
Prepared exclusively for Jose Sierra

Beta
Book

Agile publishing for agile developers

Under Construction

The book you’re reading is still under development. As part of our

Beta book program, we’re releasing this copy well before a normal

book would be released. That way you’re able to get this content a

couple of months before it’s available in finished form, and we’ll get

feedback to make the book even better. The idea is that everyone wins!

Be warned. The book has not had a full technical edit, so it will con-

tain errors. It has not been copyedited, so it will be full of typos and

other weirdness. And there’s been no effort spent doing layout, so

you’ll find bad page breaks, over-long lines with little black rectan-

gles, incorrect hyphenations, and all the other ugly things that you

wouldn’t expect to see in a finished book. We can’t be held liable if you

use this book to try to create a spiffy application and you somehow

end up with a strangely shaped farm implement instead. Despite all

this, we think you’ll enjoy it!

Download Updates

Throughout this process you’ll be able to download updated ebooks

from your account on http://pragprog.com. When the book is finally

ready, you’ll get the final version (and subsequent updates) from the

same address.

Send us your feedback

In the meantime, we’d appreciate you sending us your feedback on

this book at http://pragprog.com/titles/bhh5/errata, or by using the links

at the bottom of each page.

Thank you for being part of the Pragmatic community!

Your Publishers, Andy & Dave

Prepared exclusively for Jose Sierra

http://pragprog.com
http://pragprog.com/titles/bhh5/errata

HTML5 and CSS3
Develop with Tomorrow’s Standards Today

Brian P. Hogan

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Prepared exclusively for Jose Sierra

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at http://www.pragprog.com.

Copyright © 2010 Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-68-9

ISBN-13: 978-1-934356-68-5

Printed on acid-free paper.

B2.0 printing, July 19, 2010

Version: 2010-7-19

Prepared exclusively for Jose Sierra

http://www.pragprog.com

Contents
Change History 7

Beta 2—July 19th 2010 . 7

Preface 8

HTML5: The Platform vs The Specification 8

How This Works . 9

What’s In This Book . 10

Prerequisites . 10

Online Resources . 11

1 An Overview of HTML5 and CSS3 12

1.1 A Platform for Web Development 12

1.2 Backwards Compatibility 15

1.3 The Road To The Future is Bumpy 15

Part I—Improving User Interfaces 19

2 New Structural Tags and Attributes 20

Tip 1 Redefining a Blog using Semantic Markup 23

Tip 2 Showing Progress with the Meter Element 34

Tip 3 Creating Popup Windows with Custom Data Attributes 38

3 Creating User-friendly Web Forms 43

Tip 4 Describing Data with New Input Fields 46

Tip 5 Jumping to the First Field with Autofocus 53

Tip 6 Providing Hints with Placeholder Text 55

Tip 7 In-Place Editing with ContentEditable 61

4 Making Better User Interfaces with CSS3 68

Tip 8 Styling Tables With Pseudo Classes 70

Tip 9 Making Links Printable with :after and content . . . 79

Tip 10 Creating Multi-Column Layouts 83

Prepared exclusively for Jose Sierra

CONTENTS 6

5 Improving Accessibility 90

Tip 11 Providing Navigation Hints with ARIA Roles 92

Tip 12 Creating An Accessible Updatable Region 97

Part II—New Sights And Sounds 103

6 Drawing On The Canvas 104

Tip 13 Drawing A Logo . 105

Tip 14 Graphing Statistics with RGraph 112

7 Embedding Audio and Video 120

Tip 15 Playing Sound Samples with the Audio tag 121

Tip 16 Building a Cross-Platform Video Tutorial Page 122

8 Eye Candy 123

Tip 17 Rounding Rough Edges 125

Tip 18 Working With Shadows, Gradients, and Transforma-

tions . 132

Tip 19 Using Real Fonts . 142

Part III—Beyond HTML5 148

9 Working with Client-side Data 149

Tip 20 Saving Preferences with LocalStorage 152

Tip 21 Storing Data in Client-Side Relational Database . . . 158

10 Playing Nicely With Others 170

Tip 22 Cross document Messaging 171

Tip 23 Getting Chatty with Websockets 172

Tip 24 Finding Yourself With Geolocation 173

11 Where To Go Next 174

12 jQuery Primer 175

A Bibliography 176

Index 177

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=6

Change History
The book you’re reading is in beta. This means that we update it fre-

quently. This chapter lists the major changes that have been made at

each beta release of the book, with the most recent change first.

Beta 2—July 19th 2010

This release includes three new tips, which you’ll find in Chapter 8,

Eye Candy, on page 123. You’ll learn how to add rounded corners to

form fields, work with shadows, transformations, and gradiants, and

you’ll see how to work with fonts. As always, you’ll see how you can

accomplish these effects in browsers that don’t offer native support.

You’ll also find a small change to Describing Data with New Input Fields,

on page 46. The newest versions of Safari and Chrome have broken our

fallback detection for our colorpicker control, so we’ll discuss how to

work around that issue and how we can deal with situations like that

in the future.

You’ll find lots of small changes throughout the book as well, based on

your valuable feedback in both the forums and in the book’s errata.

Please keep that coming!

Prepared exclusively for Jose Sierra

Preface
Three months on the Web is like a year in real time.

Web developers pretty much think this way, since we’re always hearing

about something new. A year ago HTML5 and CSS3 seemed so far off

in the distance, but already companies are using these technologies in

their work today, as browsers like Google Chrome, Safari, Firefox, and

Opera are starting to implement pieces of the specification.

HTML5 and CSS3 help lay the groundwork for the next generation of

web applications. They let us build sites that are simpler to develop,

easier to maintain, and more user-friendly. HTML5 has new elements

for defining site structure and embedding content, which means we

don’t have to resort to extra markup or plugins. CSS3 provides advanced

selectors, graphical enhancements, and better font support that makes

our sites more visually appealing without using font image replacement

techniques, complex JavaScript, or graphics tools. Improved accessibil-

ity support will improve AJAX applications for people with disabilities,

and offline support lets us start building working application that don’t

need an Internet connection.

In this book, you’re going to find out about all of the ways you can use

HTML5 and CSS3 right now, even if your users don’t have browsers

that can support all of these features yet. Before we get started, let’s

take a second and talk about HTML5 and buzzwords.

HTML5: The Platform vs The Specification

HTML5 is a specification that describes some new tags and markup,

and some wonderful JavaScript APIS, but it’s getting caught up in a

whirlwind of hype and promises. Unfortunately, HTML5 the standard,

has evolved into HTML5, the platform, creating an awful lot of confusion

among developers, customers, and even authors. In some cases, pieces

Prepared exclusively for Jose Sierra

HOW THIS WORKS 9

from the CSS3 specification like shadows, gradients, and transforma-

tions are being called “HTML”. Browser makers are trying to one-up

each other with how much “HTML5” they support. People are starting

to make strange requests like “My site will be in HTML5, right?”

For the majority of the book, we’ll focus on the HTML5 and CSS3 speci-

fications themselves and how you can use the techniques they describe.

In the last part of the book, we’ll look into a suite of closely related

specifications that were once part of HTML5, which are in use right

now on multiple platforms. These include Web SQL Databases, Geolo-

cation, and WebSockets. While these things aren’t technically HTML5,

they can help you build incredible things when combined with HTML5

and CSS3.

How This Works

Each chapter in this book focuses on a specific group of problems that

we can solve with HTML5 and CSS3. Each chapter has an overview

and a table summarizing the tags, features, or concepts covered in the

chapter. The main content of each chapter is broken apart into “tips”,

which introduce you to a specific concept, and walk you through build-

ing a simple example using the concept. The chapters in this book are

grouped topically. Rather than group things into a HTML5 part and a

CSS3 part, it made more sense to group them based on the problems

they solve.

Each tip contains a section called “Falling Back”, which shows you

methods for addressing your users who use browsers that don’t offer

HTML5 and CSS3 support. We’ll be using a variety of techniques to

make these fallbacks work, from third-party libraries to our own jQuery

plugins. These tips can be read in any order you like.

Finally, each chapter wraps up with a section called “The Future” where

we discuss how the concept can be applied as it becomes more widely

adopted.

This book focuses on what you can use today. There are more HTML5

and CSS3 features that aren’t in use yet. You’ll learn more about those

in the final chapter, Chapter 11, Where To Go Next, on page 174.

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=9

WHAT’S IN THIS BOOK 10

What’s In This Book

We’ll start off with a brief overview of HTML5 and CSS3, and take a

look at some of the new structural tags you can use to describe your

page content. Then we’ll work with forms and you’ll get a chance to use

some of the form fields and features like autofocus and placeholders.

From there, you’ll get to play with CSS3’s new selectors so you can

learn how to apply styles to elements without adding extra markup to

your content.

Then we’ll explore HTML’s audio and video support, and you’ll learn

how to use the canvas to draw shapes. You’ll also get to see how to

use CSS3’s shadows, gradients, and transformations, and learn how to

work with fonts.

Finally, we’ll use HTML5’s client-side features like LocalStorage, Web

SQL databases, and offline support to build a simple application, we’ll

use WebSockets to talk to a simple chat service, and you’ll see how

HTML5 makes it possible to send messages and data across domains.

Prerequisites

This book is aimed primarily at web developers who have a good under-

standing of HTML and CSS. If you’re just starting out, you’ll still find

this book valuable, but I recommend you check out Designing With Web

Standards [], and my book, Web Design For Developers.

I also assume you have a basic understanding of JavaScript and jQuery1,

which we will be using to implement many of our fallback solutions.

Chapter 12, jQuery Primer, on page 175 is a brief introduction to jQuery

that covers the basic methods we’ll be using.

You’ll need Firefox 3.6, Google Chrome, Opera 10.6, or Safari 4 to test

the code in this book. You’ll probably need all of these browsers to

test everything we’ll be building, since each browser does things a little

differently.

You’ll also need a way to test your sites with Internet Explorer so you

can ensure that the fallback solutions we create actually work. If you

need to be able to test your examples in multiple versions of Internet

Explorer, you can download IETester for Windows, as it supports IE 6,

1. http://www.jquery.com

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://www.jquery.com
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=10

ONLINE RESOURCES 11

7, and 8 in a single application. If you’re not running Windows, you

should consider using a virtual machine like VirtualBox or VMWare, or

use a service like CrossBrowserTesting.

Online Resources

The book’s website2 has links to an interactive discussion forum as well

as errata for the book. You can also find the source code for all of the

examples in this book linked on that page. Additionally, readers of the

eBook can click on the gray box above the code excerpts to download

that snippet directly

If you find a mistake, please create an entry on the Errata page so we

can get it addressed. If you have an electronic copy of this book, there

are links in the footer of each page that you can use to easily submit

errata.

Ready to go? Great! Let’s get started with HTML5 and CSS3.

2. http://www.pragprog.com/titles/bhh5/

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://www.pragprog.com/titles/bhh5/
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=11

Chapter 1

An Overview of HTML5 and CSS3
HTML51 and CSS32 are more than just two new standards proposed by

the World Wide Web Consortium (W3C) and its working groups. They

are the next iteration of technologies you use every day, and they’re

here to help you build better modern web applications. Before we dive

into the deep details of HTML5 and CSS3, let’s talk about some of the

benefits of HTML5 and CSS3, as well as some of the challenges we’ll

face.

1.1 A Platform for Web Development

A lot of the new features of HTML center around creating a better

platform for web-based applications. From more descriptive tags and

better cross-site and cross-window communication to animations and

improved multimedia support, developers using HTML5 have a lot of

new tools to build better user experiences.

More Descriptive Markup

Each version of HTML introduces some new markup, but never before

have there been so many new additions that directly relate to describ-

ing content. You’ll learn about elements for defining headings, footers,

navigation sections, sidebars, and articles in Chapter 2, New Struc-

tural Tags and Attributes, on page 20. You’ll also learn about meters,

progress bars, and how custom data attributes can help you mark up

data.

1. HTML5 Specification: http://www.w3.org/TR/html5/

2. CSS3 is split across multiple modules, and you can follow its progress at

http://www.w3.org/Style/CSS/current-work.

Prepared exclusively for Jose Sierra

http://www.w3.org/TR/html5/
http://www.w3.org/Style/CSS/current-work

A PLATFORM FOR WEB DEVELOPMENT 13

Multimedia with Less Reliance on Plugins

You don’t need Flash for video, audio, and vector graphics anymore.

Flash-based video players are relatively simple to use and work every-

where except for Apple’s mobile devices, which has become a significant

market. In Chapter 7, Embedding Audio and Video, on page 120 you’ll

see how to use HTML5 audio and video with effective fallbacks.

Better Applications

Developers have tried all kinds of things to make richer, more inter-

active applications on the web, from ActiveX controls to Flash. HTML5

offers amazing features that, in some cases, completely eliminate the

need for third party technologies.

Cross-Document Messaging

Web browsers prevent us from using scripts on one domain to affect

or interact with scripts on another domain. This restriction keeps end-

users safe from cross-site scripting which has been used to do all sorts

of nasty things to unsuspecting site visitors.

However, this prevents all scripts from working, even when we wrote

them ourselves and we know we can trust the content. HTML5 includes

a workaround which is both safe and simple to implement. You’ll see

how to make this work in Cross document Messaging, on page 171.

Web Sockets

HTML5 offers support for Web Sockets, which give you a persistent con-

nection to a server. Instead of constantly polling a backend for progress

updates, your web page can subscribe to a socket and the backend can

push notifications to your users. We’ll play with that a bit in Getting

Chatty with Websockets, on page 172.

Client-side storage

We tend to think of HTML5 as a web technology, but with the addition

of Local Storage and Web Databases, we can build applications in the

browser that can persist data entirely on the client’s machine. You’ll

see how to use those in Chapter 9, Working with Client-side Data, on

page 149.

Better Interfaces

The user interface is such an important part of web applications, and

we jump through hoops every day to make browsers do what we want.

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=13

A PLATFORM FOR WEB DEVELOPMENT 14

In order to style a table or round corners, we either use JavaScript

libraries or add tons of additional markup so we can apply styles.

HTML5 and CSS3 make that practice a thing of the past.

Better Forms

HTML5 promises better user interface controls. For ages, we’ve been

forced to use JavaScript and CSS to construct sliders, calendar date

pickers, and color pickers. These are all defined as real elements in

HTML5, just like dropdowns, checkboxes, and radio buttons. You’ll

learn about how to use these in Chapter 3, Creating User-friendly Web

Forms, on page 43. While this isn’t quite ready yet for every user, it’s

something you need to keep your eye on especially if you develop web-

based applications. In addition to improved usability without reliance

on JavaScript libraries, there’s another benefit - improved accessibil-

ity. Screen readers and other browsers can implement these controls

in specific ways so that they work easily for the disabled.

Improved Accessibility

Using the new elements in HTML5 to clearly describe our content makes

it easier for software programs like screen readers to easily consume

the content. A site’s navigation, for example, is much easier to find if

you can look for the nav tag instead of a specific div or unordered list.

Footers, sidebars, and other content can be easily reordered or skipped

altogether. Parsing pages in general becomes much less painful, which

can lead to better experiences for people relying on assistive technolo-

gies. In addition, new attributes on elements can specify the roles of

elements so that screenreaders can work with them easier. In Chap-

ter 5, Improving Accessibility, on page 90 you’ll learn how to use those

new attributes so that today’s screenreaders can use them.

Advanced Selectors

CSS3 has selectors that let you identify odd and even rows of tables,

or all selected checkboxes, or even the last paragraph in a group. You

can accomplish more with less code and less markup. This also makes

it much easier to style HTML you can’t edit. In Chapter 4, Making Bet-

ter User Interfaces with CSS3, on page 68, you’ll see how to use these

selectors effectively.

Visual Effects

Drop shadows on text and images help bring depth to a web page, and

gradients can also add dimension. CSS3 lets you add shadows and

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=14

BACKWARDS COMPATIBILITY 15

gradients to elements without resorting to background images or extra

markup. In addition, you can use transformations to round corners,

or skew and rotate elements. You’ll see how all of those things work in

Chapter 8, Eye Candy, on page 123.

1.2 Backwards Compatibility

One of the best reasons for you to embrace HTML5 today is that it works

in most existing browsers. Right now, even in Internet Explorer 6, you

can start using HTML5 and slowly transition your markup. It’ll even

validate with the W3C’s validation service (conditionally, of course, as

the standards are still evolving.)

If you’ve worked with HTML or XML, you’ve come across the doctype

declaration before. It’s used to tell validators and editors what tags and

attributes you can use and how the document should be formed. It’s

also used by a lot of web browsers to determine how the browser will

render the page. A valid doctype often causes browsers to render pages

in “standards mode”.

Compared to the rather verbose XHTML 1.0 Transitional doctype used

by many sites:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

the HTML5 doctype is ridiculously simple:

Download html5_why/index.html

<!DOCTYPE html>

Place that at the top of the document and you’re using HTML5.

Of course, you can’t use any of the new HTML5 elements that your

target browsers don’t yet support, but your document will validate as

HTML5.

1.3 The Road To The Future is Bumpy

There are a few roadblocks that continue to impede the widespread

adoption of HTML5 and CSS3. Some are obvious, and some are less so.

Internet Explorer

Internet Explorer currently has the largest user base and has very weak

HTML5 and CSS3 support. IE 9 promises to improve this situation.

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/html5_why/index.html
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=15

THE ROAD TO THE FUTURE IS BUMPY 16

Joe Asks. . .

But I like my XHTML self-closing tags. Can I still use those?

You sure can! Many developers fell in love with XHTML because
of the stricter requirements on markup. XHTML documents
forced quoted attributes, made you self-close content tags,
required that you use lower-case attribute names, and brought
well-formed markup onto the World Wide Web. Moving to
HTML5 doesn’t mean you have to change your ways. HTML5
documents will be valid if you use the HTML5-style syntax or the
XHTML syntax, but you need to understand the implications of
using self-closing tags.

Most web servers serve HTML pages with the text/html Mime
type due to Internet Explorer’s inability to properly handle
the application/xml+xhtml Mime type associated with XHTML
pages. Because of this, browers tend to strip off self-closing
tags because self-closing tags were not considered valid HTML
before HTML5. For example, if you had a self-closing script tag
above a div like this:

<script language="javascript" src="application.js" />
<h2>Help</h2>

the browser would remove the self closing forward slash, and
then the renderer would think that the h2 was within the script
tag, which never closes!. This is why you see script tags coded
with an explicit closing tag, even though a self closing tag is
valid XHTML markup.

So, be aware of possible issues like this if you do use self-closing
tags in your HTML5 documents, as they will be served with
the text/html MIME type. You can learn more about this issue
and others at http://www.webdevout.net/articles/beware-of-xhtml#

myths.

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://www.webdevout.net/articles/beware-of-xhtml#myths
http://www.webdevout.net/articles/beware-of-xhtml#myths
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=16

THE ROAD TO THE FUTURE IS BUMPY 17

Cake and Frosting

I like cake. I like pie better, but cake is pretty good stuff. I prefer
cake with frosting on it.

When you’re developing web applications, you have to keep
in mind that all the pretty user interfaces and fancy JavaScript
stuff is the frosting on the cake. Your web site can be really good
without that stuff, and just like a cake, you have to have a foun-
dation on which to put your frosting.

I’ve met some people who don’t like frosting. They scrape it
off the cake. I’ve also met people who use web applications
without JavaScript for varying reasons.

Bake these people a really awesome cake. Then add frosting.

That doesn’t mean we can’t use HTML5 and CSS3 in our sites anyway.

We can make our sites work in Internet Explorer, but they don’t have

to work the same as the versions we develop for Chrome and Firefox.

We’ll just provide fallback solutions so we don’t anger users and lose

customers.

Accessibility

Our users must be able to interact with our web sites, whether they are

visually impaired, hearing impaired, on older browsers, on slow connec-

tions, or on mobile deices. HTML5 introduces some new elements, like

the audio, video, and canvas. Audio and video have always had acces-

sibility issues, but the canvas element presents new challenges. The

canvas element lets you create vector images within the HTML docu-

ment using JavaScript. This creates issues for the visually impaired,

but also causes problems for the 5% of web users who have disabled

JavaScript.3.

We need to be mindful of accessibility when we push ahead with new

technologies and provide suitable fallbacks for these HTML5 elements,

just like we would for people using Internet Explorer.

3. http://visualrevenue.com/blog/2007/08/eu-and-us-javascript-disabled-index.html

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=17

THE ROAD TO THE FUTURE IS BUMPY 18

Competing Corporate Interests

Internet Explorer is not the only browser slowing adoption of HTML5

and CSS3. Google, Apple, and the Mozilla Foundation each have their

own agendas as well, and they’re battling it out for supremacy. They’re

arguing over video and audio codec support, and they’re including their

opinions in their browser releases. For example, Safari will play MP3

audio with the audio element, but ogg files won’t work. Firefox, however,

supports ogg files instead of mp3 files.

Eventually these differences will be resolved. In the meantime, we can

make smart choices about what we support, by limiting what we imple-

ment to our target audiences, or we can implement things multiple

times, once for each browser until the standards are finalized. It’s not

as painful as it sounds. We’ll discuss this more in Chapter 7, Embed-

ding Audio and Video, on page 120.

HTML5 and CSS3 Are Still Works In Progress

They’re not final specifications, and that means that anything in those

specifications could change. While Firefox, Chrome, and Safari have

strong HTML5 support, if the specification changes, the browsers will

change with it, and this could lead to some deprecated, broken web

sites. During the course of writing this book, CSS3 box shadows have

been removed and re-added to the specification, and web socket proto-

cols have been modified, breaking client-server communications entirely.

If you follow the progress of HTML5, CSS3, and stay up to date with

what’s happening, you’ll be fine. A good portion of the things we’ll be

discussing in this book are going to work for a long time.

When we come across something that doesn’t work in one of our target

browsers, we just fill in the gaps as we go, using JavaScript and Flash

as our putty. We’ll build solid solutions that work for all of our users,

and as time goes on, we’ll be able to remove the JavaScript and other

fallback solutions without changing our implementations.

But before we can think about the future, let’s start working with

HTML5. There are a bunch of new structural tags waiting to meet you

over in the next chapter. So let’s not keep them waiting, shall we?

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=18

Part I

Improving User Interfaces

Prepared exclusively for Jose Sierra

Chapter 2

New Structural Tags and
Attributes

I’d like to talk to you about a serious problem affecting many web devel-

opers today. Divitis, a chronic syndrome that causes web developers

to wrap elements with extra div tags with IDs like “banner”, “sidebar”,

“article”, and “footer” is rampant. It’s also highly contagious. Developers

pass Divitis to each other extremely quickly, and since Divs are invisible

to the naked eye, even mild cases of Divitis may go unnoticed for years.

Here’s a common symptom of Divitis:

<div id="navbar_wrapper">

<div id="navbar">

Home

Home

</div>

</div>

Here we have an unordered list, which is already a block element1,

wrapped with two div tags which are also block elements. The id attributes

on these wrapper elements tell us what they do, but you can remove at

least one of these wrappers to get the same result. Overuse of markup

leads to bloat and pages that are difficult to style and maintain.

1. Remember, block elements fall on their own line, whereas inline elements do not force

a line break.

Prepared exclusively for Jose Sierra

CHAPTER 2. NEW STRUCTURAL TAGS AND ATTRIBUTES 21

There is hope though. The HTML5 specification provides a cure, in the

form of new semantic tags which describe the content they contain.

Together with HTML5, we can help wipe out Divitis in our lifetime.

Because so many developers have made sidebars, headers, footers, and

sections in their designs, the HTML5 specification introduces new tags

specifically designed to divide a page into logical regions. Let’s put those

new elements to work.

In addition to these new structural tags, we’ll also talk about the meter

element, and discuss how we can use the new custom attributes feature

in HTML5 so we can embed data into our elements instead of hijacking

classes or existing attributes. In a nutshell, we’re going to find out how

to use the right tag for the right job.

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=21

CHAPTER 2. NEW STRUCTURAL TAGS AND ATTRIBUTES 22

Feature Description Supported Browsers

header Defines a header region

of a page or section
• IE 8

• Safari 4+

• Firefox 3.6+

• Chrome 5+

• Opera 10+

footer Defines a footer region

of a page or section
• IE 8

• Safari 4+

• Firefox 3.6+

• Chrome 5+

• Opera 10+

nav Defines a navigation

region of a page or

section

• IE 8

• Safari 4+

• Firefox 3.6+

• Chrome 5+

• Opera 10+

section Defines a logical region

of a page or a grouping

of content

• IE 8

• Safari 4+

• Firefox 3.6+

• Chrome 5+

• Opera 10+

article Defines an article, or

complete piece of con-

tent.

• IE 8

• Safari 4+

• Firefox 3.6+

• Chrome 5+

• Opera 10+

aside Defines secondary or

related content
• IE 8

• Safari 4+

• Firefox 3.6+

• Chrome 5+

• Opera 10+

Custom data

attributes

Allows addition of cus-

tom attributes to any

elements using the

data- pattern.

• All browsers sup-

port reading these

via JavaScript’s

getAttribute()

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=22

REDEFINING A BLOG USING SEMANTIC MARKUP 23

Semantic Markup

Semantic markup is all about describing your content. If you’ve
been developing web pages for a few years, you’ve probably
divided your pages into various regions like header, footer, and
sidebar so that you could more easily identify the regions of the
page when applying stylesheets and other formatting.

Semantic markup makes it easy for machines and people alike
to understand the context of the content. The new HTML5
markup tags like section, header, and nav help you do just that.

1 Redefining a Blog using Semantic
Markup

One place you’re sure to find lots of content in need of structured

markup is a blog. You’re going to have headers, footers, multiple types

of navigation (archives, blogrolls and internal links), and of course, arti-

cles or posts. Let’s use HTML5 markup to mock up the front page of the

blog for AwesomeCo, a company on the cutting edge of Awesomeness.

Take a look at Figure 2.1, on the following page to get an idea of what

we’re going to build. It’s a fairly typical blog structure, with a main

header with horizontal navigation below the header. In the main sec-

tion, each article has a header and a footer. An article may also have

a pull quote, or an aside. There’s a sidebar which contains additional

navigation elements. Finally, the page has a footer for contact and copy-

right information. There’s nothing new about this structure, except that

this time, instead of coding it up with lots of div tags, we’re going to use

specific tags to describe these regions.

When we’re all done, we’ll have something that looks like Figure 2.2, on

page 25.

It All Starts With The Right Doctype

We want to use HTML5’s new elements, and that means we need to let

browsers and validators know about the tags we’ll be using. Create a

new page called blog.html and paste in a basic HTML5 template.

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=23

REDEFINING A BLOG USING SEMANTIC MARKUP 24

body

header

sectionsection

footer

header

footer

article

header

footer

p

aside

article

header

footer

p

p

header

nav

p

nav

Figure 2.1: The blog structure using new HTML5 semantic markup

Download html5newtags/index.html

Line 1 <!DOCTYPE html>
2 <html lang="en-US">

3 <head>

4 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

5 <title>AwesomeCo Blog</title>
6 </head>

7

8 <body>

9 </body>

10 </html>

Take a look at the doctype on line 1 of that example. This is all we

need for an HTML5 doctype. If you’re used to doing web pages, you’re

probably familiar with the long hard-to-remember doctypes for XHTML

like this:

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/html5newtags/index.html
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=24

REDEFINING A BLOG USING SEMANTIC MARKUP 25

Figure 2.2: The finished layout

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

Now, take another look at the HTML5 doctype:

<!DOCTYPE HTML>

Much simpler, and much easier to remember.

The point of a doctype is twofold. First, it’s to help validators determine

what validation rules it needs to use when validating the code. Sec-

ond, a doctype forces Internet Explorer versions 6, 7, and 8 to go into

“standards-mode.”, which is vitally important if you’re trying to build

pages that work across all browsers. The HTML5 doctype satisfies both

of these needs, and is even recognized by Internet Explorer 6.

Headers

Headers, not to be confused with headings like h1, h2 and h3, may con-

tain all sorts of content, from the company logo to the search box. Our

blog header will contain the blog’s title and subtitle.

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=25

REDEFINING A BLOG USING SEMANTIC MARKUP 26

Download html5newtags/index2.html

Line 1 <header id="page_header">

2 <h1>AwesomeCo Blog!</h1>
3 </header>

You’re not restricted to having just one header on a page. Each individ-

ual section or article can also have a header, and so it can be helpful to

use the ID attribute like I did on 1 to uniquely identify your elements. A

unique ID makes it easy to style elements with CSS or locate elements

with JavaScript.

Footers

The footer element should be used to define footer information for a doc-

ument or an adjacent section. You’ve seen footers before on web sites.

They usually contain information like the copyright date and informa-

tion on who owns the site. The specification says we can have multi-

ple footers in a document too, so that means we could use the footers

within our blog articles too.

For now, let’s just define a simple footer for our page. Since we can

have more than one footer, we’ll give this one an ID just like we did with

the header. It’ll help us uniquely identify this particular footer when we

want to add styles to this element and its children.

Download html5newtags/index.html

<footer id="page_footer">

<p>© 2010 AwesomeCo.</p>

</footer>

This footer simply contains a copyright date. However, like headers,

footers on pages often contain other elements, including navigational

elements.

Navigation

Navigation is vital to the success of a web site. People simply aren’t

going to stick around if you make it too hard for them to find what

they’re looking for, so it makes sense for navigation to get its own HTML

tag.

Let’s add a navigation section to our document’s header. We’ll add links

to the blog’s home page, the archives, a page that lists the contributors

to the blog, and a link to a contact page.

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/html5newtags/index2.html
http://media.pragprog.com/titles/bhh5/code/html5newtags/index.html
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=26

REDEFINING A BLOG USING SEMANTIC MARKUP 27

Download html5newtags/index.html

<header id="page_header">

<h1>AwesomeCo Blog!</h1>

<nav>

Latest Posts

Archives

Contributors

Contact Us

</nav>

</header>

Like headers and footers, your page can have multiple navigation ele-

ments. You often find navigation in your header and in your footer, and

so now you can identify those explicitly. Our blog’s footer needs to have

links to the AwesomeCo home page, the company’s “about us” page,

and links to the company’s Terms of Service and Privacy policies. We’ll

add these as another unordered list within in the page’s footer element.

Download html5newtags/index.html

<footer id="page_footer">

<p>© 2010 AwesomeCo.</p>

<nav>

Home

About

Terms of Service

Privacy

</nav>

</footer>

We will use CSS to change how both of these navigation bars look, so

don’t worry too much about the appearance yet. The point of these new

elements is to describe the content, not to describe how the content

looks.

Sections and Articles

Sections are the logical regions of a page, and the section element is

here to replace the abused div tag.

Download html5newtags/index.html

<section id="posts">

</section>

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/html5newtags/index.html
http://media.pragprog.com/titles/bhh5/code/html5newtags/index.html
http://media.pragprog.com/titles/bhh5/code/html5newtags/index.html
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=27

REDEFINING A BLOG USING SEMANTIC MARKUP 28

Don’t get carried away with sections though. Use them to logically group

your content! I created a section that will hold all of the blog posts.

However, each post shouldn’t be in its own section. We have a more

appropriate tag for that.

Articles

The article tag is the perfect element to describe the actual content

of a web page. With so many elements on a page, including headers,

footers, navigational elements, advertisements, widgets, blogrolls, and

social media bookmarks, it might be easy to forget that people come

to your site because they’re interested in the content you’re providing.

The article tag helps you describe that content.

Download html5newtags/index.html

<article class="post">

<p>

The first big rule in sales is that if the person leaves empty-handed,

they're likely not going to come back. That's why you have to be

somewhat aggressive when you're working with a customer, but you have

to make sure you don't overdo it and scare them away.

</p>

<p>

One way you can keep a conversation going is to avoid asking questions

that have yes or no answers. For example, if you're selling a service

plan, don't ever ask "Are you interested in our 3 or 5 year

service plan?" Instead, ask "Are you interested in the 3

year service plan or the 5 year plan, which is a better value?"

At first glance, they appear to be asking the same thing, and while

a customer can still opt out, it's harder for them to opt out of

the second question because they have to say more than just

"no."

</p>

</article>

Each of our articles will have a header, some content, and a footer, like

this:

Download html5newtags/index.html

<article class="post">

<header>

<h2>How Many Should We Put You Down For?</h2>

<p>Posted by Brian on

<time datetime="2010-04-01T14:39">April 1st, 2010 at 2:39PM</time>

</p>

</header>

<p>

The first big rule in sales is that if the person leaves empty-handed,

they're likely not going to come back. That's why you have to be

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/html5newtags/index.html
http://media.pragprog.com/titles/bhh5/code/html5newtags/index.html
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=28

REDEFINING A BLOG USING SEMANTIC MARKUP 29

somewhat aggressive when you're working with a customer, but you have

to make sure you don't overdo it and scare them away.

</p>

<p>

One way you can keep a conversation going is to avoid asking questions

that have yes or no answers. For example, if you're selling a service

plan, don't ever ask "Are you interested in our 3 or 5 year

service plan?" Instead, ask "Are you interested in the 3

year service plan or the 5 year plan, which is a better value?"

At first glance, they appear to be asking the same thing, and while

a customer can still opt out, it's harder for them to opt out of

the second question because they have to say more than just

"no."

</p>

<footer>

<p><i>25 Comments</i> ...</p>

</footer>

</article>

Asides and Sidebars

Sometimes you have content that adds something extra to your main

content, like pullout quotes, diagrams, additional thoughts, or related

links. You can use the new aside tag to identify these elements.

Download html5newtags/index.html

<aside>

<p>

"Never give someone a chance to say no when

selling your product."

</p>

</aside>

We’ll place the callout quote in an aside element. We’ll nest this aside

within the article, keeping it close to its related content.

Download html5newtags/index.html

<section id="posts">

<article class="post">

<header>

<h2>How Many Should We Put You Down For?</h2>

<p>Posted by Brian on

<time datetime="2010-04-01T14:39">April 1st, 2010 at 2:39PM</time>

</p>

</header>

<aside>

<p>

"Never give someone a chance to say no when

selling your product."

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/html5newtags/index.html
http://media.pragprog.com/titles/bhh5/code/html5newtags/index.html
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=29

REDEFINING A BLOG USING SEMANTIC MARKUP 30

</p>

</aside>

<p>

The first big rule in sales is that if the person leaves empty-handed,

they're likely not going to come back. That's why you have to be

somewhat aggressive when you're working with a customer, but you have

to make sure you don't overdo it and scare them away.

</p>

<p>

One way you can keep a conversation going is to avoid asking questions

that have yes or no answers. For example, if you're selling a service

plan, don't ever ask "Are you interested in our 3 or 5 year

service plan?" Instead, ask "Are you interested in the 3

year service plan or the 5 year plan, which is a better value?"

At first glance, they appear to be asking the same thing, and while

a customer can still opt out, it's harder for them to opt out of

the second question because they have to say more than just

"no."

</p>

<footer>

<p><i>25 Comments</i> ...</p>

</footer>

</article>

</section>

Now we just have to add the sidebar section.

Asides are not Page Sidebars!

Our blog has a sidebar on the right side that contains links to the

archives for the blog. If you’re thinking that we could use the aside

tag to define the sidebar of our blog, you’d be wrong. You could do it

that way, but it goes against the spirit of the specification. The aside is

designed to show content related to an article. It’s a good place to show

related links, a glossary, or a pullout quote.

To mark up our sidebar that contains our list of prior archives, we’ll

just use another section tag and a nav tag.

Download html5newtags/index.html

<section id="sidebar">

<nav>

<h3>Archives</h3>

June 2010

May 2010

April 2010

March 2010

February 2010

January 2010

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/html5newtags/index.html
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=30

REDEFINING A BLOG USING SEMANTIC MARKUP 31

December 2009

</nav>

</section>

That’s it for our blog’s structure. Now we can start applying styles to

these new elements.

Styling

Each of these new elements can be styled just like you’d style div tags.

Let’s first center the page’s content and set some basic font styles.

Download html5newtags/style.css

body{

width:960px;

margin:15px auto;

font-family: Arial, "MS Trebuchet", sans-serif;

}

p{

margin:0 0 20px 0;

}

p, li{

line-height:20px;

}

Next, we define the header’s width.

Download html5newtags/style.css

header#page_header{

width:100%;

}

We style the navigation links by transforming the bulleted lists into

horizontal navigation bars.

Download html5newtags/style.css

header#page_header nav ul, #page_footer nav ul{

list-style: none;

margin: 0;

padding: 0;

}

#page_header nav ul li, footer#page_footer nav ul li{

padding:0;

margin: 0 20px 0 0;

display:inline;

}

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/html5newtags/style.css
http://media.pragprog.com/titles/bhh5/code/html5newtags/style.css
http://media.pragprog.com/titles/bhh5/code/html5newtags/style.css
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=31

REDEFINING A BLOG USING SEMANTIC MARKUP 32

The posts section needs to be floated left and given a width, and we also

need to float the callout inside of the article. While we’re doing that,

let’s bump up the font size for the callout.

Download html5newtags/style.css

section#posts{

float: left;

width: 74%;

}

section#posts aside{

float: right;

width: 35%;

margin-left: 5%;

font-size: 20px;

line-height: 40px;

}

We’ll also need to float the sidebar and define its width.

Download html5newtags/style.css

section#sidebar{

float: left;

width: 25%;

}

And we need to define the footer. We’ll clear the floats on the footer so

that it sits at the bottom of the page.

Download html5newtags/style.css

footer#page_footer{

clear: both;

width: 100%;

display: block;

text-align: center;

}

These are just basic styles. From here, I’m confident you can make this

look much, much better.

Falling Back

While this all works great in Firefox, Chrome, and Safari, the people

in management aren’t going to be too happy when they see the mess

that Internet Explorer makes out of our page. The content displays fine,

but since IE doesn’t understand these elements, it can’t apply styles to

them, and the whole page resembles something from the mid 1990s.

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/html5newtags/style.css
http://media.pragprog.com/titles/bhh5/code/html5newtags/style.css
http://media.pragprog.com/titles/bhh5/code/html5newtags/style.css
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=32

REDEFINING A BLOG USING SEMANTIC MARKUP 33

The only way to make IE style these elements is to use JavaScript to

define the elements as part of the document. That turns out to be really

easy. We’ll add this code to our head section of the page so it executes

before the browser renders any elements:

Download html5newtags/index.html

<script type="text/javascript">

document.createElement("nav");

document.createElement("header");

document.createElement("footer");

document.createElement("section");

document.createElement("aside");

document.createElement("article");

</script>

Internet Explorer works just great after you define each of the new

elements. You are creating a dependency on JavaScript though, so you

need to take that into consideration. The improved organization and

readability of the document make it tempting, and since there are no

accessibility concerns, as the contents still display and are read by a

screen reader, you’re only making the presentation seem grossly out of

date to your users who have disabled JavaScript intentionally.

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/html5newtags/index.html
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=33

SHOWING PROGRESS WITH THE METER ELEMENT 34

2 Showing Progress with the Meter
Element

AwesomeCo is holding a charity fundraiser in a few months and they’re

looking to get $5000 donated by the general public. Because they’re

such an awesome company, they’re planning to kick in an additional

$5000 if people pledge enough support to hit the original $5000 goal.

AwesomeCo wants to display a progress meter on one of their pages.

When we’re done, we’ll have something that looks like Figure 2.3, on

the following page .

While we can certainly achieve that with some divs styled with CSS, we

can also use the new meter element which is designed specifically for

this task.

The meter element helps you semantically describe an actual meter. In

order for your meter to be in harmony with the specification, you can’t

use your meter for things with arbitrary minimum or maximum values

like height and weight or temperatures because there’s no technical

minimum and maximum value for those. 2 In our case, we want to

show how close we are to our goal of $5000. We have a minimum and

a maximum value so it’s a perfect fit for us.

We represent our meter with this code (we’ll hard-code $2500 as our

current value just to demonstrate how it works right now.)

Download html5_meter/index.html

<section id="pledge">

<header>

<h3>Our Fundraising Goal</h3>

</header>

<meter title="USD" id="pledge_goal" value="2500" min="0" max="5000">

$2500.00

</meter>

<p>Help us reach our goal of $5000!</p>

</section>

We’re making use of our new structural elements here too. The meter

tag doesn’t have any default styling, so when we look at our page in our

2. You could use the meter element for temperature if you treated it like a thermometer,

where you would set low and high values.

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/html5_meter/index.html
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=34

SHOWING PROGRESS WITH THE METER ELEMENT 35

Figure 2.3: A meter to show progress toward our goal

browser, we won’t see anything other than the text we placed within

the tag itself. We can style this with a little bit of CSS, but since we’re

looking to make this work across all browsers, we’ll use some jQuery

as well. First, let’s define some basic CSS styles.

Defining Styles for the Meter

Our meter is going to consist of an outer box which will represent the

total length of the meter, an inner box, which we’ll call the "fill", and the

text label itself that shows the dollar amount. The styling for the meter

itself is simple.

Download html5_meter/index.html

meter{

width: 280px;

display: block;

border: 1px solid #000;

position: relative;

}

We make it a block-level element, set some padding, and give it a border.

Then we define the inner fill with a gradient.

Download html5_meter/index.html

.fill{

background-color: #999;

background-image: -webkit-gradient(

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/html5_meter/index.html
http://media.pragprog.com/titles/bhh5/code/html5_meter/index.html
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=35

SHOWING PROGRESS WITH THE METER ELEMENT 36

linear,

left bottom,

left top,

color-stop(0.37, rgb(14,242,30)),

color-stop(0.69, rgb(41,255,57))

);

background-image: -moz-linear-gradient(

center bottom,

rgb(14,242,30) 37%,

rgb(41,255,57) 69%

);

}

That gradient syntax is a little complex, but we’ll talk about it in more

detail in Chapter 8, Eye Candy, on page 123. Once we’ve styled the fill,

we need to place the existing label inside of the bar.

Download html5_meter/index.html

.label{

position: absolute;

top: 0;

right: 0;

z-index: 1000;

}

We’re absolutely positioning the label inside of the bar. It will sit on a

layer above the fill.

Notice that we’ve defined these as classes, and yet we don’t have any

classes for the fill or the label in our markup. That’s because the meter

doesn’t have any default presentation at all, so we’ll be using JavaScript

to add some elements inside of the meter. We’ll assign classes to the

elements we create.

Building the Meter with jQuery

The meter element isn’t recognized by every browser, and neither are

the section and header elements we’re using, so we’ll enable support

for those with our JavaScript hack from Section 1, Falling Back, on

page 32.

Download html5_meter/index.html

// IE support

document.createElement("meter");

document.createElement("section");

document.createElement("header");

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/html5_meter/index.html
http://media.pragprog.com/titles/bhh5/code/html5_meter/index.html
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=36

SHOWING PROGRESS WITH THE METER ELEMENT 37

Then we turn the meter into a structure we can visualize by appending

some elements within the meter and applying our styles we defined by

applying classes to our elements.

Download html5_meter/index.html

Line 1 $(function(){
- var meter = $("#pledge_goal");
-

- var label = $("" + meter.html() + "");
5 label.addClass("label");
-

- var fill = $("<div></div>");
- fill.addClass("fill");
- fill.css("width",(meter.attr("value") / meter.attr("max") * 100) + "%");

10 fill.append("<div style='clear:both;'>
</div>");
-

- meter.html("");
- meter.append(fill);
- meter.append(label);

15 });

On 9 we compute the width of the fill area with some simple arithmetic

using numbers we grab out of the meter element. Notice on line 12 we

remove the original HTML content, since we’re duplicating it on 4.

With the JavaScript in place, our meter is finished and ready for us to

show off to the world. When we bring this live, we’ll just replace the

hard-coded value inside the meter element with a value we populate

from our database when we render the page. The JavaScript code will

then show the updated value each time a user refreshes the page.

Falling Back

The meter element doesn’t have any default style, and the way we’ve

implemented it here works in IE 6, 7, and 8. We’re using the new meter

element to semantically mark up the information about our pledge, just

like the way we handled the sections of our blog in Redefining a Blog

using Semantic Markup, on page 23.

Users without JavaScript enabled will still see the content we placed

within the opening and closing meter element, which means we have to

be mindful of what we place there.

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/html5_meter/index.html
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=37

CREATING POPUP WINDOWS WITH CUSTOM DATA ATTRIBUTES 38

Progress bars

The HTML5 specification also mentions an element called
progress which is designed to show progress toward a goal. It’s
very similar to a meter but it’s designed to show active progress
like you’d see if you were uploading a file. A meter, by com-
parison, is designed to show a measurement that’s not cur-
rently moving, like a snapshot of available storage space on
the server for a given user. The markup for a progress bar is very
similar to the meter element.

Download html5_meter/progress.html

<progress id="progressbar" max=100>0%</progress>

The progress element isn’t officially supported by any browsers
yet, but you can use jQuery to manipulate and style the ele-
ment just like we did for meter.

3 Creating Popup Windows with
Custom Data Attributes

If you’ve built any web application that uses JavaScript to grab infor-

mation out of the document, you know that it can sometimes involve a

bit of hackery and parsing to make things work. You’ll end up insert-

ing extra information into event handlers or abusing the rel or class

attributes to inject behavior. Those days are now over thanks to the

introduction of custom data attributes.

Custom data attributes all start with the prefix data- and are ignored

by the validator for HTML5 documents. You can attach a custom data

attribute to any element you’d like, whether it be metadata about a

photograph, latitude and longitude coordinates, or, as you’ll see in this

section, dimensions for a popup window.

The biggest advantage of custom data attributes is that you can use

them right now in nearly every web browser, since they can be easily

grabbed with JavaScript.

Over the years, popup windows have gotten a bad rap, and often rightly

so. They’re often used to get you to look at an ad, convince unsuspecting

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/html5_meter/progress.html
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=38

CREATING POPUP WINDOWS WITH CUSTOM DATA ATTRIBUTES 39

web surfers to install spyware or viruses, or worse, to give away per-

sonal information which is then resold. It’s no wonder most browsers

have some type of popup-blocker available.

Popus aren’t all bad though. Web application developers often rely on

popup windows to display online help, additional options, or other

important user interface features. To make popups less annoying, we

need to implement them in an unobtrusive manner.

Separating Behavior from Content, or why onclick is bad

When you look at AwesomeCo’s human resources page, you see several

links that display policies in popup windows. Most of them look like

this:

Download html5_popups_with_custom_data/original_example_1.html

<a href='#'

onclick="window.open('holiday_pay.html',WinName,'width=300,height=300);">

Holiday pay

This is a pretty common way to build links that spawn popups. In fact,

this is the way JavaScript newbies often learn how to make popup win-

dows. There are a couple of problems that we should address with this

approach before moving on, though.

Improve Accessibility

The link destination isn’t set! If JavaScript is disabled, the link won’t

take the user to the page. That’s a huge problem we need to address

immediately. Do not ever omit the href attribute or give it a value like

this under any circumstances. Give it the address of the resource that

would normally pop up.

Download html5_popups_with_custom_data/original_example_2.html

<a href='holiday_pay.html'

onclick="window.open(this.href,WinName,'width=300,height=300);">

Holiday pay

The JavaScript code then reads the attached element’s href attribute for

the link’s location.

The first step towards building accessible pages is to ensure that all of

the functionality works without JavaScript.

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/html5_popups_with_custom_data/original_example_1.html
http://media.pragprog.com/titles/bhh5/code/html5_popups_with_custom_data/original_example_2.html
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=39

CREATING POPUP WINDOWS WITH CUSTOM DATA ATTRIBUTES 40

Abolish The onclick

Keep the behavior separate from the content, just like you keep the

presentation information separate by using linked stylesheets. Using

onclick is easy at first, but imagine a page with fifty links, and you’ll

see how the onclick method gets out of hand. You’ll be repeating that

JavaScript over and over again. And if you generate this code from

some server-side code, you’re just increasing the number of JavaScript

events and making the resulting HTML much bigger than it needs to

be.

Instead, give each of the anchors on the page a class that identifies

them.

Download html5_popups_with_custom_data/original_example_3.html

Holiday Pay

Download html5_popups_with_custom_data/original_example_3.html

var links = $("a.popup");

links.click(function(event){

event.preventDefault();

window.open($(this).attr('href'));

});

We use a jQuery selector to grab the element with the class of popup

and then we add an observer to each element’s click event. The code we

pass to the click method will be executed when someone clicks the link.

The preventDefault method prevents the default click event behavior. In

this case, it prevents the browser from following the link and displaying

a new page.

One thing we’ve lost though is the information on how to size and posi-

tion the window, which is something we had in the original example.

We want a page designer who isn’t that familiar with JavaScript to still

be able to set the dimensions of a window on a per-link basis.

Custom Data Attributes To The Rescue!

Situations like this are so common when building any JavaScript-enabled

application. As we’ve seen, storing the window’s desired height and

width with the code is desirable, but the onclick approach has lots

of drawbacks. What we can do instead is embed these attributes as

attributes on the element. All we have to do is construct the link like

this:

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/html5_popups_with_custom_data/original_example_3.html
http://media.pragprog.com/titles/bhh5/code/html5_popups_with_custom_data/original_example_3.html
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=40

CREATING POPUP WINDOWS WITH CUSTOM DATA ATTRIBUTES 41

A word of caution

In this example, we used custom data attributes to pro-
vide additional information to a client-side script. It’s a clever
approach to a specific problem and illustrates one way to use
these attributes. However, it does tend to mix presentation infor-
mation with our markup. However, it’s a simple way to show you
how easy it is to use JavaScript to read values you embed in
your page.

Download html5_popups_with_custom_data/popup.html

<a href="help/holiday_pay.html"

data-width="600"

data-height="400"

title="Holiday Pay"

class="popup">Holiday pay

Now we just modify the click event we wrote to grab the options from

the custom data attributes of the link and pass them to the window.open

method.

Download html5_popups_with_custom_data/popup.html

$(function(){

$(".popup").click(function(event){

event.preventDefault();

var href = $(this).attr("href");

var width = $(this).attr("data-width");

var height = $(this).attr("data-height");

var popup = window.open (href,"popup",

"height=" + height +",width=" + width + "");

});

});

That’s all there is to it! The link now opens in a new window.

Falling Back

These attributes work in older browsers right now as long as they sup-

port JavaScript. The custom data attributes won’t trip up the browser,

and your document will be valid since you’re using the HTML5 doctype,

since the attributes that start with data- will all be ignored.

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/html5_popups_with_custom_data/popup.html
http://media.pragprog.com/titles/bhh5/code/html5_popups_with_custom_data/popup.html
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=41

CREATING POPUP WINDOWS WITH CUSTOM DATA ATTRIBUTES 42

The Future

We can do some interesting things with these new tags and attributes

once they’re widely supported. We can identify and disable navigation

and article footers very easily using print stylesheets.

nav, article>footer{display:none}

We can use scripting languages to quickly identify all of the articles on

a page, or on a site. But most importantly, we mark up content with

appropriate tags that describe it so we can write better stylesheets and

better JavaScript.

Custom data attributes give developers the flexibility to embed all sorts

of information in their markup. In fact, we’ll use them again in Chap-

ter 6, Drawing On The Canvas, on page 104. You can use them with

JavaScript to determine whether or not a form tag should submit via

AJAX, by simply locating any form tag with data-remote=true, which is

something that the Ruby on Rails framework is doing. You can also

use them to display dates and times in the users’ time zone while still

caching the page. Simply put the date on the HTML page as UTC and

convert it to the users’ local time on the client-side. These attributes

allow you to embed real, usable data in your pages, and you can expect

to see more and more frameworks and libraries taking advantage of

them. I’m sure you’ll find lots of great uses for them in your own work.

And we can help wipe out Divitis once and for all!

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=42

Chapter 3

Creating User-friendly Web Forms
If you’ve ever designed a complicated user interface, you know how lim-

iting the basic HTML form controls are. You’re stuck using text fields,

select menus, radio buttons, and checkboxes, and sometimes the even

clunkier multiple select lists which you constantly have to explain to

your users how to use (“Hold down the control key and click the entries

you want, unless you’re on a Mac, in which case use the Command

key.”)

So, you do what all good web developers do—you turn to Prototype,

jQuery, or you roll your own controls and features using a combination

of HTML, CSS, and JavaScript. But when you look at a form that has

sliders, calendar controls, spinboxes, auto-complete fields, and visual

editors, you quickly realize that you’ve created a nightmare for yourself.

You’ll have to make sure that none of the controls you include on your

page conflict with any of the other controls you’ve included, or any of

the other JavaScript libraries on the page. You can spend hours imple-

menting a calendar picker only to find out later that now the Prototype

library is having problems because jQuery took over the $() function.

So you use jQuery’s noConflict() method, but then you find out that

the color picker control you used no longer works because that plugin

wasn’t written carefully enough.

If you’re smiling, it’s because you’ve been there. If you’re fuming, I’m

guessing it’s for the same reason. There is hope though. In this chap-

ter we’re going to build a couple of web forms using some new form

field types, and we’ll also implement autofocusing and placeholder text.

Finally, we’ll discuss how to use the new contenteditable attribute to

Prepared exclusively for Jose Sierra

CHAPTER 3. CREATING USER-FRIENDLY WEB FORMS 44

turn any HTML field into a user input control. Let’s start by learning

about some of the extremely useful field types.

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=44

CHAPTER 3. CREATING USER-FRIENDLY WEB FORMS 45

Feature Use Supported Browsers

Email field <input type="email">
• Opera 10

• iPhone, iPod Touch,

iPad

URL field <input type="url">
• Opera 10

• iPhone, iPod Touch,

iPad

Telephone field <input type="tel">
• Opera 10

Search field <input type="search">
• Opera 10

• Safari 4

• Chrome 5

• iPhone, iPod Touch,

iPad

Slider controls <input type="range">
• Safari 4

• Chrome 5

• Opera 10

Number fields <input type="number">
• Opera 10

• Safari 5

• iPhone, iPod Touch,

iPad

Calendar con-

trols

<input type="date"> <input

type="month"> <input

type="week">

• Opera 10

Calendars with

Time

<input type="datetime">

<input type="time">
• Opera 10

Color fields <input type="color">
• Chrome 51

Autofocus <input type="text" autofo-

cus="true">
• Safari 4

• Chrome 5

• Firefox 3.6

Placeholder

text

<input type="text" place-

holder="Name">
• Safari 4

• Chrome 5

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=45

DESCRIBING DATA WITH NEW INPUT FIELDS 46

4 Describing Data with New Input
Fields

HTML5 introduces several new input types that you can use to better

describe the type of data your users are entering. In addition to the

standard text fields, radio buttons, and checkbox elements, you can

use elements like email fields, calendars, color pickers, spinboxes, and

sliders. You can see a complete list in Figure 3.1, on the previous page.

Browsers can use these new fields to display better controls to the user

without the need for JavaScript. Mobile devices and virtual keyboards

for tablets and touchscreens can use the field types to display differ-

ent keyboard layouts. For example, the iPhone’s Mobile Safari browser

displays alternate keyboard layouts when the user is entering data into

the URL and email types, making special characters like @ , . , : , and /

easily accessible.

Improving the AwesomeCo Projects Form

AwesomeCo is working on creating a new project management web

application to make it easier for developers and managers to keep up

with the progress of the many projects they have going on. Each project

has a name, a contact email address, and a staging URL so managers

can preview the web site as it’s being built. There are also fields for the

start date, priority, and estimated number of hours the project should

take to complete. Finally, the development manager would like to give

each project a color so he can quickly identify each project when he

looks at reports.

Let’s mock up a quick project preferences page using the new HTML5

fields.

Setting up the Basic Form

Let’s create a basic HTML form that does a POST request. Since there’s

nothing special about the name field, we’ll use the trusty text field.

Download html5forms/index.html

<form method="post" action="/projects/1">

<fieldset id="personal_information">

<legend>Project Information</legend>

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/html5forms/index.html
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=46

DESCRIBING DATA WITH NEW INPUT FIELDS 47

<label for="name">Name</label>

<input type="text" name="name" autofocus="true" id="name">

</fieldset>

</form>

Notice that we’re marking this form up with labels wrapped in an ordered

list. Labels are an important part of accessibility. The for attribute of the

label references the id of its associated form element. This helps screen

readers identify fields on a page. The ordered list provides a good way

of listing the fields without resorting to complex table or div structures.

This also gives you a way to mark up the order in which you’d like

people to fill out the fields.

Creating a Slider Using Range

Sliders are commonly used to let users decrease or increase a numeri-

cal value, and could be a great way to quickly allow managers to both

visualize and modify the priority of the project. You implement a slider

with the range type.

Download html5forms/index.html

<label for="priority">Priority</label>

<input type="range" min="0" max="10" name="priority" value="0" id="priority">

Add this to the form, within a new li element just like the previous field.

Chrome and Opera both implement a Slider widget, which looks like

this:

Notice that we’ve also set the min and max range for the slider. That will

constrain the value of the form field.

Handling Numbers with Spinboxes

We use numbers a lot, and while typing numbers is fairly simple, spin-

boxes can make making minor adjustments easier. A spinbox is a con-

trol with arrows that increment or decrement the value in the box. Let’s

use the spinbox for estimated hours. That way the hours can be easily

adjusted.

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/html5forms/index.html
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=47

DESCRIBING DATA WITH NEW INPUT FIELDS 48

Download html5forms/index.html

<label for="estimated_hours">Estimated Hours</label>

<input type="number" name="estimated_hours"

min="0"

id="estimated_hours">

Opera supports the spinbox control, which looks like this:

The spinbox also allows typing by default, and like range sliders, we

can set minimum and maximum values. However, those minimum and

maximum ranges won’t be applied to any value you type into the field.

Also notice that you can control the size of the increment step by giving

a value to the step parameter. It defaults to 1, but can be any numerical

value.

Dates

Recording the start date of the project is pretty important, and we want

to make that as easy as possible. The date input type is a perfect fit

here.

Download html5forms/index.html

<label for="start_date">Start date</label>

<input type="date" name="start_date" id="start_date">

Opera is the only browser that currently supports the calendar picker.

Here’s an example of their implementation:

Other browsers render a text field.

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/html5forms/index.html
http://media.pragprog.com/titles/bhh5/code/html5forms/index.html
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=48

DESCRIBING DATA WITH NEW INPUT FIELDS 49

Email

The HTML5 specification says that the Email input type is designed to

hold either a single email address or an email address list, so that’s the

perfect candidate for our email field.

Download html5forms/index.html

<label for="email">Email contact</label>

<input type="email" name="email" id="email">

Most browsers render this as a text field, but Opera adds a little icon

within the field to help identify it more easily.

Mobile devices get the most benefit from this type of form field, as the

virtual keyboard layouts change to make entering email addresses eas-

ier.

URL

There’s a field type designed to handle URLs too. This one is especially

nice if your visitor uses an iPhone, because it displays a much different

keyboard layout, displaying helper buttons for quickly entering web

addresses, similar to the keyboard displayed when entering a URL into

Mobile Safari’s address bar. Adding the staging URL field is as simple

as adding this code:

Download html5forms/index.html

<label for="url">Staging URL</label>

<input type="url" name="url" id="url">

Like the Email field, Opera denotes the URL field with an icon.

Virtual keyboards use this field type to display a different layout as

well.

Color

Finally, we need to provide a way to enter a color code, and we’ll use

the color type for that.

Download html5forms/index.html

<label for="project_color">Project color</label>

<input type="color" name="project_color" id="project_color">

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/html5forms/index.html
http://media.pragprog.com/titles/bhh5/code/html5forms/index.html
http://media.pragprog.com/titles/bhh5/code/html5forms/index.html
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=49

DESCRIBING DATA WITH NEW INPUT FIELDS 50

Figure 3.2: Some form controls are already supported in Opera

At the time of writing, no browsers properly display a colorpicker, but

that shouldn’t stop you from using this field. You’re using proper markup

to describe your content, and that’s going to come in handy in the

future, especially when you need to provide fallback support.

Opera supports most of these new controls right now, as you can see

in Figure 3.2, but when you open the page in Firefox, Safari, or Google

Chrome, you won’t see much of a difference. We’ll need to to fix that.

Falling Back

Browsers that don’t understand these new types simply fall back to the

text type, so your forms will still be usable. At that point, you can bind

one of the jQuery UI or YUI widgets to that field to transform it. As time

goes on, and more browsers support these controls, you can remove

the JavaScript hooks.

Replacing the Color Picker

We can easily identify and replace the color picker using jQuery with

CSS3’s attribute selectors. We locate any input field with the type of

“color” and apply a jQuery plugin called SimpleColor.

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=50

DESCRIBING DATA WITH NEW INPUT FIELDS 51

Download html5forms/index.html

if (!hasColorSupport()){

$('input[type=color]').simpleColor();

}

Since we used the new form types in our markup, we don’t have to add

an additional class name or other markup to identify the color pickers.

Attribute selectors and HTML5 go together quite well.

We don’t want to use this colorpicker plugin if the browser has native

support for it, so we’ll use some JavaScript to detect if the browser

supports input fields with a type of color.

Download html5forms/index.html

Line 1 function hasColorSupport(){
- input = document.createElement("input");
- input.setAttribute("type", "color");
- var hasColorType = (input.type !== "text");
5 // handle Safari/Chrome partial implementation
- if(hasColorType){
- var testString = "foo";
- input.value=testString;
- hasColorType = (input.value != testString);

10 }
- return(hasColorType);
- }

First, we use plain JavaScript to create an element and set its type

attribute to color. Then we retrieve the type attribute to see if the browser

allowed us to set the attribute. If it comes back with a value of color then

we have support for that type. If not, we’ll have to apply our script.

Things get interesting on line 6. Safari 5 and Google Chrome 5 have

partially implemented the color type. They support the field but they

don’t actually display a color widget. We still end up with a text field on

the page. So, in our detection method, we set the value for our input

field and see if the value sticks around. If it doesn’t, we can assume

that the browser has implemented a color picker because the input

field isn’t acting like a text box..

The whole bit of code to replace the color picker looks like this:

Download html5forms/index.html

if (!hasColorSupport()){

$('input[type=color]').simpleColor();

}

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/html5forms/index.html
http://media.pragprog.com/titles/bhh5/code/html5forms/index.html
http://media.pragprog.com/titles/bhh5/code/html5forms/index.html
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=51

DESCRIBING DATA WITH NEW INPUT FIELDS 52

That solution works, but it’s very brittle. It targets a specific set of

browsers, and only for the color control. Other controls have their own

quirks that you need to learn. Thankfully there’s an alternative solu-

tion.

Modernizr

The Modernizr2 library can detect support for many HTML5 and CSS3

features. It doesn’t add the missiing functionality, but it does provide

several mechanisms similar to the solution we implemented for detect-

ing form fields that are more bulletproof.

Before you start throwing Modernizr in your projects, be sure you take

some time to understand how it works. Whether you wrote the code

yourself or not, if you use it in your project, you’re responsible for it.

Modernizr wasn’t ready to handle Safari’s partial support of the color

field right away. When the next version of Chrome or Firefox comes out,

you may have to hack together a solution. Who knows, maybe you’ll be

able to contribute that solution back to Modernizr!

You’ll implement fallbacks for controls like the Date picker and the

Slider in the same manner. Sliders and date pickers are included as

components in the jQuery UI library.3 You’ll include the jQuery UI

library on the page, detect if the browser supports the control natively,

and if it doesn’t, apply the JavaScript version instead. Eventually you’ll

be able to phase out the JavaScript controls and rely completely on the

controls in the browser. Because of the complexity involved with detect-

ing these types, Modernizer will be very helpful to you. However, we’ll

continue writing our own detection techniques throughout the rest of

this book so you can see how they work.

Aside from new form field types, HTML5 introduces a few other attributes

for form fields that can help improve usability. Let’s take a look at aut-

ofocus next.

2. http://www.modernizr.com/

3. http://jqueryui.com/

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://www.modernizr.com/
http://jqueryui.com/
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=52

JUMPING TO THE FIRST FIELD WITH AUTOFOCUS 53

5 Jumping to the First Field with
Autofocus

You can really speed up data-entry if you set the user’s focus to the

first field on the form when they load the page. Many search engines do

this, and now HTML5 provides this capability as part of the language.

All you have to do is add autofocus="true" to any form field, like we

already did on the profile page we built in Describing Data with New

Input Fields, on page 46.

Download html5forms/index.html

<label for="name">Name</label>

<input type="text" name="name" autofocus="true" id="name">

You can only have one autofocus attribute on a page for it to work reli-

ably. If you have more than one, the browser will focus the user’s cursor

onto the last autofocused form field.

Falling Back

We can detect the presence of the autofocus attribute with a little bit

of JavaScript, and then use jQuery to focus on the element when the

user’s browser doesn’t have autofocus support. This is probably the

easiest fallback solution you’ll come across.

Download html5forms/autofocus.js

function hasAutofocus() {

var element = document.createElement('input');

return 'autofocus' in element;

}

$(function(){

if(!hasAutofocus()){

$('input[autofocus=true]').focus();

}

});

Just include this JavaScript on your page and you’ll have autofocus

support where you need it.

Autofocus makes it a little easier for users to start working with your

forms when they load, but you may want to give them a little more

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/html5forms/index.html
http://media.pragprog.com/titles/bhh5/code/html5forms/autofocus.js
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=53

JUMPING TO THE FIRST FIELD WITH AUTOFOCUS 54

information about the type of information you’d like them to provide.

Let’s take a look at the placeholder attribute next.

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=54

PROVIDING HINTS WITH PLACEHOLDER TEXT 55

Figure 3.3: Placeholders can help users understand what you’re asking

them to do

6 Providing Hints with Placeholder
Text

Placeholder text provides users with instructions on how they should

fill in the fields. Figure 3.3 shows a signup form with placeholder text.

We’re going to construct that form now.

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=55

PROVIDING HINTS WITH PLACEHOLDER TEXT 56

A simple signup form

AwesomeCo’s support site requires users to sign up for an account, and

one of the biggest problems with the signups is that users keep trying

to use insecure passwords. Let’s use placeholder text to give the users a

little guidance on our password requirements. For consistency’s sake,

we’ll add placeholder text to the other fields too.

To add placeholder text, you just add the placeholder attribute to each

input field, like this:

Download html5placeholdertext/index.html

<input id="email" type="email"

name="email" placeholder="user@example.com">

Our entire form’s markup looks something like this, with placeholder

text for each field.

Download html5placeholdertext/index.html

<form id="create_account" action="/signup" method="post">

<fieldset id="signup">

<legend>Create New Account</legend>

<label for="first_name">First Name</label>

<input id="first_name" type="text"

autofocus="true"

name="first_name" placeholder="John">

<label for="last_name">Last Name</label>

<input id="last_name" type="text"

name="last_name" placeholder="Smith">

<label for="email">Email</label>

<input id="email" type="email"

name="email" placeholder="user@example.com">

<label for="password">Password</label>

<input id="password" type="password" name="password" value=""

autocomplete="off" placeholder="8-10 characters" />

<label for="password_confirmation">Password Confirmation</label>

<input id="password_confirmation" type="password"

name="password_confirmation" value=""

autocomplete="off" placeholder="Type your password again" />

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/html5placeholdertext/index.html
http://media.pragprog.com/titles/bhh5/code/html5placeholdertext/index.html
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=56

PROVIDING HINTS WITH PLACEHOLDER TEXT 57

<input type="submit" value="Sign Up">

</fieldset>

</form>

The autocomplete attribute

You may have noticed we’ve added the autocomplete attribute to the

password fields on this form. HTML5 introduces an autocomplete attribute

that tells web browsers that they should not attempt to automatically

fill in data for the field. Some browsers remember data that users have

previously typed in, and in some cases, we want to tell the browsers

that we’d rather not let users do that.

Since we’re once again using the ordered list element to hold our form

fields, we’ll add a bit of basic CSS to make the form look nicer.

Download html5placeholdertext/style.css

fieldset{

width: 216px;

}

fieldset ol{

list-style: none;

padding:0;

margin:2px;

}

fieldset ol li{

margin:0 0 9px 0;

padding:0;

}

/* Make inputs go to their own line */

fieldset input{

display:block;

}

Now, users of Safari, Opera, and Chrome will have helpful text inside

of the form fields. Now let’s make Firefox and Internet Explorer play

along.

Falling Back

You can use JavaScript to put placeholder text on form fields without

too much work. You test the value of each form field and if it’s empty,

you set its value to the placeholder value. When the form receives focus,

you clear out the value, and when the field loses focus, you test the

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/html5placeholdertext/style.css
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=57

PROVIDING HINTS WITH PLACEHOLDER TEXT 58

value again. If it’s different, you leave it alone, and if it’s empty, you

replace it with the placeholder text.

You test for placeholder support just like you test for autofocus support.

Download html5placeholdertext/index.html

function hasPlaceholderSupport() {

var i = document.createElement('input');

return 'placeholder' in i;

}

Then you just write your JavaScript to handle the changes. We’ll use a

solution based on work by Andrew January4 and others to make this

work. We’ll fill in the values of all form fields with the text stored in the

placeholder attribute. When a user selects a field, we’ll remove the text

we placed in the field. Let’s wrap this up in a jQuery plugin so that it’s

easy to apply the behavior to our form. See the sidebar on page 61 to

learn how plugins work.

Download html5placeholdertext/jquery.placeholder.js

Line 1 (function($){
-

- $.fn.placeholder = function(){
-

5 function valueIsPlaceholder(input){
- return ($(input).val() == $(input).attr("placeholder"));
- }
- return this.each(function() {
-

10 $(this).find(":input").each(function(){
-

- if($(this).attr("type") == "password"){
-

- var new_field = $("<input type='text'>");
15 new_field.attr("rel", $(this).attr("id"));

- new_field.attr("value", $(this).attr("placeholder"));
- $(this).parent().append(new_field);
- new_field.hide();
-

20 function showPasswordPlaceHolder(input){
- if($(input).val() == "" || valueIsPlaceholder(input)){
- $(input).hide();
- $('input[rel=' + $(input).attr("id") + ']').show();
- };

25 };

4. The original script is at http://www.morethannothing.co.uk/wp-content/uploads/2010/01/placeholder.js

but didn’t support password fields in IE.

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/html5placeholdertext/index.html
http://media.pragprog.com/titles/bhh5/code/html5placeholdertext/jquery.placeholder.js
http://www.morethannothing.co.uk/wp-content/uploads/2010/01/placeholder.js
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=58

PROVIDING HINTS WITH PLACEHOLDER TEXT 59

-

- new_field.focus(function(){
- $(this).hide();
- $('input#' + $(this).attr("rel")).show().focus();

30 });
-

- $(this).blur(function(){
- showPasswordPlaceHolder(this, false);
- });

35

- showPasswordPlaceHolder(this);
-

- }else{
-

40 // Replace the value with the placeholder text.
- // optional reload parameter solves FF and IE caching values on fields.
- function showPlaceholder(input, reload){
- if($(input).val() == "" || (reload && valueIsPlaceholder(input))){
- $(input).val($(input).attr("placeholder"));

45 }
- };
-

- $(this).focus(function(){
- if($(this).val() == $(this).attr("placeholder")){

50 $(this).val("");
- };
- });
-

- $(this).blur(function(){
55 showPlaceholder($(this), false)

- });
-

-

- showPlaceholder(this, true);
60 };

- });
-

- // Prevent forms from submitting default values
- $(this).submit(function(){

65 $(this).find(":input").each(function(){
- if($(this).val() == $(this).attr("placeholder")){
- $(this).val("");
- }
- });

70 });
-

- });
- };
-

75 })(jQuery);

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=59

PROVIDING HINTS WITH PLACEHOLDER TEXT 60

There are a couple of interesting things in this plugin that you should

know about. On line 43, we’re reloading the placeholder text into the

fields if they have no value, but also if we’ve refreshed the page. Fire-

fox and other browsers persist the values of forms. We’re setting the

value attribute to the placeholder, and we certainly don’t want that to

accidentally become the user’s actual value. When we load the page, we

pass true to this method, which you can see on line 59.

Password fields behave a little differently than other form fields, so we

have to handle those differently as well. Take a look at line 12. We’re

detecting the presence of a password field, and we have to change its

type to a regular text field so that the value doesn’t show up masked

with asterisks. Some browsers throw errors if you try to convert pass-

word fields, so we’ll have to swap out the password field for a text field.

We’ll swap those fields in and out as the user interacts with the fields.

This hack changes the values on the forms, and you probably want to

prevent those placeholders from making their way back to the server.

Since we’re only hacking in this placeholder code when JavaScript is

enabled, we can use JavaScript to inspect the form submission and

strip out any values that match the placeholder text. On line 64, we

capture the form submission and clear out the values of any input

fields that equal the placeholder values.

Now that it’s all written up as a plugin, we can invoke it on the page by

attaching it to the form like this:

Download html5placeholdertext/index.html

$(function(){

function hasPlaceholderSupport() {

var i = document.createElement('input');

return 'placeholder' in i;

}

if(!hasPlaceholderSupport()){

$("#create_account").placeholder();

//END placeholder_fallback

$('input[autofocus=true]').focus();

};

});

Now we’ve got a pretty decent solution that makes placeholder text a

viable option for your web apps, no matter what browser you use.

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/html5placeholdertext/index.html
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=60

IN-PLACE EDITING WITH CONTENTEDITABLE 61

jQuery Plugins

You can extend jQuery by writing your own plugins. You add
your own methods on to the jQuery function, and your plugin
seamlessly becomes available to any developer that includes
your library. Here’s a really trivial example that displays a
JavaScript alert box:

jQuery.fn.debug = function() {
return this.each(function(){
alert(this.html());

});

If you wanted to see a popup box appear for every paragraph
on the page, you’d call it like this:

$("p").debug();

jQuery plugins are designed to iterate over a collection of
jQuery objects, and they also return that object collection so
that you can chain them. For example, since our debug plu-
gin also returns the jQuery collection, we can use jQuery’s css

method to change the color of the text of these paragraphs,
all on one line.

$("p").debug().css("color", "red");

We’ll make use of jQuery plugins a few times throughout this
book to help us keep our code organized when we create fall-
back solutions. You can learn more at jQuery’s documentation
site.∗

∗. http://docs.jquery.com/Plugins/Authoring

7 In-Place Editing with
ContentEditable

We’re always looking for ways to make it easier for people to interact

with our applications. Sometimes we want a user of our site to edit

some information about themselves without having to navigate to a

different form. In-place editing traditionally involves replacing a text

area with an input field using JavaScript and event listeners. HTML5

has built-in support for in-place editing of text. We’ll still have to write

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://docs.jquery.com/Plugins/Authoring
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=61

IN-PLACE EDITING WITH CONTENTEDITABLE 62

Figure 3.4: In Place Editing Made Easy

some JavaScript to send the data back to the server so we can save it,

but we no longer have to create and toggle hidden forms.

One of your current projects lets users review their account profile. It

displays their name, city, state, postal code, and email address. Let’s

add some in-place editing to this profile page, so that we end up with

an interface like Figure 3.4.

I wanted to get to the meat of this tip early so that you could see how

incredibly useful the contenteditable chapter could be. However, it goes

against everything I believe in when it comes to building accessible

web applications. Always, and I mean always build the solution that

does not require JavaScript, and then build the version that relies on

scripting.

And be sure to write automated tests for both paths so that you’re more

likely to catch bugs if you change one version and not the other.

The Profile Form

HTML5 introduces the contenteditable attribute which is available on

almost every element. Simply adding this attribute turns it into an

editable field.

Download html5_content_editable/show.html

<h1>User information</h1>

<div id="status"></div>

Name

Hugh Mann

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/html5_content_editable/show.html
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=62

IN-PLACE EDITING WITH CONTENTEDITABLE 63

City

Anytown

State

OH

Postal Code

92110

Email

boss@awesomecompany.com

We can style this up with some CSS too. We’ll use some CSS3 selectors

to identify the editable fields so they change color when our users hover

over or select them.

Download html5_content_editable/show.html

Line 1 ul{list-style:none;}
-

- li{clear:both;}
-

5 li>b, li>span{
- display: block;
- float: left;
- width: 100px;
- }

10

- li>span{
- width:500px;
- margin-left: 20px;
- }

15

- li>span[contenteditable=true]:hover{
- background-color: #ffc;
- }
-

20 li>span[contenteditable=true]:focus{
- background-color: #ffa;
- border: 1px shaded #000;
- }

Persisting the data

While the users can change the data, their changes will be lost if they

refresh the page or navigate away. We need a way to submit those

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/html5_content_editable/show.html
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=63

IN-PLACE EDITING WITH CONTENTEDITABLE 64

changes to our backend, and we can do that easily with some JQuery.

If you’ve ever done any AJAX before, this won’t be anything new to you.

Download html5_content_editable/show.html

$(function(){

var status = $("#status");

$("span[contenteditable=true]").blur(function(){

var field = $(this).attr("id");

var value = $(this).text();

$.post("http://localhost:4567/users/1",

field + "=" + value,

function(data){

status.text(data);

}

);

});

});

We’ll add an event listener to every span on the page that has the con-

tenteditable attribute set to true. Then, all we have to do is submit the

data to our server-side script.

Falling Back

We’ve done a bunch of things that won’t work for some of our audi-

ence. First, we’ve created a dependency on JavaScript to save the edited

results back to the server, which is a Bad Thing. Next, we’re using the

Focus pseudo class to highlight the fields when they receive focus, and

some versions of IE don’t support that. Let’s handle the functionality

first and then we’ll deal with the visual effects.

Creating an Edit page

Rather than worrying too much about various situations that might

prevent a user from using our technique, let’s just give them the option

to go to a separate page with its own form. Sure, it’s more coding, but

think about the possible scenarios:

1. A user doesn’t have JavaScript turned on and is using Internet

Explorer 7

2. A user doesn’t have an HTML5 compatible browser

3. A user is using the latest Firefox with HTML5 support but still

disabled JavaScript simply because they don’t like JavaScript (it

happens all the time. More than you’d think.)

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/html5_content_editable/show.html
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=64

IN-PLACE EDITING WITH CONTENTEDITABLE 65

When it comes down to it, making a form that does a POST to the

same action that handled the AJAX update makes the most sense. How

you do this is up to you, but many frameworks let you detect the type

of request by looking at the accept headers to determine whether the

request came from a regular POST or an XmlHttpRequest. That way

you keep the server-side code DRY5. We will hide the link to this form

if the browser supports Contenteditable and JavaScript.

So, create a new page called edit.html and code up a standard edit form

that posts to the same update action that our AJAX version uses.

Download html5_content_editable/edit.html

<!DOCTYPE html>

<html lang="en-US">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

<title>Editing Profile</title>

</head>

<body>

<form action="/users/1" method="post" accept-charset="utf-8">

<fieldset id="your_information">

<legend>Your Information</legend>

<label for="name">Your Name</label>

<input type="text" name="name" value="" id="name">

<label for="city">City</label>

<input type="text" name="city" value="" id="city">

<label for="state">State</label>

<input type="text" name="state" value="" id="state">

<label for="postal_code">Postal Code</label>

<input type="text" name="postal_code" value="" id="postal_code">

<label for="email">Email</label>

<input type="email" name="email" value="" id="email">

</fieldset>

5. DRY stands for "Don’t Repeat Yourself", and is a term coined by Dave Thomas and

Andy Hunt in The Pragmatic Programmer [HT00]

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/html5_content_editable/edit.html
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=65

IN-PLACE EDITING WITH CONTENTEDITABLE 66

<p><input type="submit" value="Save"></p>

</form>

</body>

</html>

Then, add a link to this page on show.html.

Download html5_content_editable/show.html

<h1>User information</h1>

<section id="edit_profile_link">

<p>Edit Your Profile</p>

</section>

<div id="status"></div>

With the link added, we just need to modify our script a bit. We want to

hide the link to the edit page and enable the AJAX support only if we

have support for editable content.

Download html5_content_editable/show.html

if(document.getElementById("edit_profile_link").contentEditable != null){

With the detection in place, our script looks like this:

Download html5_content_editable/show.html

$(function(){

if(document.getElementById("edit_profile_link").contentEditable != null){

$("#edit_profile_link").hide();

var status = $("#status");

$("span[contenteditable=true]").blur(function(){

var field = $(this).attr("id");

var value = $(this).text();

$.post("http://localhost:4567/users/1",

field + "=" + value,

function(data){

status.text(data);

}

);

});

}

});

With that in place, our users have the ability to use a standard interface

or a quicker "in-place" mode. Now that you know how to implement this

interface, remember to implement the fallback solution first. Unlike the

other fallback solutions, this particular one cripples functionality if not

implemented.

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/html5_content_editable/show.html
http://media.pragprog.com/titles/bhh5/code/html5_content_editable/show.html
http://media.pragprog.com/titles/bhh5/code/html5_content_editable/show.html
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=66

IN-PLACE EDITING WITH CONTENTEDITABLE 67

The Future

Right now, if you add a JavaScript-based date picker to your site, your

users have to learn how it works. If you’ve ever shopped online for

plane tickets and made hotel reservations, you’re already familiar with

the different ways people implement custom form controls on sites. It’s

akin to using an ATM—the interface is often different enough to slow

you down.

Imagine though if each web site used the HTML5 date field, and the

browser had to create the interface. Each site a user visited would dis-

play the exact same date picker. Screen reading software could even

implement a standard mechanism to allow the blind to enter dates eas-

ily. Now think about how useful placeholder text and autofocus can be

for users once it’s everywhere. Placeholder text can help screenread-

ers explain to users how form fields should work, and autofocus could

help people navigate more easily without a mouse, which is handy for

the blind, but also for users with motor impairments that may not use

the mouse.

The ability for developers to turn any element into an editable region

makes it easy to do in-place editing, but it could potentially change how

we build interfaces for content management systems.

The modern Web is all about interactivity, and forms are an essential

part of that interactivity. The enhancements provided by HTML5 give

us a whole new set of tools we can use to help our users.

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=67

Chapter 4

Making Better User Interfaces
with CSS3

For far too long, we developers have hacked around CSS to get the

effects we need in our code. We’ve used JavaScript or server-side code

to stripe table rows or put focus and blur effects on our forms. We’ve

had to litter our tags with additional class attributes just so we could

identify which of our fifty form inputs we want to style.

But no more! CSS3 has some amazing selectors that make some of

this work trivial. In case you forgot, a selector is a pattern that you

use to help you find elements in the HTML document so you can apply

styles to those elements. We’ll use these new selectors to style a table.

Then we’ll take a look at how we can use some other CSS3 features to

improve our site’s print stylesheets, and we’ll split content into multiple

columns.

Prepared exclusively for Jose Sierra

CHAPTER 4. MAKING BETTER USER INTERFACES WITH CSS3 69

Feature Description Use Supported

Browsers

:nth-of-type Finds all n ele-

ments of a cer-

tain type

p:nth-of-

type(2n+1){color:

red;}

• Safari 3+

• Firefox

3.5+

• Chrome

2+

• Opera

9.5+

:first-child Finds the first

child element

p:first-

child{color:blue;}
• Safari 3+

• Firefox

3.5+

• Chrome

2+

• Opera

9.5+

:nth-child Finds a spe-

cific child ele-

ment counting

forward

p:nth-

child(2n+1){color:

red;}

• Safari 3+

• Firefox

3.5+

• Chrome

2+

• Opera

9.5+

:last-child Finds the last

child element

p:last-

child{color:blue;}
• Safari 3+

• Firefox

3.5+

• Chrome

2+

• Opera

9.5+

:nth-last-child Finds a spe-

cific child ele-

ment counting

backward

p:nth-last-

child(2){color:

red;}

• Safari 3+

• Firefox

3.5+

• Chrome

2+

• Opera

9.5+
Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=69

STYLING TABLES WITH PSEUDO CLASSES 70

8 Styling Tables With Pseudo
Classes

A “pseudo class” in CSS is a way to select elements based on infor-

mation that lies outside of the document, or information that can’t be

expressed using normal selectors. You’ve probably used pseudo classes

like :hover before to change the color of a link when the user hovers over

it with his or her mouse pointer. CSS3 has several new pseudo classes

that make locating elements much easier.

Improving an invoice

AwesomeCo uses a third-party billing and invoicing system for products

they ship. You see, one of AwesomeCo’s biggest markets is conference

swag, like pens, cups, shirts, and anything else you can slap your logo

on. You’ve been asked to make the invoice more readable. Right now,

the developers are producing a standard HTML table that looks like the

one in Figure 4.1, on the next page.

It’s a pretty standard invoice with prices, quantities, row totals, a subto-

tal, shipping total, and a grand total for the order. It would be easier to

read if every other row was colored differently. It would also be helpful

if the grand total was a different color so that it stands out more.

The code for the table looks like this. Copy it into your own file so you

can work with it.

Download css3advancedselectors/table.html

<table >

<tr>

<th>Item</th>

<th>Price</th>

<th>Quantity</th>

<th>Total</th>

</tr>

<tr>

<td>Coffee mug</td>

<td>$10.00</td>

<td>5</td>

<td>$50.00</td>

</tr>

<tr>

<td>Polo shirt</td>

<td>$20.00</td>

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/css3advancedselectors/table.html
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=70

STYLING TABLES WITH PSEUDO CLASSES 71

Figure 4.1: The current invoice uses an unstyled HTML table.

<td>5</td>

<td>$100.00</td>

</tr>

<tr>

<td>Red stapler</td>

<td>$9.00</td>

<td>4</td>

<td>$36.00</td>

</tr>

<tr>

<td colspan="3">Subtotal</td>

<td>$186.00</td>

</tr>

<tr>

<td colspan="3">Shipping</td>

<td>$12.00</td>

</tr>

<tr>

<td colspan="3">Total Due</td>

<td>$198.00</td>

</tr>

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=71

STYLING TABLES WITH PSEUDO CLASSES 72

</table>

First, let’s get rid of the hideous default table border.

Download css3advancedselectors/table.css

table{

width: 600px;

border-collapse: collapse;

}

th, td{

border: none;

}

We’ll also style the header a bit by giving it a black background with

white text.

Download css3advancedselectors/table.css

table th{

background-color: #000;

color: #fff;

}

Apply that style, and the table looks like this:

With the table’s borders and spacing cleaned up a bit, we can start

using the pseudo classes to style individual rows and columns. We’ll

start by striping the table.

Striping rows with :nth-of-type

Adding “zebra striping” to tables is something we’ve all seen. It’s useful

because it gives users horizontal lines to follow. This kind of styling is

best done in CSS, the presentation layer, but we don’t want to pollute

the markup for this table with class names like “odd” and “even”, as

the HTML5 specification encourages us to avoid using class names that

define presentation.

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/css3advancedselectors/table.css
http://media.pragprog.com/titles/bhh5/code/css3advancedselectors/table.css
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=72

STYLING TABLES WITH PSEUDO CLASSES 73

The nth-of-type selector finds every nth element of a specific type using

either a formula or keywords. We’ll get into the formula in more detail

soon, but first, let’s focus on the keywords, as they’re immediately eas-

ier to grasp.

We want to stripe every other row of the table with a different color, and

the easiest way to do that is to find every even row of the table and give

it a background color. We then do the same thing with the odd rows.

CSS3 has even and odd keywords that support this exact situation.

Download css3advancedselectors/table.css

table tr:nth-of-type(even){

background-color: #F3F3F3;

}

table tr:nth-of-type(odd) {

background-color:#ddd;

}

So this selector says “Find me every even table row and color it. Then

find every odd row and color that too.”. That takes care of our zebra

striping, without resorting to any scripting or extra class names on

rows.

With the styles applied, our table looks like this:

Now let’s work on aligning the columns in the table.

Aligning Column Text with :nth-child

By default, all of the columns in our invoice table are left-aligned. Let’s

right align every column except for the first column. This way, our price

and quantity columns will be right-aligned and easier to read. To do

that, we can use nth-child, but first we have to learn how it works.

The nth-child selector looks for child elements of an element and, like

nth-of-type can use keywords or a formula.

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/css3advancedselectors/table.css
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=73

STYLING TABLES WITH PSEUDO CLASSES 74

The formula is an+b, where b is the offset, and a is a multiple. That

description is not particularly helpful without some context, so let’s

look at it in the context of our table.

If we wanted to select all of the table rows, we could use this selector:

table tr:nth-child(n)

We’re not using any multiple, nor are we using an offset.

However, if we wanted to select all rows of the table except for the first

row, which is the row containing the column headings, we would use

this selector that uses an offset:

table tr:nth-child(n+2)

The counter is 1-based, not zero-based as you might expect if you’re

used to working with arrays in JavaScript or other languages. We need

to find all rows, starting with the second row.

If we wanted to select every other row of our table, we’d use a multiple,

or 2n.

table tr:nth-child(2n)

If you wanted every third row, you’d use 3n.

You can also use the offset, so that you can start further down the

table. This selector would find every other row, starting with the fourth

row:

table tr:nth-child(2n+4)

So, we can align every column except the first one with this rule:

Download css3advancedselectors/table.css

table td:nth-child(n+2){

text-align: right;

}

At this point, our table is really shaping up:

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/css3advancedselectors/table.css
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=74

STYLING TABLES WITH PSEUDO CLASSES 75

Now, let’s style the last row of the table.

Bolding the Last Row With :last-child

The invoice is looking pretty good right now, but one of the managers

would like the bottom row of the table to be bolder than the other rows

so it stands out more. We can use last-child for that too, which grabs the

last child in a group.

Applying a bottom margin to paragraphs so that they are evenly spaced

on a page is a common practice among many web developers. This

can sometimes lead to an extra bottom margin at the end of a group,

and that might be undesireable. For example, if the paragraphs are

sitting inside of a sidebar or callout box, we may want to remove the

bottom margin from the last paragraph so that there’s not wasted space

between the bottom of the last paragraph and the border of the box. The

last-child selector is the perfect tool for this. We can use it to remove the

margin from the last paragraph.

p{margin-bottom: 20px}

#sidebar p:last-child{ margin: 0; }

Let’s use this same technique to bold the contents of the last row.

Download css3advancedselectors/table.css

table tr:last-child{

font-weight: bolder;

}

Let’s do the same thing with the last column of the table. This will help

the line totals stand out too.

Download css3advancedselectors/table.css

table td:last-child{

font-weight: bolder;

}

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/css3advancedselectors/table.css
http://media.pragprog.com/titles/bhh5/code/css3advancedselectors/table.css
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=75

STYLING TABLES WITH PSEUDO CLASSES 76

Finally, we’ll make the total’s font size bigger by using last-child with

descendant selectors. We’ll find the last column of the last row and

style it with this:

Download css3advancedselectors/table.css

table tr:last-child td:last-child{

font-size:24px;

}

We’re almost done, but there are a few things left to do with the last

three rows of the table.

Counting Backwards with :nth-last-child

We’d like to highlight the shipping row of the table when there’s a

discounted shipping rate. We’ll use nth-last-child to quickly locate that

row. You saw how you can use nth-child and the formula an+b to select

specific child elements in Section 8, Aligning Column Text with :nth-

child, on page 73. The nth-last-child selector works exactly the same way,

except that it counts backwards through the children, starting at the

last child first. This makes it easy to grab the the second to the last

element in a group. It turns out that we need to do just that with our

invoice table.

So, to find our shipping row, we’d use this code:

Download css3advancedselectors/table.css

table tr:nth-last-child(2){

color: green;

}

Here, we’re just specifying a specific child, the second to the last.

There’s one last thing we should do with this table though. Earlier, we

right-aligned all of the columns except for the first column, and while

that looks fine for the rows of the table with the item descriptions and

prices, it makes the last three rows of the table look a little funny. Let’s

right-align the bottom three rows as well. We can do that by using nth-

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/css3advancedselectors/table.css
http://media.pragprog.com/titles/bhh5/code/css3advancedselectors/table.css
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=76

STYLING TABLES WITH PSEUDO CLASSES 77

Figure 4.2: Our styled table, with striping and alignment done entirely

with CSS3.

last-child with a negative value for n and a positive value for a in our

formula, like this:

Download css3advancedselectors/table.css

tr:nth-last-child(-n+3) td{

text-align: right

}

You can think of this as a range selector... it’s using the offset of 3, and

since we’re using nth-last-child, it’s grabbing every element before the

offset. If you were using nth-child, this formula would grab every row up

to the offset.

Our newly-styled table, shown in Figure 4.2, looks much better now,

and we didn’t have to change the underlying markup one bit. Many of

the selectors we used to accomplish this are not yet available to people

using Internet Explorer, so we need a workaround for them.

Falling Back

Current versions of Opera, Firefox, Safari, and Chrome all understand

these selectors, but Internet Explorer versions 8.0 and lower will just

ignore these entirely. You’ll need a good fallback solution, and you have

a choice to make.

Change the HTML code

The most obvious solution that works everywhere is to modify the under-

lying code. You could attach classes to all of the cells in the table and

apply basic CSS to each class. This is the worst choice, because it mixes

presentation and content, and is exactly the kind of thing we’re using

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/css3advancedselectors/table.css
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=77

STYLING TABLES WITH PSEUDO CLASSES 78

CSS3 to avoid. Someday we won’t need all that extra markup, and it

would be painful to remove it.

Use JavaScript

The jQuery library already understands most of the CSS3 selectors we

used, so we could quickly write a method to style the table that way,

but there’s an easier way.

Keith Clark has written a great little library called IE-css31 that adds

support for CSS3 selectors to Internet Explorer. All we need to do is add

a couple of scripts to our page.

The IE-CSS3 library can use jQuery, Prototype, or several other libraries

under the hood, but I prefer to use DOMAssistant2 library because it

has the best support for all of the pseudo-classes we’ve used here.

Download both of those libraries and then link them to your document.

Since this is for IE only, you can place them in a conditional comment

so they’ll only be used by your IE users.

Download css3advancedselectors/table.html

<!--[if (gte IE 5.5)&(lte IE 8)]>

<script type="text/javascript" src="js/DOMAssistantCompressed-2.8.js"></script>

<script type="text/javascript" src="js/ie-css3.js"></script>

<![endif]-->

Placing those scripts in the page makes things look just great in Inter-

net Explorer. You can see what it looks like in Figure 4.3, on the follow-

ing page .

While this will require the user to have JavaScript turned on, the table

styling is mainly there to make the content easier to see. Lack of styling

doesn’t prevent anyone from reading the invoice.

Styling elements is a whole lot easier with CSS3, especially if we don’t

have the ability to modify the HTML we’re targeting. When you’re styling

interfaces, use the semantic hierarchy and these new selectors before

you add additional markup. You’ll find your code much easier to main-

tain.

1. http://www.keithclark.co.uk/labs/ie-css3/

2. http://www.domassistant.com/

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/css3advancedselectors/table.html
http://www.keithclark.co.uk/labs/ie-css3/
http://www.domassistant.com/
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=78

MAKING LINKS PRINTABLE WITH :AFTER AND CONTENT 79

Figure 4.3: Our table looks great in Internet Explorer

9 Making Links Printable with :after
and content

CSS can style existing elements, but it can also inject content into a

document. There are a few cases where content generation with CSS

makes sense, and the most obvious one is appending the URL of a

hyperlink next to the link’s text when a user prints the page. When

you’re looking at a document on the screen, you can just hover over a

link and see where it goes by looking at the status bar. However, when

you look at a printout of a page, you have absolutely no idea where

those links go.

AwesomeCo is working up a new page for its forms and policies, and

one of the members of the redesign committee insists on printing out a

copy of the site each time. He wants to be able to know exactly where

all of the links go on the page so that he can determine if they need to

be moved. With just a little bit of CSS, we can add that functionality,

and it will work in IE 8, Firefox, Safari, and Chrome. We can use some

proprietary JavaScript to make it work in IE 6 and 7.

The page itself has nothing more than a list of links on it right now.

Eventually it’ll get put into a template.

Download css3_print_links/index.html

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/css3_print_links/index.html
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=79

MAKING LINKS PRINTABLE WITH :AFTER AND CONTENT 80

Travel Authorization Form

Travel Reimbursement Form

Travel Guidelines

</body>

If you were to look at that page on a printout, you’d have no idea where

those links go. Let’s fix that.

The CSS

When we add a stylesheet to a page, we can specify the media type that

the styles apply to. Most of the time, we use the screen type. However,

we can use the print type to define a stylesheet that only loads when the

page is printed (or when the user uses the print preview function).

Download css3_print_links/index.html

<link rel="stylesheet" href="print.css" type="text/css" media="print">

We can then create a print.css stylesheet file with this simple rule:

Download css3_print_links/print.css

a:after {

content: " (" attr(href) ") ";

}

This takes every link on the page and adds the value of the href value

inside of parentheses after the link’s text. When you open it in a modern

browser, it looks just like this:

That handles everything except for Internet Explorer 6 and 7. Let’s fix

that, shall we?

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/css3_print_links/index.html
http://media.pragprog.com/titles/bhh5/code/css3_print_links/print.css
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=80

MAKING LINKS PRINTABLE WITH :AFTER AND CONTENT 81

Falling Back

Internet Explorer has a couple of JavaScript events that I wish every

browser would adopt: onbeforeprint and onafterprint. Using those events,

we can modify the hyperlink text when the printing is triggered and

then revert the links back when printing is finished. Our users will

never notice the difference.3

We just need to create a file called print.js and add this code:

Download css3_print_links/print.js

Line 1 $(function() {
- if (window.onbeforeprint !== undefined) {
- window.onbeforeprint = ShowLinks;
- window.onafterprint = HideLinks;
5 }
- });
-

- function ShowLinks() {
- $("a").each(function() {

10 $(this).data("linkText", $(this).text());
- $(this).append(" (" + $(this).attr("href") + ")");
- });
- }
-

15 function HideLinks() {
- $("a").each(function() {
- $(this).text($(this).data("linkText"));
- });
- }

Then we just need to attach it to our page. We only need this fallback

for IE 6 and 7, so we’ll use a conditional comment for that. This code

relies on jQuery, so we have to make sure that we link in the jQuery

library as well.

Download css3_print_links/index.html

<script

charset="utf-8"

src='http://ajax.googleapis.com/ajax/libs/jquery/1.4.2/jquery.min.js'

type='text/javascript'>

</script>

<!--[if lte IE 7]>

<script type="text/javascript" src="print.js"></script>

<![endif]-->

</head>

<body>

3. This technique is outlined nicely at http://beckelman.net/post/2009/02/16/Use-jQuery-to-Show-a-Linke28099s-Address-After-its-Text-

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/css3_print_links/print.js
http://media.pragprog.com/titles/bhh5/code/css3_print_links/index.html
http://beckelman.net/post/2009/02/16/Use-jQuery-to-Show-a-Linke28099s-Address-After-its-Text-When-Printing-In-IE6-and-IE7.aspx
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=81

MAKING LINKS PRINTABLE WITH :AFTER AND CONTENT 82

<h1>Forms and Policies</h1>

Travel Authorization Form

Travel Reimbursement Form

Travel Guidelines

With the JavaScript linked, the link URLs will print on all of our target

browsers. You can use this print stylesheet as the basis for a more

comprehensive one, and you may choose to only apply this behavior to

some links on your site, and not to every link like we did here.

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=82

CREATING MULTI-COLUMN LAYOUTS 83

10 Creating Multi-Column Layouts

The print industry has had columns for years, and web designers have

looked at those publications with envy. Narrow columns make it eas-

ier for readers to read your content, and with displays getting wider,

developers are looking for ways to preserve comfortable column widths.

After all, nobody wants to follow multiple lines of text across the moni-

tor any more than they want a line of text to flow across the whole page

of a newspaper. There have been some pretty clever solutions in the

past ten years, but none of those are as simple and easy as the method

provided by the CSS3 specification.

Splitting Columns

Each month, AwesomeCo publishes a newsletter for its employees. The

company happens to use a popular web-based email system. Email-

based newsletters don’t quite look good and are very hard to maintain.

They’ve decided to put the newsletter on the Intranet site and are plan-

ning to just send emails to employees with a link to pull up the newslet-

ter in their browsers. See Figure 4.4, on the next page for a mocked-up

version of this new newsletter.

The new director of communications, who has a background in print

publications, has decided that she would like the newsletter to look

more like an actual newsletter, with two columns instead of one.

If you’ve ever tried to split some text into multiple columns using divs

and floats, you know how hard that can be. The first big hurdle you

run into is that you have to manually decide where to split the text. In

publishing software like InDesign, you can “link” text boxes together so

that when one fills up with text, the text flows into the linked text area.

We don’t have anything quite like that on the Web just yet, but we have

something that works really well, and is quite easy to use. We can take

an element and split its contents into multiple columns, each with the

same width.

We’ll start with the markup for the newsletter. It’s fairly basic HTML.

Since its content will change once it’s written, we’re just going to use

placeholder text for the content. If you’re wondering why we’re not using

the new HTML5 markup elements like section and such for this newslet-

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=83

CREATING MULTI-COLUMN LAYOUTS 84

Figure 4.4: Our single-column newsletter is harder to read as it’s very

wide.

ter, it’s because our fallback method isn’t compatible with those ele-

ments in Internet Explorer.

Download css3columns/condensed_newsletter.html

<body>

<div id="header">

<h1>AwesomeCo Newsletter</h1>

<p>Volume 3, Issue 12</p>

</div>

<div id="newsletter">

<div id="director_news">

<div>

<h2>News From The Director</h2>

</div>

<div>

<p>

Lorem ipsum dolor...

</p>

<div class="callout">

<h4>Being Awesome</h4>

<p>

"Lorem ipsum dolor sit amet..."

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/css3columns/condensed_newsletter.html
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=84

CREATING MULTI-COLUMN LAYOUTS 85

</p>

</div>

<p>

Duis aute irure...

</p>

</div>

</div>

<div id="awesome_bits">

<div>

<h2>Quick Bits of Awesome</h2>

</div>

<div>

<p>

Lorem ipsum...

</p>

<p>

Duis aute irure...

</p>

</div>

</div>

<div id="birthdays">

<div>

<h2>Birthdays</h2>

</div>

<div>

<p>

Lorem ipsum dolor...

</p>

<p>

Duis aute irure...

</p>

</div>

</div>

</div>

<div id="footer">

<h6>Send newsworthy things to

news@awesomeco.com.

</h6>

</div>

</body>

To split this into a two-column layout, all we need to do is add this to

our stylesheet:

Download css3columns/newsletter.html

#newsletter{

-moz-column-count: 2;

-webkit-column-count: 2;

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/css3columns/newsletter.html
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=85

CREATING MULTI-COLUMN LAYOUTS 86

Figure 4.5: Our new two-column newsletter

-moz-column-gap: 20px;

-webkit-column-gap: 20px;

-moz-column-rule: 1px solid #ddccb5;

-webkit-column-rule: 1px solid #ddccb5;

}

Now we have something much nicer, like you see in Figure 4.5 . We can

add in more content and the browser will automatically determine how

to split the content evenly. Also, notice that the floated elements float

to the columns that contain them.

Falling Back

CSS3 columns don’t work in Internet Explorer 8 and below, so we’ll

use the jQuery Columnizer plugin4 as a fallback. Columnizer will let us

split our content evenly by simply using code like this:

Download css3columns/newsletter.html

$("#newsletter").columnize({ columns: 2 });

People without JavaScript are going to be stuck with a single column

of text, but they’ll still be able to read the content, because we marked

4. http://welcome.totheinter.net/columnizer-jquery-plugin/

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/css3columns/newsletter.html
http://welcome.totheinter.net/columnizer-jquery-plugin/
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=86

CREATING MULTI-COLUMN LAYOUTS 87

Joe Asks. . .

Can I specify different widths for each column?

Sorry, Joe, but you can’t. I was a little surprised too at first, so I
double-checked the specification, and at the time of writing,
there was no provision for specifying multiple column widths.

However, when you think about how columns are traditionally
used, it makes sense. Columns are not meant to be a hack to
easily make a sidebar for your web site any more than tables
are. Columns are meant to make reading long areas of text
easier, and equal width columns are perfect for that.

it up in a linear fashion, so we’ve got them covered. However, we can

use JavaScript to detect browser support for certain elements. If we

retrieve a CSS property that exists, we’ll get an empty string. If we get

a null value back, we don’t have that property available.

Download css3columns/newsletter.html

<script

charset="utf-8"

src='http://ajax.googleapis.com/ajax/libs/jquery/1.4.2/jquery.min.js'

type='text/javascript'>

</script>

<script src="javascripts/autocolumn.js" charset="utf-8"

type='text/javascript'></script>

<script type="text/javascript" charset="utf-8">

function hasColumnSupport(){

var element = document.documentElement;

var style = element.style;

if (style){

return typeof style.columnCount == "string" ||

typeof style.MozColumnCount == "string" ||

typeof style.WebkitColumnCount == "string" ||

typeof style.KhtmlColumnCount == "string";

}

return null;

}

$(function(){

if(!hasColumnSupport()){

$("#newsletter").columnize({ columns: 2 });

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/css3columns/newsletter.html
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=87

CREATING MULTI-COLUMN LAYOUTS 88

Figure 4.6: Our Internet Explorer version works, but needs some minor

adjustments

}

});

</script>

We simply check for columm support, and if none exists, we apply our

plugin.

Refresh the page in Internet Explorer and you’ll now see your two-

column newsletter. It may not be perfect, as you can see in Figure 4.6,

so you’ll need to use a little CSS or JavaScript to fix any elements

that don’t quite look right, but I’m leaving that exercise up to you.

Take advantage of conditional comments like we used in Section 8, Use

JavaScript, on page 78 to target specific versions of Internet Explorer if

needed.

Separating your content into multiple columns can make your content

easier to read. However, if your page is longer, your users might find it

annoying to have to scroll back to the top to read the columns. Use this

with care.

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=88

CREATING MULTI-COLUMN LAYOUTS 89

The Future

The things we talked about in this chapter improve the user interface,

but people can still work with our products if their browsers don’t sup-

port these new features. People can still read the data in the table if it’s

not styled with stripes; the forms will still work, even if they don’t have

rounded corners on the interface elements; and the newsletter won’t

be laid out in multiple columns. It’s good to know that we can use the

presentation layer to achieve these effects instead of having to resort to

JavaScript or server-side solutions.

Almost all browsers support these selectors now, with the exception

of Internet Explorer. As we move forward, you can expect to see IE

moving to support these as well, especially the pseudo classes. When

the specification becomes final, the vendor-specific prefixes like moz

and webkit- go away. Once that happens, you’ll be able to remove your

fallback code.

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=89

Chapter 5

Improving Accessibility
Many of the new elements in HTML5 help you more accurately describe

your content. This becomes more important when other programs start

interpreting your code. For example, some people use software called

screen readers to translate the graphical contents of the screen to

text that’s read aloud. Screen readers work by interpreting the text

on the screen and the corresponding markup to identify links, images,

and other elements. Screen readers have made amazing advances, but

they’re always lagging behind the current trends. Live regions on pages,

where polling or AJAX requests alter content on the page, are difficult

to detect. More complex pages can be difficult to navigate due to the

screen reader needing to read a lot of the content aloud.

WIA-ARIA1, or ”Accessibility for Rich Internet Applications“ is a specifi-

cation that provides ways to improve the accessibility of web sites, espe-

cially web applications. It is especially useful if you’re developing appli-

cations with JavaScript controls and AJAX. Some parts of the WIA-ARIA

specification have been rolled into HTML5, while others remain sepa-

rate and can complement the HTML5 specification. Many screen read-

ers are already using features of the WIA_ARIA specification, including

JAWS, WindowEyes, and even Apple’s built-in VoiceOver feature. WIA-

ARIA also introduces additional markup that assistive technology can

use as hints for discovering regions that are updatable.

In this chapter, we’ll see how HTML5 can improve the experience of

your visitors who use these assistive devices. Most importantly, the

techniques in this chapter require no fallback support, as many screen

1. http://www.w3.org/WAI/intro/aria.php

Prepared exclusively for Jose Sierra

http://www.w3.org/WAI/intro/aria.php

CHAPTER 5. IMPROVING ACCESSIBILITY 91

readers are already able to take advantage of these techniques right

now.

Feature Description Use Supported

Browsers

role Identifies

responsibility of

an element for

screenreaders

<nav

role="navigation">
• IE 8

• Firefox 3.6

• Safari 4.0+

• Chrome

3.0+

• Opera 9.6

aria-live Identifies a

region that

updates, possi-

bly by AJAX

<div aria-

live="polite">
• IE 8

• Firefox 3.6

(Windows)

• Safari 4.0+

aria-atomic Identifies if the

entire content

of a live region

should be read,

or just the

elements that

changed.

<div aria-

live="polite" aria-

atomic="true">

• IE 8

• Firefox 3.6

(Windows)

• Safari 4.0+

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=91

PROVIDING NAVIGATION HINTS WITH ARIA ROLES 92

11 Providing Navigation Hints with
ARIA Roles

Most web sites share a common structure: there’s a header, a naviga-

tion section, some main content, and a footer. Most of these sites are

coded just like that, in a linear fashion. Unfortunately, this means that

a screenreader may have to read the site to its user in that order. Since

most sites repeat the same header and navigation on each page, the

user will have to hear these elements each time they visit another page.

The recommended fix is to provide a hidden "skip navigation" link that

screenreaders will read aloud, which simply links to an anchor some-

where near the main content. However, that’s not something that’s built

in, and it’s not something that everyone knows how (or remembers) to

do.

HTML5’s new "role" attribute lets us assign a "responsibility" to each

element on your page. A screenreader can then very easily parse the

page and categorize all of those responsibilities so that you could create

a simple index for the page. For example, it can find all of the navigation

roles on the page and present them to the user so he or she can quickly

navigate around your application.

These roles come from the WIA-ARIA specification2 and have been incor-

porated into the HTML5 specification. There are two specific classifica-

tions of roles that you can put to use right now: landmark roles and

document roles.

Landmark Roles

Landmark roles identify "points of interest" on your site, such as the

banner, search area, or navigation which screen readers can quickly

identify.

2. http://www.w3.org/WAI/PF/aria/roles

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=92

PROVIDING NAVIGATION HINTS WITH ARIA ROLES 93

Role Use

banner Identifies the banner area of your page.

search Identifies the search area of your page

navigation Identifies navigational elements on your page

main Identifies where your page’s main content begins

contentinfo Identifies where information about the content exists,

such as copyright information and publication date

complementary Identifies content on a page that complements the

main content, but is meaningful on its own.

application Identifies a region of a page which contains a web

application as opposed to a web document

We can apply a few of these roles to the AwesomeCo blog template we

worked on in Redefining a Blog using Semantic Markup, on page 23.

For the overall header, let’s apply the banner role like this:

Download html5_aria/blog.html

<header id="page_header" role="banner">

<h1>AwesomeCo Blog!</h1>

</header>

All that’s needed is the addition of the role="banner" to the existing

header tag.

We can identify our navigation the same way:

Download html5_aria/blog.html

<nav role="navigation">

Latest Posts

Archives

Contributors

Contact Us

</nav>

The HTML5 specification says that some elements have default roles

and can’t be overridden. The nav element must have the role of naviga-

tion, and technically doesn’t need to be specified. Screen readers aren’t

quite ready to accept that default yet, but many of them do understand

these ARIA roles.

Our main and sidebar regions can be identified as follows:

Download html5_aria/blog.html

<section id="posts" role="main">

</section>

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/html5_aria/blog.html
http://media.pragprog.com/titles/bhh5/code/html5_aria/blog.html
http://media.pragprog.com/titles/bhh5/code/html5_aria/blog.html
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=93

PROVIDING NAVIGATION HINTS WITH ARIA ROLES 94

Download html5_aria/blog.html

<section id="sidebar"role="complementary">

<nav>

<h3>Archives</h3>

June 2010

May 2010

April 2010

March 2010

February 2010

January 2010

December 2009

</nav>

</section> <!-- sidebar -->

We identify the publication and copyright info in our footer using the

contentinfo role like this:

Download html5_aria/blog.html

<footer id="page_footer" role="contentinfo">

<p>© 2010 AwesomeCo.</p>

</footer> <!-- footer -->

If we had a search for our blog, we could identify that region as well.

Now that we’ve identified the landmarks, let’s take this a step further

and help identify some of the document elements.

Document Structure Roles

Document structure roles help screenreaders identify parts of static

content easily, which can help better organize content for navigation.

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/html5_aria/blog.html
http://media.pragprog.com/titles/bhh5/code/html5_aria/blog.html
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=94

PROVIDING NAVIGATION HINTS WITH ARIA ROLES 95

Role Use

document Identifies a region containing document content, as

opposed to application content.

article Identifies a composition that forms an independent

part of a document.

definition Identifies a definition of a term or subject

directory Identifies a list of references to a group, like a table of

contents. Used for static content.

heading Identifies a heading for a section of a page

img Identifies a section that contains elements of an

image. This may be image elements as well as cap-

tions and descriptive text.

list Identifies a group of non-interactive list items/

listitem Identifies a single member of a group of non-

interactive list items.

math Identifies a mathematical expression.

note Identifies content that is parenthetic or ancillary to

the main content of the resource.

presentation Identifies content that is for presentation and can be

ignored by assistive technology.

row Identifies a row of cells in a grid.

rowheader Identifies a cell containing header information for a

row in a grid.

Many of the document roles are implicitly defined by HTML tags, like

articles and headers. However, the document role isn’t, and it’s a very

helpful role, especially in applications with a mix of dynamic and static

content. For example, a web-based email client may have the document

role attached to the element that contains the body of the email mes-

sage. This is useful because screenreaders often have different methods

for navigating using the keyboard. When the screenreader’s focus is on

an application element, it may need to allow keypresses through to the

web application. However, when the focus is on static content, it could

allow the screenreader’s key bindings to work differently.

We can apply the document role to our blog by adding it to the body

element.

Download html5_aria/blog.html

<body role="document">

This can help ensure that a screenreader will treat this page as static

content.

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/html5_aria/blog.html
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=95

PROVIDING NAVIGATION HINTS WITH ARIA ROLES 96

Joe Asks. . .

Do we need these landmark roles if we have elements like
nav and header?

The landmark roles may at first seem redundant but they pro-
vide you with the flexibility you need for situations where you
can’t use the new elements.

Using the search role, you can direct your users to the region of
the page that not only contains the search field, but also links
to a sitemap, a dropdown list of "quick links", or other elements
that will help your users find information quickly, as opposed to
just directing them to the actual search field.

There are also a lot more roles introduced by the specification
than there are new elements and form controls.

Falling Back

These roles are already usable on the latest browsers with the latest

screenreaders, so you can start working with them now. Browsers that

don’t support them are just going to ignore them, and so you’re really

only helping those people that can use them.

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=96

CREATING AN ACCESSIBLE UPDATABLE REGION 97

12 Creating An Accessible
Updatable Region

We do a lot of things with AJAX in our web applications these days.

Standard practice is to fire off some sort of visual effect to give the

user a clue that something has changed on the page. However, a per-

son using a screenreader obviously isn’t going to be able to see any

visual cues. The WIA-ARIA specification provides a pretty nice alter-

native solution which currently works in IE, Firefox, and Safari with

various popular screen readers.

The AwesomeCo Executive Director of Communications wants a new

home page. It should have links to a services section, a contact sec-

tion, and an about section. He insists that the home page shouldn’t

scroll because "people hate scrolling." He would like you to implement

a prototype for the page with a horizontal menu that changes the page’s

main content when clicked. That’s easy enough to implement, and with

the aria-live attribute, we can do something we haven’t been able to do

well before - implement this type of interface in a way that’s friendly to

screen readers.

Let’s build a simple interface like Figure 5.1, on the following page.

We’ll put all of the content on the home page and if JavaScript is avail-

able to us, we’ll hide all but the first entry. We’ll make the navigation

links point to each section using page anchors, and we’ll use jQuery to

change those anchor links into events that swap out the main content.

People with JavaScript will see what our director wants, and people

without will still be able to see all of the content on the page.

Creating the Page

We’ll start by creating a basic HTML5 page and we’ll add in our "wel-

come" section which will be the default section displayed to users when

they visit the page. Here’s the code for the page with the navigation bar

and the jump links.

Download html5_aria/home.html

<!DOCTYPE html>

<html lang="en-US">

<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/html5_aria/home.html
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=97

CREATING AN ACCESSIBLE UPDATABLE REGION 98

Figure 5.1: A mockup of the home page using jQuery to change the

main content

<title>AwesomeCo</title>

<link rel="stylesheet" href="style.css" type="text/css">

</head>

<body>

<header id="header">

<h1>AwesomeCo </h1>

<nav>

Welcome

Services

Contact

About

</nav>

</header>

<section id="content"

role="document" aria-live="assertive" aria-atomic="true">

<section id="welcome">

<header>

<h2>Welcome</h2>

</header>

<p>The welcome section</p>

</section>

</section>

<footer id="footer">

<p>© 2010 AwesomeCo.</p>

<nav>

Home

About

Terms of Service

Privacy

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=98

CREATING AN ACCESSIBLE UPDATABLE REGION 99

</nav>

</footer>

</body>

</html>

The Welcome section has an ID of welcome which matches the anchor

in the navigation bar. We can declare our additional page sections in

the same fashion.

Download html5_aria/home.html

<section id="services">

<header>

<h2>Services</h2>

</header>

<p>The services section</p>

</section>

<section id="contact">

<header>

<h2>Contact</h2>

</header>

<p>The contact section</p>

</section>

<section id="about">

<header>

<h2>About</h2>

</header>

<p>The about section</p>

</section>

Our four content regions are wrapped by this markup:

Download html5_aria/home.html

<section id="content"

role="document" aria-live="assertive" aria-atomic="true">

The attributes on this line tell screen readers that this region of the

page updates.

Polite and Assertive updating

There are two types of methods for alerting the user to changes on the

page when using aria-live. The polite method is designed to not interrupt

the user’s workflow. For example, if the user’s screenreader is reading

a sentence and another region of the page updates, and the mode is set

to polite, then the screenreader will finish reading the current sentence.

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/html5_aria/home.html
http://media.pragprog.com/titles/bhh5/code/html5_aria/home.html
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=99

CREATING AN ACCESSIBLE UPDATABLE REGION 100

However, if the mode was set to assertive, then it’s considered high pri-

ority and the screenreader will stop and begin reading the new content.

It’s really important that you use the appropriate type of interruption

when you’re developing your site. Overuse of "assertive" can disorient

and confuse your users. Only use assertive if you absolutely must. In

our case, it’s the right choice, as we will be hiding the other content.

Atomic updating

The second parameter, aria-atomic=true instructs the screen reader to

read the entire contents of the changed region. If we set it to false,

it would tell the screenreader to only read nodes that changed. We’re

replacing the entire content, so telling the screenreader to read it all

makes sense in this case. If we were replacing a single list item, or

appending to a table with AJAX, we would want to use false instead.

Hiding Regions

To hide the regions, we need to write a little bit of JavaScript and attach

it to our page. We’ll create a file called application.js, and then we include

this file as well as the jQuery library on our page.

Download html5_aria/home.html

<script type="text/javascript"

charset="utf-8"

src="http://ajax.googleapis.com/ajax/libs/jquery/1.4.2/jquery.min.js">

</script>

<script type="text/javascript"

charset="utf-8"

src="javascripts/application.js">

</script>

Our application.js file contains this simple script:

Download html5_aria/javascripts/application.js

Line 1 // HTML5 structural element support for IE 6, 7, and 8
- document.createElement("header");
- document.createElement("footer");
- document.createElement("section");
5 document.createElement("aside");
- document.createElement("article");
-

- $(function(){
-

10 $("#services, #about, #contact").hide().addClass("hidden");
- $("#welcome").addClass("visible");
-

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/html5_aria/home.html
http://media.pragprog.com/titles/bhh5/code/html5_aria/javascripts/application.js
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=100

CREATING AN ACCESSIBLE UPDATABLE REGION 101

- $("nav ul").click(function(event){
-

15 target = $(event.target);
- if(target.is("a")){
- event.preventDefault();
- if ($(target.attr("href")).hasClass("hidden")){
- $(".visible").removeClass("visible").addClass("hidden").hide();

20 $(target.attr("href")).removeClass("hidden").addClass("visible").show();
-

- };
- };
-

25 });
-

- });

On line 10 we hide the "services", "about", and "contact" sections. We

also apply a class of "hidden" to them and then on the next line we

apply a class of "visible" to the default "welcome" section. Adding these

classes makes it really easy to identify which sections need to be turned

off and on when we do the toggle.

We capture any clicks to the navigation bar on line 13 and then we

determine which element was clicked on 16. If the user clicked a link,

we check to see if the corresponding section is hidden. The href attribute

of the clicked link can easily help us locate the corresponding section

using jQuery selectors, which you can see on line 18.

If it’s hidden, we hide everything else and then show the selected sec-

tion.

That’s all there is to it. The screenreaders should detect the region

changes.

Falling Back

Like roles, this solution can be used right now by the latest versions

of screen readers. By following good practices such as unobtrusive

JavaScript, we have a simple implementation that can work for a rea-

sonably wide audience. Older browsers and screen readers will ignore

the additional attributes, so there’s no danger in adding them to our

markup.

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=101

CREATING AN ACCESSIBLE UPDATABLE REGION 102

The Future

HTML5 and the WIA-ARIA specification have paved the way for a much

more accessible web. With the ability to identify changing regions on

the page, developers can develop richer JavaScript applications without

worrying so much about accessibility issues.

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=102

Part II

New Sights And Sounds

Prepared exclusively for Jose Sierra

Chapter 6

Drawing On The Canvas
If you wanted an image in a web application, you’d traditionally open

up your graphics software of choice, create an image, and embed it on

your page with an img tag. If you wanted animations, you’d use Flash.

HTML5’s canvas element lets developers create images and animations

in the browser programatically using JavaScript. We can use the canvas

to create simple or complex shapes or even create graphs and charts

without resorting to server-side libraries, Flash, or other plugins. Coin-

cidentally, we’ll do both of those in this chapter.

First, we’ll get familiar with how we use JavaScript and the canvas

element together by drawing some simple shapes as we construct a

version of the AwesomeCo logo. Then we’ll use a graphing library that’s

specifically designed to work with the canvas to create a bar graph

of browser statistics. We’ll also discuss some of the special fallback

challenges that we’ll face due to the fact that the canvas is more of a

programming interface than an element.

Feature Use Supported Browsers

Canvas ele-

ment

<canvas>Fallback con-

tent</canvas>
• Safari 4

• Firefox 3.6

• Chrome 5

• Internet Explorer 9

Prepared exclusively for Jose Sierra

DRAWING A LOGO 105

13 Drawing A Logo

The canvas element is a container element much like the script element.

It’s a blank slate we can draw on. We define a canvas with a width and

height like this:

Download html5canvasgraph/canvas_simple_drawing.html

<canvas id="my_canvas" width="150" height="150">

Fallback content here

</canvas>

Unfortunately, you can’t use CSS to control or alter the width and

height of a canvas element without distorting the contents, so you need

to decide on your canvas dimensions when you declare it.

We use JavaScript to put shapes on the canvas. Even if you provided

fallback content to those browsers without the canvas element, you still

need to prevent the JavaScript code from trying to manipulate it. Find

the canvas by its ID and see if the browser supports the canvas’ get-

Context method.

Download html5canvasgraph/canvas_simple_drawing.html

var canvas = document.getElementById('my_canvas');

if (canvas.getContext){

var context = canvas.getContext('2d');

}else{

// do something to show the canvas' hidden contents

// or let the browser display the text within the <canvas> element.

}

If we get a response from the getContext method, we grab the 2D context

for the canvas so we can add objects. If we don’t have a context, we need

to devise a way to display the fallback content. Since we know that the

Canvas element requires JavaScript in order to work we’re building a

framework to handle fallbacks from the beginning.

Once you have the canvas’ context, you simply add elements to that

context. To add a red box, you set the fill color and then create the box,

like this:

Download html5canvasgraph/canvas_simple_drawing.html

context.fillStyle = "rgb(200,0,0)";

context.fillRect (10, 10, 100, 100);

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/html5canvasgraph/canvas_simple_drawing.html
http://media.pragprog.com/titles/bhh5/code/html5canvasgraph/canvas_simple_drawing.html
http://media.pragprog.com/titles/bhh5/code/html5canvasgraph/canvas_simple_drawing.html
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=105

DRAWING A LOGO 106

The canvas’s 2D context is a grid, with the top-left corner as the default

origin. When you create a shape, you specify the starting X and Y coor-

dinates and the width and height.

0

0

Each shape is added onto its own layer, so you could create three boxes

with a ten pixel offset, like this:

Download html5canvasgraph/canvas_simple_drawing.html

context.fillStyle = "rgb(200,0,0)";

context.fillRect (10, 10, 100, 100);

context.fillStyle = "rgb(0,200,0)";

context.fillRect (20, 20, 100, 100);

context.fillStyle = "rgb(0,0,200)";

context.fillRect (30, 30, 100, 100);

and they’ll stack on top of each other, like this:

Now that you have an understanding of the basics of drawing, let’s put

together the AwesomeCo logo. It’s pretty simple, as you can see from

Figure 6.1, on the next page .

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/html5canvasgraph/canvas_simple_drawing.html
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=106

DRAWING A LOGO 107

Figure 6.1: The AwesomeCo Logo

Drawing The Logo

The logo consists of a string of text, an angled path, a square, and

a triangle. Let’s start by creating a new HTML5 document, adding a

canvas element to the page, and then creating a JavaScript function

for drawing the logo which detects whether or not we can use the 2D

canvas.

Download html5canvasgraph/logo.html

var drawLogo = function(){

var canvas = document.getElementById('logo');

var context = canvas.getContext('2d');

};

We invoke this method after first checking for the existence of the can-

vas element, like this:

Download html5canvasgraph/logo.html

$(function(){

var canvas = document.getElementById('logo');

if (canvas.getContext){

drawLogo();

}

});

Notice here we’re using the jQuery function again to ensure that the

event fires when the document is ready. We’re looking for an element

on the page with the id of logo, so we’d better make sure we add our

canvas element to the document so it can be found, and our detection

will work.

Download html5canvasgraph/logo.html

<canvas id="logo" width="900" height="80">

<h1>AwesomeCo</h1>

</canvas>

Next, let’s add the “AwesomeCo” text to the canvas.

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/html5canvasgraph/logo.html
http://media.pragprog.com/titles/bhh5/code/html5canvasgraph/logo.html
http://media.pragprog.com/titles/bhh5/code/html5canvasgraph/logo.html
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=107

DRAWING A LOGO 108

Adding Text

Adding text to the canvas involves choosing a font, a font size, an align-

ment, and then applying the text to the appropriate coordinates on the

grid. We can add the text “AwesomeCo” to our canvas like this:

Download html5canvasgraph/logo.html

context.font = 'italic 40px sans-serif';

context.textBaseline = 'top';

context.fillText('AwesomeCo', 60, 0);

We’re defining the text type and setting its baseline, or vertical align-

ment before we apply it to the canvas. We’re using the fillText method

so we get text that’s filled in with the fill color, and we’re setting it 60

pixels to the right so we can make room for the large triangle-shaped

path we’ll draw next

Drawing Lines

We draw lines on the canvas by playing a game of “connect-the-dots”.

We specify a starting point on the canvas grid, and then specify addi-

tional points on the grid to move to. As we move around the canvas, the

dots get connected, like this:

0

0

We use the beginPath() method to start drawing a line, and then we

create our path, like this:

Download html5canvasgraph/logo.html

context.lineWidth = 2;

context.beginPath();

context.moveTo(0, 40);

context.lineTo(30, 0);

context.lineTo(60, 40);

context.lineTo(285, 40);

context.stroke();

context.closePath();

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/html5canvasgraph/logo.html
http://media.pragprog.com/titles/bhh5/code/html5canvasgraph/logo.html
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=108

DRAWING A LOGO 109

When we’re all done moving around the canvas, we have to call the

stroke method to draw the line, and then call the closePath method to

stop drawing.

Now all that’s left is the box and triangle combination that sits within

the big triangle.

Moving the Origin

We need to draw a small square and triangle inside of the the larger

triangle. When we draw shapes and paths we can specify the X and Y

coordinates from the origin at the top left corner of the canvas, but we

can also just move the origin to a new location.

Let’s draw the smaller inner square by moving the origin.

Download html5canvasgraph/logo.html

context.save();

context.translate(20,20);

context.fillRect(0,0,20,20);

Notice that before we move the origin we call the save() method. This

saves the previous state of the canvas so we can revert back easily. It’s

like a restore point, and you can think of it as a stack. Every time you

call save() you get a new entry. When we’re all done we’ll call restore()

which will restore the top savepoint on the stack.

Now let’s use paths to draw the inner triangle, but instead of using a

stroke, we’ll use a fill, to create the illusion that the triangle is “cutting

into” the square.

Download html5canvasgraph/logo.html

context.fillStyle = '#fff';

context.strokeStyle = '#fff';

context.lineWidth = 2;

context.beginPath();

context.moveTo(0, 20);

context.lineTo(10, 0);

context.lineTo(20, 20);

context.lineTo(0, 20);

context.fill();

context.closePath();

context.restore();

Here we set the stroke and fill to white (#fff) before we begin drawing.

Then we draw our lines, and since we moved the origin previously, we’re

relative to the top-left corner of the square we just drew.

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/html5canvasgraph/logo.html
http://media.pragprog.com/titles/bhh5/code/html5canvasgraph/logo.html
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=109

DRAWING A LOGO 110

We’re almost done, but it needs a little color.

Adding Colors

In Section 13, Moving the Origin, on the preceding page, you saw briefly

how to set the stroke and fill color for the drawing tools. We could set

the color of everything to red just by adding this code before we draw

anything:

Download html5canvasgraph/logo.html

context.fillStyle = "#f00";

context.strokeStyle = "#f00";

But that’s a little boring. We can create gradients and assign those to

strokes and fills like this:

Download html5canvasgraph/logo_gradient.html

// context.fillStyle = "#f00";

// context.strokeStyle = "#f00";

var gradient = context.createLinearGradient(0, 0, 0, 40);

gradient.addColorStop(0, '#a00'); // red

gradient.addColorStop(1, '#f00'); // red

context.fillStyle = gradient;

context.strokeStyle = gradient;

We just create a gradient object and set the color stops of the gradient.

In this example we’re just going between two shades of red, but we

could do a rainbow if we wanted1.

Note that we have to set the color of things before we draw them.

At this point, our logo is complete, and we have a better understand-

ing of how we draw simple shapes on the canvas. However, Internet

Explorer 8 and below don’t have any support for the canvas element.

Let’s fix that.

Falling Back

Google released a library called ExplorerCanvas2 that makes most of

the Canvas API available to Internet Explorer users. All we have to do

is include this library on our page.

Download html5canvasgraph/logo_gradient.html

<!--[if lte IE 8]>

<script src="javascripts/excanvas.js"></script>

1. Do not do a rainbow, please!
2. http://code.google.com/p/explorercanvas/

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/html5canvasgraph/logo.html
http://media.pragprog.com/titles/bhh5/code/html5canvasgraph/logo_gradient.html
http://media.pragprog.com/titles/bhh5/code/html5canvasgraph/logo_gradient.html
http://code.google.com/p/explorercanvas/
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=110

DRAWING A LOGO 111

<![endif]-->

and things should work just fine in Internet Explorer - but they don’t

work just yet. At the time of writing, the most stable release doesn’t

support adding text at all, and the version from their Subversion repos-

itory3 doesn’t use the correct fonts. Also, there’s no support yet for

adding gradients on strokes with this library.

So, instead, we rely on other solutions, such as placing a PNG of the

logo inside of the canvas element, or we simply don’t use the canvas

at all. Since this was just an exercise to show you how to draw, it’s

not the end of the world if we can’t use this particular example in a

cross-platform production system yet.

3. http://explorercanvas.googlecode.com/svn/trunk/excanvas.js

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://explorercanvas.googlecode.com/svn/trunk/excanvas.js
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=111

GRAPHING STATISTICS WITH RGRAPH 112

Figure 6.2: A Client-side Bar Graph using the Canvas

14 Graphing Statistics with RGraph

AwesomeCo is doing a lot of work on the website, and senior manage-

ment would like to see a graph of the web stats. The backend program-

mers will be able to get the data in realtime, but first they’d like to see

if you can come up with a way to display the graph in the browser, so

they’ve provided you with some test data. Our goal is to transform that

test data into something that resembles Figure 6.2.

There are lots of ways to draw graphs on a web page. Developers use

Flash for graphs all the time, but that has the limitation of not working

on some mobile devices like the iPad or iPhone. There are server-side

solutions that work well, but those might be too processor-intensive if

you’re working with realtime data. A standards-based client-side solu-

tion like the canvas is a great option as long as we’re careful to ensure it

works in older browsers. You’ve already seen how to draw squares, but

drawing something complex requires a lot more JavaScript. We need a

graphing library to help us along.

The fact that HTML5 isn’t available everywhere yet hasn’t stopped the

developers of the RGraph library4. RGraph makes it ridiculously sim-

ple to draw graphs using the HTML5 canvas. It’s a pure JavaScript

solution though, so it won’t work for those user agents that don’t have

4. http://www.rgraph.net/

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://www.rgraph.net/
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=112

GRAPHING STATISTICS WITH RGRAPH 113

JavaScript available, but then again, neither will the canvas. Here’s the

code for a very simple bar graph:

Download html5canvasgraph/rgraph_bar_example.html

<canvas width="500" height="250" id="test">[no canvas support]</canvas>

<script type="text/javascript" charset="utf-8">

var bar = new RGraph.Bar('test', [50,25,15,10]);

bar.Set('chart.gutter', 50);

bar.Set('chart.colors', ['red']);

bar.Set('chart.title', "A bar graph of my favorite pies");

bar.Set('chart.labels', ["Banana Creme", "Pumpkin", "Apple", "Cherry"]);

bar.Draw();

</script>

All we have to do is create a couple of JavaScript arrays and the library

draws the graph on the canvas for us.

Describing Data with HTML

We could hard code the values for the browser statistics in the JavaScript

code, but then only users with JavaScript would be able to see the val-

ues. Instead, let’s put the data right on the page as text. We can read

the data with JavaScript and feed it to the graphing library later.

Download html5canvasgraph/canvas_graph.html

<div id="graph_data">

<h1>Browser share for this site</h1>

<p data-name="Safari 4" data-percent="15">Safari 4 - 15%</p>

<p data-name="Internet Explorer" data-percent="55">Internet Explorer - 55%</p>

<p data-name="Firefox" data-percent="14">Firefox - 14%</p>

<p data-name="Google Chrome" data-percent="16">Google Chrome - 16%</p>

</div>

We’re using the HTML5 data attributes to store the browser names and

the percentages. Although we have that information in the text, it’s

so much easier to work with programmatically since we won’t have to

parse strings.

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/html5canvasgraph/rgraph_bar_example.html
http://media.pragprog.com/titles/bhh5/code/html5canvasgraph/canvas_graph.html
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=113

GRAPHING STATISTICS WITH RGRAPH 114

Figure 6.3: Our Graph as HTML

If you open up the page in your browser, or just look at Figure 6.3,

you’ll see that the graph data is nicely displayed and readable even

without the graph. This will be your fallback content for mobile devices

and other users where either the canvas element or JavaScript is not

available.

Now, let’s turn this markup into a graph.

Turning Our HTML Into A Bar Graph

We’re going to use a bar graph, so we’ll need to require both the RGraph

Bar graph library as well as the main RGraph library. We’ll also use

jQuery to grab the data out of the document. In the head section of the

HTML page, we need to load in the libraries we need.

Download html5canvasgraph/canvas_graph.html

<script type="text/javascript"

charset="utf-8"

src="http://ajax.googleapis.com/ajax/libs/jquery/1.4.2/jquery.min.js">

</script>

<script src="javascripts/RGraph.common.js" ></script>

<script src="javascripts/RGraph.bar.js" ></script>

To build the graph, we need to grab the graph’s title, the labels, and

the data from the HTML document and pass it to the RGraph library.

RGraph takes in arrays for both the labels and the data. We can use

jQuery to quickly build those arrays.

Download html5canvasgraph/canvas_graph.html

Line 1 function drawGraph(){

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/html5canvasgraph/canvas_graph.html
http://media.pragprog.com/titles/bhh5/code/html5canvasgraph/canvas_graph.html
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=114

GRAPHING STATISTICS WITH RGRAPH 115

- var title = $('#graph_data h1').text();
-

- var labels = $("#graph_data>ul>li>p[data-name]").map(function(){
5 return $(this).attr("data-name");
- });
-

- var percents = $("#graph_data>ul>li>p[data-percent]").map(function(){
- return parseInt($(this).attr("data-percent"));

10 });
-

- var bar = new RGraph.Bar('browsers', percents);
- bar.Set('chart.gutter', 50);
- bar.Set('chart.colors', ['red']);

15 bar.Set('chart.title', title);
- bar.Set('chart.labels', labels);
- bar.Draw();
-

- }

First, on line 2 we grab the text for the header. Then on 4 we select all

of the elements that have the data-name attribute. We use jQuery’s map

function to turn the values from those elements into an array.

We use that same logic again on 8 to grab an array of the percentages.

With the data collected, RGraph has no trouble drawing our graph.

Displaying Alternative Content

In Section 14, Describing Data with HTML, on page 113, I could have

placed the graph between the starting and ending canvas tags. This

would hide these elements on browsers that support the canvas while

displaying them to browsers that don’t. However, the content would

still be hidden if the user’s browser supports the canvas element but

the user has disabled JavaScript.

We simply leave the data outside of the canvas and then hide it with

jQuery once we’ve checked that the canvas exists.

Download html5canvasgraph/canvas_graph.html

var canvas = document.getElementById('browsers');

if (canvas.getContext){

$('#graph_data').hide();

drawGraph();

}

With that, our graph is ready, except for people using browsers that

don’t support the canvas element.

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/html5canvasgraph/canvas_graph.html
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=115

GRAPHING STATISTICS WITH RGRAPH 116

Falling Back

When building this solution, we already covered fallbacks for accessi-

bility and lack of JavaScript, but we can create an alternative graph for

people who don’t have Canvas support but can use JavaScript.

There are a ton of graphing libraries out there, but each one has its

own way of grabbing data. Bar graphs are just rectangles with specific

heights, and we have all the data on the page we need to construct this

graph by hand.

Download html5canvasgraph/canvas_graph.html

Line 1

- function drawGraphWithDivs(barColor, textColor, width, spacer, labelHeight){
- $('#graph_data ul').hide();
- var container = $("#graph_data");
5

- container.css({
- "display" : "block",
- "position" : "relative",
- "height": "300px"}

10);
-

- $("#graph_data>ul>li>p").each(function(i){
-

- var bar = $("<div>" + $(this).attr("data-percent") + "%</div>");
15 var label = $("<div>" + $(this).attr("data-name") + "</div>");

-

- var commonCSS = {
- "width": width + "px",
- "position" : "absolute",

20 "left" : i * (width + spacer) + "px"};
-

- var barCSS = {
- "background-color" : barColor,
- "color" : textColor,

25 "bottom" : labelHeight + "px",
- "height" : $(this).attr("data-percent") + "%"
- };
- var labelCSS = {"bottom" : "0", "text-align" : "center"};
-

30 bar.css($.extend(barCSS, commonCSS));
- label.css($.extend(labelCSS,commonCSS));
-

- container.append(bar);
- container.append(label);

35 });
-

- }

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/html5canvasgraph/canvas_graph.html
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=116

GRAPHING STATISTICS WITH RGRAPH 117

jQuery CSS versus CSS

In this chapter, we used jQuery to apply styles to the elements
as we created them. A lot of that style information, such as the
colors of labels and the color of the bars should be offloaded
to a separate stylesheet, especially if you want to be able to
change the styles independently of the script. For a prototype,
this approach is fine, but for a production version, always sepa-
rate presentation, behavior, and content.

On line 3, we hide the unordered list so that the text values are hidden.

We then grab the element containing the graph data and apply some

basic CSS styles. We set the positioning of the element to relative on 7,

which will let us absolutely position our bar graphs and labels within

this container.

Then we loop over the paragraphs in the bulleted list (line 12) and create

the bars. Each iteration over the labels creates two div elements; one for

the bar itself, and another for the label, which we position below it. So,

with just a little bit of math and some jQuery, we are able to recreate

the graph. While it doesn’t look exactly the same, it’s close enough to

prove the concept.

We then just need to hook it into our canvas detection, like this:

Download html5canvasgraph/canvas_graph.html

var canvas = document.getElementById('browsers');

if (canvas.getContext){

$('#graph_data').hide();

drawGraph();

}

else{

drawGraphWithDivs("#f00", "#fff", 140, 10, 20);

}

You can see the fallback version in Figure 6.4, on the following page.

With a combination of JavaScript, HTML, and CSS, we’ve provided a

client-side bar graph and statistical information about browser usage

to any platform that requires it. Using the canvas has an additional

benefit- it got us to start thinking about a fallback solution from the

beginning, rather than trying to wedge something in later. That’s really

good for accessibility.

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/html5canvasgraph/canvas_graph.html
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=117

GRAPHING STATISTICS WITH RGRAPH 118

Figure 6.4: Our graph now displays in Internet Explorer

Joe Asks. . .

Why didn’t we try ExplorerCanvas here?

ExplorerCanvas, which we talked about in Section 13, Falling

Back , on page 110, and RGraph can work really well together.
RGraph even bundles a version of ExplorerCanvas in its distribu-
tion. However, this combination only works with Internet Explorer
8. If you’re working with IE 7 or lower, you’ll have to use an alter-
native solution like the one we discussed. I encourage you to
keep an eye on ExplorerCanvas, as it is actively maintained.
You might even consider hacking on it yourself to make it work
for you.

This is one of the most accessible and versatile methods of graphing

data available. You can easily create the visual representation as well

as a text-based alternative. This way, everyone can use the important

data you’re sharing.

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=118

GRAPHING STATISTICS WITH RGRAPH 119

The Future

Now that you know a little about how the canvas works, you can start

thinking of other ways you might use it. You could use it to create a

game, a user interface for a media player, or use it to build a better

image gallery. All you need to start painting is a little bit of JavaScript

and a little bit of imagination.

Right now, Flash has an advantage over the canvas because it has wider

support, but as HTML5 picks up and the canvas is available to a wider

audience, more developers will embrace it for simple 2D graphics in the

browser. The canvas doesn’t require any additional plugins and uses

less CPU than Flash, especially on Linux and OSX. Finally, the Canvas

provides you a mechanism to do 2D graphics in environments where

Flash isn’t available. As more platforms support the canvas, you can

expect the speed and features to improve, and you’ll see more developer

tools and libraries appear to help you build amazing things.

But it doesn’t stop with 2D graphics. The canvas specification will even-

tually support 3D graphics as well, and browser manufactures are

implementing hardware acceleration. The canvas will make it possi-

ble to create intriguing user interfaces and engaging games using only

JavaScript.

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=119

Chapter 7

Embedding Audio and Video
Coming soon.

Prepared exclusively for Jose Sierra

PLAYING SOUND SAMPLES WITH THE AUDIO TAG 121

15 Playing Sound Samples with the
Audio tag

Coming soon.

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=121

BUILDING A CROSS-PLATFORM VIDEO TUTORIAL PAGE 122

16 Building a Cross-Platform Video
Tutorial Page

Coming soon.

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=122

Chapter 8

Eye Candy
As web developers, we’re always interested in making our user inter-

faces a little more eye-catching, and CSS3 provides quite a few ways for

us to do that. We can use our own custom fonts on our pages. We can

create elements with rounded corners and drop shadows. We can use

gradients as backgrounds, and we can even rotate elements so things

don’t look so blocky and boring all the time. We can do all of these

things without resorting to Photoshop or other graphics programs, and

this chapter will show you how. We’ll start off by softening up a form’s

appearance by rounding some corners. Then, we’ll construct a proto-

type banner for an upcoming tradeshow, where we’ll learn how to add

shadows, rotations, gradients, and opacity. Finally, we’ll talk about how

to use CSS3’s @font-face feature so we can use nicer fonts on the com-

pany blog.

Prepared exclusively for Jose Sierra

CHAPTER 8. EYE CANDY 124

Feature Description Use Supported

Browsers

border-radius Rounds corners

of elements

border-

radius(10px)
• Firefox 3

• Safari 3.2

• Chrome 4

• Opera

10.5

• Internet

Explorer 9

@font-face Use specific

fonts via CSS

@font-face {

font-family: Awe-

someFont; src:

url(http://example.com/awesomeco.ttf);

font-weight: bold;

}

• Firefox 3.5

• Safari 3.2

• Chrome 4

• Opera

10.1

• Internet

Explorer

5,6,7,8

(EOT fonts

only)

• Internet

Explorer 9

RGBa support Use RGB color

instead of hex

codes along

with trans-

parency

background-

color:

rgba(255,0,0,0.5);

• Firefox 3.5

• Safari 3.2

• Chrome 4

• Opera

10.1

• Internet

Explorer 9

box-shadow Drop-shadows

on elements

box-shadow:

10px 10px 5px

#333

• Firefox 3.5

• Safari 3.2

• Chrome 3

• Opera

10.5

• Internet

Explorer 9

Rotation Rotate any ele-

ment

transform:

rotate(7.5deg)
• Firefox 3.5

• Safari 3.2

• Chrome 3

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=124

ROUNDING ROUGH EDGES 125

Figure 8.1: Our form with round corners

17 Rounding Rough Edges

On the web, everything is a rectangle by default. Form fields, tables,

and even sections of web pages all have a blocky, sharp-edged look, and

so many designers have turned to different techniques over the years

to add rounded corners to these elements to soften up the interface a

bit.

CSS3 has support for easily rounding corners, and Firefox and Safari

have supported this for quite a long time. Unfortunately, Internet Explorer

hasn’t jumped on board yet. But we can get around that simply enough.

Softening Up a Login Form

The wireframes and mockups you received for your current project

show form fields with rounded corners. Let’s round those corners using

only CSS3 first. Our goal is to create something that looks like Fig-

ure 8.1.

For the login form, we’ll use some very simple HTML.

Download css3roughedges/rounded_corners.html

<form action="/login" method="post">

<fieldset id="login">

<legend>Log in</legend>

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/css3roughedges/rounded_corners.html
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=125

ROUNDING ROUGH EDGES 126

<label for="email">Email</label>

<input id="email" type="email" name="email">

<label for="password">Password</label>

<input id="password" type="password"

name="password" value="" autocomplete="off"/>

<input type="submit" value="Log in">

</fieldset>

</form>

We’ll style up the form a bit to give it a slightly better look.

Download css3roughedges/style.css

fieldset{

width: 216px;

border: none;

background-color: #ddd;

}

fieldset legend{

background-color: #ddd;

padding: 0 64px 0 2px;

}

fieldset>ol{list-style: none;

padding:0;

margin: 2px;

}

fieldset>ol>li{

margin: 0 0 9px 0;

padding: 0;

}

/* Make inputs go to their own line */

fieldset input{

display:block;

}

input{

width: 200px;

background-color: #fff;

border: 1px solid #bbb;

}

input[type="submit"]{

width: 202px;

padding: 0;

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/css3roughedges/style.css
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=126

ROUNDING ROUGH EDGES 127

background-color: #bbb;

}

These basic styles remove the bullets from the list and ensure that the

input fields are all the same size. With that in place, we can apply the

rounding effects to our elements.

Browser Specific Selectors

Since the CSS3 specification isn’t final, browser makers have added

some features themselves and have decided to prefix their own imple-

mentations. These prefixes let browser makers introduce features early

before they become part of a final specifiaction, and since they don’t

follow the actual specification, the browser makers can implement the

actual specification while keeping their own implementation as well.

Most of the time, the vendor-prefixed version matches the CSS specifi-

cation, but occasionally you’ll encounter differences. Unfortunately for

you that means you’ll need to declare border radius once for each type

of browser.

Firefox uses this selector:

Download css3roughedges/style.css

-moz-border-radius: 5px;

Webkit-based browsers, like Safari and Chrome, use this selector:

Download css3roughedges/style.css

-webkit-border-radius: 5px;

So, to round all the input fields on our form, we’ll need a CSS rule like

this:

Download css3roughedges/style.css

input, fieldset, legend{

border-radius: 5px;

-moz-border-radius: 5px;

-webkit-border-radius: 5px;

}

Add that to your style.css file and you’ve got rounded corners.

Falling Back

You have everything working in Firefox, Safari, and Google Chrome, but

you know it doesn’t work in Internet Explorer, and you know it needs to,

so you’ll need to implement something that gets it as close as possible.

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/css3roughedges/style.css
http://media.pragprog.com/titles/bhh5/code/css3roughedges/style.css
http://media.pragprog.com/titles/bhh5/code/css3roughedges/style.css
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=127

ROUNDING ROUGH EDGES 128

Web developers have been rounding corners for a while now using back-

ground images and other techniques, but we’re going to keep it as sim-

ple as possible. We can detect corner radius with JavaScript and round

the corners using any number of rounding techniques. For this exam-

ple, we’ll use jQuery, the jQuery Corner plugin, and a modification of

the Corner plugin that rounds text fields.

Detecting Rounded Corners support

Our fallback solution looks very much like the one we used in Sec-

tion 10, Falling Back, on page 86. We’ll include the jQuery library and

the plugin, detect if the browser supports our attribute, and if it doesn’t,

we’ll activate the plugin. In this case, we need to detect the presence of

the border-radius CSS property, but we also need to check for browser-

specific prefixes like webkit and moz.

Create corner.js and add this function:

Download css3roughedges/corner.js

function hasBorderRadius(){

var element = document.documentElement;

var style = element.style;

if (style){

return typeof style.borderRadius == "string" ||

typeof style.MozBorderRadius == "string" ||

typeof style.WebkitBorderRadius == "string" ||

typeof style.KhtmlBorderRadius == "string";

}

return null;

}

We can now detect if our browser is missing support for rounded cor-

ners, so let’s write the code to do the actual rounding. Thankfully

there’s a plugin that can get us started.

jQuery Corners

jQuery Corners1 is a small plugin that rounds corners by wrapping

elements with additional div tags and styling them so that the target

element looks rounded. However, it doesn’t work for form fields, but

with a little imagination, we can use this plugin and a little bit of jQuery

to make it work.

First, grab jQuery Corners and link to it from your HTML page. While

there, also link up your corner.js file.

1. http://www.malsup.com/jquery/corner/

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/css3roughedges/corner.js
http://www.malsup.com/jquery/corner/
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=128

ROUNDING ROUGH EDGES 129

Download css3roughedges/rounded_corners.html

<script src="jquery.corner.js" charset="utf-8" type='text/javascript'></script>

<script src="corner.js" charset="utf-8" type='text/javascript'></script>

Now we just have to write the code that actually invokes the rounding.

Our formCorners plguin

We’re going to write a jQuery plugin so that we can easily apply this

rounding to all of the form fields. We already talked about writing

jQuery plugins in Section 6, Falling Back, on page 57 so I don’t need

to cover that again .Instead, I’ll just walk you through the code for this

plugin which is based in part on a solution by Tony Amoyal.2

Add this to your corners.js file:

Download css3roughedges/corner.js

(function($){

$.fn.formCorner = function(){

return this.each(function() {

var input = $(this);

var input_background = input.css("background-color");

var input_border = input.css("border-color");

input.css("border", "none");

var wrap_width = parseInt(input.css("width")) + 4;

var wrapper = input.wrap("<div></div>").parent();

var border = wrapper.wrap("<div></div>").parent();

wrapper.css("background-color", input_background)

.css("padding", "1px");

border.css("background-color",input_border)

.css("width", wrap_width + "px")

.css('padding', '1px');

wrapper.corner("round 5px");

border.corner("round 5px");

});

};

})(jQuery);

We’re taking a jQuery object which could be an element or a collection of

elements and we’re wrapping it with two div tags which we then round.

We first make the innermost div the same color as the background of

the original input. and turn off the border of the actual form field. Then

we wrap that field with another field with its own background color,

which is the color of the original input’s border color, and give it a little

bit of padding. This padding is what makes the border’s outline visible.

2. http://www.tonyamoyal.com/2009/06/23/text-inputs-with-rounded-corners-using-jquery-without-image/

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/css3roughedges/rounded_corners.html
http://media.pragprog.com/titles/bhh5/code/css3roughedges/corner.js
http://www.tonyamoyal.com/2009/06/23/text-inputs-with-rounded-corners-using-jquery-without-image/
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=129

ROUNDING ROUGH EDGES 130

Decide if it’s worth the effort

In our example, the client really wanted rounded corners for
all browsers. However, you should always keep these kinds of
features optional if you can. While some people may argue
that there’s a real benefit to softening up the way the form
looks, you should first have an idea of how may people use
browsers that don’t support CSS-based rounding. If your visitors
are mostly Safari and Firefox users, it may not be worth your time
to write ad maintain a detection and fallback script.

Imagine two pieces of construction paper, a green one that’s four inches

wide, and the other a red one that’s three inches wide. When you place

the smaller one atop the larger one, you’ll see a green border around

the red one. That’s how this works.

Invoking the rounding

With the plugin and our detection library in place, we can now invoke

the rounding. Add this to the corners.js file:

Download css3roughedges/corner.js

Line 1 $(function(){
2 if(!hasBorderRadius()){
3 $("input").formCorner();
4 $("fieldset").corner("round 5px");
5 $("legend").corner("round top 5px cc:#fff");
6 }
7 });

We’re rounding the three form fields, the fieldset, and finally, on line

5, we’re rounding only the top part of the legend, and we’re specifying

that the cutout of the corner should use white. The plugin uses the

background color of the parent for its cutaway color, and that’s not

appropriate here.

If the browser has support for the border-radius property, then the

browser runs our plugin. If not, then it’ll use the CSS we added earlier.

A minor nudge

IE treats legends a little differently. We can add in a small style fix for

IE that pushes the fieldset’s legend up a bit so that it looks the same

as it does in Firefox and Chrome.

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/css3roughedges/corner.js
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=130

ROUNDING ROUGH EDGES 131

Figure 8.2: Our forms have round corners in Internet Explorer

Download css3roughedges/rounded_corners.html

<link rel="stylesheet" href="style.css" type="text/css" media="screen">

<!--[if IE]>

<style>

fieldset legend{margin-top: -10px }

</style>

<![endif]-->

Now things look relatively similar on all of the major browsers; you can

see the Internet Explorer version in Figure 8.2.

Rounded corners add a bit of softness to your interfaces, and it’s extremely

easy to use. That said, it’s important to be consistent with your use, and

to not overuse this technique, just like any other aspect of design.

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/css3roughedges/rounded_corners.html
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=131

WORKING WITH SHADOWS, GRADIENTS, AND TRANSFORMATIONS 132

Figure 8.3: The original concept, which we can recreate using CSS3.

18 Working With Shadows,
Gradients, and Transformations

While rounded corners get a lot of attention, that’s just the beginning

of what we can do with CSS3. We can add drop shadows to elements to

make them stand out from the rest of the content, we can use gradients

to make backgrounds look more defined, and we can use transforma-

tions to rotate elements. Let’s put several of these techniques together

to mock up a banner for the upcoming AwesomeConf, a trade show and

conference that AwesomeCo puts on each year. The graphic designer

has sent over a PSD that looks like Figure 8.3. We can do the badge,

shadow, and even the transparency all in CSS. The only thing we’ll need

from the graphic designer is the background image of the people.

The Basic Structure

Let’s start by marking up the basic structure of the page in HTML.

Download css3banner/index.html

<div id="conference">

<section id="badge">

<h3>Hi, My Name Is</h3>

<h2>Barney</h2>

</section>

<section id="info">

</section>

</div>

We can style the basics with this:

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/css3banner/index.html
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=132

WORKING WITH SHADOWS, GRADIENTS, AND TRANSFORMATIONS 133

Download css3banner/style.css

#conference{

background-color: #000;

width: 960px;

float:left;

background-image: url('images/awesomeconf.jpg');

background-position: center;

height: 240px;

}

#badge{

text-align: center;

width: 200px;

border: 2px solid blue;

}

#info{

margin: 20px;

padding: 20px;

width: 660px;

height: 160px;

}

#badge, #info{

float: left;

background-color: #fff;

}

#badge h2{

margin: 0;

color: red;

font-size: 40px;

}

#badge h3{

margin: 0;

background-color: blue;

color: #fff;

}

Once we apply that stylesheet to our page, we have our badge and

content region displayed side-by-side as shown in Figure 8.4, on the

next page , so let’s start styling the badge.

Adding A Gradient

We can add definition to the badge by changing the white background

to a subtle gradient that goes from white to light grey. This gradient

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/css3banner/style.css
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=133

WORKING WITH SHADOWS, GRADIENTS, AND TRANSFORMATIONS 134

Figure 8.4: Our basic banner

will work in Firefox, Safari, and Chrome, but the implementation is

different for Firefox. Chrome and Safari use Webkit’s syntax, which was

the original proposal, whereas Firefox uses a syntax that’s close to the

W3C proposal. Once again, we’re using browser prefixes, which you

saw in Section 17, Browser Specific Selectors, on page 127.3

Download css3banner/style.css

#badge{

background-image: -moz-linear-gradient(

top, #fff, #efefef

);

background-image: -webkit-gradient(

linear,left top, left bottom,

color-stop(0, #fff),

color-stop(1, #efefef)

);

background-image: linear-gradient(

top, #fff, #efefef

);

}

Firefox uses the -moz-linear-gradient method, in which we specify the

starting point of the gradient, followed by the starting color, and finally,

the ending color. It’s simple, but it only lets us use two colors.

Webkit-based browsers let us set color stops. In our example, we only

need to go from white to grey, but if we needed to add additional colors,

we’d just need to add an additional color stop in the definition.

3. http://dev.w3.org/csswg/css3-images/#linear-gradients

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/css3banner/style.css
http://dev.w3.org/csswg/css3-images/#linear-gradients
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=134

WORKING WITH SHADOWS, GRADIENTS, AND TRANSFORMATIONS 135

Adding a Shadow To The Badge

We can easily make the badge appear to be sitting above the banner by

adding a drop shadow. Traditionally, we’d do this shadow in Photoshop

by adding it to the image or by inserting it as a background image.

However, the CSS3 box-shadow property lets us quickly define a shadow

on our elements.4

We’ll apply this rule to our stylesheet to give the badge a shadow:

Download css3banner/style.css

#badge{

-moz-box-shadow: 5px 5px 5px #333;

-webkit-box-shadow: 5px 5px 5px #333;

-o-box-shadow: 5px 5px 5px #333;

box-shadow: 5px 5px 5px #333;

}

The box shadow rule has four parameters. The first is the horizontal

offset. A positive number means the shadow will fall to the right of the

object, a negative number means it falls to the left. The second parame-

ter is the vertical offset. With the vertical offset, positive numbers make

the shadow appear below the box, whereas negative values make the

shadow appear above the element.

The third parameter is the blur radius. A value of 0 gives a very sharp

value, and a higher value makes the shadow more blurry. The final

parameter defines the color of the shadow.

You should experiment with these values to get a feel for how they

work, and to find values that look appropriate to you. When working

with shadows, you should take a moment to investigate how shadows

work in the physical world. Grab a flashlight and shine it on objects, or

go outside and observe how the sun casts shadows on objects. This use

of perspective is important, because creating inconsistent shadows can

make your interface more confusing, especially if you apply shadows to

multiple elements incorrectly. The easiest approach you can take is to

use the same settings for each shadow you create.

Rotating The Badge

You can use CSS3 transformations to rotate, scale, and skew elements

much like ou can with vector graphics programs like Flash, Illustrator

4. http://www.w3.org/TR/css3-background/#the-box-shadow

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/css3banner/style.css
http://www.w3.org/TR/css3-background/#the-box-shadow
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=135

WORKING WITH SHADOWS, GRADIENTS, AND TRANSFORMATIONS 136

Shadows on Text

In addition to adding styles on elements, you can easily apply
shadows to your text as well. It works just like box-shaodw.

h1{text-shadow: 2px 2px 2px #bbbbbb;}

You specify the X and Y offsets, the amount of the blur, and the
color of the shadow.

IE 6,7, and 8 have support for this as well, using the Shadow filter.

filter: Shadow(Color=#bbbbbb,
Direction=135,
Strength=3);

This is the same approach you use to apply a drop shadow to
an element.

Shadows on text creates a neat effect, but it can make text
harder to read if you make the shadow too strong.

or Inkscape.5 This can help make elements stand out a bit more and

is another way to make a web page not look so “boxy”. Let’s rotate the

badge just a bit so it breaks out of the straight edge of the banner.

Download css3banner/style.css

#badge{

-moz-box-shadow: 5px 5px 5px #333;

-webkit-box-shadow: 5px 5px 5px #333;

-o-box-shadow: 5px 5px 5px #333;

box-shadow: 5px 5px 5px #333;

}

Rotation with CSS3 is pretty simple. All we have to do is provide the

degree of rotation and the rendering just works. All of the elements

contained within the element we rotate are rotated as well.

Rotating is just as easy as rounding corners, but be careful with it. THe

ultimate goal of your interface is to make it usable. If you rotate ele-

ments containing a lot of content, take care to ensure that the content

is easily readable without turning your head too far one direction!

5. http://www.w3.org/TR/css3-2d-transforms/#transform-property

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/css3banner/style.css
http://www.w3.org/TR/css3-2d-transforms/#transform-property
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=136

WORKING WITH SHADOWS, GRADIENTS, AND TRANSFORMATIONS 137

Transparent Backgrounds

Graphic designers have uses semi-transparent layers behind text for

quite some time, and that process usually involves either making a

complete image in Photoshop or layering a transparent PNG on top of

another element with CSS. CSS3 lets us define background colors with

a new syntax that supports transparency.

When you first learn about web development, you learn to define your

colors using hexadecimal color codes. You define the amount of red,

green, and blue using pairs of numbers. 00 is “all off” or “none” and FF

is“all on”. So, the color red would be FF0000 or “all on for red, and all off

for blue and all off for green.”

CSS3 introduces the rgb and rgba functions. The rgb function works

like the hexadecimal counterpart, but you use values from 0 to 255 for

each color. You’d define the color red as rgb(255,0,0).

The rgba function works the same way as the rgb function, but it takes

a fourth parameter to define the amount of opacity, from 0 to 1. If you

use 0, you’ll see no color at all, as it’s completely transparent. To make

the white box semi-transparent, we’ll add this style rule:

Download css3banner/style.css

#info{

background-color: rgba(255,255,255,0.95);

}

When working with transparency values like this, your users’ contrast

settings can sometimes impact the resulting appearance, so be sure to

experiment with the value and check on multiple displays to ensure

you get a consistent result.

While we’re working with the info section of our banner, let’s round the

corners a bit.

Download css3banner/style.css

#info{

moz-border-radius: 12px;

webkit-border-radius: 12px;

o-border-radius: 12px;

border-radius: 12px;

}

With that, our banner looks just pretty good in Safari, Firefox, and

Chrome. Now let’s implement a stylesheet for Internet Explorer.

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/css3banner/style.css
http://media.pragprog.com/titles/bhh5/code/css3banner/style.css
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=137

WORKING WITH SHADOWS, GRADIENTS, AND TRANSFORMATIONS 138

Falling Back

The techniques we used in this section work fine in IE 9, but they’re

all possible with Internet Explorer 6, 7, and 8 too! We just have to use

Microsoft’s DirectX filters to pull them off. That means we’ll want to

rely on a Conditional Comment to load in a specific IE-only stylesheet.

We’ll also need to use JavaScript to create the section element so we can

style it with CSS since these versions of IE don’t recognize that element

natively.

Download css3banner/index.html

<!--[if lte IE 8]>

<script>

document.createElement("section");

</script>

<link rel="stylesheet" href="ie.css" type="text/css" media="screen">

<![endif]-->

</head>

<body>

<div id="conference">

<section id="badge">

<h3>Hi, My Name Is</h3>

<h2>Barney</h2>

</section>

<section id="info">

</section>

</div>

</body>

</html>

The DirectX filters work in IE 6,7, ad 8, but in IE 8 the filters are

invoked differently, so you’ll be declaring each of these filters twice.

Let’s start by looking at how we rotate elements.

Rotation

We can rotate elements using these filters, but it’s not as easy as just

specifying a degree of rotation. To get the effect we want, we need to

use the Matrix filter and specify cosines and sines of the angle we want.

Specifically, we need to pass the cosine, the negative value of sine, the

sine, and the cosine again. 6 like this:

6. We’re doing a linear transformatin using a 2x2 matrix.

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/css3banner/index.html
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=138

WORKING WITH SHADOWS, GRADIENTS, AND TRANSFORMATIONS 139

Download css3banner/filters.css

filter: progid:DXImageTransform.Microsoft.Matrix(

sizingMethod='auto expand',

M11=0.9914448613738104,

M12=0.13052619222005157,

M21=-0.13052619222005157,

M22=0.9914448613738104

);

-ms-filter: "progid:DXImageTransform.Microsoft.Matrix(

sizingMethod='auto expand',

M11=0.9914448613738104,

M12=0.13052619222005157,

M21=-0.13052619222005157,

M22=0.9914448613738104

)";

Complicated? Yes, and more so when you look at the above exam-

ple more closely. Remember that our original angle was negative 7.5

degrees. So for our negative sine, we need a positive value, and our

sine gets a negative value..

Math is hard. Let’s make gradients instead.

Gradients

IE’s Gradient filter works just like the one in the standard, except that

you have to type a lot more characters. You provide the starting color

and the ending color, and the gradient just shows up.

Download css3banner/filters.css

filter: progid:DXImageTransform.Microsoft.gradient(

startColorStr=#FFFFFF, endColorStr=#EFEFEF

);

-ms-filter: "progid:DXImageTransform.Microsoft.gradient(

startColorStr=#FFFFFF, endColorStr=#EFEFEF

)";

Unlike the other browsers, you’re applying the gradient directly to the

element, rather than to the background-image property.

Let’s use this filter again to define the transparent background for our

info section.

Transparency

The gradient filter can take extended hexadecimal values for the start

and end colors, using the first two digits to define the amount of trans-

parency. We can get very close to the effect we want with this code:

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/css3banner/filters.css
http://media.pragprog.com/titles/bhh5/code/css3banner/filters.css
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=139

WORKING WITH SHADOWS, GRADIENTS, AND TRANSFORMATIONS 140

Download css3banner/filters.css

background: none;

filter:

progid:DXImageTransform.Microsoft.gradient(

startColorStr=#BBFFFFFF, endColorStr=#BBFFFFFF

);

-ms-filter: "progid:DXImageTransform.Microsoft.gradient(

startColorStr='#BBFFFFFF', EndColorStr='#BBFFFFFF'

)";

These 8 digit hex codes work very much like the rgba function, exc ept

that the transparency value comes first rather than last. So, we’re really

looking at alpha, red, green, blue.

We have to remove the background properties on that element to make

this work in IE 7. Now, if you’ve been following along trying to build this

stylesheet up, you’ve noticed that it doesn’t actually work yet, but we

can fix that.

Putting It All Together

One of the more difficult problems with these IE filters is that we can’t

define them in pieces. To apply multiple filters to a single element, we

have to define the filters as a comma-separated list. Here’s what the

actual IE stylesheet looks like:

Download css3banner/ie.css

#info{

background: none;

filter:

progid:DXImageTransform.Microsoft.gradient(

startColorStr=#BBFFFFFF, endColorStr=#BBFFFFFF

);

-ms-filter: "progid:DXImageTransform.Microsoft.gradient(

startColorStr='#BBFFFFFF', EndColorStr='#BBFFFFFF'

)";

}

#badge{

filter:

progid:DXImageTransform.Microsoft.Matrix(

sizingMethod='auto expand',

M11=0.9914448613738104,

M12=0.13052619222005157,

M21=-0.13052619222005157,

M22=0.9914448613738104

),

progid:DXImageTransform.Microsoft.gradient(

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/css3banner/filters.css
http://media.pragprog.com/titles/bhh5/code/css3banner/ie.css
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=140

WORKING WITH SHADOWS, GRADIENTS, AND TRANSFORMATIONS 141

Figure 8.5: Our banner as shown in Internet Explorer 8

startColorStr=#FFFFFF, endColorStr=#EFEFEF

),

progid:DXImageTransform.Microsoft.Shadow(

color=#333333, Direction=135, Strength=3

);

-ms-filter: "progid:DXImageTransform.Microsoft.Matrix(

sizingMethod='auto expand',

M11=0.9914448613738104,

M12=0.13052619222005157,

M21=-0.13052619222005157,

M22=0.9914448613738104

),

progid:DXImageTransform.Microsoft.gradient(

startColorStr=#FFFFFF, endColorStr=#EFEFEF

),

progid:DXImageTransform.Microsoft.Shadow(

color=#333333, Direction=135, Strength=3

)";

}

That’s a lot of code to get the desired result, but it shows that it is

possible to use these features. If you look at Figure 8.5 you’ll see we

got pretty close. All we have to do now is round the corners on the info

section, and you can refer to Rounding Rough Edges, on page 125 to

see how to do that.

While these filters are clunky and a little bit quirky, you should still

investigate them further in your own projects because you’ll be able to

provide a similar user experience to your IE users.

Remember that the effects we explored in this section are all presenta-

tional. When we created the initial stylesheet, we made sure to apply

background colors so that text would be readable. Browsers that can-

not understand the CSS3 syntax can still display the page in a readable

manner.

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=141

USING REAL FONTS 142

19 Using Real Fonts

Typography is so important to user experience. The book you’re reading

right now has fonts that were carefully selected by people who under-

stand how choosing the right fonts and the right spacing can make it

much easier for people to read this book. These concepts are just as

important to understand on the web

The fonts we choose when conveying our message to our readers impacts

how our readers interpret that message. Here’s a font that’s perfectly

appropriate for a loud heavy metal band:

But that might not work out so well for the font on the cover of this

book:

As you can see, choosing a font that matches your message is really

important. The problem with fonts on the web is that we web developers

have been limited to a handful of fonts, commonly known as “web-

safe” fonts. These are the fonts that are in wide use across most users’

operating systems.

To get around that, we’ve historically used images for our fonts and

either directly added them to our page’s markup or used other methods

like CSS background images or sFIR7 which renders fonts using Flash.

CSS3’s Fonts module offers a much nicer approach.

@font-face

The @font-face directive was actually introduced as part of the CSS2

specification and was implemented in Internet Explorer 5. However,

Microsoft’s implementation used a font format called Embedded Open

7. http://www.mikeindustries.com/blog/sifr

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://www.mikeindustries.com/blog/sifr
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=142

USING REAL FONTS 143

Fonts and Rights

Some fonts aren’t free. Like stock photography or other copy-
righted material, you are expected to comply with the rights
and licences of the material you use on your web site. If you
purchase a font, you’re usually within your rights to use it in your
logo an or images on your pages. These are called “usage
rights”. However, the @font-face approach brings a different
kind of licensing into play - redistribution rights.

When you embed a font on your page, your users will have
to download that font, meaning your site is now distributing
this font to others. You need to be absolutely positive the fonts
you’re using on your pages allow for this type of usage.

Sites like TypeKit∗ handle the license management for you by
hosting the fonts for you in exchange for a monthly fee.

Fonts are just another asset. Pay attention to the license.

∗. http://www.typekit.com

Type, or EOT, and most fonts out there are in TrueType or OpenType

format. Other browsers support the OpenType and TrueType fonts cur-

rently.

AwesomeCo’s director of marketing has decided that the company should

standardize on a font for both print and the web. You’ve been asked to

investigate a font called Garogier8 which is a simple, thin font that is

completely free for commercial use. As a trial run, we’ll apply this font

to the blog example we created in Redefining a Blog using Semantic

Markup, on page 23. That way everyone can see the font in action.

Font formats

Fonts are available in a variety of formats, and the browsers your tar-

geting will determining what format you’ll need to serve to your visitors.

8. http://www.fontsquirrel.com/fonts/Garogier

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://www.typekit.com
http://www.fontsquirrel.com/fonts/Garogier
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=143

USING REAL FONTS 144

Format Supported Browsers

Embedded

Open-

Type(EOT)

• Internet Explorer 5,6,7,8

TrueType (ttf)
• Internet Explorer 9

• Firefox 3.5

• Google Chrome 4.0

• Safari 4

OpenType (otf)
• Internet Explorer 9

• Firefox 3.5

• Google Chrome 4.0

• Safari 4

• Opera 10.5

Scalable Vector

Graphics (svg)
• iOS devices

Web Open Font

(woff)
• Firefox 3.6

• Internet Explorer 9

Internet Explorer browsers prior to 9 only support a format called

Embedded Open Type, or EOT. Other browsers support the more com-

mon TrueType and OpenType fonts quite well.

Microsoft, Opera, and Mozilla jointly created the Web Open Font Format

which allows lossless compression and better licensing options for font

makers.

In order to hit all of these browsers, you have to make your fonts avail-

able in multiple formats.

Changing Our Font

THe font we’re looking at is available at FontSquirrel9 in TrueType,

WOFF, SVG, and EOT formats, which will work just perfectly.

Using the font involves two steps - defining the font and attaching the

font to elements. In the stylesheet for the blog, add this code:

9. You can grab it from http://www.fontsquirrel.com/fonts/Garogier and also in the book’s

downloadable code.

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://www.fontsquirrel.com/fonts/Garogier
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=144

USING REAL FONTS 145

Joe Asks. . .

How do I convert my own fonts?

If you have developed your own font, or have purchased the
rights to a font and need to make it available in multiple for-
mats, the web site FontSquirrel has a converter∗ you can use
that will provde you with the converted fonts as well as a
stylesheet with the @font-face code you’ll need. Be sure your
font’s license allows this type of usage though.

∗. http://www.fontsquirrel.com/fontface/generator

Download css3fonts/style.css

@font-face {

font-family: 'GarogierRegular';

src: url('fonts/Garogier_unhinted-webfont.eot');

src: url('fonts/Garogier_unhinted-webfont.woff') format('woff'),

url('fonts/Garogier_unhinted-webfont.ttf') format('truetype'),

url('fonts/Garogier_unhinted-webfont.svg#webfontew0qE0O9') format('svg');

font-weight: normal;

}

We’re defining the font family first, giving it a name, and then supplying

the font sources. We’re putting the Embedded OpenType version first,

so that IE sees it right away, and then we provide the other sources.

A user’s browser is going to just keep trying sources until it finds one

that works.

Now that we’ve defined the font family, we can use it in our stylesheet.

We’ll change our original font style so it looks like this:

Download css3fonts/style.css

body{

font-family: "GarogierRegular";

}

With that simple change, our page’s text displays in the new font, like

the example in Figure 8.6, on the following page.

Applying a font is relatively easy in modern browsers, but we need to

consider browsers that don’t support this yet.

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://www.fontsquirrel.com/fontface/generator
http://media.pragprog.com/titles/bhh5/code/css3fonts/style.css
http://media.pragprog.com/titles/bhh5/code/css3fonts/style.css
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=145

USING REAL FONTS 146

Figure 8.6: The blog with the new font applied

Falling Back

We’ve already provided fallbacks for various versions of IE and other

borwsers, but we still need to ensure our pages are readable in browsers

that lack support for the @font-face feature.

We provided alternate versions of the Garogier font, but when we applied

the font, we didn’t specify any fallback fonts. That means if the browser

doesn’t support displaying our Garogier font, it’s just going to use the

browser’s default font. That might not be ideal.

Font stacks are lists of fonts ordered by priority. You specify the font

you really want your users to see first, and then specify other fonts

that are suitable fallbacks afterwards.

When creating a font stack, take the extra time to find truly suitable

fallback fonts. Letter spacing, stroke width, and general appearance

should be similar. The web site UnitInteractive has an excellent article

on this10.

Let’s alter our font like this:

Download css3fonts/style.css

font-family: "GarogierRegular", Georgia,

"Palatino", "Palatino Linotype",

"Times", "Times New Roman", serif;

We’re providing a large array of fallbacks here, which should help us

maintain a similar appearance. It’s not perfect in all cases, but it’s bet-

10. http://unitinteractive.com/blog/2008/06/26/better-css-font-stacks/

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/css3fonts/style.css
http://unitinteractive.com/blog/2008/06/26/better-css-font-stacks/
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=146

USING REAL FONTS 147

Font Services

Licensing of fonts can get messy, so if you’re looking for ways to
take advantage of @font-face while avoiding any legal prob-
lems, you have a few options.

Typekit∗ has a large library of fonts available, and they provide
tools and code that make it easy to integrate with your web
site. They are not a free service, but they are quite affordable if
you need to use a specific font.

Google provides the Google Font API†, which is similar to Type-
kit, but contains only open-source fonts.

There are many other options available as well, but be aware
that services like these often require you to use JavaScript to
make this work.

∗. http://www.typekit.com/

†. http://code.google.com/apis/webfonts/

ter than relying on the default font which can sometimes be quite hard

to read.

Fonts can go a long way to make your page more attractive and easier

to read. Experiment with your own work. There are a large number of

fonts, both free and commercial, waiting for you.

The Future

In this chapter, we explored a few ways CSS3 replaces traditional web

development techniques, but we only scratched the surface. The CSS3

specification talks about 3D transformations and even simple anima-

tions, meaning that we can use stylesheets instead of JavaScript to

provide interaction cues to users, much like we do with :hover.

In addition, some browsers are already supporting multiple background

images, and gradient borders. Finally, keep an eye out for improve-

ments in paged content, like running headers and footers and page

number support.

The CSS3 modules, when completed, will make it much easier for us to

create richer, better, and more inviting interface elements for our users,

so be sure to keep an eye out for new features.

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://www.typekit.com/
http://code.google.com/apis/webfonts/
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=147

Part III

Beyond HTML5

Prepared exclusively for Jose Sierra

Chapter 9

Working with Client-side Data
Remember when cookies were awesome? Neither do I. Cookies have

been rather painful to deal with since they came on the scene, but we

have put up with the hassle because they’ve been the only way to store

information on the clients’ machines. In order to use them, we have

to name the cookie and set its expiration. This involves a bunch of

JavaScript code we wrap in a function so we never have to think about

how it actually works, kind of like this.

Download html5_localstorage/setcookie.js

// via http://www.javascripter.net/faq/settinga.htm

function SetCookie(cookieName,cookieValue,nDays) {

var today = new Date();

var expire = new Date();

if (nDays==null || nDays==0) nDays=1;

expire.setTime(today.getTime() + 3600000*24*nDays);

document.cookie = cookieName+"="+escape(cookieValue)

+ ";expires="+expire.toGMTString();

}

Aside from the hard-to-remember syntax, there are also the security

concerns. Some sites use cookies to track users’ surfing behavior, so

users disable cookies in some fashion.

HTML5 introduced a few new options for storing data on the client:

LocalStorage, SessionStorage1, and Web SQL Databases2. They’re easy

to use, incredibly powerful, and reasonably secure. Best of all, they’re

implemented today by several browsers, including Android 2.0 and iOS.

1. http://www.whatwg.org/specs/web-apps/2007-10-26/#storage

2. http://www.whatwg.org/specs/web-apps/2007-10-26/#sql

Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/html5_localstorage/setcookie.js
http://www.whatwg.org/specs/web-apps/2007-10-26/#storage
http://www.whatwg.org/specs/web-apps/2007-10-26/#sql

CHAPTER 9. WORKING WITH CLIENT -SIDE DATA 150

Unfortunately, these are no longer part of the HTML5 specification-

they’ve been spun off into their own specifications.

While LocalStorage, SessionStorage, and Web SQL databases can’t replace

cookies intended to be shared between the client and the server—like

in the case of web frameworks that use the cookies to maintain state

across requests—they can be used to store data that only users care

about, such as visual settings or preferences. They also come in handy

for building mobile applications that can run in the browser but are not

connected to the Internet. Many web applications currently call back to

a server to save user data, but with these new storage mechanisms,

an Internet connection is no longer an absolute dependency. User data

could be stored locally and backed up when necessary.

When you combine these methods with HTML5’s new offline features,

you can build complete database applications right in the browser, that

work on a wide variety of platforms, from desktops to iPads and Android

phones. In this chapter, you’ll learn how to use these techniques to

persist user settings and create a simple notes database.

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=150

CHAPTER 9. WORKING WITH CLIENT -SIDE DATA 151

Feature Description Supported Browsers

LocalStorage Stores data in key/value

pairs, tied to a domain,

and persists across

browser sessions

• Internet Explorer 8

• Firefox 3

• Safari 4

• Chrome 3

• Opera 10.5

• Android

• iOS 3.0

SessionStorage Stores data in key/value

pairs, tied to a domain,

and is erased when a

browser session ends.

• Internet Explorer 8

• Firefox 3

• Safari 4

• Chrome 3

• Opera 10.5

• Android 2.0

• iOS 3.0

Web SQL

Databases

Fully relational

databases with sup-

port for creating tables,

inserts, updates, deletes,

and selects, with trans-

actions. Tied to a domain

and persists across

sessions.

• Safari 3.2

• Chrome 3

• Opera 10.5

• Android 2.0

• iOS 3.0

Offline Web

Applications

Defines files to be cached

for offline use, allowing

applications to run with-

out an Internet connec-

tion.

• Firefox 3.5

• Safari 4

• Chrome 4

• Opera 10.6

• Android 2.0

• iOS 3.0

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=151

SAVING PREFERENCES WITH LOCALSTORAGE 152

Figure 9.1: Values for the users’ preferences are stored in LocalStorage

20 Saving Preferences with
LocalStorage

LocalStorage provides a very simple method for developers to persist

data on the client’s machine. LocalStorage is simply a name-value store

built in to the web browser.

LocalStorage persists between browser sessions, and can’t be read by

other web sites, because it’s restricted to the domain you’re currently

visiting.3.

AwesomeCo is in the process of developing a new customer service por-

tal and wants users to be able to change the text size, background, and

text color of the site. Let’s implement that using LocalStorage, so that

when we save the changes, they persist from one browser session to

the next. When we’re done we’ll end up with a prototype that looks like

Figure 9.1.

3. Just watch out when you’re developing things locally. If you’re working on localhost

for example, you can easily get your variables mixed up!

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=152

SAVING PREFERENCES WITH LOCALSTORAGE 153

Building the Preferences form

Let’s craft a form using some semantic HTML5 markup and some of

the new form controls you learned about in Chapter 3, Creating User-

friendly Web Forms, on page 43. We want to let the user change the

foreground color, the background color, and adjust their font size.

Download html5_localstorage/index.html

<p>Preferences</p>

<form id="preferences" action="add_to_cart" method="post" accept-charset="utf-8">

<fieldset id="colors" class="">

<legend>Colors</legend>

<label for="background_color">Background color</label>

<input type="color" name="background_color" value="" id="background_color">

<label for="text_color">Text color</label>

<input type="color" name="text_color" value="" id="text_color">

<label for="text_size">Text size</label>

<select name="text_size" id="text_size">

<option value="16">16px</option>

<option value="20">20px</option>

<option value="24">24px</option>

<option value="32">32px</option>

</select>

</fieldset>

<input type="submit" value="Save changes">

</form>

We’ll just use HTML color codes for the color.

Saving and Loading the Settings

To work with the LocalStorage system, you use JavaScript to access the

window.localStorage() object. Setting a name and value pair is as simple

as:

Download html5_localstorage/index.html

localStorage.setItem("background_color", $("#background_color").val());

Grabbing a value back out is just as easy.

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/html5_localstorage/index.html
http://media.pragprog.com/titles/bhh5/code/html5_localstorage/index.html
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=153

SAVING PREFERENCES WITH LOCALSTORAGE 154

Download html5_localstorage/index.html

var bgcolor = localStorage.getItem("background_color");

Let’s create a method for saving all of the settings from the form.

Download html5_localstorage/index.html

function save_settings(){

localStorage.setItem("background_color", $("#background_color").val());

localStorage.setItem("text_color", $("#text_color").val());

localStorage.setItem("text_size", $("#text_size").val());

apply_preferences_to_page();

}

Next, let’s build a similar method that will load the data from the Local-

Storage system and place it into the form fields.

Download html5_localstorage/index.html

function load_settings(){

var bgcolor = localStorage.getItem("background_color");

var text_color = localStorage.getItem("text_color");

var text_size = localStorage.getItem("text_size");

$("#background_color").val(bgcolor);

$("#text_color").val(text_color);

$("#text_size").val(text_size);

apply_preferences_to_page();

}

This method also calls a method that will apply the settings to the page

itself, which we’ll write next.

Applying the settings

Now that we can retrieve the settings from LocalStorage, we need to

apply them to the page. The preferences we’re working with are all

related to CSS in some way, and we can use jQuery to modify any

element’s styles.

Download html5_localstorage/index.html

function apply_preferences_to_page(){

$("body").css("backgroundColor", $("#background_color").val());

$("body").css("color", $("#text_color").val());

$("body").css("fontSize", $("#text_size").val() + "px");

}

Finally, we need to fire all of this when the document is ready.

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/html5_localstorage/index.html
http://media.pragprog.com/titles/bhh5/code/html5_localstorage/index.html
http://media.pragprog.com/titles/bhh5/code/html5_localstorage/index.html
http://media.pragprog.com/titles/bhh5/code/html5_localstorage/index.html
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=154

SAVING PREFERENCES WITH LOCALSTORAGE 155

Download html5_localstorage/index.html

$(function(){

load_settings();

$('form#preferences').submit(function(event){

event.preventDefault();

save_settings();

});

});

Falling Back

LocalStorage only works on the latest Internet Explorer, Firefox, Chrome,

and Safari, so we’ll need a fallback method for older browsers. You have

a couple of approaches - save the information on the server, or persist

the preferences on the client-side using cookies.

Server-side storage

If you have user accounts in your system, you should consider making

the preferences page persist the settings to the user’s record in your

application. When they log in, you can check to see if any client-side

settings exist, and if they don’t load them from the server. This way

your users keep their settings across browsers and across computers.

To persist to the server, simply ensure your form posts to the server -

don’t prevent the default submit behavior with JavaScript if there’s no

support for cookies.

Server-side storage is really the only method that will work if the user

disables JavaScript, as you could code your application to fetch the

settings from the database and not the LocalStorage hash. Also, this

is the only approach you can take if you’re storing more than 4 KB

of data, since that’s the maximum amount of data you can store in a

cookie.

Cookies and JavaScript

The tried-and-true combination of cookies and JavaScript can act as a

decent fallback. Using the well-known cookie script from Quirksmode,4

we can build our own LocalStorage fallback solution.

Detecting LocalStorage support in the browser is pretty simple. We just

check for the existence of a localStorage method on the window object:

4. http://www.quirksmode.org/js/cookies.html

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/html5_localstorage/index.html
http://www.quirksmode.org/js/cookies.html
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=155

SAVING PREFERENCES WITH LOCALSTORAGE 156

Download html5_localstorage/index.html

if (!window.localStorage){

}

Next, we need methods to write the cookies, which we’ll borrow from

the Quirksmode article. Add these JavaScript functions to your script

block, within the braces:

Download html5_localstorage/index.html

function createCookie(name,value,days) {

if (days) {

var date = new Date();

date.setTime(date.getTime()+(days*24*60*60*1000));

var expires = "; expires="+date.toGMTString();

}

else var expires = "";

document.cookie = name+"="+value+expires+"; path=/";

}

function readCookie(name) {

var result = ""

var nameEQ = name + "=";

var ca = document.cookie.split(';');

for(var i=0;i < ca.length;i++) {

var c = ca[i];

while (c.charAt(0)==' ') c = c.substring(1,c.length);

if (c.indexOf(nameEQ) == 0){

result = c.substring(nameEQ.length,c.length);

}else{

result = "";

}

}

return(result);

}

Finally, we want to make a LocalStorage object that uses the cookies as

its backend. A very hackish example that just barely makes this work

might look like this:

Download html5_localstorage/index.html

Line 1 localStorage = (function () {
- return {
- setItem: function (key, value) {
- createCookie(key, value, 3000)
5 },
-

- getItem: function (key) {
- return(readCookie(key));
- }

10 };

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/html5_localstorage/index.html
http://media.pragprog.com/titles/bhh5/code/html5_localstorage/index.html
http://media.pragprog.com/titles/bhh5/code/html5_localstorage/index.html
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=156

SAVING PREFERENCES WITH LOCALSTORAGE 157

SessionStorage

We can use LocalStorage for things that we want to persist
even after our users close their web browsers, but sometimes
we need a way to store some information while the browser is
open and throw it away once the session is over. That’s where
SessionStorage comes into play. It works the same way as Local-
Storage but the contents of the SessionStorage are cleared out
once the browser session ends. Instead of grabbing the local-

Storage object, you grab the sessionStorage object.

sessionStorage.setItem('name', 'Brian Hogan');
var name = sessionStorage.getItem('name');

Creating a fallback solution for this is as simple as ensuring that
the cookies you create expire when the browser closes.

- })();

Take note of line 4. I’m creating a cookie with an expiration date of 3000

days from now. We can’t create cookies that never expire, so I’m setting

this to a ridiculously long time into the future.

We’ve kept the basic implementation of localStorage the same from the

outside. If you need to remove items or clear everything out, you’ll need

to get a little more creative. Hopefully, in the near future, we can remove

this hackish solution and rely only on the browser’s localStorage() meth-

ods.

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=157

STORING DATA IN CLIENT -SIDE RELATIONAL DATABASE 158

21 Storing Data in Client-Side
Relational Database

LocalStorage and SessionStorage give us an easy way to store simple

name/value pairs on the client’s computer, but sometimes we need

more than that. HTML5 introduces the ability to store data in rela-

tional databases. It’s called "Web SQL Storage"5 and if you have even a

basic background in writing SQL statements, you’ll feel right at home

in no time. To get you comfortable, we’ll use Web SQL Storage to create,

retrieve, update, and destroy notes in a client-side database.

CRUD in your Browser

The term CRUD, an acronym for "Create, Retrieve, Update, and Delete"6,

pretty much describes what we can do with our client-side database.

The specification and implementations allow us to insert, select, update,

and delete records.

AwesomeCo wants to equip their sales team with a simple application

to collect notes while they’re on the road. This application will need to

let users create new notes, as well as update and delete existing ones.

In order to change existing notes, we’ll need to let users retrieve them

from the database.

Here are the SQL statements we’ll need to write in order to make this

happen.

Type Statement

Create a note INSERT INTO notes (title, note) VALUES("Test", "This is a note");

Retrieve all

notes

SELECT id, title, note FROM notes;

Retrieve a spe-

cific note

SELECT id, title, note FROM notes where id = 1;

Update a note UPDATE notes set title = "bar", note = "Changed" where id =

1;

Delete a note DELETE FROM notes where id = 1;

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=158

STORING DATA IN CLIENT -SIDE RELATIONAL DATABASE 159

Figure 9.2: Our notes application interface

The Notes Interface

The interface for the notes application consists of a left-hand sidebar

that will have a list of the notes already taken, and a form on the right

side with a title field and a larger text area for the note itself. Look at

Figure 9.2 to see what we’re building.

To start, we need to code up the interface.

Download html5sql/index.html

<!doctype html>

<html>

<head>

<title>AwesomeNotes</title>

<link rel="stylesheet" href="style.css">

<script type="text/javascript"

charset="utf-8"

src="http://ajax.googleapis.com/ajax/libs/jquery/1.4.2/jquery.min.js">

</script>

<!-- EMD:ui -->

<script type="text/javascript"

charset="utf-8" src="javascripts/notes.js">

</script>

5. http://dev.w3.org/html5/webdatabase/

6. or "Create, Read, Update, and Destroy", if you prefer

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/html5sql/index.html
http://dev.w3.org/html5/webdatabase/
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=159

STORING DATA IN CLIENT -SIDE RELATIONAL DATABASE 160

</head>

<body>

<section id="sidebar">

<input type="button" id="new_button" value="New note">

<ul id="notes">

</section>

<section id="main">

<form>

<input type="submit" id="save_button" value="Save">

<input type="submit" id="delete_button" value="Delete">

<label for="title">Title</label><input type="text" id="title">

<label for="note">Note</label><textarea id="note"></textarea>

</form>

</section>

</body>

</html>

We define the sidebar and main regions using section tags, and we have

given IDs to each of the important user interface controls like the save

button. This will make it easier for us to locate elements so that we can

attach event listeners.

We’ll also need a stylesheet so that we can make this look more like the

figure. style.css looks like this:

Download html5sql/style.css

#sidebar, #main{

display: block;

float: left;

}

#sidebar{

width: 25%;

}

#main{

width: 75%;

}

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/html5sql/style.css
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=160

STORING DATA IN CLIENT -SIDE RELATIONAL DATABASE 161

form ol{

list-style: none;

margin: 0;

padding: 0;

}

form li{

padding: 0;

margin: 0;

}

form li label{

display:block;

}

#title, #note{

width: 100%;

font-size: 20px;

border: 1px solid #000;

}

#title{

height: 20px;

}

#note{

height: 40px;

}

This stylesheet turns off the bullet points, sizes the text areas, and lays

things out in two columns. Now that we have the interface done, we

can build the JavaScript we need to make this work.

Connecting to the Database

We need to make a connection and create a database:

Download html5sql/javascripts/notes.js

// Database reference

var db = null;

// Creates a connection to the local database

connectToDB = function()

{

db = window.openDatabase('awesome_notes', '1.0',

'AwesomeNotes Database', 1024*1024*3);

};

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/html5sql/javascripts/notes.js
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=161

STORING DATA IN CLIENT -SIDE RELATIONAL DATABASE 162

We’re declaring the db variable at the top of our script. Doing this makes

it available to the rest of the methods we’ll create.7 We then declare the

method to connect to the database by using the window.openDatabase

method. This takes the name of the database, a version number, a

description, and a size parameter.

Creating the Notes Table

Our notes table needs three columns:

Field Description

id Uniquely identifies the note. Primary key, integer,

autoincrementing

title The title of the note, for easy reference

Note The note itself.

Let’s create a method to create this table:

Download html5sql/javascripts/notes.js

createNotesTable = function()

{

db.transaction(function(tx){

tx.executeSql(

"CREATE TABLE notes (id INTEGER PRIMARY KEY, title TEXT, note TEXT)", [],

function(){ alert('Notes database created successfully!'); },

function(tx, error){ alert(error.message); });

});

};

We fire the SQL statement inside of a transaction, and the transaction

has two callback methods: one for a successful execution, and one for

a failure. This is the pattern we’ll use for each of our actions.

Note that the executeSql() method also takes an array as its second

parameter. This array is for binding placeholders in the SQL to vari-

ables. This lets us avoid string concatenation and is similar to prepared

statements in other languages. In this case, the array is empty as we

have no placeholders in our query to populate.

Now that we have our first table, we can make this application actually

do something.

7. This puts the variable into the global scope and that’s not always a good idea. For

this example, we’re keeping the JavaScript code as simple as possible.

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/html5sql/javascripts/notes.js
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=162

STORING DATA IN CLIENT -SIDE RELATIONAL DATABASE 163

Loading Notes

When the application loads, we want to connect to the database, create

the table if it doesn’t already exist, and then fetch any existing notes

from the database.

Download html5sql/javascripts/notes.js

// loads all records from the notes table of the database;

fetchNotes = function(){

db.transaction(function(tx) {

tx.executeSql('SELECT id, title, note FROM notes', [],

function(SQLTransaction, data){

for (var i = 0; i < data.rows.length; ++i) {

var row = data.rows.item(i);

var id = row['id'];

var title = row['title'];

addToNotesList(id, title);

}

});

});

};

This method grabs the results from the database. If it’s successful it

loops over the results and calls the addNoteToList method which we

define to looks like this:

Download html5sql/javascripts/notes.js

// Adds the list item to the list of notes, given an id and a title.

addToNotesList = function(id, title){

var notes = $("#notes");

var item = $("");

item.attr("data-id", id);

item.html(title);

notes.append(item);

};

We’re embedding the ID of the record into a custom data attribute.

We’ll use that ID to locate the record to load when the user clicks the

list item. We then add the new list item we create to the unordered list

in our interface with the id of notes. Now we need to add code to load

that item into the form when we select a note from this list.

Fetching a specific record

We could add a click event to each list item, but a more practical approach

is to watch any clicks on the unordered list and then determine which

one was clicked. This way when we add new entries to the list (like

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/html5sql/javascripts/notes.js
http://media.pragprog.com/titles/bhh5/code/html5sql/javascripts/notes.js
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=163

STORING DATA IN CLIENT -SIDE RELATIONAL DATABASE 164

when we add a brand new note) we don’t have to add the click event to

the list.

Within our jQuery function, we’ll add this code:

Download html5sql/javascripts/notes.js

$("#notes").click(function(event){

if ($(event.target).is('li')) {

var element = $(event.target);

loadNote(element.attr("data-id"));

}

});

This fires off the loadNote() method, which looks like this:.

Download html5sql/javascripts/notes.js

loadNote = function(id){

db.transaction(function(tx) {

tx.executeSql('SELECT id, title, note FROM notes where id = ?', [id],

function(SQLTransaction, data){

var row = data.rows.item(0);

var title = $("#title");

var note = $("#note");

title.val(row["title"]);

title.attr("data-id", row["id"]);

note.val(row["note"]);

$("#delete_button").show();

});

});

}

This method looks a lot like the previous fetchNotes() method. It fires

a SQL statement and we then handle the success path. This time, the

statement contains a question-mark placeholder and the actual value

is in the second parameter as a member of the array.

When we have found a record, we display it in the form. This method

also activates the delete button, and embeds the ID of the record into

a custom data attribute so that updates can easily be handled. Our

"Save" button will check for the existence of the ID. If one exists, we’ll

update the record. If one is missing, we’ll assume it’s a new record.

Let’s write that bit of logic next.

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/html5sql/javascripts/notes.js
http://media.pragprog.com/titles/bhh5/code/html5sql/javascripts/notes.js
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=164

STORING DATA IN CLIENT -SIDE RELATIONAL DATABASE 165

Inserting, Updating, and Deleting records

When a user presses the "Save" button, we’ll want to trigger code to

either insert a new record or update the existing one. We’ll add a click

event handler to the "Save" button by placing this code inside of the

jQuery function:

Download html5sql/javascripts/notes.js

$("#save_button").click(function(event){

event.preventDefault();

var title = $("#title");

var note = $("#note");

if(title.attr("data-id")){

updateNote(title, note);

}else{

insertNote(title, note);

}

});

This method checks the data-id attribute of the form’s "title" field. If it

has no ID, the form assumes we’re inserting a new record and invokes

the insertNote method, which looks like this:

Download html5sql/javascripts/notes.js

insertNote = function(title, note)

{

db.transaction(function(tx){

tx.executeSql("INSERT INTO notes (title, note) VALUES (?, ?)",

[title.val(), note.val()],

function(tx, result){

var id = result.insertId ;

alert('Record ' + id+ 'saved!');

title.attr("data-id", result.insertId);

addToNotesList(id, title.val());

$("#delete_button").show();

},

function(){

alert('The note could not be saved.');

}

);

});

};

The insertNote() method inserts the record into the database and uses

the insertId property of the resultset to get the ID that was just inserted.

We then apply this to the "title" form field as a custom data attribute

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/html5sql/javascripts/notes.js
http://media.pragprog.com/titles/bhh5/code/html5sql/javascripts/notes.js
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=165

STORING DATA IN CLIENT -SIDE RELATIONAL DATABASE 166

and invoke the addToNotesList() method to add the note to our list on the

side of the page.

Next, we need to handle updates. The updateNote() method looks just

like the rest of the methods we’ve added so far:

Download html5sql/javascripts/notes.js

updateNote = function(title, note)

{

var id = title.attr("data-id");

db.transaction(function(tx){

tx.executeSql("UPDATE notes set title = ?, note = ? where id = ?",

[title.val(), note.val(), id],

function(tx, result){

alert('Record ' + id + ' updated!');

$("#notes>li[data-id=" + id + "]").html(title.val());

},

function(){

alert('The note was not updated!');

}

);

});

};

When the update statement is successful, we update the title of the note

in our list of notes by finding the element with the data-id field with the

value of the id we just updated.

As for deleting records, it’s almost the same. We need a handler for the

delete event like this:

Download html5sql/javascripts/notes.js

$("#delete_button").click(function(event){

event.preventDefault();

var title = $("#title");

deleteNote(title);

});

Then we need the delete method itself, which not only removes the

record from the database, but also removes it from the list of notes in

the sidebar.

Download html5sql/javascripts/notes.js

deleteNote = function(title)

{

var id = title.attr("data-id");

db.transaction(function(tx){

tx.executeSql("DELETE from notes where id = ?", [id],

function(tx, result){

alert('Record ' + id + ' deleted!');

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/html5sql/javascripts/notes.js
http://media.pragprog.com/titles/bhh5/code/html5sql/javascripts/notes.js
http://media.pragprog.com/titles/bhh5/code/html5sql/javascripts/notes.js
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=166

STORING DATA IN CLIENT -SIDE RELATIONAL DATABASE 167

$("#notes>li[data-id=" + id + "]").remove();

},

function(){

alert('The note was not deleted!');

}

);

});

};

Now we just need to clear out the form so we can create a new record

without accidentally duplicating an existing one.

Wrapping Up

Our notes application is mostly complete. We just have to activate the

"New" button, which clears the form out when clicked so a user can

create a new note after they’ve edited an existing one. We’ll use the

same pattern as before - we’ll start with the event handler inside of the

jQuery function for the "New" button:

Download html5sql/javascripts/notes.js

$("#new_button").click(function(event){

event.preventDefault();

newNote();

});

//end:newbutton

newNote();

});

Next we’ll clear out the "data-id" attribute of the "title" field and remove

the values from the forms. We’ll also hide the delete button from the

interface.

Download html5sql/javascripts/notes.js

newNote = function(){

$("#delete_button").hide();

var title = $("#title");

title.removeAttr("data-id");

title.val("");

var note = $("#note");

note.val("");

}

We should call this newForm method from within our jQuery function

when the page loads so that the form is ready to be used. This way the

Delete button is hidden too.

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/html5sql/javascripts/notes.js
http://media.pragprog.com/titles/bhh5/code/html5sql/javascripts/notes.js
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=167

STORING DATA IN CLIENT -SIDE RELATIONAL DATABASE 168

That’s all there is to it. Our application works on iPhones, Android

devices, and desktop machines running Chrome, Safari, and Opera.

However, there’s little chance this will ever work in Firefox, and it’s not

supported in Internet Explorer either.

Falling Back

Chrome, Safari, Android, and Mobile Safari let us use this really neat

feature, but there’s nothing like this available in other browsers. Unlike

our other solutions, there are no good libraries available that would let

us implement SQL storage ourselves, and so we have no way to pro-

vide support to Internet Explorer uses natively. However, if this type of

application is something you think could be useful, you could convince

your users to use Google Chrome, which works on all platforms, for

this specific application. That’s not an unheard of practice, especially if

using an alternative browser allows you to build an internal application

that could be made to work on mobile devices as well.

Another alternative is to use the Google Chrome Frame plugin 8 Add

this to the top of your HTML page right below the head tag:

Download html5sql/index.html

<meta http-equiv="X-UA-Compatible" content="chrome=1">

This snippet gets read by the Google Chrome Frame plugin and acti-

vates it for this page.

If you want to detect the presence of the plugin and prompt your users

to install it if it doesn’t exist, you can add this snippet right above the

closing body tag.

Download html5sql/index.html

<script type="text/javascript"

src="http://ajax.googleapis.com/ajax/libs/chrome-frame/1/CFInstall.min.js">

</script>

<script>

window.attachEvent("onload", function() {

CFInstall.check({

mode: "inline", // the default

node: "prompt"

});

});

8. http://code.google.com/chrome/chromeframe/

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://media.pragprog.com/titles/bhh5/code/html5sql/index.html
http://media.pragprog.com/titles/bhh5/code/html5sql/index.html
http://code.google.com/chrome/chromeframe/
http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=168

STORING DATA IN CLIENT -SIDE RELATIONAL DATABASE 169

</script>

This will give the user an option to install the plugin so they can work

with your site.

Google Chrome Frame may not be a viable solution for a web appli-

cation meant to be used by the general public, but it works well for

internal applications like the one we just wrote. There may be corpo-

rate IT policies that prohibit something like this, but I’ll leave that up to

you to work out how you can get something like this approved if you’re

in that situation. Installing a plugin is certainly more cost-effective than

writing your own SQL database system.

The Future

LocalStorage and SQL databases give developers the ability to build

applications in the browser that don’t have to be connected to a web

server. Applications like the ones we worked on run on an iPad or

Android device as well, and so they create the ability to build offline

rich applications using familiar tools instead of proprietary platforms.

As more browsers enable support, developers will be able to leverage

them more, creating applications that run on multiple platforms and

devices, that store data locally, and sync up when connected.

The future of Web SQL Storage is unknown. Mozilla has no plans to

implement it in Firefox, choosing instead to move forward implementing

the IndexDB specification instead. We’ll talk more about that specifica-

tion in Chapter 11, Where To Go Next, on page 174. However, Web SQL

Storage has been in use on the iOS devices for a while, and it’s likely

to stay. This specification could be extremely useful to you if you’re

developing applications in that space.

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=169

Chapter 10

Playing Nicely With Others

Prepared exclusively for Jose Sierra

CROSS DOCUMENT MESSAGING 171

22 Cross document Messaging

Coming soon...

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=171

GETTING CHATTY WITH WEBSOCKETS 172

23 Getting Chatty with Websockets

Coming soon...

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=172

FINDING YOURSELF WITH GEOLOCATION 173

24 Finding Yourself With
Geolocation

Coming soon...

Report erratum

this copy is (B2.0 printing, July 19, 2010)
Prepared exclusively for Jose Sierra

http://books.pragprog.com/titles/bhh5/errata/add?pdf_page=173

Chapter 11

Where To Go Next
Coming Soon...

Prepared exclusively for Jose Sierra

Chapter 12

jQuery Primer
Coming Soon...

Prepared exclusively for Jose Sierra

Appendix A

Bibliography

[HT00] Andrew Hunt and David Thomas. The Pragmatic Program-

mer: From Journeyman to Master. Addison-Wesley, Reading,

MA, 2000.

Prepared exclusively for Jose Sierra

Index

Prepared exclusively for Jose Sierra

More Books go here...

Prepared exclusively for Jose Sierra

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Home Page for HTML5 and CSS3

http://pragprog.com/titles/bhh5

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/bhh5.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

Prepared exclusively for Jose Sierra

http://pragprog.com/titles/bhh5
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/bhh5
www.pragprog.com/catalog

	Contents
	Change History
	Beta 2---July 19th 2010

	Preface
	HTML5: The Platform vs The Specification
	How This Works
	What's In This Book
	Prerequisites
	Online Resources

	An Overview of HTML5 and CSS3
	A Platform for Web Development
	Backwards Compatibility
	The Road To The Future is Bumpy

	Improving User Interfaces
	New Structural Tags and Attributes
	Redefining a Blog using Semantic Markup
	Showing Progress with the Meter Element
	Creating Popup Windows with Custom Data Attributes

	Creating User-friendly Web Forms
	Describing Data with New Input Fields
	Jumping to the First Field with Autofocus
	Providing Hints with Placeholder Text
	In-Place Editing with ContentEditable

	Making Better User Interfaces with CSS3
	Styling Tables With Pseudo Classes
	Making Links Printable with :after and content
	Creating Multi-Column Layouts

	Improving Accessibility
	Providing Navigation Hints with ARIA Roles
	Creating An Accessible Updatable Region

	New Sights And Sounds
	Drawing On The Canvas
	Drawing A Logo
	Graphing Statistics with RGraph

	Embedding Audio and Video
	Playing Sound Samples with the Audio tag
	Building a Cross-Platform Video Tutorial Page

	Eye Candy
	Rounding Rough Edges
	Working With Shadows, Gradients, and Transformations
	Using Real Fonts

	Beyond HTML5
	Working with Client-side Data
	Saving Preferences with LocalStorage
	Storing Data in Client-Side Relational Database

	Playing Nicely With Others
	Cross document Messaging
	Getting Chatty with Websockets
	Finding Yourself With Geolocation

	Where To Go Next
	jQuery Primer
	Bibliography

	Index

