query, it’s already managed by the Per-

sistenceManager. And that means the updates will automatically be

saved at the end of the transaction.

Finally, we need the incremental getMessagesSince:

Download workspace/Chat/src/com/pragprog/aebook/chat/server/ChatServiceImpl.java

@SuppressWarnings("unchecked")

public ChatMessageList getMessagesSince(String chat, long timestamp) {

PersistenceManager persister = Persister.getPersistenceManager();

try {

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/workspace/Chat/src/com/pragprog/aebook/chat/server/ChatServiceImpl.java
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=182

UPDATING THE CLIENT 183

Query query = persister.newQuery(PChatMessage.class);

Ê query.declareParameters("String desiredRoom, int earliest");

Ë query.setFilter("chat == desiredRoom && date > earliest");

query.setOrdering("date");

List<PChatMessage> messages = (List<PChatMessage>)query.execute(chat, times...*TRUNC*
ChatMessageList msgList = null;

// Get the most recent message.

if (messages.size() >= 1) {

PChatMessage lastMessage = messages.get(messages.size() - 1);

msgList = new ChatMessageList(chat, lastMessage.getDate());

} else {

msgList = new ChatMessageList(chat, System.currentTimeMillis());

}

for (PChatMessage msg : messages) {

msgList.addMessage(msg.asChatMessage());

}

return msgList;

} finally {

persister.close();

}

}

This is almost the same as the updated getMessages, except for two

changes to the JDOQL query:

Ê We added a new parameter to the query, so that we can compare

the date passed to the call to getMessagesSince with the dates on

the messages.

Ë We added a new clause to the filter, to compare the dates.

12.3 Updating the Client

Now we’ve got all of the server methods we need for interacting with our

client! Our application is very nearly ready to run. What we still need

to do is make a couple of changes to our client, so that it knows how to

use our updated RPC interfaces.

There’s not much to do here: basically, the only problem is that we

need to update our code to adapt to the changes we made in the RPC

service. Instead of getting a list of chat messages, it now gets a ChatMes-

sageList; and now whenever it receives a ChatMessageList, it needs to

update its stored last message time, so that the client can use it to

make incremental update requests. All we need to do for that is update

our addNewMessages method:

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=183

CHAT ADMINISTRATION 184

Download workspace/Chat/src/com/pragprog/aebook/chat/client/Chat.java

protected void addNewMessages(ChatMessageList newMessages) {

lastMessageTime = newMessages.getTimestamp();

StringBuilder content = new StringBuilder();

content.append(text.getText());

for (ChatMessage cm : newMessages.getMessages()) {

content.append(renderChatMessage(cm));

}

text.setText(content.toString());

}

and then, we also need to update the code that creates a timed update,

so that it uses the lastMessageTime in its incremental update request.

// Create a new timer

Timer elapsedTimer = new Timer() {

public void run() {

chatService.getMessagesSince(getCurrentChat(), lastMessageTime,

new MessageListCallback());

}

};

// Schedule the timer for every 1/2 second (500 milliseconds)

elapsedTimer.scheduleRepeating(500);

12.4 Chat Administration

There’s one last thing to do before we’re ready to run our chat appli-

cation. We provided a method for creating chats on the server, but we

don’t have any interface for doing it. For now, we’re not going to build

a new UI element for adding chats. Instead, we’ll write a bit of adminis-

tration code. Administration code is code that you write to set up, clean

up, initialize, or monitor things. It’s code that’s not there for our users

to access, but for us to use to manage our system.

A lot of times, you’ll build a UI for your administration code. For exam-

ple, if you wanted to be able to keep track of how many people were

accessing chat, how many messages they posted to which chat rooms,

and how frequently people accessed the system, you’d probably want

to have a UI. Then you’d build another GWT user interface for doing

administration; to administer things, you’d just load the URL for the

administrator’s UI in your browser. If you did that, you’d probably want

to be careful to provide some security mechanisms, which we’ll see

later, to make sure that only you could access the administration UI.

But there are other kinds of administration code, which is what we’re

interested in here. When we first deploy a server, we need to initialize

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/workspace/Chat/src/com/pragprog/aebook/chat/client/Chat.java
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=184

CHAT ADMINISTRATION 185

some things. In our chat application, we need to initialize the set of chat

rooms.

The problem is we can’t just run code on the server to set things up.

We’re limited to the interface provided by AppEngine. What we need

to do is self-detecting initialization. That is, we need to put code in to

detect when the server is not yet initialized, and call initialization.

We do that by modifying getChats. Every time users come to our appli-

cation, before they see anything else, the application will call getChats

to initialize the chat list view. So what we’ll do is simple. When the

application retrieves the list of chat rooms, we’ll have it check to see if

the result is empty. If it is, we’ll call a method to initialize a set of chat

rooms. We’ll put the initialization method in the server implementation,

but we won’t declare it as an RPC. We don’t want users to be able to

invoke it: the only way it should ever be invoked is by the automatic

invocation when the system detects that it hasn’t been initialized.

The code to initialize the chat is pretty simple. We create a PersistenceM-

anager, create the rooms, and make them persistent.

Download workspace/Chat/src/com/pragprog/aebook/chat/server/ChatServiceImpl.java

static final String[] DEFAULT_ROOMS = new String[] { "chat", "book", "java", "python...*TRUNC*

public List<ChatRoom> initializeChats(PersistenceManager persister) {

List<ChatRoom> rooms = new ArrayList<ChatRoom>();

List<PChatRoom> prooms = new ArrayList<PChatRoom>();

long now = System.currentTimeMillis();

for (String name : DEFAULT_ROOMS) {

PChatRoom r = new PChatRoom(name, now);

prooms.add(r);

rooms.add(r.asChatRoom());

persister.makePersistent(r);

}

return rooms;

}

To call it, we just add a test to getChats, which checks to see if the list

of chats in the datastore is empty. If it is, we make it call initializeChats:

Download workspace/Chat/src/com/pragprog/aebook/chat/server/ChatServiceImpl.java

@SuppressWarnings("unchecked")

public List<ChatRoom> getChats() {

PersistenceManager persister = Persister.getPersistenceManager();

try {

Query query = persister.newQuery(PChatRoom.class);

query.setOrdering("date");

List<PChatRoom> rooms = (List<PChatRoom>)query.execute();

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/mcappe/code/workspace/Chat/src/com/pragprog/aebook/chat/server/ChatServiceImpl.java
http://media.pragprog.com/titles/mcappe/code/workspace/Chat/src/com/pragprog/aebook/chat/server/ChatServiceImpl.java
http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=185

RUNNING AND DEPLOYING THE CHAT APPLICATION 186

if (rooms.isEmpty()) {

return initializeChats(persister);

} else {

List<ChatRoom> result = new ArrayList<ChatRoom>();

for (PChatRoom pchatroom : rooms) {

result.add(pchatroom.asChatRoom());

}

return result;

}

}

finally {

persister.close();

}

}

12.5 Running and Deploying the Chat Application

We’ve finally finished a Java version of the chatroom! Now it’s time to

test it. In Eclipse, you just run your application using the “Run” button.

It takes a few moments to start up, and then it will show you a URL to

use to access the test server. When you go to that URL, you’ll be asked

to install a browser plugin: for testing purposes, it uses a special mech-

anism to manage communication between the client and the server, so

that you can use the Eclipse debugger to trace things in both the client

and the server. (In fact, it will even let you trace an RPC call from the

point where it’s invoked on the client, to where it’s actually executed on

the server.) Eclipse makes debugging an AppEngine program nearly as

simple as a traditional application.

Before you can deploy your Java code to the AppEngine servers, you

need to do a complete GWT compile. As usual, Eclipse makes things

easy. First, you need to do a full GWT compile. Normally, Eclipse is

doing partial compilation - basically, just using the Java compiler in

a restricted mode. To deploy, you need to do a full compile, with full

translation of Java to Javascript. Up on the Eclipse toolbar, there’s a

button that looks like a red toolbox with a Google “G”: just click on that,

and Eclipse will do a full-blown GWT compilation.

And now, finally, our application is ready to go live! Right next to the

toolbar button that you used to compile the application, there’s a but-

ton that looks like the AppEngine jet-engine logo. Just click on that.

The first time you do that, it will prompt you for the AppEngine appli-

catin ID, and then it will do the deployment. It takes a few minutes

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=186

RUNNING AND DEPLOYING THE CHAT APPLICATION 187

Figure 12.1: The Java Chatroom, deployed

to do a full deployment, but once it’s done, your application is live on

AppEngine.

So, after all of this work, what does it look like?

Pretty sharp, eh?

Just like with the Python applications, you now have full access to all

of the administrative controls on the application dashboard.

Troubleshooting

When you go to deploy your application, there are a couple of problems

that occur frequently, but whose error messages are at best bizarre and

mysterious, and at worst highly misleading. So for your help, here are

a few of the most common strangeness.

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=187

WRAPPING UP 188

1. When you change something about the way you store data in the

datastore, you’ll often get all sorts of strange error messages: class

cast exceptions, “unable to convert data type”. They’re caused

because your data store contains data from before you made the

change — and so the data in the datastore is inconsistent. Hope-

fully you’ll figure out your data structures before you deploy the

application. But while you’re working on it, figuring things out,

you’ll frequently need to change things. For example, when I was

working on the code for this chapter, I originally stored the date

as a java.util.Date object. But that turned out to be a problem for

GWT RPC, so I changed the representation of a timestamp to be a

long containing the timestamp in milliseconds since the epoch.

Those errors are not caused by any problem in your code. They’re

entirely the result of old data left in your local datastore. To fix it,

what you need to do is empty the old data out of your local datas-

tore. To do that, you just need to delete the contents of the direc-

tory WEB-INF/appengine-generated/local_db.bin in your Java project.

If you actually deployed the application, then you need to go to the

application dashboard, and select the “Datastore Viewer”. From

there, you can do a select-all and then delete of all of the objects

that you want to purge.

2. One of the most mysterious and yet common errors in Java AppEngine

occurs in GWT RPC parameters. When you go to run your pro-

gram, you get the error message “type was not included in the

set of types which can be serialized by this SerializationPolicy”.

This seems to imply that there’s a configuration problem — but

the error is very misleading. All that’s wrong is that you left out

a zero-argument constructor for the type. Every serializable type

used by GWT must have a public, zero-argument constructor. It

doesn’t need to do any actual initialization; it’s just used by the

GWT plumbing to create a blank object which GWT will then fill in

with the results of deserializing the message.

12.6 Wrapping Up

We’ve covered a lot of material in the last few chapters. We’ve seen how

to do datastore persistence in Java. We’ve learned a whole lot about

GWT, and how to design applications using its model. We’ve done a lot

of work on how to build an RPC based interface between the client and

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=188

WRAPPING UP 189

server, and how to use that interface to produce a well-performing web

application.

From here, we’re going to start moving into more advanced topics.

Instead of focusing specifically on Java or Python, we’re going to look

at a bunch of different topics: security and authentication, advanced

data management, administration, monitoring. For each one, we’ll look

at how to do it in both Java and Python.

Report erratum

this copy is (B3.0 printing, April 20, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/mcappe/errata/add?pdf_page=189

Part IV

Advanced AppEngine

Prepared exclusively for Jose Sierra

Chapter 13

Advanced Datastore

Prepared exclusively for Jose Sierra

Chapter 14

AppEngine Services

Prepared exclusively for Jose Sierra

Chapter 15

Computing in the Cloud

Prepared exclusively for Jose Sierra

Chapter 16

Security in AppEngine Services

Prepared exclusively for Jose Sierra

Chapter 17

Wrapping Up

Prepared exclusively for Jose Sierra

Index

Prepared exclusively for Jose Sierra

More Books go here...

Prepared exclusively for Jose Sierra

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Code in the Cloud’s Home Page

http://pragprog.com/titles/mcappe

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/mcappe.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

Prepared exclusively for Jose Sierra

http://pragprog.com/titles/mcappe
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/mcappe
www.pragprog.com/catalog

	Contents
	Changes in the Beta Releases
	Beta 3, April 20
	Beta 2, April 7

	Getting Started with AppEngine
	Introduction
	What's Cloud Computing?
	Cloud Computing Programming Systems

	Getting Started
	Setting Up an AppEngine Account
	Setting Up Your Development Environment
	Starting to Program in Python with AppEngine
	Monitoring Your Application

	Programming AppEngine with Python
	A First Real Cloud Application
	The Basic Chat Application
	The Basics of HTTP
	Mapping Chat into HTTP

	Managing Data in the Cloud
	Why Didn't Chat Work?
	Making Chat Persistent

	Using AppEngine Services for Login Authentication
	Introducing the Users Service
	The Users Service
	Integrating the Users Service into Chat

	Organizing AppEngine Code: Separating UI and Logic
	Getting Started with Templates
	Building Related Views with Templates
	Multiple Chat Rooms

	Making the UI Pretty: Templates and CSS
	Introducing CSS
	Styling Text Using CSS
	Page Layouts Using CSS
	Building Our Interface Using Flowed Layout

	Getting Interactive
	Interactive Web Services: The Basics
	The Model View Controller Design Pattern
	Talking to the Server without Disruption
	References and Resources

	Programming AppEngine with Java
	AppEngine and Java
	Introducing GWT
	Getting Started with Java and GWT
	RPC in GWT
	Testing and Deploying with GWT

	Managing Server-Side Data in AppEngine
	Data Persistence in Java
	Storing Persistent Objects in GWT
	Retrieving Persistent Objects in GWT
	Gluing the Client and Server Together
	References and Resources

	Building User Interfaces in Java
	Why Use GWT?
	Building GWT UIs with Widgets
	Making the UI Active: Handling Events
	Making the UI Active: Updating the Display
	Wrapping Up with GWT
	Resources

	Building the Server Side of a Java Application
	Filling in Gaps: Supporting Chat Rooms
	Proper Interactive Design: Being Incremental
	Updating the Client
	Chat Administration
	Running and Deploying the Chat Application
	Wrapping Up

	Advanced AppEngine
	Advanced Datastore
	AppEngine Services
	Computing in the Cloud
	Security in AppEngine Services
	Wrapping Up

	Index

